
Almost Universally Optimal Distributed Laplacian Solvers via
Low-Congestion Shortcuts∗

Ioannis Anagnostides1 r© Christoph Lenzen2 r© Bernhard Haeupler3 r© Goran Zuzic4 r©
Themis Gouleakis5

1Carnegie Mellon University
2CISPA Helmholtz Center for Information Security

3ETH Zürich & Carnegie Mellon University
4ETH Zürich

5National University of Singapore

Abstract

In this paper, we refine the (almost) existentially optimal distributed Laplacian solver recently
developed by Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS ‘21) into an (almost) universally
optimal distributed Laplacian solver.

Specifically, when the topology is known, we show that any Laplacian system on an n-node
graph with shortcut quality SQ(G) can be solved within no(1)SQ(G) log(1/ε) rounds, where ε is
the required accuracy. This almost matches our lower bound which guarantees that any correct
algorithm on G requires Ω̃(SQ(G)) rounds, even for a crude solution with ε ≤ 1/2. Even in
the unknown-topology case (i.e., standard CONGEST), the same bounds also hold in most
networks of interest. Furthermore, conditional on conjectured improvements in state-of-the-art
constructions of low-congestion shortcuts, the CONGEST results will match the known-topology
ones.

Moreover, following a recent line of work in distributed algorithms, we consider a hybrid
communication model which enhances CONGEST with limited global power in the form of the
node-capacitated clique (NCC) model. In this model, we show the existence of a Laplacian solver
with round complexity no(1) log(1/ε).

The unifying thread of these results, and our main technical contribution, is the study of novel
congested generalization of the standard part-wise aggregation problem. We develop near-optimal
algorithms for this primitive in the Supported-CONGEST model, almost-optimal algorithms in
(standard) CONGEST, as well as a very simple algorithm for bounded-treewidth graphs with
slightly worse bounds. This primitive can be readily used to accelerate the FOCS‘21 Laplacian
solver. We believe this primitive will find further independent applications.

0Funding acknowledgments are deferred to the next page.
∗The author ordering was randomized using https://www.aeaweb.org/journals/policies/

random-author-order/generator. It is requested that citations of this work list the authors separated by
\textcircled{r} instead of commas: Anagnostides r© Lenzen r© Haeupler r© Zuzic r© Gouleakis.

ar
X

iv
:2

10
9.

05
15

1v
3

 [
cs

.D
C

]
 1

4
M

ay
 2

02
2

https://www.aeaweb.org/journals/policies/random-author-order/generator
https://www.aeaweb.org/journals/policies/random-author-order/generator

Contents
1 Introduction 1

1.1 Overview of our Contributions and Techniques . 2
1.1.1 The Congested Part-Wise Aggregation Problem 2
1.1.2 Almost Universally Optimal Laplacian Solvers 4

1.2 Further Related Work . 5

2 Preliminaries 6

3 The Congested Part-Wise Aggregation Problem 10
3.1 Solving Congested Instances in the CONGEST Model 10

3.1.1 The Layered Graph . 11
3.1.2 Treewidth-Bounded Graphs . 13
3.1.3 General Graphs . 14

3.2 The NCC Model . 17

4 Almost Universally Optimal Laplacian Solvers 18

5 Conclusions 19

A The Laplacian Solver 24
A.1 Low-Congestion Minors . 24
A.2 The Laplacian Building Blocks . 25

A.2.1 Ultra-Sparsification . 25
A.2.2 Sparsified Cholesky . 26
A.2.3 Minor Schur Complement . 27
A.2.4 Schur Complement Chain . 27

A.3 Putting Everything Together . 28

B Omitted Proofs 29
B.1 Proofs from Section 2 . 29
B.2 Proofs from Section 3 . 30
B.3 Useful Routines . 31
B.4 Ultra-Sparsification: Proof of Lemma A.4 . 32
B.5 Sparsified Cholesky: Proof of Lemma A.5 . 34
B.6 Minor Schur Complement: Proof of Lemma A.6 . 37
B.7 Proof of Theorem A.9 . 39
B.8 Proof of Proposition 1.1 . 40

C Congested Part-Wise Aggregation in the NCC Model 42

0Funding acknowledgments. Bernhard Haeupler: Supported in part by NSF grants CCF-1814603, CCF-1910588,
NSF CAREER award CCF-1750808, a Sloan Research Fellowship, funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program (ERC grant agreement 949272),
and the Swiss National Foundation (project grant 200021-184735). Goran Zuzic: Supported in part by the Swiss
National Foundation (project grant 200021-184735). Themis Gouleakis: Supported in part by an NRF Fellowship for
AI (R-252-000-A33-133). Part of the work was done while visiting the Simons Institute for Theory of Computing.

1 Introduction
The Laplacian paradigm has emerged as one of the cornerstones of modern algorithmic graph theory.
Integrating techniques from combinatorial optimization with powerful machinery from numerical
linear algebra, it was originally pioneered in [ST14] who established the first nearly-linear time
solvers for a (linear) Laplacian system. Thereafter, there has been a considerable amount of interest
in providing simpler and more efficient solvers [KMP14; Kel+13; KS16]. Indeed, this framework has
led to some state of the art algorithms for a wide range of fundamental graph-theoretic problems;
e.g., see [AMV21; Mad16; Coh+17; Bra+20; Kel+14; Pen16; AMV20], and references therein. In
the distributed setting, a major breakthrough was very recently made in [For+20]. In particular,
the authors developed a distributed algorithm that solves any Laplacian system on an n-node graph
after no(1)(

√
n+D) log(1/ε) rounds of the standard CONGEST model, where D represents the

hop-diameter of the underlying network and ε > 0 is the error of the solver. Moreover, they showed
that their algorithm is existentially optimal, up to the no(1) factor, establishing a lower bound of
Ω̃(
√
n+D) rounds via a reduction from the s− t connectivity problem [Das+11].

This existential lower bound in the CONGEST model of distributed computing should hardly come
as any surprise. Indeed, it is well-known by now that a remarkably wide range of global optimization
problems, including minimum spanning tree (MST), minimum cut (Min-Cut), maximum flow, and
single-source shortest paths (SSSP), require Ω̃(

√
n + D) rounds1 [PR99; Elk04; Das+11]. The

same limitation generally applies to any non-trivial approximation and even under randomization.
Nonetheless, these lower bounds are constructed on some pathological graph instances which arguably
do not occur in practice. This begs the question: Can we obtain more refined performance guarantees
based on the underlying topology of the communication network? The framework of low-congestion
shortcuts, introduced by [GH16], demonstrated that bypassing the notorious Ω(

√
n) lower bound is

possible: MST and Min-Cut on planar graphs can be solved in Õ(D) rounds. This is crucial, given
that in many graphs of practical significance the diameter is remarkably small; e.g., D = polylog(n)
(as is folklore, this holds for most social networks), implying exponential improvements over generic
algorithms used for general graphs. In the context of the distributed Laplacian paradigm, we raise
the following question:

Is there a faster distributed Laplacian solver under “non-worst-case” families of graphs
in the CONGEST model?

The only known technique in distributed computing for designing algorithms that go below the√
n-bound is the low-congestion shortcut framework of Ghaffari and Haeupler [GH16], and its

large ecosystem of tools built around it [HIZ16a; HIZ16b; HWZ21; GH20; Zuz+22; GZ22; HRG22].
However, the “ρ-congested minor” primitive introduced and extensively used in the novel distributed
Laplacian solver [For+20] is out-of-reach from the current set of tools available in the low-congestion
shortcut framework. We address this issue by introducing an analogous primitive called ρ-congested
part-wise aggregation, which greatly simplifies the interface used by [For+20]. We then extend the
low-congestion shortcut framework with new techniques that enables it to near-optimally solve this
primitive: we provide both an algorithm that utilizes the very recent hop-constrained expander
decompositions for shortcut construction [HRG22] to solve the primitive in general graphs with
a linear dependence on ρ, as well as a very simple algorithm with a quadratic ρ-dependence for
bounded-treewidth graphs. Finally, we settle our original question in the positive by establishing

1As usual, we use the notation Õ(·) and Ω̃(·) to suppress polylogarithmic factors on n.

1

that our new primitive can be readily used to accelerate the distributed Laplacian solver for
non-worst-case topologies.

Specifically, we show our new techniques are sufficient to lift the existentially optimal algo-
rithm [For+20] to a universally optimal algorithm—modulo no(1) factor inherent in the prior
approach—for distributedly solving a Laplacian system, meaning that, for any topology, our algo-
rithm is essentially as fast as possible. In other words, for any graph, our algorithm almost matches
the best possible (correct) algorithm for that graph. This result is unconditional in essentially
all settings of interest (see Theorem 1.2 for details), but relies on conjectured improvements of
current state-of-the-art constructions of low-congestion shortcuts to achieve unqualified universal
optimality—like all other results in the area.

Furthermore, another concrete way of bypassing the Ω̃(
√
n+D) lower bound, besides investigating

non-worst-case families of graphs, is by enhancing the local communication network with a limited
amount of global power. Indeed, research concerning hybrid networks was recently initiated in the
realm of distributed algorithms [Aug+20], although networks combining different communication
modes have already found numerous applications in real-life computing systems; as such, hybrid
networks have been intensely studied in other areas of distributed computing (see [CGC16; Wan+10;
KS18], and references therein). In this paper, we will enhance the standard CONGEST model
with the recently introduced node-capacitated clique (henceforth NCC) [Aug+19]. The latter
model enables all-to-all communication, but with severe capacity restrictions for every node. The
integration of these models will be referred to as the HYBRID model for the rest of this work. This
leads to the following central question:

Is there a faster distributed Laplacian solver in the HYBRID model?

