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Abstract—We present an algorithm for the repair of param-
eterized systems. The repair problem is, for a given process
implementation, to find a refinement such that a given safety
property is satisfied by the resulting parameterized system, and
deadlocks are avoided. Our algorithm uses a parameterized
model checker to determine the correctness of candidate solutions
and employs a constraint system to rule out candidates. We
apply this algorithm on systems that can be represented as
well-structured transition systems (WSTS), including disjunctive
systems, rendezvous systems, and broadcast protocols. Moreover,
we show that parameterized deadlock detection can be decided in
EXPTIME for disjunctive systems, and that deadlock detection
is in general undecidable for broadcast protocols.

I. INTRODUCTION

Concurrent systems are hard to get correct, and are therefore
a promising application area for formal methods. For systems
that are composed of an arbitrary number of processes n,
methods such as parameterized model checking can provide
correctness guarantees that hold regardless of n. While the
parameterized model checking problem (PMCP) is unde-
cidable even if we restrict systems to uniform finite-state
processes [41], there exist several approaches that decide the
problem for specific classes of systems and properties [2]–[4],
[15], [20], [22]–[24], [32].

However, if parameterized model checking detects a fault in
a given system, it does not tell us how to repair the latter such
that it satisfies the specification. To repair the system, the user
has to find out which behavior of the system causes the fault,
and how it can be corrected. Both tasks may be nontrivial.

For faults in the internal behavior of a process, the approach
we propose is based on a similar idea as existing repair
approaches [5], [37]: we start with a non-deterministic im-
plementation, and restrict non-determinism to obtain a correct
implementation. This non-determinism may have been added
by a designer to “propose” possible repairs for a system that
is known or suspected to be faulty.

However, repairing a process internally will not be enough
in the presence of concurrency. We need to go beyond existing
repair approaches, and also repair the communication between
processes to ensure the large number of possible interactions
between processes is correct as well. We do so by choosing the
right options out of a set of possible interactions, combining
the idea above with that of synchronization synthesis [9], [38].

In addition to guaranteeing safety properties, we aim for
an approach that avoids introducing deadlocks, which is par-
ticularly important for a repair algorithm, since often the

easiest way to “repair” a system is to let it run into a
deadlock as quickly as possible. Unlike non-determinism for
repairing internal behavior, we are even able to introduce non-
determinism for repairing communication automatically.

Regardless of whether faults are fixed in the internal behav-
ior or in the communication of processes, we aim for a parame-
terized correctness guarantee, i.e., the repaired implementation
should be correct in a system with any number of processes.
We show how to achieve this by integrating techniques from
parameterized model checking into our repair approach.

High-Level Parameterized Repair Algorithm. Figure 1
sketches the basic idea of our parameterized repair algorithm.
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The algorithm starts with a representation M of the pa-
rameterized system, based on non-deterministic models of
the components, and checks if error states are reachable for
any size of M . If not, the components are already correct.
Otherwise, the parameterized model checker returns an error
sequence E , i.e., one or more concrete error paths. E is then
encoded into constraints that ensure that any component that
satisfies them will avoid the error paths detected so far. A SAT
solver is used to find out if any solution still exists, and if
so we restrict M to components that avoid previously found
errors. To guarantee that this restriction does not introduce
deadlocks, the next step is a parameterized deadlock detection.
This provides similar information as the model checker, and
is used to refine the constraints if deadlocks are reachable.
Otherwise, M ′ is sent to the parameterized model checker for
the next iteration.

Research Challenges. Parameterized model checking in gen-
eral is known to be undecidable, but different decision pro-
cedures exist for certain classes of systems, such as guarded



protocols with disjunctive guards (or disjunctive systems) [20],
rendezvous systems [32] and broadcast protocols [24]. How-
ever, these theoretical solutions are not uniform and do not
provide practical algorithms that allow us to extract the in-
formation needed for our repair approach. Therefore, the fol-
lowing challenges need to be overcome to obtain an effective
parameterized repair algorithm for a broad class of systems:
C1 The parameterized model checking algorithm should be

uniform, and needs to provide information about error
paths in the current candidate model that allow us to avoid
such error paths in future repair candidates.

C2 We need an effective approach for parameterized dead-
lock detection, preferably supplying similar information
as the model checker.

C3 We need to identify an encoding of the discovered in-
formation into constraints such that the repair process is
sufficiently flexible1, and sufficiently efficient to handle
examples of interesting size.
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one scheduler (Fig. 2) and an arbitrary number of reader-writer
processes (Fig. 3), running concurrently and communicating
via pairwise rendezvous, i.e., every send actions (e.g. write!)
needs to synchronize with a receive action (e.g. write?) by
another process. In this system, multiple processes can be in
the writing state at the same time, which must be avoided if
they use a shared resource. We want to repair the system by
restricting communication of the scheduler.

According to the idea in Fig. 1, the parameterized model
checker searches for reachable errors, and it may find that
after two sequential write! transitions by different reader-
writer processes, they both occupy the writing state at the
same time. This information is then encoded into constraints
on the behavior of processes, which restrict non-determinism
and communication and make the given error path impos-
sible. However, in our example all errors could be avoided
by simply removing all outgoing transitions of state qA,0
of the scheduler. To avoid such repairs, our algorithm uses
initial constraints (see section IV) that enforce totality on the
transition relation. Another undesirable solution would be the
scheduler shown in Fig. 4, because the resulting system will
deadlock immediately. This is avoided by checking reachabil-
ity of deadlocks on candidate repairs. We get a solution that is
safe and deadlock-free if we take Fig. 4 and flip all transitions.

Contributions. Our main contribution is a counterexample-
guided parameterized repair approach, based on model check-
ing of well-structured transition systems (WSTS) [1], [29]. We
investigate which information a parameterized model checker
needs to provide to guide the search for candidate repairs,
and how this information can be encoded into propositional
constraints. Our repair algorithm supports internal repairs and
repairs of the communication behavior, while systematically
avoiding deadlocks in many classes of systems, including dis-
junctive systems, rendezvous systems and broadcast protocols.

1For example, to allow the user to specify additional properties of the repair,
such as keeping certain states reachable.

qA,0

qA,1

r
e
a
d
?

d
o
n
e
r
?

w
r
i
t
e
?

d
o
n
e
w

?

r
e
a
d
?

d
o
n
e
r
?

w
r
i
t
e
?

d
o
n
e
w

?
Fig. 2: Scheduler

q0

q1

write! donew !

q2

doner !read!

{reading}

{writing}

Fig. 3: Reader-
Writer

qA,0

qA,1

d
o
n
e
w

?

d
o
n
e
r
?

r
e
a
d
?

w
r
i
t
e
?

Fig. 4:
deadlocked
Scheduler

Since existing model checking algorithms for WSTS do not
support deadlock detection, our approach has a subprocedure
for this problem, which relies on new theoretical results: (i)
for disjunctive systems, we provide a novel deadlock detec-
tion algorithm, based on an abstract transition system, that
improves on the complexity of the best known solution; (ii)
for broadcast protocols we prove that deadlock detection is in
general undecidable, so approximate methods have to be used.
We also discuss approximate methods to detect deadlocks in
pairwise systems, which can be used as an alternative to the
existing approach that has a prohibitive complexity.

Finally, we evaluate an implementation of our algorithm on
benchmarks from different application domains, including a
distributed lock service and a robot-flocking protocol.

II. SYSTEM MODEL

For simplicity, we first restrict our attention to disjunctive
systems, other systems will be considered in Sect. V-B. In the
following, let Q be a finite set of states.

Processes. A process template is a transition system U =
(QU , initU ,GU , δU ), where QU ⊆ Q is a finite set of states
including the initial state initU , GU ⊆ P(Q) is a set of guards,
and δU : QU × GU ×QU is a guarded transition relation.

We denote by tU a transition of U , i.e., tU ∈ δU , and by
δU (qU ) the set of all outgoing transitions of qU ∈ QU . We
assume that δU is total, i.e., for every qU ∈ QU , δU (qU ) 6= ∅.
Define the size of U as |U | = |QU |. An instance of template
U will be called a U -process.

Disjunctive Systems. Fix process templates A and B with
Q = QA ∪̇ QB , and let G = GA ∪ GB and δ = δA ∪ δB . We
consider systems A‖Bn, consisting of one A-process and n
B-processes in an interleaving parallel composition.2

The systems we consider are called “disjunctive” since
guards are interpreted disjunctively, i.e., a transition with
a guard g is enabled if there exists another process that
is currently in one of the states in g. Figures 5 and 6
give examples of process templates. An example disjunctive

2The form A‖Bn is only assumed for simplicity of presentation. Our results
extend to systems with an arbitrary number of process templates.
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system is A‖Bn, where A is the
writer and B the reader, and the
guards determine which transition
can be taken by a process, depending
on its own state and the state of other
processes in the system. Transitions
with the trivial guard g = Q are
displayed without a guard. We for-
malize the semantics of disjunctive
systems in the following.