Our paper essentially settles this question by showing the same ρ-congested part-wise aggregation
primitive can be efficiently solved in Õ(ρ) rounds of NCC, implying an almost optimal no(1)-
round distributed algorithm for solving Laplacian systems in the HYBRID model. A conceptual
contribution of our approach is that we treat both CONGEST, Supported-CONGEST, and
HYBRID in a unified way through the lens of the low-congestion shortcut framework, by designing
our algorithm using high-level primitives and leaving the model-specific translations to the framework
itself. We note that a similar unified view of PRAM (i.e., parallel) and CONGEST (i.e., distributed)
graph algorithms through the same lens has led to very recent breakthroughs on long-standing open
problems for both of these settings [Li22].

1.1 Overview of our Contributions and Techniques

The unifying thread and the main technical ingredient of our (almost) universally optimal distributed
Laplacian solvers is a new fundamental communication primitive which we refer to as the congested
part-wise aggregation problem. Specifically, we develop near-optimal algorithms for solving this
problem in the (Supported-)CONGEST and the NCC model (Section 3), and then we utilize this
primitive to develop almost universally optimal Laplacian solvers in Section 4.

1.1.1 The Congested Part-Wise Aggregation Problem

To introduce the congested part-wise aggregation problem, let us first give some basic background.
The aforementioned Ghaffari-Haeupler framework of low-congestion shortcuts revolves around the

2

so-called part-wise aggregation problem posed as follows: “The graph is partitioned into disjoint and
individually-connected parts, and we need to compute some simple aggregate function for each part,
e.g., the minimum of the values held by the nodes in a given part” [GH16] (see Definition 2.1 for a
formal definition). Importantly, it has been shown that this primitive can be solved efficiently in
structured topologies, and that many problems (including the MST, shortest path, min-cut, etc.)
reduce to a small number of calls to a part-wise aggregation oracle, leading to universally optimal
algorithms. Unfortunately, it is not clear how to reduce solving a Laplacian system to (a small
number of) part-wise aggregation calls and in this paper, we primarily address this issue.

Our first technical contribution is to extend the framework of low-congestion shortcuts by studying
a more general primitive: one that incorporates congestion (of the input parts) into the underlying
part-wise aggregation instance. More precisely, unlike the standard part-wise aggregation problem,
we allow each node to participate in up to ρ ∈ Z≥1 aggregation parts (see Definition 3.1). We later
show that efficient solutions to this primitive leads to efficient distributed Laplacian solvers.

We first remark that a natural strategy for solving congested part-wise aggregation instances does
not work: congested instances cannot, in general, be directly reduced to a “small” collection of
1-congested instances, thereby necessitating a more refined approach. To this end, our approach
is based on “lifting” the underlying communication network G into its ρ-layered version ĜO(ρ):
every edge is replaced with a matching and every node with a ρ-clique. The importance of this
transformation is that, as we show in Lemma 3.3, the ρ-congested part-wise aggregation problem can
be reduced to a 1-congested instance on the ρ-layered graph (Section 3.1.1). This is first established
under the assumption that individual parts correspond to simple paths, and then we extend our
results to general parts by following Haeupler, Wajc, and Zuzic [HWZ21]. In light of this reduction,
we next focus on solving the 1-congested part-wise aggregation instance on the layered graph.

As a warm-up, we treat graphs with bounded treewidth tw(G) (Definition 2.8). It is known from
[HIZ16b] that on a graph G with treewidth tw(G), a 1-congested part-wise aggregation instance
can be solved in Õ(tw(G)D) rounds of CONGEST. Keeping this in mind, we first show that the
treewidth of the ρ-layered graph Ĝρ can only increase by a factor of ρ compared to the original graph
(Lemma 3.8). Hence, we can solve 1-congested instances in ĜO(ρ) in Õ(ρ tw(G)D) rounds (when
the underlying network is ĜO(ρ)), which in turn allows us to solve ρ-congested instances on G in
Õ(ρ2 tw(G)D) time in G (another ρ factor is necessary to simulate ĜO(ρ) in G). This positive result
poses a natural question: can we achieve similar results on graphs with bounded minor density δ(G)
(Definition 2.6)? However, the answer to this question is negative: minor density can blow up even
for a 2-layered planar graph (see Observation 3.10), making such a result impossible.

Then, we look at arbitrary graphs G: it is known that 1-congested part-wise aggregation instances
can be solved in a number of rounds that is controlled by SQ(G), where SQ(G) is the shortcut
quality of G (a certain graph parameter we formalize in Definition 2.4). Specifically, it can be solved
in Õ(SQ(G)) rounds when the topology is known in advance2 [HWZ21] and poly(SQ(G)) · no(1) in
general CONGEST [HRG22]. The shortcut quality parameter is significant because it was shown
that many distributed problems (including the MST, shortest path, min-cut, and—Laplacian solving,
as we show later) require Ω̃(SQ(G)) rounds in CONGEST to be solved on G [HWZ21]. Therefore,

2This model is also known as the supported CONGEST. That is, CONGEST under the assumption that the
topology is known; see Section 2 for a formal description of the model. Our techniques also apply in the full generality
of CONGEST, as we explain in the sequel.

3

algorithms that have an upper bound close to SQ(G) are universally optimal.

With the end goal of solving the 1-congested part-wise aggregations on layered graphs Ĝρ in time
controlled by SQ(G), our main result established that the shortcut quality of the ρ-layered graph does
not increase (modulo polylogarithmic factors) as compared to the original graph (Theorem 3.11).
This has a plethora of important consequences: (1) when SQ(G) ≤ no(1), we can unconditionally
solve ρ-congested part-wise aggregation instances in ρ · no(1) CONGEST rounds and (2) when the
topology of G is known, there exists a distributed algorithm which solves any ρ-congested part-wise
aggregation problem in ρ · Õ(SQ(G)) rounds. As a consequence of our general result, the shortcut
quality of any 2-layered planar graph is Õ(D) since it is known that the shortcut quality of a planar
graph is Õ(D) [GH16]. This constitutes perhaps the most natural example of a graph whose minor
density is very far from the shortcut quality; the only other example documented in the literature
so far is that of expander graphs.

Our proof proceeds by employing alternative characterizations of the shortcut quality in terms
of certain communication tasks. Specifically, shortcut quality can be shown to be equal (modulo
polylogarithmic factors) to the following two-player max-min game: the first (max) player chooses k
sources and k sinks in the graph such that we can find k node-disjoint paths matching the sources
with the sinks; then the second (min) player finds the smallest so-called quality Q such that there
exist k paths matching the sources with the sinks with the path lengths being at most Q and each
edge of the underlying graph supporting at most Q of second player’s paths. This characterization
allows us to compare the shortcut quality of Ĝρ with G as follows: take the worst-case (first player’s)
set of sources and sinks in Ĝρ. Project them to G and note they have node congestion ρ (due to the
construction of Ĝρ). Then, we show we can decompose (i.e., partition) these set of sources and sinks
into Õ(ρ) pairs of sub-sources and sub-sinks that are node-disjointly connectable in G. However,
each such set enjoys paths of quality SQ(G), hence embedding each such pair in a separate layer of
Ĝρ shows that the shortcut quality of SQ(Ĝρ) is at most Õ(SQ(G)). Although this general approach
improves over our result for treewidth-bounded graphs we previously described, our approach for the
latter class of graphs is substantially simpler and more suited for potential practical applications.

1.1.2 Almost Universally Optimal Laplacian Solvers

First, we note that any distributed Laplacian solver that always correctly outputs an answer on a
fixed graph G must take at least Ω̃(SQ(G)) rounds, giving us a lower bound to compare ourselves
with. Our refined lower bound uses the hardness result recently shown by [HWZ21] for the spanning
connected subgraph problem, applicable for any (i.e., non-worst-case) graph G. Specifically, we
show that a Laplacian solver can be leveraged to solve the spanning connected subgraph problem,
thereby substantially strengthening the lower bound in [For+20].

Proposition 1.1. Consider a graph G with shortcut quality SQ(G). Then, solving a Laplacian
system on G with ε ≤ 1

2 requires Ω̃(SQ(G)) rounds in both CONGEST and Supported-CONGEST
models.

On the upper-bound side, we utilize the congested part-wise aggregation primitive to improve and
refine the Laplacian solver of [For+20], leading to a substantial improvement in the round complexity
under structured network topologies.

Theorem 1.2. Consider any n-node graph G with shortcut quality SQ(G) and hop-diameter D.

4

There exists a distributed Laplacian solver with error ε > 0 with the following guarantees:

• In the Supported-CONGEST model, it requires no(1) SQ(G) log(1/ε) rounds.

• In the CONGEST model, it requires no(1) poly(SQ(G)) log(1/ε) rounds.

• In the CONGEST model on graphs with minor density δ, it requires no(1)δD log(1/ε) rounds.

We note that the above algorithm is almost (up to inherent no(1) factors) universally optimality
for most settings of interest. Since it is (almost) matching the SQ(G)-lower-bound, it is uncondi-
tionally universally optimal when the topology is known in advance (i.e., Supported-CONGEST).
Furthermore, in standard CONGEST, we give almost universally optimal Dno(1) log(1/ε)-round
algorithms for topologies that include planar graphs, no(1)-genus graphs, no(1)-treewidth graphs,
excluded-minor graphs, since all of them are graphs with minor density δ(G) = no(1). Furthermore,
for the realistic case of D ≤ no(1), it holds for most networks of interest that SQ(G) ≤ no(1)

(e.g., expanders, hop-constrained expanders, as well as all classes mentioned earlier), for which
we get no(1) log(1/ε)-round solvers. Finally, the conjectured improvements of the state-of-the-art
of almost-optimal low-congestion shortcut constructions would immediately lift our results to be
unconditionally universally optimal in CONGEST. However, the issue is orthogonal and out-of-scope
of this paper.

Furthermore, in HYBRID we obtain an almost optimal complexity in general graphs:

Theorem 1.3. Consider any n-node graph. There exists a distributed Laplacian solver in the
HYBRID model with round complexity no(1) log(1/ε), where ε > 0 is the error of the solver.

This implies a remarkably fast subroutine for solving a Laplacian system in HYBRID under arbitrary
topologies. As a result, we corroborate the observation that a very limited amount of global power
can lead to substantially faster algorithms for certain optimization problems, supplementing a recent
line of work [CLP21b; Aug+20; KS20; FHS20; CLP21a; Göt+21; KS22; Coy+22]. Furthermore, our
framework based on the congested part-wise aggregation problem allows for a unifying treatment of
both (Supported-)CONGEST and HYBRID, and we consider this to be an important conceptual
contribution of our work. Indeed, as we previously explained, both of our accelerated Laplacian
solvers rely on faster algorithms for solving the congested part-wise aggregation problem. In
particular, for (Supported-)CONGEST we have already described our approach in detail, while in
the HYBRID model we employ certain communication primitives developed in [Aug+19] for dealing
with congestion in part-wise aggregations. A byproduct of our results is that the framework of
low-congestion shortcuts interacts particularly well with the HYBRID model, as was also observed
in [AG21].

1.2 Further Related Work

Our main reference point is the recent Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and
Ye [For+20] with existentially almost-optimal complexity of no(1)(

√
n+D) log(1/ε) rounds, where

ε > 0 represents the error of the solver. Specifically, they devised several new ideas and techniques
to circumvent certain issues which mostly relate to the bandwidth restrictions of the CONGEST
model; these building blocks, as well as the resulting Laplacian solver are revisited in our work to
refine the performance of the solver. We are not aware of any previous research addressing this
problem in the distributed context. On the other hand, the Laplacian paradigm has attracted a

5

considerable amount of interest in the community of parallel algorithms. Most notably, we refer to
[PS14; Ble+14]. These approaches in the PRAM model of parallel computing fail—at least without
non-trivial modifications—to lead to a almost-optimal solver in the distributed context [For+20].

In addition to being a problem of independent interest, solving Laplacian systems often leads to a
plethora of very fast algorithms (albeit typically polynomially-away from being optimal) for other
problems such as (exact) maximum flow [Mad16], min-cost flow [AMV21], shortest paths with
negative weights [Coh+17], etc. The recent distributed Laplacian solver [For+20] also contributed
fast analogues of these algorithms in the distributed model. A natural question to ask is whether
we can also use our techniques to make these algorithms work for more structured graphs. However,
these algorithms rely on directed or exact shortest path computations, which currently represent a
major barrier for shortcut-based approaches. Moreover, the same set of problems represent a barrier
even for existentially-optimal approaches as the current state-of-the-art is a factor of D1/4 away
from achieving unqualified existential optimality [CM21].

Research concerning hybrid communication networks in distributed algorithms was recently initiated
by [Aug+20]. Specifically, they investigated the power of a model which integrates the standard
LOCAL model [Lin92] with the recently introduced node-capacitated clique (NCC) [Aug+19],
focusing mostly on distance computation tasks. Several of their results were subsequently improved
and strengthened in subsequent works [KS20; CLP21a] under the same model of computation. In our
work we consider a substantially weaker model, imposing a severe limitation on the communication
over the “local edges”. This particular variant has been already studied in some recent works for a
variety of fundamental problems [FHS20; Göt+21].

The NCC model, which captures the global network in all hybrid models studied thus far, was intro-
duced in [Aug+19] partly to address the unrealistic power of the congested clique (CLIQUE) [Lot+03].
In the latter model each node can communicate concurrently and independently with all other
nodes by O(logn)-bit messages. In contrast, the NCC model allows communication with O(logn)
(arbitrary) nodes per round. As a result, in the HYBRID model and under a sparse local network,
only Θ̃(n) bits can be exchanged overall per round, whereas CLIQUE allows for the exchange of up to
Θ̃(n2) (distinct) bits. As evidence for the power of CLIQUE we note that even slightly super-constant
lower bounds would give new lower bounds in circuit complexity, as implied by a simulation argument
in [DKO14].

2 Preliminaries
General notation We denote with [k] := {1, 2, . . . , k}. Graphs throughout this paper are
undirected. The nodes and the edges of a given graph G are denoted as V (G) and E(G), respectively.
We also use n := |V (G)| for brevity. The graphs are often weighted, in which case we assume (as
is standard) that for all e ∈ E(G),w(e) ∈ {1, 2, . . . ,poly(n)}. We will denote the hop-diameter of
a graph G with D(G) (the hop-diameter ignores weights). Moreover, we use A]B to denote the
multiset union, i.e., each element is repeated according to its multiplicity; this operation corresponds
to disjoint unions when A ∩B = ∅.

6

Communication models The communication network consists of a set of n entities with [n] :=
{1, 2, . . . , n} being the set of their IDs, and a local communication topology given by a graph G.3
We define D := D(G) to be the (hop-)diameter of the underlying network. At the beginning,
each node knows its own unique O(logn)-bit identifier as well as the weights of the incident
edges. Communication occurs in synchronous rounds, and in every round nodes have unlimited
computational power to process the information they possess. We will consider models with both
local and global communication modes.

The local communication mode will be modeled with the CONGEST model [Pel00] and Supported-
CONGEST model [SS13], for which in each round every node can exchange an O(logn)-bit message
with each of its neighbors in G via the local edges. In the (standard) CONGEST model, each node
v ∈ V (G) initially only knows the identifiers of each node in v’s own neighborhood, but has no
further knowledge about the topology of the graph. On the other hand, in the Supported-CONGEST
model, all nodes know the entire topology of G upfront, but not the input.

The global communication mode will be modeled using NCC [Aug+19], for which in each round
every node can exchange O(logn)-bit messages with O(logn) arbitrary nodes via global edges. If
the capacity of some channel is exceeded, i.e., too many messages are sent to the same node, it
will only receive an arbitrary (potentially adversarially selected) subset of the information based
on the capacity of the network; the rest of the messages are dropped. In this context, we will let
HYBRID be the integration of CONGEST and NCC (i.e., nodes have both a local and a global
communication mode at their disposal).

The performance of a distributed algorithm will be measured in terms of its round complexity—
the number of rounds required so that every node knows its part of the output. For randomized
algorithms it will suffice to reach the desired state with high probability.4 We will assume throughout
this work that nodes have access to a common source of randomness; this comes without any essential
loss of generality in our setting [Gha15]. When talking about a distributed algorithm for a specific
problem (e.g., Laplacian solving, part-wise aggregation, etc.) we assume the input is appropriately
distributedly stored (i.e., each node will know its own part) and, upon termination, it will be required
that the output is appropriately distributedly stored. The appropriate way to distributedly store
the input and output will be explained in the problem definition.

Low-Congestion Shortcuts A recurring scenario in distributed algorithms for global problems
(e.g. MST) boils down to solving the following part-wise aggregation problem:

Definition 2.1 (Part-Wise Aggregation Problem). Consider an n-node graph G whose node set
V (G) is partitioned into k (disjoint) parts P1] · · ·] Pk ⊆ V (G) such that each induced subgraph
G[Pi] is connected. In the part-wise aggregation problem, each node v ∈ V is given its part-ID (if
any) and an O(logn)-bit value x(v) as input. The goal is that, for every part Pi, all nodes in Pi
learn the part-wise aggregate ⊕w∈Pi

x(w), where ⊕ is an arbitrary pre-defined aggregation function.

Throughout this paper, we will assume that the aggregation function ⊕ is commutative and
3To avoid any possible confusion we point out that, for consistency with the nomenclature of Forster, Goranci, Liu,

Peng, Sun, and Ye [For+20], we henceforth reserve G to denote the underlying communication network, while G is
used in statements regarding arbitrary graphs.

4We say that an event holds with high probability if it occurs with probability at least 1 − 1/nc for a (freely
choosable) constant c > 0.

7

associative (e.g. min, sum, logical-AND), although this is not strictly needed (e.g., see [GZ22]). To
give a concrete example, in the context of Boruvka’s algorithm for the MST problem, determining
the minimum-weight outgoing edge for each part is an instance of a part-wise aggregation problem
with ⊕ := min. To solve such problems, Ghaffari and Haeupler [GH16] introduced a natural
combinatorial graph structure which they refer to as low-congestion shortcuts.

Definition 2.2 (Low-Congestion Shortcuts). Consider a graph G whose node set V (G) is partitioned
into k (disjoint) parts P1] · · ·] Pk ⊆ V (G) such that each induced subgraph G[Pi] is connected.
A collection of subgraphs H1, . . . ,Hk is a shortcut of G with congestion c and dilation d if the
following properties hold: (i) the (hop) diameter of each subgraph G[Pi] ∪Hi is at most d, and (ii)
every edge is included in at most c many of the subgraphs Hi. The quantity Q = c + d will be
referred to as the quality of the shortcut.

Importantly, a shortcut of quality Q allows us to solve the part-wise aggregation problem in
Õ(Q) rounds of CONGEST, as formalized below. For self-sufficiency, we include the proof in
Appendix B.1.

Proposition 2.3. Suppose that P1, . . . , Pk is any part-wise aggregation instance in a communication
network G. Given a shortcut of quality Q, we can solve with high probability the part-wise aggregation
problem in Õ(Q) CONGEST rounds.