Counter System. A configuration of a system A‖Bn is a tuple
(qA, c), where qA ∈ QA, and c : QB → N0. We identify c

with the vector (c(q0), . . . , c(q|B|−1)) ∈ N|B|0 , and also use
c(i) to refer to c(qi). Intuitively, c(i) indicates how many
processes are in state qi. We denote by ui the unit vector with
ui(i) = 1 and ui(j) = 0 for j 6= i.

Given a configuration s = (qA, c), we say that the guard g
of a local transition (qU , g, q

′
U ) ∈ δU is satisfied in s, denoted

s |=qU g, if one of the following conditions holds:

(a) qU = qA, and ∃qi ∈ QB with qi ∈ g and c(i) ≥ 1
(A takes the transition, a B-process is in g)

(b) qU 6= qA, c(qU ) ≥ 1, and qA ∈ g
(B-process takes the transition, A is in g)

(c) qU 6= qA, c(qU ) ≥ 1, and ∃qi ∈ QB with qi ∈ g, qi 6= qU
and c(i) ≥ 1
(B-process takes the transition, another B-process is in
different state in g)

(d) qU 6= qA, qU ∈ g, and c(qU ) ≥ 2
(B-process takes the transition, another B-process is in
same state in g)

We say that the local transition (qU , g, q
′
U ) is enabled in s.

Then the configuration space of all systems A‖Bn, for
fixed A,B but arbitrary n ∈ N, is the transition system
M = (S, S0,∆) where:

• S ⊆ QA × N|B|0 is the set of states,
• S0 = {(initA, c) | c(q) = 0 if q 6= initB)} is the set of

initial states,
• ∆ is the set of transitions ((qA, c), (q′A, c

′)) s.t. one of
the following holds:

1) c = c′ ∧ ∃(qA, g, q′A) ∈ δA : (qA, c) |=qA g (transition
of A)

2) qA = q′A ∧∃(qi, g, qj) ∈ δB : c(i) ≥ 1∧ c′ = c−ui +
uj ∧ (qA, c) |=qi g
(transition of a B-process)

We will also call M the counter system (of A and B), and
will call configurations states of M , or global states.

Let s, s′ ∈ S be states of M , and U ∈ {A ∪ B}. For a
transition (s, s′) ∈ ∆ we also write s −→ s′. If the transition is
based on the local transition tU = (qU , g, q

′
U ) ∈ δU , we also

write s tU−→ s′ or s
g−→ s′. Let ∆local(s) = {tU | s

tU−→ s′},
i.e., the set of all enabled outgoing local transitions from s,
and let ∆(s, tU ) = s′ if s tU−→ s′. From now on we assume

wlog. that each guard g ∈ G is a singleton.3

Runs. A path of a counter system is a (finite or infinite)
sequence of states x = s1, s2, . . . such that sm −→ sm+1 for all
m < |x|. A maximal path is a path that cannot be extended,
and a run is a maximal path starting in an initial state. We
say that a run is deadlocked if it is finite. Note that every run
s1, s2, . . . of the counter system corresponds to a run of a fixed
system A‖Bn, i.e., the number of processes does not change
during a run. Given a set of error states E ⊆ S, an error path
is a finite path that starts in an initial state and ends in E.

The Parameterized Repair Problem. Let M = (S, S0,∆)
be the counter system for process templates A =
(QA, initA,GA, δA), B = (QB , initB ,GB , δB), and ERR ⊆
QA × N|B|0 a set of error states. The parameterized re-
pair problem is to decide if there exist process templates
A′ = (QA, initA,GA, δ′A) with δ′A ⊆ δA and B′ =
(QB , initB ,GB , δ′B) with δ′B ⊆ δB such that the counter
system M ′ for A′ and B′ does not reach any state in ERR.

If they exist, we call δ′ = δ′A ∪ δ′B a repair for A and
B. We call M ′ the restriction of M to δ′, also denoted
Restrict(M, δ′). We
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III. PARAMETERIZED MODEL CHECKING OF DISJUNCTIVE
SYSTEMS

In this section, we adress research challenges C1 and
C2: after establishing that counter systems can be framed
as well-structured transition systems (WSTS) (Sect. III-A),
we introduce a parameterized model checking algorithm for
disjunctive systems that suits our needs (Sect. III-B), and
finally show how the algorithm can be modified to also check
for the reachability of deadlocked states (Sect. III-C). Full
proofs for the lemmas and theorems in this section can be
found in App. A.

A. Counter Systems as WSTS

Well-quasi-order. Given a set of states S, a binary relation �
⊆ S×S is a well-quasi-order (wqo) if � is reflexive, transitive,
and if any infinite sequence s0, s1, . . . ∈ Sω contains a pair
si � sj with i < j. A subset R ⊆ S is an antichain if any two
distinct elements of R are incomparable wrt. �. Therefore, �
is a wqo on S if and only if it is well-founded and has no
infinite antichains.

Upward-closed Sets. Let � be a wqo on S. The upward
closure of a set R ⊆ S, denoted ↑R, is the set {s ∈ S | ∃s′ ∈
R : s′ � s}. We say that R is upward-closed if ↑R = R. If R
is upward-closed, then we call B ⊆ S a basis of R if ↑B = R.
If � is also antisymmetric, then any basis of R has a unique

3This is not a restriction as any local transition (qU , g, q′U ) with
a guard g ∈ G and |g| > 1 can be split into |g| transitions
(qU , g1, q′U ), . . . , (qU , g|g|, q

′
U ) where for all i ≤ |g| : gi ∈ g is a singleton

guard.



subset of minimal elements. We call this set the minimal basis
of R, denoted minBasis(R).

Compatibility. Given a counter system M = (S, S0,∆), we
say that a wqo� ⊆ S×S is compatible with ∆ if the following
holds: ∀s, s′, r ∈ S : if s −→ s′ and s � r then ∃r′ with s′ �
r′ and r −→∗ r′. We say � is strongly compatible with ∆ if
the above holds with r −→ r′ instead of r −→∗ r′.

WSTS [1]. We say that (M,�) with M = (S, S0,∆) is a
well-structured transition system if � is a wqo on S that is
compatible with ∆.

Lemma 1: Let M = (S, S0,∆) be a counter system for
process templates A,B, and let / ⊆ S × S be the binary
relation defined by:

(qA, c) / (q′A,d) ⇔ (qA = q′A ∧ c . d) ,

where . is the component-wise ordering of vectors. Then
(M,/) is a WSTS.

Predecessor, Effective pred-basis [29]. Let M = (S, S0,∆)
be a counter system and let R ⊆ S. Then the set of immediate
predecessors of R is

pred(R) = {s ∈ S | ∃r ∈ R : s −→ r}.

A WSTS (M,/) has effective pred-basis if there exists an
algorithm that takes as input any finite set R ⊆ S and returns
a finite basis of ↑pred(↑R). Note that, for a given set R ⊆ S
that is upward-closed with respect to /, pred(R) is upward-
closed iff / is strongly compatible with ∆.

For backward reachability analysis, we want to compute
pred∗(R) as the limit of the sequence R0 ⊆ R1 ⊆ . . . where
R0 = R and Ri+1 = Ri ∪ pred(Ri). Note that if we have
strong compatibility and effective pred-basis, we can compute
pred∗(R) for any upward-closed set R. If we can furthermore
check intersection of upward-closed sets with initial states
(which is easy for counter systems), then reachability of
arbitrary upward-closed sets is decidable.

The following lemma, like Lemma 1, can be considered
folklore. We present it here mainly to show how we can
effectively compute the predecessors, which is an important
ingredient of our model checking algorithm.

Lemma 2: Let M = (S, S0,∆) be a counter system for
guarded process templates A,B. Then (M,/) has effective
pred-basis.
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Our model checking algorithm is a variant of the known
backwards reachability algorithm for WSTS [1]. We present
it in detail to show how it stores intermediate results to return
an error sequence, from which we derive concrete error paths.

Algorithm 1. Given a counter system M and a finite basis
ERR of the set of error states, the algorithm iteratively
computes the set of predecessors until it reaches an initial
state, or a fixed point. The procedure returns either True, i.e.
the system is safe, or an error sequence E0, . . . , Ek, where
E0 = ERR, ∀0 < i < k : Ei = minBasis(pred(↑Ei−1)),

and Ek = minBasis(pred(↑Ek−1)) ∩ S0. That is, every Ei
is the minimal basis of the states that can reach ERR in i
steps.