Shortcut Quality and Construction of Shortcuts Shortcut quality, introduced below, is
a fundamental graph parameter that has been proven to characterize the complexity of many
important problems in distributed computing.

Definition 2.4. Given a graph G = (V,E), we define the shortcut quality SQ(G) of G as the
optimal (smallest) shortcut quality of the worst-case partition of V into disjoint and connected
parts P1] P2] . . .] Pk ⊆ V .

For fundamental problems such as MST, SSSP, and Min-Cut any correct algorithm requires Ω̃(SQ(G))
rounds on any network G, even if we allow randomized solutions and (non-trivial) approximation
factors. In fact, this limitation holds even when the network topology G is known to all nodes in
advance [HWZ21]. We remark that Ω̃(D(G)) ≤ SQ(G) ≤ O(D(G) +

√
n), and the upper bound is

known to be tight in certain (pathological) worst-case graph instances. This explains the notorious
(existential) Ω̃(D +

√
n) lower bound pervasive in distributed computing [Das+11].

Moreover, assuming fast distributed algorithms for constructing shortcuts of quality competitive
with SQ(G), all of the aforementioned problems can be solved in Õ(SQ(G)) rounds [GH16; Zuz+22;
GZ22]. However, the key issue here is the algorithmic construction of the shortcuts upon which the
above papers rely. While there has been a lot of recent progress in this regard, current algorithms
are quite complicated and have sub-optimal guarantees. We recall below these state-of-the-art
SQ(G)-competitive construction results.

Theorem 2.5. There exists a distributed algorithm that, given any part-wise aggregation instance
on any n-node graph G, computes with high probability a shortcut with the following guarantees:

• In CONGEST, the shortcut has quality poly
(
SQ(G)

)
· no(1) and the algorithm terminates in

poly
(
SQ(G)

)
· no(1) rounds [HRG22].

8

• In Supported-CONGEST, the shortcut has quality Õ(SQ(G)) and the algorithm terminates in
Õ(SQ(G)) rounds [HWZ21].

Universal Optimality A distributed algorithm is said to be α-universally optimal if, on every
network graph G, it is α-competitive with the fastest correct algorithm on G [HWZ21]. Even
the existence of such algorithms is not at all clear as it would seem possible that vastly different
algorithms are required to leverage the structure of different networks. Nevertheless, a remarkable
consequence of Theorem 2.5 is that in Supported-CONGEST we can design Õ(1)-universally optimal
algorithms for many fundamental optimization problems. Moreover, efficient shortcut construction
is the only obstacle towards achieving these results in the full generality of CONGEST, which is
an issue orthogonal and out of scope for this paper. Still, the aforementioned results are sufficient
to design no(1)-universally optimal algorithms on graphs that have shortcut quality SQ(G) = no(1),
as it is arguably the case in most networks of practical interest.

Graphs Excluding Dense Minors It turns out that the crucial issue of efficient shortcut
construction can be resolved with a near-optimal, simple, and even deterministic algorithm for the
rich class of graphs with bounded minor density. Formally, let us first recall the following definition.5

Definition 2.6 (Minor Density). The minor density δ(G) of a graph G is defined as

δ(G) = max
{ |E′|
|V ′|

: H = (V ′, E′) is a minor of G
}
.

It should be noted that δ(G) = Θ̃(r(G)), where r(G) is the complete-graph minor size, i.e.,
r(G) = max{r : Kr is a minor of G} [Tho84; Tho01]. Furthermore, any family of graphs closed
under taking minors (such as planar graphs) has a constant minor density. For such graphs, Ghaffari
and Haeupler [GH20] established efficient shortcut construction:

Theorem 2.7 ([GH20]). Any graph G with hop-diameter D and minor density δ(G) admits shortcuts
of quality Õ(δD), which can be constructed with high probability in Õ(δD) rounds of CONGEST.

The (linear) dependency on the minor density is existentially optimal [GH20, Lemma 3.2]. It should
be noted that, in the context of Theorem 2.7, there is also a deterministic distributed algorithm
with a slightly worse guarantee [GH20]. Some of our results apply for communication networks with
bounded treewidth, so let us recall the following definition.

Definition 2.8 (Tree Decomposition and Treewidth). A tree decomposition of a graph G is a tree
T with tree-nodes X1, . . . , Xk, where each Xi is a subset of V (G) satisfying the following properties:

1. V = ⋃k
i=1Xi;

2. For any node u ∈ V (G), the tree-nodes containing u form a connected subtree of T ;

3. For every edge {u, v} ∈ E(G), there exists a tree-node Xi which contains both u and v.

The width w of the tree decomposition is defined as w := maxi∈[k] |Xi| − 1. Moreover, the treewidth
tw(G) of G is defined as the minimum of the width among all possible tree decompositions of G.

5See the first part of Definition A.2 for a formal description of a minor.

9

Bounded-treewidth graphs inherit all of the nice properties guaranteed by Theorem 2.7, as implied
by the following well-known fact.

Fact 2.9. For any graph G, δ(G) ≤ tw(G).

3 The Congested Part-Wise Aggregation Problem
This section is concerned with a congested generalization of the standard part-wise aggregation
problem (Definition 2.1), formally introduced below.

Definition 3.1 (Congested Part-Wise Aggregation Problem). Consider an n-node graph G with a
collection of k subsets of nodes P1, . . . , Pk ⊆ V (G) called parts such that each induced subgraph
G[Pi] is connected and each node v ∈ V (G) is contained in at most ρ ∈ Z≥1 many parts, i.e.,
∀v ∈ V (G) |{i : Pi 3 v}| ≤ ρ. In the ρ-congested part-wise aggregation problem, each node v is
given the following as input: for each part Pi 3 v node v knows the part-ID i and an O(logn)-bit
part-specific value xi(v). The goal is that, for each part Pi, all nodes in Pi learn the part-wise
aggregate ⊕w∈Pi

xi(w), where ⊕ is an arbitrary pre-defined aggregation function.

This congested generalization of the standard part-wise aggregation problem that we study in this
section turns out to be a central ingredient in our refined Laplacian solver; this is further explained
in Section 4. The remainder of this section is organized as follows. In Section 3.1 we establish
near-optimal algorithms for solving congested part-wise aggregations in CONGEST, which is also
the main focus of this section. We conclude by pointing out the construction for NCC in Section 3.2.

3.1 Solving Congested Instances in the CONGEST Model

The first natural strategy for solving the ρ-congested part-wise aggregation problem of Definition 3.1
is through a reduction to poly(ρ) 1-congested instances. However, this approach immediately fails
even if we allow ρ = 2. Indeed, there exist congested part-wise aggregation instances for which every
two (distinct) parts share a common node, even when ρ = 2, leading to the following observation.

Observation 3.2. For an infinite family of values n, there exists an n-node planar graph G and
a 2-congested part-wise aggregation instance I with k = Θ(

√
n) parts such that reducing I to the

union of k′ 1-congested part-wise aggregation instances on G requires k′ = Ω(
√
n).

Such a pattern is illustrated in Figure 1. As a result, directly employing a 1-congested part-wise
aggregation oracle is of little use since it would introduce an overhead depending on the number
of parts. In light of this, we develop a more refined approach that leverages what we refer to as
the layered graph. This concept is introduced in Section 3.1.1, where we show that the congested
part-wise aggregation problem can be reduced to the 1-congested part-wise aggregation problem in
the layered graph. Then, we give an algorithm for the ρ-congested part-wise aggregation problem in
treewidth-bounded graphs through a simple approach in Section 3.1.2, yielding an Õ(ρ2 tw(G)D)-
round algorithm. Finally, we show that the shortcut quality SQ of the ρ-layered graph does not
increase (modulo polylogarithmic factors) as compared to the original graph (Theorem 3.11). This
implies a solution for ρ-congested part-wise aggregations in general graphs with a runtime with the
optimal, linear, dependence on ρ, albeit at the cost of a more involved argument (Section 3.1.3,
specifically Corollary 3.12).

10

3.1.1 The Layered Graph

Figure 1: A 2-congested part-wise aggregation
problem on a 6×6 grid (the instance immediately
extends to a

√
n×
√
n topology). Different colors

highlight different parts of the instance.

Here we introduce the layered graph Ĝρ associated
with the underlying graph G. Then, we reduce
the problem of ρ-congested part-wise aggregation
on G to a 1-congested instance on ĜO(ρ).

The Layered Graph Consider an underlying
network G and some ρ ∈ Z≥1, corresponding to
the congestion parameter in Definition 3.1. The
layered graph Ĝρ is constructed in the following
way. First, we let Ĝρ be a disjoint union of ρ
copies of G (called layers), namely G1, G2, . . . , Gρ.
Each node v ∈ V (G) is associated with its copies
v1, v2, . . . , vρ ∈ V (Ĝρ). We also add an edge be-
tween each two copies that originate from the
same node (i.e., we add a clique to Ĝρ on the set of
copies associated with the same node v ∈ V (G));
this construction is illustrated in Figure 2. The
layered graph induces a natural projection oper-
ation π : V (Ĝρ) → V (G) which maps a copy vi
to its original node v = π(vi). Furthermore, we often talk about simulating Ĝρ in G, by which
we mean that each node v simulates—learns all the inputs and can generate all outputs—for its
copies v1, . . . , vρ. Throughout this paper, we will assume that ρ = poly(n) so that any O(logn)-bit
message on Ĝρ can be sent within O(1) rounds in G; this also keeps the Õ-notation well-defined.

Figure 2: An example of a transformation from
G to the layered graph Ĝρ with ρ = 3. We have
highlighted with different colors different layers
of the graph.

The main goal of this section is to establish that
the ρ-congested part-wise aggregation problem on
G can be reduced to a 1-congested instance on
ĜO(ρ), as formalized below.

Lemma 3.3 (Unrestricted Congested Part-Wise
Aggregation). Let G be an n-node graph and
let Z≥1 3 ρ ≤ poly(n). Suppose that any (1-
congested) part-wise aggregation on ĜO(ρ) can be
solved with a τ -round CONGEST algorithm on
ĜO(ρ). Then, there exists an Õ(ρ · τ)-round CON-
GEST algorithm on G that solves any ρ-congested
part-wise aggregation instance on G.

The remainder of this section is dedicated to the
proof of this result. We first point out that any
CONGEST algorithm on Ĝρ can be simulated
with only a ρ multiplicative overhead in the round complexity (see Appendix B.2).

Lemma 3.4 (Simulating Ĝρ in G). For any G and any Z≥1 3 ρ ≤ poly(n), we can simulate any
τ -round CONGEST algorithm on Ĝρ with a (ρ · τ)-round CONGEST algorithm on G.

11

Furthermore, we will use a folklore result showing how to color a (multi)graph of maximum degree
∆ in O(∆) colors in O(logn) rounds of CONGEST. By multigraph here we simply mean that there
can be multiple parallel edges between the same pair of nodes, and every such edge can carry an
independent message per round. To keep the paper self-contained we provide a short sketch of the
proof in Appendix B.2.

Fact 3.5 (Folklore, [Joh99]). Given a (multi)graph G with n nodes and maximum degree ∆ ≤ poly(n),
there exists a randomized CONGEST algorithm that colors the edges of G with O(∆) colors and
completes in O(logn) rounds, with high probability. The coloring is proper, i.e., two edges that share
an endpoint are assigned a different color.

Now we are ready to prove a version of our main reduction (Lemma 3.3), but with the slightly twist
that we restrict each part of the ρ-congested part-wise aggregation problem to be a simple path.
This restriction will be removed later.

Lemma 3.6 (Path-Restricted Congested Part-Wise Aggregation). Let G be a n-node graph and
let Z≥1 3 ρ ≤ poly(n). Suppose that there exists a τ -round CONGEST algorithm solving the
(1-congested) part-wise aggregation on ĜO(ρ). Then, there exists an Õ(ρ · τ)-round CONGEST
algorithm on G that solves any ρ-congested part-wise aggregation instance on G when each part is
restricted to be a simple path6 (nodes are not repeated in simple paths).

Proof. Let P = {P1, P2, . . . , Pk} be subsets of nodes in G comprising the parts of some ρ-congested
part-wise aggregation on G. We will construct paths P ′ = {P ′1, P ′2, . . . , P ′k} in ĜO(ρ) in a way that
solving a part-wise aggregation on P ′ corresponds to solving a ρ-congested part-wise aggregation on
P.

Let Ei be the set of edges of G comprising the simple path traversing all the nodes in Pi, and consider
the graph G′ := (V (G),⊎ki=1Ei). First, we observe that the degree of any node in v ∈ V (G′) = V (G)
is at most 2ρ since at most ρ many parts contain v and each part contributes at most 2 to the degree
(since Pi is a simple path). Furthermore, we can simulate any ψ-round CONGEST algorithm on G′
with a (ψ · ρ)-round CONGEST algorithm on G as each edge e ∈ E(G) appears at most ρ times
in E(G′) due to the part-wise aggregation instance being at most ρ-congested. Therefore, using
Fact 3.5 we can distributedly color the edges of G′ into at most O(ρ) colors in O(logn) CONGEST
rounds on G′, which translates to Õ(ρ) CONGEST rounds on G. Suppose that the algorithm assigns
a color c(e) ∈ {1, . . . , O(ρ)} to each edge e ∈ ⊎iEi.
We now construct P ′i ⊆ ĜO(ρ) as follows: consider each edge {u, v} ∈ Ei and add both uc({u,v}), vc({u,v}) ∈
V (ĜO(ρ)) to P ′i (i.e., the c({u, v})-th copy of both u and v). By construction, P ′i induces a connected
subgraph and the projection P ′i to G is exactly Pi. Next, we invoke the (1-congested) part-wise
aggregation τ -round algorithm for {P ′1, . . . ,P ′k} on Ĝρ, which can be converted to an Õ(τ · ρ)-round
algorithm on G (Lemma 3.4). Thus, we obtain an Õ(τ · ρ)-round CONGEST algorithm on G which
solves any path-restricted ρ-congested part-wise aggregation problem.

Finally, our reduction in Lemma 3.3 follows by reformulating [HWZ21, Lemma 7.2], as we argue in
Appendix B.2.

6I.e., there exists a simple path traversing all the nodes of the part, and each node knows the corresponding incident
edges of that path.

12

3.1.2 Treewidth-Bounded Graphs

Here we leverage the reduction we established in Lemma 3.3 to obtain a simple algorithm for solving
the congested part-wise aggregation problem in treewidth-bounded graphs. The crucial observation
is that the treewidth of the layered graph can only grow by a factor of ρ compared to the treewidth
of the underlying graph, as we show in Lemma 3.8.

Claim 3.7. D(Ĝρ) ≤ D(G) + 1.

Lemma 3.8. If the treewidth of G is tw(G), then tw(Ĝρ) ≤ ρ tw(G) + ρ− 1.

Proof. Consider a tree decomposition (in the sense of Definition 2.8) of G into tree-nodes {Xj}kj=1
such that the width of the decomposition satisfies w = tw(G). We will show that there exists a tree
decomposition on the graph Ĝρ with width at most ρ(w + 1) − 1, which in turn will imply that
tw(Ĝρ) ≤ ρ(w + 1)− 1 = ρ(tw(G) + 1)− 1. Indeed, consider the following sets:

X̂j := {ui : u ∈ Xj , i ∈ [ρ]},

for all j ∈ [k]. In words, each node V (G) 3 u ∈ Xj is replaced by all of its copies ui in X̂j . Observe
that, by construction, |X̂j | = ρ|Xj |. Thus, it suffices to show that the collection of sets {X̂j}kj=1
forms a legitimate tree decomposition. First, since V (G) ⊆ ⋃j Xj , it follows that V (Ĝρ) ⊆

⋃
X̂j .

Moreover, consider any two sets X̂j , X̂`, both containing a node ui ∈ V (Ĝρ) for some i ∈ [ρ]. Then,
we know that all the tree-nodes in the (unique) path between Xj and X` based on the original
tree decomposition include u since Xj and X` both include u and {Xj} is a tree decomposition
of G. In turn, this implies that all the tree-nodes in the path between X̂j and X̂` also contain ui.
Thus, the tree-nodes containing ui form a connected subtree. Finally, we know that for every edge
{u, v} ∈ E(G) there exists a subset Xj such that u, v ∈ Xj . Hence, we can infer that for every edge
in E(Ĝρ) there is a tree-node X̂j which includes both incident endpoints. As a result, we have
constructed a tree decomposition in Ĝρ with width maxj∈[k] |X̂j | − 1 ≤ ρ(w + 1)− 1.

Corollary 3.9. Let G be an n-node communication network of diameter at most D and treewidth
tw(G). Then, we can solve with high probability any ρ-congested part-wise aggregation problem in G
within Õ(ρ2 · tw(G) ·D) rounds of CONGEST.

Proof. First, we know from Lemma 3.8 that tw(Ĝρ) = O(ρ tw(G)), in turn implying that the minor
density of Ĝρ can be bounded as δ(Ĝρ) ≤ tw(Ĝρ) = O(ρ tw(G)) (Fact 2.9). Thus, Theorem 2.7
implies that Ĝρ admits shortcuts of quality Õ(ρ tw(G)D(G)), which can be additionally constructed
in Õ(ρ tw(G)D(G)) rounds of communication on Ĝρ. Finally, we have shown in Lemma 3.3 that this
is sufficient to solve any ρ-congested part-wise aggregation problem on G in Õ(ρ2 · tw(G) ·D(G))
rounds of CONGEST, concluding the proof.

Minor Density in the Layered Graph In light of Lemma 3.8, a natural question is whether
an analogous bound holds with respect to the minor density of the underlying graph; i.e., whether
δ(Ĝρ) = poly(ρ)δ(G). Such a result would be strictly stronger as it would apply to the broader
class of graphs with bounded minor density, and would essentially lift all the results in [GH20], such
as Theorem 2.7, to the node-congestion setting in a black-box manner. Unfortunately, this is not
possible.

13

Indeed, consider a
√
n ×
√
n grid G—where

√
n is assumed to be an integer—such that every

node in the graph is 2-congested. Then, it is clear that δ(G) = Õ(1) (since planar graphs have
excluded minors). On the other hand, we claim that δ(Ĝρ) = Ω(

√
n). To see this, denote by (i, j)

the node positioned in the i-th row and j-th column with respect to the original graph, and by
(i′, j′) the node positioned in the i-th row and j-th column of the "duplicate" layer, for i, j ∈ [

√
n].

Moreover, let Cj = {(i, j) : i ∈ [
√
n]} be the nodes comprising the j-th column of the original graph

and Ri = {(i′, j′) : j′ ∈ [
√
n]} be the nodes comprising the i-th row of the duplicate layer. Then,

it follows that the minor graph induced by the connected components R1, . . . , R√n, C1, . . . , C√n
contains the complete bipartite graph K√n,√n as a subgraph (Figure 3). As a result, this implies
that the minor density of Ĝρ is Ω(

√
n).