Algorithm 1 Parameterized Model Checking

1: procedure MODELCHECK(Counter System M ,ERR)
2: tempSet← ERR, E0 ← ERR, i← 1, visited← ∅

// A fixed point is reached if visited = tempSet
3: while tempSet 6= visited do
4: visited← tempSet
5: Ei ← minBasis(pred(↑Ei−1))
6: //pred is computed as in the proof of Lemma 2
7: if Ei∩S0 6= ∅ then //intersect with initial states?
8: return False, {E0, . . . , Ei ∩ S0}
9: tempSet← minBasis(visited ∪ Ei)

10: i← i+ 1

11: return True, ∅

Example. Consider the reader-writer system in Figures 5 and
6. Suppose the error states are all states where the writer is in w
while a reader is in r. In other words, the error set of the corre-
sponding counter system M is ↑E0 where E0 = {(w, (0, 1))}
and (0, 1) means zero reader-processes are in nr and one in r.
Note that ↑E0 = {(w, (i0, i1)) | (w, (0, 1)) / (w, (i0, i1))},
i.e. all elements with the same w, i0 ≥ 0 and i1 ≥ 1. If
we run Algorithm 1 with the parameters M, {(w, (0, 1))},
we get the following error sequence: E0 = {(w, (0, 1))},
E1 = {(nw, (0, 1))}, E2 = {(nw, (1, 0))}, with E2 ∩S0 6= ∅,
i.e., the error is reachable.

Properties of Algorithm 1. Correctness of the algorithm
follows from the correctness of the algorithm by Abdulla et
al. [1], and from Lemma 2. Termination follows from the
fact that a non-terminating run would produce an infinite
minimal basis, which is impossible since a minimal basis is
an antichain. SJ:

men-
tion
com-
plex-
ity
here?

C. Deadlock Detection in Disjunctive Systems
The repair of concurrent systems is much harder than fixing

monolithic systems. One of the sources of complexity is that
a repair might introduce a deadlock, which is usually an
unwanted behavior. In this section we show how we can detect
deadlocks in disjunctive systems.

A set of deadlocked states is in general not upward-closed
under / (defined in in Sect. III-A): let s = (qA, c), r =
(qA,d) be global states with s / r. If s is deadlocked, then
c(i) = 0 for every qi that appears in a guard of an outgoing
local transition from s. Now if d(i) > 0 for one of these qi,
then some transition is enabled in r, which is therefore not
deadlocked.

A natural idea is to refine the wqo such that deadlocked
states are upward closed. To this end, consider .0⊆ N|B|0 ×
N|B|0 where

c .0 d ⇔ (c . d ∧ ∀i ≤ |B| : (c(i) = 0⇔ d(i) = 0)) ,

and /0 ⊆ S × S where (qA, c) /0 (q′A,d) ⇔
(qA = q′A ∧ c .0 d) .



Then, deadlocked states are upward closed with respect to
/0. However, it is not easy to adopt the WSTS approach to this
case, since for our counter systems pred(R) will in general not
be upward closed if R is upward closed. Instead of using /0

to define a WSTS, in the following we will use it to define
a counter abstraction (similar to the approach of Pnueli et
al. [40]) that can be used for deadlock detection.

The idea is that we use vectors with counter values from
{0, 1} to represent their upward closure with respect to /0.
These upward closures will be seen as abstract states, and in
the usual way define that a transition between abstract states
ŝ, ŝ′ exists iff there exists a transition between concrete states
s ∈ ↑ŝ, s′ ∈ ↑ŝ′. We formalize the abstract system in the
following, assuming wlog. that δB does not contain transitions
of the form (qi, {qi}, qj), i.e., transitions from qi that are
guarded by qi.4

01-Counter System. For a given counter system M , we define
the 01-Counter System M̂ = (Ŝ, ŝ0, ∆̂), where:
• Ŝ ⊆ QA × {0, 1}|B| is the set of states,
• ŝ0 = (initA, c) with c(q) = 1 iff q = initB is the initial

state,
• ∆̂ is the set of transitions ((qA, c), (q′A, c

′)) s.t. one of
the following holds:

1) c = c′ ∧ ∃(qA, g, q′A) ∈ δA : (qA, c) |=qA g (transition
of A)

2) qA = q′A∧∃(qi, g, qj) ∈ δB : (qA, c) |=qi g∧c(i) = 1∧
[(c(j) = 0 ∧ (c′ = c− ui + uj ∨ c′ = c + uj))∨
(c(j) = 1 ∧ (c′ = c − ui ∨ c′ = c))] (transition of a
B-process)

Define runs and deadlocks of a 01-counter system similarly
as for counter systems. For a state s = (qA, c) of M , define
the corresponding abstract state of M̂ as α(s) = (qA, ĉ) with
ĉ(i) = 0 if c(i) = 0, and ĉ = 1 otherwise.

Theorem 1: The 01-counter system M̂ has a deadlocked
run if and only if the counter system M has a deadlocked run.

Corollary 1: Deadlock detection in disjunctive systems is
decidable in EXPTIME (in |QB |).

An Algorithm for Deadlock Detection. Now we can modify
Algorithm 1 to detect deadlocks in a 01-counter system M̂ :
instead of passing a basis of the set of errors in the parameter
ERR, we pass a finite set of deadlocked states DEAD ⊆ Ŝ.
Furthermore, in Line 5 we now compute pred(Ei−1) instead
of minBasis(pred(↑Ei−1)), and in Line 9 we need to replace
minBasis(visitedSet ∪ Ei) with (visitedSet ∪ Ei).

IV. PARAMETERIZED REPAIR ALGORITHM

Now, we can introduce a parameterized repair algorithm
that interleaves the backwards model checking algorithm
(Algorithm 1) with a forward reachability analysis and the
computation of candidate repairs.

4A system that does not satisfy this assumption can easily be transformed
into one that does, with a linear blowup in the number of states, and preserving
reachability properties including reachability of deadlocks.

Forward Reachability Analysis. In the following, for a set
R ⊆ S, let Succ(R) = {s′ ∈ S | ∃s ∈ R : s −→ s′}.
Furthermore, for s ∈ S, let ∆local(s,R) = {tU ∈ δ | tU ∈
∆local(s) ∧∆(s, tU ) ∈ R}.

Given an error sequence E0, . . . , Ek, let the reachable error
sequence RE = RE0, . . . , REk be defined by REk = Ek
(which by definition only contains initial states), and REi−1 =
Succ(REi) ∩ ↑Ei−1 for 1 ≤ i ≤ k. That is, each REi
contains a set of states that can reach ↑ERR in i steps, and
are reachable from S0 in k− i steps. Thus, it represents a set
of concrete error paths of length k.

Constraint Solving for Candidate Repairs. The generation
of candidate repairs is guided by constraints over the local
transitions δ as atomic propositions, such that a satisfying
assignment of the constraints corresponds to the candidate
repair, where only transitions that are assigned true remain
in δ′. During an execution of the algorithm, these constraints
ensure that all error paths discovered so far will be avoided,
and include a set of fixed constraints that express additional
desired properties of the system, as explained in the following.

Initial Constraints. To avoid the construction of repairs that
violate the totality assumption on the transition relations of
the process templates, every repair for disjunctive systems has
to satisfy the following constraint:

TRConstrDisj =
∧

qA∈QA

∨
tA∈δA(qA)

tA ∧
∧

qB∈QB

∨
tB∈δB(qB)

tB

Informally, TRConstrDisj guarantees that a candidate repair
returned by the SAT solver never removes all local transitions
of a local state in QA ∪QB . Furthermore a designer can add
constraints that are needed to obtain a repair that conforms
with their requirements, for example to ensure that certain
states remain reachable in the repair (see Appendix D-A and
D-B for more examples).

Algorithm 2. Given a counter system M , a basis ERR of
the error states, and initial Boolean constraints initConstr on
the transition relation (including at least TRConstrDisj), the
algorithm returns either a repair δ′ or the string Unrealizable
to denote that no repair exists.

Properties of Algorithm 2.
Theorem 2 (Soundness): For every repair δ′ returned by

Algorithm 2:

• Restrict(M, δ′) is safe, i.e., ↑ERR is not reachable, and
• the transition relation of Restrict(M, δ′) is total in the

first two arguments.

Proof: The parameterized model checker guarantees that
the transition relation is safe, i.e., ↑ERR is not reachable.
Moreover, the transition relation constraint TRConstr is part
of initConstr and guarantees that, for any candidate repair
returned by the SAT solver, the transition relation is total.

Theorem 3 (Completeness): If Algorithm 2 returns “Unre-
alizable”, then the parameterized system has no repair.



Algorithm 2 Parameterized Repair

1: procedure PARAMREPAIR(M , ERR, InitConstr)
2: M ′ ←M , accCnstr ← True, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [E0, . . . , Ek]←MC(M ′, ERR)
5: if isCorrect = False then
6: REk ← Ek //Ek contains only initial states
7: REk−1 ← Succ(REk)∩ ↑Ek−1, . . . ,
................RE0 ← Succ(RE1)∩ ↑E0

8: //for every initial state in REk compute the its constraints
9: newConstr ←

∧
s∈REk

................BuildConstr(s, [REk−1, . . . , RE0]})
10: //accumulate iterations’ constraints
11: accCnstr ← newConstr ∧ accCnstr
12: δ′, isSAT ← SAT (accCnstr ∧ initConstr)
13: if isSAT = False then
14: return Unrealizable

//compute a new candidate using the repair δ′

15: M ′ = Restrict(M, δ′)

16: else return δ′ //a repair is found!

1: procedure BUILDCONSTR(State s, RE)
2: //s is a state, RE [1 :] is a list obtained by removing

the first element from RE
3: if RE [1 :] is empty then

//if tU ∈ ∆local(s) leads directly to error set, delete it
4: return

∧
tU∈∆local(s,RE[0]) ¬tU

5: else
//else delete tU or all transitions to next error level

6: return
∧
tU∈∆local(s,RE[0])(¬tU ∨

......................BuildConstr(∆(s, tU ),RE [1 :]))

Proof: Algorithm 2 returns ”Unrealizable” if accCnstr∧
initConstr has become unsatisfiable. We consider an ar-
bitrary δ′ ⊆ δ and show that it cannot be a repair. Note
that for the given run of the algorithm, there is an iteration
i of the loop such that δ′, seen as an assignment of truth
values to atomic propositions δ, was a satisfying assignment
of accCnstr∧initConstr up to this point, and is not anymore
after this iteration.

If i = 0, i.e., δ′ was never a satisfying assignment, then δ′

does not satisfy initConstr and can clearly not be a repair. If
i > 0, then δ′ is a satisfying assignment for initConstr and all
constraints added before round i, but not for the constraints∧
s∈REk BuildConstr(s, [REk−1, . . . , RE0]}) added in this

iteration of the loop, based on a reachable error sequence
RE = REk, . . . , RE0. By construction of BuildConstr, this
means we can construct out of δ′ and RE a concrete error
path in Restrict(M, δ′), and δ′ can also not be a repair.

Theorem 4 (Termination): Algorithm 2 always terminates.
Proof: For a counter system based on A and B, the

number of possible repairs is bounded by 2|δ|. In every
iteration of the algorithm, either the algorithm terminates,
or it adds constraints that exclude at least the repair that is
currently under consideration. Therefore, the algorithm will

always terminate.

Parameterized Repair with Deadlock Detection. Note that
Algorithm 2 does not include any measures that prevent it
from producing a repair with deadlocked runs. However, it
can be extended with a subprocedure for deadlock detection
based on the approach explained in Sect. III-C, called in an
interleaving way with the model checker as depicted in Fig. 1.

V. EXTENSIONS

A. Beyond Reachability

Algorithm 2 can also be used for repair with respect to
general safety properties, based on the automata-theoretic
approach to model checking. We assume that the reader is
familiar with finite-state automaton and with the automata-
theoretic approach to model checking.

Checking Safety Properties. Let M = (S, S0,∆) be a
counter system of process templates A and B that violates
a safety property ϕ over the states of A, and let A =
(QA, qA0 , QA, δ

A,F) be the automaton that accepts all words
over QA that violate ϕ. To repair M , the composition M ×A
and the set of error states ERR = {((qA, c), qAF ) | (qA, c) ∈
S ∧ qAF ∈ F} can be given as inputs to the procedure
ParamRepair.

Corollary 1: Let .A⊆ (M × A) × (M × A) be a binary
relation defined by:

((qA, c), qA) .A ((q′A, c
′), q′A)⇔ c . c′∧qA = q′A∧qA = q′A

then ((M ×A),.A) is a WSTS with effective pred-basis.
Similarly, the algorithm can be used for any safety property
ϕ(A,B(k)) over the states of A, and of k B-processes.
To this end, we consider the composition M × Bk × A
with M = (S, S0,∆), B = (QB , initB ,GB , δB), and A =
(QA, qA0 , QA×QBk , δA,F) is the automaton that reads states
of A × Bk as actions and accepts all words that violate the
property.5

Example. Consider again the simple reader-writer system in
Figures 5 and 6, and assume that instead of local transition
(nr, {nw}, r) we have an unguarded transition (nr,Q, r).
We want to repair the system with respect to the safety
property ϕ = G[(w ∧ nr1) =⇒ (nr1Wnw)] where
G,W are the temporal operators always and weak until,
respectively. Figure 7 depicts the automaton equivalent to
¬ϕ. To repair the system we first need to split the guards
as mentioned in Section II, i.e., (nr,Q, r) is split into
(nr, {nr}, r), (nr, {r}, r), (nr, {nw}, r), and (nr, {w}, r).
Then we consider the composition C = M × B × A and we
run Algorithm 2 on the parameters C, ((−,−, (∗, ∗), qA2 ))
(where (−,−) means any writer state and any reader state,
and ∗ means 0 or 1), and TRConstrDisj . The model checker
in Line 4 may return the following error sequences, where
we only consider states that didn’t occur before:

5By symmetry, property ϕ(A,B(k)) can be violated by these k explicitly
modeled processes iff it can be violated by any combination of k processes
in the system.



qA0 qA1
nw

w ∧ nr1

w ∧ nr1

qA2
r

Fig. 7: Automaton for ¬ϕ

E0 = {((−,−, (∗, ∗)), qA2 )},
E1 = {((w, r1, (0, 0)), qA1 )},
E2 = {((w, nr1, (0, 0)), qA0 ), ((w, nr1, (0, 1)), qA0 ),
((w, nr1, (1, 0)), qA0 )},
E3 = {((nw, nr1, (0, 0)), qA0 ), ((nw, nr1, (0, 1)), qA0 ),
((w, r1, (0, 0)), qA0 ), ((w, r1, (0, 1)), qA0 ), ((w, r1, (1, 0)), qA0 )}

In Line 12 we find out that the error sequence
can be avoided if we remove the transitions
{(nr, {nr}, r), (nr, {r}, r), (nr, {w}, r)}. Another call
to the model checker in Line 4 finally assures that the new
system is safe. Note that some states were omitted from error
sequences in order to keep the presentation simple.

B. Beyond Disjunctive Systems

Furthermore, we have extended Algorithm 2 to other sys-
tems that can be framed as WSTS, in particular rendezvous
systems [32] and systems based on broadcasts or other global
synchronizations [24], [34]. We summarize our results here,
more details can be found in Appendix D.

Both types of systems are known to be WSTS, and there
are two remaining challenges:

1) how to find suitable constraints to determine a restriction
δ′, and

2) how to exclude deadlocks.

The first is relatively easy, but the constraints become more
complicated because we now have synchronous transitions of
multiple processes. Deadlock detection is decidable for ren-
dezvous systems, but the best known method is by reduction
to reachability in VASS [32], which has recently been shown
to be TOWER-hard [17]. For broadcast protocols we can show
that the situation is even worse:

Theorem 5: Deadlock detection in broadcast protocols is
undecidable.

a) Proof idea.: Reachability in affine VASS has recently
been shown to be undecidable in almost all cases, including
the case where all transitions use broadcast matrices [11]. We
can reduce this undecidable problem to deadlock detection in
broadcast protocols by modifying the construction of German
and Sistla [32] for reducing reachability in (non-affine) VASS
to deadlock detection in rendezvous systems. A full proof with
the modified construction is given in App. D-B

Approximate Methods for Deadlock Detection. Since solv-
ing the problem exactly is impractical or impossible in general,
we propose to use approximate methods. For rendezvous sys-
tems, the 01-counter system introduced as a precise abstraction
for disjunctive systems in Sect. III-C can also be used, but
in this case it is not precise, i.e., it may produce spurious

deadlocked runs. Another possible overapproximation is a sys-
tem that simulates pairwise transitions by a pair of disjunctive
transitions. For broadcast protocols we can use lossy broadcast
systems, for which the problem is decidable [18].6 Another
alternative is to add initial constraints that restrict the repair
algorithm and imply deadlock-freedom.
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We have implemented a prototype of our parameterized
repair algorithm that supports the three types of systems (dis-
junctive, pairwise and broadcast), and safety and reachability
properties. For disjunctive and pairwise systems, we have
evaluated it on different variants of reader-writer-protocols,
based on to the ones given in Sect. I,II, where we replicated
some of the states and transitions to test the performance of
our algorithm on bigger benchmarks. For disjunctive systems,
all variants have been repaired successfully in less than 2s.
For pairwise systems, these benchmarks are denoted “RWi
(PR)” in Table I, and a detailed treatment of one version,
including an explanation of the whole repair process is given
in Appendix E.