Observation 3.10. There exists an n-node graph G with minor density δ(G) = Õ(1), but its
2-layered version Ĝ2 has minor density δ(Ĝ2) = Ω(

√
n).

Figure 3: The layered graph Ĝρ corresponding to a 3×3 grid with every node having congestion ρ = 2
(leftmost image), and a minor of Ĝρ induced by the connected components {C1, C2, C3, R1, R2, R3}
(rightmost image).

3.1.3 General Graphs

We conclude with our main result of Section 3.1: a near-optimal distributed algorithm for solving
the ρ-congested part-wise aggregation problem in general graphs. In light of our reduction in
Lemma 3.3, the technical crux is to control the degradation in the shortcut quality incurred by the
transformation into the layered graph. Surprisingly, we show that the shortcut quality of Ĝρ does
not increase by more than a polylogarithmic factor even when the number of layers is polynomial:

Theorem 3.11. For any n-node graph G and any Z≥1 3 ρ ≤ poly(n), we have that SQ(Ĝρ) =
Õ(SQ(G)).

This theorem improves over our previous result for treewidth-bounded graphs (Lemma 3.8) since
the latter guarantee inevitably induces a linear factor of ρ in the shortcut quality of Ĝρ. While
this will not affect the asymptotic performance of the Laplacian solver, this improvement might
prove to be important for future applications. Assuming that we have shown Theorem 3.11, we can
then utilize the efficient shortcut constructions given in Theorem 2.5 to solve ρ-congested part-wise
aggregations on any graph.

Corollary 3.12. There exists a randomized distributed algorithm that, for any n-node graph G and

14

ρ ∈ Z≥1 ≤ poly(n), solves with high probability any ρ-congested part-wise aggregation instance on G
with the following guarantees:

• In the CONGEST, the algorithm terminates in at most ρ · poly
(
SQ(G)

)
· no(1) rounds.

• In the CONGEST model on graphs with minor density δ, it requires Õ(ρ · δ ·D) rounds.

• In the Supported-CONGEST, the algorithm terminates in Õ(ρ · SQ(G)) rounds.

Proof. We construct (virtually) the graph ĜO(ρ). By Theorem 3.11, we know that SQ(ĜO(ρ)) =
Õ(SQ(G)). Thus, we can construct shortcuts on ĜO(ρ) in poly

(
SQ(G)

)
·no(1), Õ(δD), and Õ(SQ(G))

rounds in general CONGEST (Theorem 2.5), Supported-CONGEST (Theorem 2.5), and CONGEST
with minor density δ (Theorem 2.7), respectively. Therefore, we can solve 1-congested part-wise
aggregation instances using those shortcuts in the required times using Proposition 2.3. Since solving
a 1-congested part-wise aggregation on ĜO(ρ) suffices to solve ρ-congested part-wise aggregations on
G with only an Õ(ρ) slowdown (Lemma 3.3), the proof is complete.

The rest of this subsection is dedicated to the proof of Theorem 3.11. To argue about the shortcut
quality of the layered graph, we need to develop several generalized notions of node connectivity.
Pair node and any-to-any connectivity are essentially the multi- and single-commodity versions of
node connectivity, respectively.

Pair Node Connectivity Given a (multi)set of source-sink pairs P = {(si, ti)}ki=1 in G, we
say that P has pair node connectivity ρ if there exist paths P1, . . . , Pk, with si and ti being the
endpoints of each Pi, such that every node v ∈ V (G) is contained in at most ρ many paths, i.e.,
for all v we have |{i : V (Pi) 3 v}| ≤ ρ. If P has pair node connectivity 1 we say that they are pair
node-disjointly connectable.

Any-to-Any Node Connectivity Suppose that we are given multisets of k sources S =
{s1, . . . , sk} and k sinks T = {t1 . . . , tk}. We say that (S, T) have any-to-any node connectiv-
ity ρ if there is a permutation π : {1, . . . , k} → {1, . . . , k} such that the pairs {(si, tπ(i))}ki=1 have
pair node connectivity ρ. If (S, T) have any-to-any node connectivity 1 we say they are any-to-any
node-disjointly connectable.

The following decomposition lemma states that two sets with any-to-any node connectivity ρ can
be decomposed into Õ(ρ) many pairs of subsets that are any-to-any node-disjointly connectable.

Lemma 3.13. Given a graph G, suppose we are given any two multisets of nodes S ⊆ V (G) and
T ⊆ V (G) of size k := |S| = |T | that have any-to-any node connectivity ρ. Then, we can partition
S = S1] S2] . . .] SO(ρ log k) and T = T1] T2] . . . TO(ρ log k) such that |Si| = |Ti| and (Si, Ti) are
any-to-any node-disjointly connectable.

Proof. Suppose that each edge in G has infinite capacity while each node in G has unit capacity.
Then, let us connect a super-source s to each node x ∈ S with a unit-capacity edge, and a super-sink
t to each node x ∈ T with a unit capacity edge. By assumption, we know that there exists a flow f
over E(G) which sends k units of flow from s to t with edge congestion 1 and node congestion at
most ρ. Therefore, the flow f/ρ sending k/ρ units of flow from s to t is a feasible solution of the

15

maximum flow linear program with node constraints (i.e., it satisfies both edge and node capacity
constraints). Since that linear program is integral (i.e., has an integrality gap of 1), there exists an
integral flow f ′ which sends at least k/ρ units of flow and satisfies both node and edge capacity
restrictions. In other words, there exist at least k/ρ node disjoint paths (with the exception of the
endpoints) between s and t. Let S1 ⊆ S (T1 ⊆ T) be the set of nodes on these paths immediately
following the super-source (just before the super-sink, respectively). Clearly, by construction, (S1, T1)
are any-to-any node-disjointly connectable. Finally, we define S′ := S \ S1, T

′ := T \ T1 and proceed
iteratively as above (producing S2, T2 instead of S1, T1). In each step, the size of S′ and T ′ decreases
by at least a multiplicative factor of 1− 1/ρ. Hence, O(ρ log k) steps suffice so that S′ = T ′ = ∅.

Next, we introduce two communication tasks that will be useful for characterizing the shortcut
quality.

Multiple-Unicast Problem Suppose that we are given k source-sink pairs P = {(si, ti)}ki=1.
The goal is to find the smallest possible completion time τ such that there are k paths P1, . . . , Pk
for which (1) the endpoints of each Pi are exactly si and ti; (2) the dilation is τ , i.e., each path Pi
has at most τ hops; and (3) the congestion is τ , i.e., each edge e ∈ E(G) is contained in at most τ
many paths.

Any-to-Any-Cast Problem Suppose we are given k sources S = {s1, . . . , sk} and k sinks
T = {t1 . . . , tk}. The goal is to find the smallest completion time τ such that there exists a
permutation π : {1, . . . , k} → {1, . . . , k} for which the multiple-unicast problem on {(si, tπ(i))}ki=1
has a completion time of at most τ .

Finally, we now recall (a reinterpretation of) a result characterizing shortcut quality from [HWZ20;
HWZ21]. Shortcut quality was originally defined as the smallest completion-time of the worst-case
generalized (with respect to parts) multiple-unicast (i.e., multi-commodity) problem over an a pair
node-disjointly connectable instance (Definition 2.4). Using recent network coding gap results we
can equivalently express shortcut quality as the smallest completion-time of the worst-case any-to-
any-cast (i.e., single-commodity) problem over sources and sinks that are any-to-any node-disjointly
connectable. The formal statement follows.

Theorem 3.14 ([HWZ20; HWZ21]). Consider any graph G and let τ be the worst-case completion
time of any-to-any-cast problems taken over all any-to-any node-disjointly connectable sets (S ⊆
V (G), T ⊆ V (G)). Then, τ = Θ̃(SQ(G)).

Proof. It was proven in [HWZ21, Lemma 2.8 in the Full Version] that SQ(G) is, up to Θ̃(1)
factors, equal to the completion time C of some multiple-unicast instance with respect to some
source-sink pairs P := {(si, ti)}ki=1 that are pair node-disjointly connectable. We note that, since
sources and sinks are disjoint, it follows that k = poly(n) and O(logn) = O(log k). Furthermore,
[HWZ20] proved that there exists a sub-instance P ′ = {(s′i, t′i)k

′
i=1} ⊆ P such that SQ(G) is (up

to Θ̃(1) factors) equal to the completion time τ of the any-to-any-cast problem with respect to
({s′i}k

′
i=1, {t′i}k

′
i=1). One side of the claim is clear: for any sub-instance P ′ ⊆ P we have that τ ≤ C.

The other direction is harder and we sketch its proof here using the terminology in [HWZ20]. By
definition and strong duality, CutP(2C) = ConcurrentFlowP(2C) ≤ 1. Furthermore, CutP(C/10) =
CutP(2C)/20 ≤ 1/10. Hence, by [HWZ21, Lemma 2.6] there is a sub-instance P ′ ⊆ P with a

16

moving cut of distance τ := Ω̃(C) and capacity less than |P ′|. Therefore, this proves that the
completion time of any-to-any-cast problem on P ′ is at least τ . With this in mind, we have that
Ω̃(SQ(G)) = Ω̃(C) = τ ≤ C = Θ̃(SQ(G)).

Finally, since P = {(si, ti)}ki=1 was pair node-disjointly connectable, it follows from definition that the
sub-instance ({s′i}k

′
i=1, {t′i}k

′
i=1) is any-to-any node-disjointly connectable. Therefore, ({s′i}k

′
i=1, {t′i}k

′
i=1)

satisfies the constraints of this result and has completion-time τ = Θ̃(SQ(G)), as required. It is also
clear that, by shortcut quality, any any-to-any node-disjointly connectable instance has completion
time at most SQ(G) using the node-disjoint paths that witness the any-to-any node-disjointness as
parts of the shortcut, making ({s′i}k

′
i=1, {t′i}k

′
i=1) the worst-case such instance (modulo polylogarithmic

factors).