For broadcast protocols, we have evaluated our algorithm
on a range of more complex benchmarks taken from the
parameterized verification literature [35]: a distributed Lock
Service (DLS) inspired by the Chubby protocol [12], a dis-
tributed Robot Flocking protocol (RF) [13], a distributed
Smoke Detector (SD) [34], a sensor network implementing
a Two-Object Tracker (2OT) [14], and the cache coherence
protocol MESI [21] in different variants (Appendix F includes
details of this benchmark and its repair process).

Typical desired safety properties are mutual exclusion and
similar properties. Since deadlock detection is undecidable for
broadcast protocols, the absence of deadlocks needs to be
ensured with additional initial constraints.

On all benchmarks, we compare the performance of our
algorithm based on the valuations of two flags: SEP and EPT.
The SEP (“single error path”) flag indicates that, instead of
encoding all the model checker’s computed error paths, only
one path is picked and encoded for SAT solving. When the
EPT (“error path transitions”) flag is raised the SAT formula is
constructed so that only transitions on the extracted error paths
may be suggested for removal. Note that in the default case,
even transitions that are unrelated to the error may be removed.
Table I summarizes the experimental results we obtained.

We note that the algorithm deletes fewer transitions when
the EPT flag is raised (EPT=T). This is because we tell the
SAT solver explicitly not to delete transitions that are not on
the error paths. Removing fewer transitions is desirable in
applications where we do not want to restrict the repaired pro-
tocol more than necessary. We observe the best performance
when the SEP flag is set to true (SEP=T) and the EPT flag
is false. This is because the constructed SAT formulas are
much simpler and the SAT solver has more freedom in deleting
transitions, resulting in a small number of iterations.

6Note that in the terminology of Delzanno et al., deadlock detection is a
special case of the TARGET problem.



TABLE I: Running time, number of iterations, and number of deleted transitions (#D.T.) for the different configurations. Each
benchmark is listed with its number of local states, and edges. We evaluated the algorithms on different sets of errors with
P1 ∪ P2 = C. Smallest number of iterations, runtime per benchmark, deleted transitions are highlighted in boldface.

Benchmark Size Errors [SEP=F & EPT=F] [SEP=T & EPT=F] [SEP=F & EPT=T] [SEP=T & EPT=T]
States Edges #Iter Time #D.T. #Iter Time #D.T. #Iter Time #D.T. #Iter Time #D.T.

RW1 (PW) 5 12 C 3 2.5 4 3 2.9 4 2 1.7 2 2 1.7 2
RW2 (PW) 15 42 C 3 3.8 14 3 4.8 14 2 3.2 7 7 8.4 7
RW3 (PW) 35 102 C 3 820.7 34 3 7.6 34 2 552.3 17 17 40.3 17
RW4 (PW) 45 132 C TO TO TO 3 11.8 44 TO TO TO 22 99.2 22
DLS 10 95 P1 1 0.8 13 1 0.8 13 3 2.4 5 5 5.6 5
DLS 10 95 P2 1 0.8 13 2 1.7 13 3 2.6 9 7 5.5 9
DLS 10 95 C 2 4.2 13 2 1.5 13 3 3 9 9 8.1 9
RF 10 147 P1 1 2.5 32 1 1.2 32 TO TO TO 8 12.4 13
RF 10 147 P2 1 1.2 32 1 1.3 32 TO TO TO 8 11.3 14
RF 10 147 C 1 7.8 32 1 1.4 32 TO TO TO 8 12.5 12
SD 6 39 C 1 1 4 1 1 4 3 2.4 4 3 3 4
2OT 12 128 P1 12 18.8 26 6 8.3 26 16 73.8 17 16 34 17
2OT 12 128 P2 1 1.8 26 1 1.8 26 4 2958 11 8 16.5 12
2OT 12 128 C 11 17.2 Unreal. 6 11.7 Unreal. TO TO TO 11 48.6 Unreal.
MESI1 4 26 C 1 2.4 6 1 0.9 6 2 1.8 5 4 3.5 5
MESI2 9 71 C 1 1.1 26 1 1.1 26 3 56.4 20 6 6.8 15
MESI3 14 116 C 1 109.4 46 1 108.1 46 TO TO TO 6 289.9 15

VII. RELATED WORK

Many automatic repair approaches have been considered
in the literature, most of them restricted to monolithic sys-
tems [5], [19], [30], [33], [37], [39]. Additionally, there are
several approaches for synchronization synthesis and repair
of concurrent systems. Some of them differ from ours in the
underlying approach, e.g., being based on automata-theoretic
synthesis [7], [28]. Others are based on a similar underlying
counterexample-guided synthesis/repair principle, but differ in
other aspects from ours. For instance, there are approaches that
repair the program by adding atomic sections, which forbid
the interruption of a sequence of program statements by other
processes [9], [42]. Assume-Guarantee-Repair [31] combines
verification and repair, and uses a learning-based algorithm to
find counterexamples and restrict transition guards to avoid
errors. In contrast to ours, this algorithm is not guaranteed
to terminate. From lazy synthesis [27] we borrow the idea
to construct the set of all error paths of a given length
instead of a single concrete error path, but this approach only
supports systems with a fixed number of components. Some
of these existing approaches are more general than ours in that
they support certain infinite-state processes [9], [31], [42], or
more expressive specifications and other features like partial
information [7], [28].

The most important difference between our approach and
all of the existing repair approaches is that, to the best of
our knowledge, none of them provide correctness guarantees
for systems with a parametric number of components. This
includes also the approach of McClurg et al. [38] for the
synthesis of synchronizations in a software-defined network.
Although they use a variant of Petri nets as a system model,
which would be suitable to express parameterized systems,
their restrictions are such that the approach is restricted to
a fixed number of components. In contrast, we include a
parameterized model checker in our repair algorithm, and can
therefore provide parameterized correctness guarantees. There
exists a wealth of results on parameterized model checking,

collected in several good surveys recently [10], [16], [25].

VIII. CONCLUSION AND FUTURE WORK

We have investigated the parameterized repair problem for
systems of the form A‖Bn with an arbitrary n ∈ N. We intro-
duced a general parameterized repair algorithm, based on inter-
leaving the generation of candidate repairs with parameterized
model checking and deadlock detection, and instantiated this
approach to different classes of systems that can be modeled
as WSTS: disjunctive systems, pairwise rendezvous systems,
and broadcast protocols.

Since deadlock detection is an important part of our method,
we investigated this problem in detail for these classes of
systems, and found that the problem can be decided in
EXPTIME for disjunctive systems, and is undecidable for
broadcast protocols.

Besides reachability properties and the absence of dead-
locks, our algorithm can guarantee general safety properties,
based on the automata-theoretic approach to model checking.
On a prototype implementation of our algorithm, we have
shown that it can effectively repair non-deterministic overap-
proximations of many examples from the literature. Moreover,
we have evaluated the impact of different heuristics or design
choices on the performance of our algorithm in terms of repair
time, number of iterations, and number of deleted transitions.

A limitation of the current algorithm is that it cannot
guarantee any liveness properties, like termination or the
absence of undesired loops. Also, it cannot automatically add
behavior (states, transitions, or synchronization options) to the
system, in case the repair for the given input is unrealizable.
We consider these as important avenues for future work.
Moreover, in order to improve the practicality of our approach
we want to examine the inclusion of symbolic techniques for
counter abstraction [8], and advanced parameterized model
checking techniques, e.g., cutoff results for disjunctive sys-
tems [6], [22], [36], or recent pruning results for immediate
observation Petri nets, which model exactly the class of
disjunctive systems [26].
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APPENDIX A
FULL PROOFS OF LEMMAS FROM SECTION III

Lemma 1: Let M = (S, S0,∆) be a counter system for
process templates A,B, and let / ⊆ S × S be the binary
relation defined by:

(qA, c) / (q′A,d) ⇔ (qA = q′A ∧ c . d) ,

where . is the component-wise ordering of vectors. Then
(M,/) is a WSTS.

Proof: The partial order / is a wqo due to the fact that
. is a wqo. Moreover, we show that / is strongly compatible
with ∆. Let s = (qA, c), s′ = (q′A, c

′), r = (qA,d) ∈ S such
that s tU−→ s′ ∈ ∆ and s / r. Since the transition tU is
enabled in s, it is also enabled in r and ∃r′ = (q′A,d

′) ∈ S
with r tU−→ r′ ∈ ∆. Then it is easy to see that s′ / r′: either
tU is a transition of A, then we have c = c′ and d = d′, or
tU is a transition of B with tU = (qi, g, qj), then qA = q′A
and c′ = c− ci + cj . d− ci + cj = d′.

Lemma 2: Let M = (S, S0,∆) be a counter system for
guarded process templates A,B. Then (M,/) has effective
pred-basis.

Proof: Let R ⊆ S be finite. Since pred(↑R) will be
upward-closed with respect to /, it is sufficient to prove that
a basis of pred(↑R) can be computed from R. Let g = {qt},
f = ((t = j∧c′(j) = 1)∨ (c′(t) ≥ 1∧c′(j) = 0)) . ConsiderSJ:

can
we
give
an
in-
tu-
ition
what
f
is
needed
for?

the following set of states:

CBasis = {(qA, c) ∈ S | ∃(q′A, c′) ∈ R :
[ (qA, g, q

′
A) ∈ δA ∧ (qA, c) |=qA g∧

( (c = c′) ∨ (c′(t) = 0 ∧ c = c′ + ut) ) ]
∨[ (qi, {qt}, qj) ∈ δB ∧ (qA, c) |=qi g ∧ qA = q′A
∧( (c = c′ + ui − uj) ∨ (c′(t) = 0 ∧ c′(j) ≥ 1∧

c = c′ + ui − uj + ut) ∨ (f ∧ c = c′ + ui)
∨( c′(t) = 0 ∧ c′(j) = 0 ∧ c = c + ui + ut) ) ] }.

Clearly, CBasis ⊆ pred(↑R), and CBasis is finite.
We claim that also CBasis ⊇ minBasis(pred(↑R)). For
the purpose of reaching a contradiction, assume CBasis 6⊇
minBasis(pred(↑R)), which implies that there exists a
(qA, c) ∈ (minBasis(pred(↑R)) ∩ ¬CBasis). Since
(qA, c) 6∈ CBasis, there exists (q′A, c

′) 6∈ R with (qA, c) −→
(q′A, c

′) and since (qA, c) ∈ minBasis(pred(↑R)), there is
a (q′A,d

′) ∈ R with (q′A,d
′) / (q′A, c

′). We differentiate
between two cases:
• Case 1: Suppose (qA, c)

tA−→ (q′A, c
′) with tA =

(qA, g, q
′
A) ∈ δA and (qA, c) |=qA g. Then c = c′, and by

definition of CBasis there exists (qA,d) ∈ CBasis with
[(qA,d) −→ (q′A,d

′)∧d = d′ ∧d′(t) ≥ 1] or [(qA,d) −→
(q′A,d

′ + ut) ∧ d = d′ + ut ∧ d′(t) = 0]. Furthermore,
we have d′ . c′, which implies (qA,d) / (qA, c) with
(q′A,d

′) ∈ R. Contradiction.
• Case 2: Suppose (qA, c)

tB−→ (q′A, c
′) with tB =

(qi, g, qj) ∈ δB and (qA, c) |=qi g. Then qA = q′A ∧
c = c′ + ui − uj . By definition of CBasis there exists
(qA,d) ∈ CBasis such that one of the following holds:
– (qA,d) −→ (q′A,d

′) ∧ d′ = d− ui + uj

– d′(t) = 0 ∧ d′(j) ≥ 1 ∧ (qA,d) −→ (q′A,d
′ + ut) ∧

d′ + ut = d− ui + uj
– f ∧ (qA,d) −→ (q′A,d

′+uj) ∧ d′+uj = d−ui +uj
– d′(t) = 0∧d′(j) = 0∧(qA,d) −→ (q′A,d

′+ut+uj)∧
d′ + ut + uj = d− ui + uj

Furthermore, we have d′ . c′, which implies that
(qA,d) / (qA, c) with (qA,d) ∈ minBasis(pred(↑R)).
Contradiction.

Theorem 1: The 01-counter system M̂ has a deadlocked run
if and only if the counter system M has a deadlocked run.

Proof idea. Suppose x = s1, s2, . . . , sf is a deadlocked run
of M . Note that for any s ∈ S, a transition based on local
transition tU ∈ δU is enabled if and only if a transition based
on tU is enabled in the abstract state α(s) of M̂ . Then it is
easy to see that x̂ = α(s1), α(s2), . . . , α(sf ) is a deadlocked
run of M̂ .

Now, suppose x̂ = ŝ1, ŝ2, . . . , ŝf is a deadlocked run of M̂ .
Let b be the number of transitions (ŝk, ŝk+1) based on some
tB = (qi, g, qj) ∈ δB with ŝk+1(i) = 1, i.e., the transitions
where we keep a 1 in position i. Furthermore, let t1, . . . , tf−1

be the sequence of local transitions that x̂ is based on. Then
we can construct a deadlocked run of M in the following way:
We start in s1 = (initA, c1) with c1(initB) = 2b and for every
tk in the sequence do:7

• if tk ∈ δA, we take the same transition once,
• if tk = (qi, g, qj) ∈ δB with ŝk+1(i) = 0, we take the

same local transition until position i becomes empty, and
• if tk = (qi, g, qj) ∈ δB with ŝk+1(i) = 1, we take the

same local transition c
2 times, where c is the number of

processes that are in position i before (i.e., we move half
of the processes to j, and keep the other half in i).

By construction, after any of the transitions in t1, . . . , tf−1,
the same positions as in x̂ will be occupied in our constructed
run, thus the same transitions are enabled. Therefore, the
constructed run ends in a deadlocked state.

APPENDIX B
WHAT CAN BE DONE IF A REPAIR DOESN’T EXIST?

If Algorithm 2 returns “unrealizable”, then there is no repair
for the given input. To still obtain a repair, a designer can add
more non-determinism and/or allow for more communication
between processes, and then run the algorithm again on the
new instance of the system. Moreover, unlike in monolithic
systems, even if the result is “unrealizable”, it may still be
possible to obtain a solution that is good enough in practice.
For instance, we can change our algorithm slightly as follows:
When the SAT solver returns “UNSAT” after adding the
constraints for an error sequence, instead of terminating we
can continue computing the error sequence until a fixed point
is reached. Then, we can determine the minimal number of
processes me that is needed for the last candidate repair to

7Note that a similar, but more involved construction is also possible with
c1(initB) = b.



reach an error, and conclude that this candidate is safe for any
system up to size me − 1.

APPENDIX C
LOCAL WITNESSES ARE UPWARD-CLOSED.

We show another property of our algorithm: even though
for the reachable error sequence RE we do not consider the
upward closure, the error paths we discover are in a sense
upward-closed. This implies that an RE of length k represents
all possible error paths of length k. We formalize this in the
following.

Given a reachable error sequence RE = REk, . . . , RE0, we
denote by UE the sequence ↑REk, . . . , ↑RE0. Furthermore, let
a local witness of RE be a sequence TRE = tUk . . . tU1

where
for all i ∈ {1, . . . , k} there exists s ∈ REi, s′ ∈ REi−1 with

s
tUi−−→ s′. We define similarly the local witness TUE of UE .
Lemma 3: Let RE be a reachable error sequence. Then

every local witness TUE of UE is also a local witness of RE .
Proof: Let TUE = tUk . . . tU1

. Then there exist sk ∈
↑Ek = ↑REk, sk−1 ∈ ↑REk−1,. . . , s0 ∈ ↑RE0 such

that sk
tUk−−→ sk−1

tUk−1−−−−→ . . . . . .
tU2−−→ s1

tU1−−→ s0. Let
s0 = (q0

A,d
0), and let tU1

= (qUi1 , {qt1}, qUj1 ). Then, by
construction of E , there exists (q0

A, c
0) ∈ E0, (q

1
A, c

1) ∈
E1 with (q0

A, c
0) / (q0

A,d
0) and (q1

A, c
1)

tU1−−→ (q0
A, c

0)

or (q1
A, c

1)
tU1−−→ (q0

A, c
0 + ut1), hence tU1

is enabled in
(q1
A, c

1). Using the same argument we can compute (q2
A, c

2) ∈
E2, (q

3
A, c

3) ∈ E3,. . . until we reach the state (qkA, c
k) ∈ Ek

where tUk is enabled. Therefore we have the sequence sRk
tUk−−→

sRk−1

tUk−1−−−−→ . . . . . .
tU2−−→ sR1

tU1−−→ sR0 with sRk = (qkA, c
k) ∈

REk = Ek and for all i < k we have sRi ∈ REi, as they
are reachable from sRk ∈ REk and (qiA, c

i) / sRi which
guarantees that tUi is enabled in sRi .

APPENDIX D
BEYOND DISJUNCTIVE SYSTEMS

Algorithm 2 is not restricted to disjunctive systems. In
principle, it can be used for any system that can be modeled
as a WSTS with effective pred-basis, as long as we can
construct the transition relation constraint (TRConstr) for
the corresponding system. In this section we show two other
classes of systems that can be modeled in this framework:
pairwise rendezvous (PR) and broadcast (BC) systems. We
introduce transition relation constraints for these systems, as
well as a procedure BUILDSYNCCONSTR that must be used
instead of BUILDCONSTR when a transition relation comprises
synchronous actions.