We now combine all of the previous ingredients to prove the main result of this section.

Proof of Theorem 3.11. Let S ⊆ V (Ĝρ) and T ⊆ V (Ĝρ) be any-to-any node-disjointly connectable
sets such that the completion time of any-to-any-cast between S and T is Θ̃(SQ(Ĝρ)) (Theorem 3.14).
Let k := |S| = |T |, and suppose that S′ := ⊎

s∈S{π(s)} ⊆ V (G) and T ′ := ⊎
t∈T {π(t)} ⊆ V (G) are

the multisets induced by projecting S and T to G, respectively. By construction of Ĝρ, S′ and T ′
have any-to-any node connectivity ρ; to see this, consider the witness paths disjointly connecting
them in Ĝρ and project them to G. Therefore, we can partition S′ = S′1] . . .] S′O(ρ log k) and
T ′ = T ′1] . . .] T ′O(log k) such that |S′i| = |T ′i | and (S′i, T ′i) are any-to-any node-disjointly connectable
in G (Lemma 3.13).

By definition of shortcut quality, for each i ∈ {1, . . . , O(ρ log k)} there exists a set of paths (P ij)
|S′

i|
j=1

in G between S′i and T ′i of quality (i.e., both congestion and dilation) at most SQ(G). Then, we
inject the first O(log k) collections of paths (P 1

j)j , (P 2
j)j , . . . , (PO(log k)

j)j to the first layer G1 of Ĝρ;
the second O(log k) collections to the second layer G2, and so on, until we finally inject the last
O(log k) collections to the last layer Gρ. Note that only the paths on the same layer interact, so
both the congestion and dilation after injecting all paths into Ĝρ is O(SQ(G) log k). Hence, the
same applies for the shortcut quality. Finally, to solve the any-to-any-cast problem on S and T one
might need to add an between-layer edge at the beginning and at the end since each injected path
is restricted to some adversarially chosen layer. However, this only increases the congestion and
dilation by O(1). Hence, the completion time of any-to-any-cast between S and T is Õ(SQ(G)),
implying that SQ(Ĝρ) = Õ(SQ(G)).

3.2 The NCC Model

We next turn our attention to the NCC model. We observe that the ρ-congested part-wise
aggregation problem admits a solution in poly(ρ, logn) rounds of NCC. This is established after
appropriately translating the communication primitives established for NCC in [Aug+19]; the
details are provided in Appendix C.

Lemma 3.15. Let G be an n-node communication network. Then, we can solve with high probability
any ρ-congested part-wise aggregation problem on G after O(ρ+ logn) rounds of NCC.

17

4 Almost Universally Optimal Laplacian Solvers
In this section we relate the congested part-wise aggregation problem we studied in the previous
section with the Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and Ye [For+20]. To present
a unifying analysis for both CONGEST and HYBRID, as well as for future applications and
extensions, we analyze the distributed Laplacian solver under the following hypothesis.

Assumption 4.1. Consider a model of computation which incorporates CONGEST. We assume
that we can solve with high probability any ρ-congested part-wise aggregation problem in Q(ρ) =
O(ρcQ(1)) rounds, for some universal constant c ≥ 1.

One of our crucial observations is that the performance of the Laplacian solver of Forster, Goranci,
Liu, Peng, Sun, and Ye [For+20] can be parameterized in terms of the complexity of the congested
part-wise aggregation problem. Indeed, we revisit and refine the main building blocks of their solver
in Appendix A, leading to the following result.

Theorem 4.2 (Full Version in Theorem A.9). Consider a weighted n-node graph G for which
Assumption 4.1 holds for some Q(ρ) = O(ρcQ), where c is a universal constant and Q = Q(G) is
some parameter. Then, we can solve any Laplacian system after no(1)Q log(1/ε) rounds.

Combining this theorem with Corollary 3.12 and Lemma 3.15 yields the following immediate
consequences.

Theorem 1.2. Consider any n-node graph G with shortcut quality SQ(G) and hop-diameter D.
There exists a distributed Laplacian solver with error ε > 0 with the following guarantees:

• In the Supported-CONGEST model, it requires no(1) SQ(G) log(1/ε) rounds.

• In the CONGEST model, it requires no(1) poly(SQ(G)) log(1/ε) rounds.

• In the CONGEST model on graphs with minor density δ, it requires no(1)δD log(1/ε) rounds.

Theorem 1.3. Consider any n-node graph. There exists a distributed Laplacian solver in the
HYBRID model with round complexity no(1) log(1/ε), where ε > 0 is the error of the solver.

Lower Bound in Supported-CONGEST Finally, we complement our positive results with a
almost-matching lower bound on any graph G, applicable even under the Supported-CONGEST
model, thereby establishing universal optimality up to an no(1) factor. Our reduction leverages the
refined hardness result established in [HWZ21] for the spanning connected subgraph problem [Das+11].
In this problem a subgraph H of G is specified with nodes knowing all of the incident edges belonging
to H. The goal is to let every node learn whether H is connected and spans the entire network.

Theorem 4.3 ([HWZ21]). Let A be any algorithm which is always correct with probability7 at
least 2

3 for the spanning connected subgraph problem, and T (G) = maxI TA(I;G) be the worst-case
round-complexity of A under G. Then,

T (G) = Ω̃(ShortcutQuality(G)).
7Note that Haeupler, Wajc, and Zuzic [HWZ21] only proved this for always-correct algorithms with probability 1,

but the extension we claim here follows readily from their argument.

18

In this context, we show that a Laplacian solver can be leveraged to solve the spanning connected
subgraph problem, leading to the following lower bound.

Proposition 1.1. Consider a graph G with shortcut quality SQ(G). Then, solving a Laplacian
system on G with ε ≤ 1

2 requires Ω̃(SQ(G)) rounds in both CONGEST and Supported-CONGEST
models.

This substantially strengthens the existential lower bound in [For+20], and deviates from their
argument which is based on a reduction from the s− t connectivity problem. The proof is deferred
to Appendix B.8.

5 Conclusions
We established almost universally optimal Laplacian solvers for both the (Supported-)CONGEST
and the HYBRID model. One of our main technical contributions was to introduce and study
a congested generalization of the standard part-wise aggregation problem, which we believe may
find further applications beyond the Laplacian paradigm in the future. For example, one candidate
problem would be to refine the distributed algorithm for max-flow due to Ghaffari, Karrenbauer,
Kuhn, Lenzen, and Patt-Shamir [Gha+15]. We also hope that our accelerated Laplacian solvers will
be used as a basic primitive for obtaining improved distributed algorithms for other fundamental
optimization problems as well. Indeed, Forster, Goranci, Liu, Peng, Sun, and Ye [For+20] showed
that the Laplacian paradigm can offer sublinear and exact distributed algorithms for problems such
as max-flow, an objective which previously appeared elusive.

References
[Ach03] Dimitris Achlioptas. “Database-friendly random projections: Johnson-Lindenstrauss

with binary coins”. In: J. Comput. Syst. Sci. 66.4 (2003), pp. 671–687.
[AG21] Ioannis Anagnostides and Themis Gouleakis. “Deterministic Distributed Algorithms and

Lower Bounds in the Hybrid Model”. In: 35th International Symposium on Distributed
Computing, DISC 2021. Ed. by Seth Gilbert. Vol. 209. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 5:1–5:19.

[Alo+95] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. “A Graph-Theoretic
Game and Its Application to the k-Server Problem”. In: SIAM J. Comput. 24.1 (Feb.
1995), pp. 78–100.

[AMV20] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. “Circulation Control for Faster
Minimum Cost Flow in Unit-Capacity Graphs”. In: 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020. IEEE, 2020, pp. 93–104.

[AMV21] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. “Faster Sparse Minimum
Cost Flow by Electrical Flow Localization”. In: 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021. IEEE, 2021, pp. 528–539.

[Aug+19] John Augustine, Mohsen Ghaffari, Robert Gmyr, Kristian Hinnenthal, Christian Schei-
deler, Fabian Kuhn, and Jason Li. “Distributed Computation in Node-Capacitated
Networks”. In: The 31st ACM on Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2019. Ed. by Christian Scheideler and Petra Berenbrink. ACM, 2019,
pp. 69–79.

19

[Aug+20] John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp
Schneider. “Shortest Paths in a Hybrid Network Model”. In: Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020. Ed. by Shuchi Chawla.
SIAM, 2020, pp. 1280–1299.

[Ble+14] Guy E. Blelloch, Anupam Gupta, Ioannis Koutis, Gary L. Miller, Richard Peng, and
Kanat Tangwongsan. “Nearly-Linear Work Parallel SDD Solvers, Low-Diameter Decom-
position, and Low-Stretch Subgraphs”. In: Theory Comput. Syst. 55.3 (2014), pp. 521–
554.

[Bra+20] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. “Bipartite Matching in Nearly-
linear Time on Moderately Dense Graphs”. In: 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020. IEEE, 2020, pp. 919–930.

[BS07] Surender Baswana and Sandeep Sen. “A simple and linear time randomized algorithm
for computing sparse spanners in weighted graphs”. In: Random Struct. Algorithms 30.4
(2007), pp. 532–563.

[CGC16] Tao Chen, Xiaofeng Gao, and Guihai Chen. “The features, hardware, and architectures
of data center networks: A survey”. In: Journal of Parallel and Distributed Computing
96 (2016), pp. 45–74.