Since these two classes of systems require processes to
synchronize on certain actions, we first introduce a different
notion of process templates.

Processes. A synchronizing process template is a transition
system
U = (QU , initU ,Σ, δU ) with
• QU ⊆ Q is a finite set of states including the initial state
initU ,

• Σ = Σsync × {?, !, ??, !!} ∪ {τ} where Σsync is a set of
synchronizing actions, and τ is an internal action,

• δU : QU × Σ×QU is a transition relation.
Synchronizing actions like (a, !) or (b, ?) are shortened to a!

and b?. Intuitively actions of the form a! and a? are PR send
and receive actions, respectively, and a!!, a?? are BC send and
receive actions, respectively.

All processes mentioned in the following are based on a
synchronizing process template. We will define global systems
based on either PR or BC synchronization in the following
subsections.

A. Pairwise Rendezvous Systems

A PR system [32] consists of a finite number of processes
running concurrently. As before, we consider systems of the
form A‖Bn. The semantics is interleaving, except for actions
where two processes synchronize. That is, at every time
step, either exactly one process makes an internal transition
τ , or exactly two processes synchronize on a single action
a ∈ Σsync. For a synchronizing action a ∈ Σsync, the initiator
process locally executes the a! action and the recipient process
executes the a? action.

Similar to what we defined for disjunctive systems, the
configuration space of all systems A‖Bn, for fixed A,B but
arbitrary n ∈ N, is the counter system MPR = (S, S0,∆),
where:
• S ⊆ QA × N|B|0 is the set of states,
• S0 = {(initA, c) | ∀qB ∈ QB : c(qB) = 0 if qB 6=
initB)} is the set of initial states,

• ∆ is the set of transitions ((qA, c), (q′A, c
′)) such that one

of the following holds:
1) (qA, τ, q

′
A) ∈ δA ∧ c = c′ (internal transition A)

2) ∃qi, qj : (qi, τ, qj) ∈ δB ∧ c(i) ≥ 1 ∧ c′ = c − ui +
uj ∧ qA = q′A (internal transition B)

3) a ∈ Σsync ∧ (qA, a!, q′A) ∈ δA ∧ ∃qi, qj : (qi, a?, qj) ∈
δB∧c(i) ≥ 1, c′ = c−ui+uj (synchronizing transition
A,B)

4) a ∈ Σsync ∧ (qA, a?, q′A) ∈ δA ∧ ∃qi, qj : (qi, a!, qj) ∈
δB∧c(i) ≥ 1, c′ = c−ui+uj (synchronizing transition
B,A)

5) ∃qi, qj : (qi, a!, qj) ∈ δB ∧ ∃ql, qm : (ql, a?, qm) ∈
δB ∧ c(i) ≥ 1∧ c(l) ≥ 1∧ c′ = c−ui +uj −ul +um
(synchronizing transition B,B)

The following result can be considered folklore, a proof can
be found in the survey by Bloem et al. [10].

Lemma 4: Let MPR = (S, S0,∆) be a counter system
for process templates A,B with PR synchronization. Then
(MPR,/) is a WSTS with effective pred-basis.

Initial Constraints. The constraint TRConstrPR, ensuring
that not all local transitions from any given local state are
removed, is constructed in a similar way as TRConstrDisj .

Furthermore, the user may want to ensure that in the
returned repair, either (a) for all a ∈ Σsync, ta! is deleted
if and only if all ta? are deleted, or (b) that synchronized
actions are deterministic, i.e., for every state qU and every



synchronized action a, there is exactly one transition on a?
from qU . We give user constraints that ensure such behavior.

Denote by ta?, ta! synchronous local transitions based on an
action a. Then, the constraint ensuring property (a) is∧

a∈Σsync

[(ta! ∧ (
∨
ta?∈δ

ta?)) ∨ (¬ta! ∧ (
∧
ta?∈δ

¬ta?))]

To encode property (b), for U ∈ {A,B} and a ∈
Σsync, let {ta

1
?
qU , . . . , t

am?
qU } be the set of all a? transi-

tions from state qU ∈ QU . Additionally, let one(ta?qU ) =∨
j∈{1,...,m}[t

aj?
qU

∧
l 6=j ¬t

al?
qU ]. Then, (b) is ensured by∧

a∈Σsync

∧
qU∈Q

one(ta?qU )

Deadlock Detection for PR Systems. German and Sistla [32]SJ:
re-
vise
this

have shown that deadlock detection in PR systems can be
reduced to reachability in VASS, and vice versa. Thus, at least
a rudimentary version of repair including deadlock detection
is possible, where the deadlock detection only excludes the
current candidate repair, but may not be able to provide
constraints on candidates that may be considered in the future.
Moreover, the reachability problem in VASS has recently been
shown to be TOWER-hard, so a practical solution is unlikely
to be based on an exact approach.

B. Broadcast Systems

In broadcast systems, the semantics is interleaving, except
for actions where all processes synchronize, with one process
“broadcasting” a message to all other processes. Via such a
broadcast synchronization, a special process can be selected
while the system is running, so we can restrict our model
to systems that only contain an arbitrary number of user
processes with identical template B. Formally, at every time
step either exactly one process makes an internal transition τ ,
or all processes synchronize on a single action a ∈ Σsync. For
a synchronized action a ∈ Σsync, we say that the initiator
process executes the a!! action and all recipient processes
execute the a?? action. For every action a ∈ Σsync and
every state qB ∈ QB , there exists a state q′B ∈ QB such
that (qB , a??, q′B) ∈ δB . Like Esparza et al. [24], we assume
w.l.o.g. that the transitions of recipients are deterministic for
any given action, which implies that the effect of a broadcast
message on the recipients can be modeled by multiplication
of a broadcast matrix. We denote by Ma the broadcast matrix
for action a.

Then, the configuration space of all broadcast systems Bn,
for fixed B but arbitrary n ∈ N, is the counter system MBC =
(S, S0,∆) where:
• S ⊆ N|B|0 is the set of states,
• S0 = {c | ∀qB ∈ QB : c(qB) = 0 iff qB 6= initB)} is

the set of initial states,
• ∆ is the set of transitions (c, c′) such that one of the

following holds:

1) ∃qi, qj ∈ QB : (qi, τ, qj) ∈ δB ∧ c′ = c − ui + uj
(internal transition)

2) ∃a ∈ Σsync : c′ = Ma · (c− ui) + uj (broadcast)
Lemma 5: [24] Let MBC = (S, S0,∆) be a counter

system for process template B with BC synchronization. Then
(MBC ,.) is a WSTS with effective pred-basis.

Initial Constraints. TRConstrBC is defined similarly to
TRConstrPR, except that we do not have process A and
can omit transitions of A. We denote by ta??, ta!! synchronous SJ:
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transitions based on an action a. To ensure that in any repair
and for all a ∈ Σsync , ta!! is deleted if and only if all ta??

are deleted, the designer can use the following constraint:∧
a∈Σsync

[(ta!! ∧ (
∨

ta??∈δB

ta??)) ∨ (¬ta!! ∧ (
∧

ta??∈δB

¬ta??))]

Deadlock Detection for BC Systems.
Theorem 5: Deadlock detection in broadcast protocols is

undecidable.
The main ingredient of the proof is the following lemma:
Lemma 6: There is a polynomial-time reduction from the

reachability problem of affine VASS with broadcast matrices
to the deadlock detection problem in broadcast protocols.

Proof: We modify the construction from the proofs of
Theorems 3.17 and 3.18 from German and Sistla [32], using
affine VASS instead of VASS and broadcast protocols instead
of pairwise rendezvous systems.

Starting from an arbitrary affine VASS G that only uses
broadcast matrices and where we want to check if configura-
tion (q2, c2) is reachable from (q1, c1), we first transform it
to an affine VASS G∗ with the following properties
• each transition only changes the vector c in one of the

following ways: (i) it adds to or subtracts from c a unit
vector, or (ii) it multiplies c with a broadcast matrix M
(this allows us to simulate every transition with a single
transition in the broadcast system), and

• some configuration (q′2, 0) is reachable from some con-

SJ:
do
we
have
no-
ta-
tion
for
the
0
vec-
tor?

figuration (q′1, 0) in G∗ if and only if (q2, c2) is reachable
from (q1, c1) in G.

The transformation is straightforward by splitting more com-
plex transitions and adding auxiliary states. Now, based on
G∗ we define process templates A and B such that A‖Bn
can reach a deadlock iff (q′2, 0) is reachable from (q′1, 0) in
G∗.

The states of A are the discrete states of G∗, plus additional
states q′, q′′. If the state vector of G∗ is m-dimensional, then B
has states q1, . . . , qm, plus states init, v. Then, corresponding
to every transition in G∗ that changes the state from q to q′ and
either adds or subtracts unit vector ui, we have a rendezvous
sending transition from q to q′ in A, and a corresponding
receiving transition in B from init to qi (if ui was added),
or from qi to init (if ui was subtracted). For every transition
that changes the state from q to q′ and multiplies c with a
matrix M , A has a broadcast sending transition from q to q′,
and receiving transitions between the states q1, . . . , qm that
correspond to the effect of M .



Algorithm 3 Synchronous Constraint Computation

1: procedure BSC(State s, RE)
2: if RE [1 :] is empty then
3: return

∧
tU∈∆local(s,RE[0]) ¬tU

.....................
∧
a∈Σsync∧∆(s,a)∈RE[0] T (s, a)

4: else
5: return

∧
tU∈∆local(s,RE[0])(¬tU ∨

............................................BSC(∆(s, tU ),RE [1 :]))

......................
∧
a∈Σsync∧∆(s,a)∈RE[0][T (s, a) ∨

............................................BSC(∆(s, ta),RE [1 :])]}

The additional states q′, q′′ of A are used to connect
reachability of (q′2, 0) to a deadlock in A‖Bn in the following
way: (i) there are self-loops on all states of A except on q′,
i.e., the system can only deadlock if A is in q′, (ii) there is a
broadcast sending transition from q′2 to q′ in A, which sends
all B-processes that are in q1, . . . , qm to special state v, and
(iii) from v there is a broadcast sending transition to init in
B, and a corresponding receiving transition from q′ to q′′ in
A. Thus, A‖Bn can only deadlock in a configuration where
A is in q′ and there are no B-processes in v, which is only
reachable through a transition from a configuration where A
is in q2 and no B-processes are in q1, . . . , qm. Letting q1 be
the initial state of A and init the initial state of B, such a
configuration is reachable in A‖Bn if and only if (q′2, 0) is
reachable from (q′1, 0) in G∗.

C. Synchronous Systems Constraints

The procedure BUILDCONSTR in Algorithm 2 does not
take into consideration synchronous actions. Hence, we need
a new procedure that offers special treatment for synchro-
nization. To simplify presentation we assume w.l.o.g. that
each a+, with + ∈ {!, !!}, appears on exactly one local
transition. We denote by ∆sync(s, a) the state obtained by
executing action a in state s. Additionally, let ∆local

sync(s, a) =
{(qU , a∗, q′U ) ∈ δ | ∗ ∈ {?, !, ??, !!}, and a is enabled in s},
and let T (s, a) =

∨
ta∈∆local

sync (s,a) ¬ta. In a Broadcast system
we say that an action a is enabled in a global state c if
∃i, j < |B| s.t. c(i) > 0 and (qBi , a!!, qBj ) ∈ δB . In a Pairwise
rendezvous system we say that an action a is enabled in a
global state (c) if ∃i, j, k, l < |B| s.t. c(i) > 0, c(j) > 0) and
(qBi , a!, qBk), (qBj , a?, qBl),∈ δB .

Given a synchronous system MX = (S, S0,Σ,∆) with
X ∈ {BR,PR}, a state s, and a reachable error sequence
RE , Algorithm 3 computes a propositional formula over the
set of local transitions that encodes all possible ways for a
state s to avoid reaching an error.

APPENDIX E
EXAMPLE: READER-WRITER

Consider the parameterized pairwise system that consists
of one scheduler (Figure 8) and a parameterized number
of instances of the reader-writer process template (Figure
9). The scheduler process template has all possible receive

actions from every state. In such system, the scheduler
can not guarantee that, at any moment, there is at
most one process in the writing state q1 (Figure 9). Let
tU1

= [q0, (write!), q1], tU2
= [qA,0, (write?), qA,1], tU3

=
[qA,1, (write?), qA,0],
tU4

= [q0, (read!), q2], tU5
= [qA,0, (read?), qA,1], tU6

=
[qA,1, (read?), qA,0], tU7 = [q1, (donew!), q0], tU8 =
[qA,1, (donew?), qA,0], tU9 = [qA,0, (donew?), qA,1], tU10 =
[q2, (doner!), q0], tU11

= [qA,1, (doner?), qA,0], tU12
=

[qA,0, (doner?), qA,1].
Let ERR = ↑{(qA,0, (0, 2, 0))(qA,1, (0, 2, 0))}.
Let UserConstrPR = (tU1 ∧ (tU2 ∨ tU3)) ∧ (tU4 ∧ (tU5 ∨
tU6)) ∧ (tU7 ∧ (tU8 ∨ tU9)) ∧ (tU10 ∧ (tU11 ∨ tU12)).
Then running our repair algorithm will produce the following
results:
First call to model checker returns:
RE0 = {(qA,0, (0, 2, 0))}, RE1 = {(qA,1, (1, 1, 0))}, RE2 =
{(qA,0, (2, 0, 0))}.
Constraints for SAT: accConstr1 = TRConstrPR ∧
UserConstrPR ∧ (¬tU1

∨ ¬tU2
∨ ¬tU3

).
SAT solvers solution 1:
¬tU2

∧ ¬tU6
∧ ¬tU9

∧ ¬tU12
.

Second call to model checker returns:
RE0 = {(qA,0, (0, 2, 0))}, RE1 = {(qA,1, (1, 1, 0))}, RE2 =
{(qA,0, (2, 1, 0))}, RE3 = {(qA,1, (3, 0, 0))}, RE4 =
{(qA,0, (4, 0, 0))}. Constraints for SAT:
accConstr2 = accConstr1 ∧ (¬tU1

∨ ¬tU3
∨ ¬tU4

∨ ¬tU5
).

SAT solvers solution 2:
¬tU3 ∧ ¬tU5 ∧ ¬tU9 ∧ ¬tU12 .
Third call to model checker returns:
RE0 = {(qA,0, (0, 2, 0))}, RE1 = {(qA,1, (1, 1, 0))}, RE2 =
{(qA,0, (2, 1, 0))}, RE3 = {(qA,1, (3, 0, 0))}, RE4 =
{(qA,0, (3, 0, 0))}. Constraints for SAT:
accConstr3 = accConstr2 ∧ (¬tU1

∨ ¬tU2
∨ ¬tU4

∨ ¬tU6
).

SAT solvers solution 3:
¬tU3 ∧ ¬tU6 ∧ ¬tU9 ∧ ¬tU12 .
The fourth call of the model checker returns true and we
obtain the correct scheduler in Figure 10.
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Fig. 8: Scheduler
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Fig. 10: Safe Scheduler

APPENDIX F
EXAMPLE: MESI PROTOCOL

Consider the cache coherence protocol MESI in Figure 11,

I

read??, write-inv??

S

read??, local-read

read!!

write-inv??

M

write, local-read

write-inv??

read??

E

local-read

write

write-inv!!

read??

read??

write-inv??

Fig. 11: MESI protocol

where:
• M stands for mod-

ified and indicates
that the cache has
been changed.

• E stands for
exclusive and
indicates that no
other process seizes
this cache line.

• S stands for shared
and indicates that
more than one pro-
cess hold this cache
line.

• I stands for invalid
and indicates that the cache’s content is not guaranteed to
be valid as it might have been changed by some process.

Initially all processes are in I and let a state vector be
as follows: (M,E, S, I). An important property for MESI
protocol is that a cache line should not be modified by
one process (in state M ) and in shared state for another
process (in state S). In such case the set of error states is:
↑ (1, 0, 1, 0). We can run Algorithm 2 on M , ↑ (1, 0, 1, 0),
TRConstrBC ∧

∧
a∈Σsync

∧
qB∈QB one(t

a??
qB ). The model

checker will return the following error sequence (nonessential
states are omitted):
E0 = {(1, 0, 1, 0)}, E1 = {(0, 1, 1, 0)}, E2 =
{(0, 1, 0, 1)}, E3 = {(0, 0, 1, 1)}, E4 = {(0, 0, 0, 2)}. Running
the procedure BUILDSYNCCONSTR (Algorithm 3) in Line
9 will return the following Boolean formula newConstr =
¬(I, read!!, S) ∨ ¬(I, read??, I) ∨ ¬(S,write-inv!!, E) ∨
¬(I, write-inv??, I) ∨ ¬(E, read??, E) ∨ ¬(I, read!!, S) ∨
¬(E,write, S).
Running the SAT solve in Line 12 on

newConstr∧TRConstr′BC∧
∧

a∈Σsync

∧
qB∈QB

one(ta??qB )
∧

tU∈{δτB}

tU

will return the only solution ¬(E, read??, E) which clearly
fixes the system.
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