[CLP21a] Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. “Distance Compu-
tations in the Hybrid Network Model via Oracle Simulations”. In: 38th International
Symposium on Theoretical Aspects of Computer Science, STACS 2021. Vol. 187. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 21:1–21:19.

[CLP21b] Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. “On Sparsity Aware-
ness in Distributed Computations”. In: SPAA ’21: 33rd ACM Symposium on Parallelism
in Algorithms and Architectures. Ed. by Kunal Agrawal and Yossi Azar. ACM, 2021,
pp. 151–161.

[CM21] Shiri Chechik and Doron Mukhtar. “Single-source shortest paths in the CONGEST
model with improved bounds”. In: Distributed Computing (2021), pp. 1–18.

[Coh+17] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. “Negative-
Weight Shortest Paths and Unit Capacity Minimum Cost Flow in Õ (m10/7 log W)
Time (Extended Abstract)”. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017. Ed. by Philip N. Klein. SIAM, 2017,
pp. 752–771.

[Coy+22] Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn, Chris-
tian Scheideler, Philipp Schneider, and Martijn Struijs. Near-Shortest Path Routing in
Hybrid Communication Networks. 2022. arXiv: 2202.08008 [cs.DC].

[Das+11] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. “Distributed Verification
and Hardness of Distributed Approximation”. In: Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing. STOC ’11. San Jose, California, USA:
Association for Computing Machinery, 2011, pp. 363–372.

[DKO14] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. “On the power of the congested
clique model”. In: ACM Symposium on Principles of Distributed Computing, PODC
’14. Ed. by Magnús M. Halldórsson and Shlomi Dolev. ACM, 2014, pp. 367–376.

20

https://arxiv.org/abs/2202.08008

[Dur+19] David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. “Fully dynamic spectral
vertex sparsifiers and applications”. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019. ACM, 2019, pp. 914–925.

[Elk04] Michael Elkin. “Unconditional Lower Bounds on the Time-Approximation Tradeoffs
for the Distributed Minimum Spanning Tree Problem”. In: Proceedings of the Thirty-
Sixth Annual ACM Symposium on Theory of Computing. STOC ’04. Chicago, IL, USA:
Association for Computing Machinery, 2004, pp. 331–340.

[FHS20] Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler. Fast Hybrid Network
Algorithms for Shortest Paths in Sparse Graphs. 2020. arXiv: 2007.01191 [cs.DC].

[For+20] Sebastian Forster, Gramoz Goranci, Yang P. Liu, Richard Peng, Xiaorui Sun, and
Mingquan Ye. “Minor Sparsifiers and the Distributed Laplacian Paradigm”. In: CoRR
abs/2012.15675 (2020). arXiv: 2012.15675.

[GH16] Mohsen Ghaffari and Bernhard Haeupler. “Distributed Algorithms for Planar Networks
II: Low-Congestion Shortcuts, MST, and Min-Cut”. In: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016. Ed. by
Robert Krauthgamer. SIAM, 2016, pp. 202–219.

[GH20] Mohsen Ghaffari and Bernhard Haeupler. “Low-Congestion Shortcuts for Graphs Ex-
cluding Dense Minors”. In: CoRR abs/2008.03091 (2020). arXiv: 2008.03091.

[Gha+15] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz
Patt-Shamir. “Near-Optimal Distributed Maximum Flow: Extended Abstract”. In: New
York, NY, USA: Association for Computing Machinery, 2015, pp. 81–90.

[Gha15] Mohsen Ghaffari. “Near-Optimal Scheduling of Distributed Algorithms”. In: Proceedings
of the 2015 ACM Symposium on Principles of Distributed Computing. New York, NY,
USA: Association for Computing Machinery, 2015, pp. 3–12.

[Göt+21] Thorsten Götte, Kristian Hinnenthal, Christian Scheideler, and Julian Werthmann.
“Time-Optimal Construction of Overlay Networks”. In: PODC ’21: ACM Symposium
on Principles of Distributed Computing. ACM, 2021, pp. 457–468.

[GZ22] Mohsen Ghaffari and Goran Zuzic. “Universally-Optimal Distributed Exact Min-Cut”.
In: 2022.

[HIZ16a] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. “Low-Congestion Shortcuts
without Embedding”. In: Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, PODC 2016. Ed. by George Giakkoupis. ACM, 2016, pp. 451–
460.

[HIZ16b] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. “Near-Optimal Low-Congestion
Shortcuts on Bounded Parameter Graphs”. In: Distributed Computing - 30th Interna-
tional Symposium, DISC 2016. Ed. by Cyril Gavoille and David Ilcinkas. Vol. 9888.
Lecture Notes in Computer Science. Springer, 2016, pp. 158–172.

[HRG22] Bernhard Haeupler, Harald Räcke, and Mohsen Ghaffari. “Hop-Constrained Expander
Decompositions, Oblivious Routing, and Distributed Universal Optimality”. In: 2022.

[HWZ20] Bernhard Haeupler, David Wajc, and Goran Zuzic. “Network coding gaps for completion
times of multiple unicasts”. In: 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS). IEEE. 2020, pp. 494–505.

[HWZ21] Bernhard Haeupler, David Wajc, and Goran Zuzic. “Universally-optimal distributed
algorithms for known topologies”. In: STOC ’21: 53rd Annual ACM SIGACT Symposium

21

https://arxiv.org/abs/2007.01191
https://arxiv.org/abs/2012.15675
https://arxiv.org/abs/2008.03091

on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. Ed. by Samir Khuller
and Virginia Vassilevska Williams. ACM, 2021, pp. 1166–1179.

[Ind06] Piotr Indyk. “Stable distributions, pseudorandom generators, embeddings, and data
stream computation”. In: J. ACM 53.3 (2006), pp. 307–323.

[Joh99] Öjvind Johansson. “Simple distributed δ + 1-coloring of graphs”. In: Information
Processing Letters 70.5 (1999), pp. 229–232.

[Kel+13] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. “A
simple, combinatorial algorithm for solving SDD systems in nearly-linear time”. In:
Symposium on Theory of Computing Conference, STOC’13, 2013. Ed. by Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum. ACM, 2013, pp. 911–920.

[Kel+14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. “An Almost-
Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs, and its
Multicommodity Generalizations”. In: Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014. Ed. by Chandra Chekuri. SIAM,
2014, pp. 217–226.

[KMP10] Ioannis Koutis, Gary L. Miller, and Richard Peng. “Approaching Optimality for Solving
SDD Linear Systems”. In: 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science. 2010, pp. 235–244.

[KMP14] Ioannis Koutis, Gary L. Miller, and Richard Peng. “Approaching Optimality for Solving
SDD Linear Systems”. In: SIAM J. Comput. 43.1 (2014), pp. 337–354.

[Kou14] Ioannis Koutis. “Simple parallel and distributed algorithms for spectral graph sparsi-
fication”. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’14. Ed. by Guy E. Blelloch and Peter Sanders. ACM, 2014, pp. 61–66.

[KS16] Rasmus Kyng and Sushant Sachdeva. “Approximate Gaussian Elimination for Laplacians
- Fast, Sparse, and Simple”. In: IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016. Ed. by Irit Dinur. IEEE Computer Society, 2016,
pp. 573–582.

[KS18] Udit Narayana Kar and Debarshi Kumar Sanyal. “An overview of device-to-device
communication in cellular networks”. In: ICT Express 4.4 (2018), pp. 203–208.

[KS20] Fabian Kuhn and Philipp Schneider. “Computing Shortest Paths and Diameter in
the Hybrid Network Model”. In: Proceedings of the 39th Symposium on Principles
of Distributed Computing. PODC ’20. Association for Computing Machinery, 2020,
pp. 109–118.

[KS22] Fabian Kuhn and Philipp Schneider. Routing Schemes and Distance Oracles in the
Hybrid Model. 2022. arXiv: 2202.06624 [cs.DC].

[Kyn+16] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
“Sparsified Cholesky and Multigrid Solvers for Connection Laplacians”. In: Proceedings
of the Forty-Eighth Annual ACM Symposium on Theory of Computing. STOC ’16.
Cambridge, MA, USA: Association for Computing Machinery, 2016, pp. 842–850.

[Li22] Václav Rozhoň r© Christoph Grunau r© Bernhard Haeupler r© Goran Zuzic r© Ja-
son Li. “Undirected (1+epsilon)-Shortest Paths via Minor-Aggregates: Near-Optimal
Deterministic Parallel & Distributed Algorithms”. In: 2022.

[Lin92] Nathan Linial. “Locality in Distributed Graph Algorithms”. In: SIAM J. Comput. 21.1
(1992), pp. 193–201.

22

https://arxiv.org/abs/2202.06624

[Lot+03] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. “MST construction in
O(log log n) communication rounds”. In: SPAA 2003: Proceedings of the Fifteenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, 2003. Ed. by
Arnold L. Rosenberg and Friedhelm Meyer auf der Heide. ACM, 2003, pp. 94–100.

[LS18] Huan Li and Aaron Schild. “Spectral Subspace Sparsification”. In: 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018. Ed. by Mikkel Thorup.
IEEE Computer Society, 2018, pp. 385–396.

[Mad16] Aleksander Madry. “Computing Maximum Flow with Augmenting Electrical Flows”.
In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016.
Ed. by Irit Dinur. IEEE Computer Society, 2016, pp. 593–602.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
[Pen16] Richard Peng. “Approximate Undirected Maximum Flows in O(mpolylog(n)) Time”.

In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016. Ed. by Robert Krauthgamer. SIAM, 2016, pp. 1862–1867.

[PR99] D. Peleg and V. Rubinovich. “A near-tight lower bound on the time complexity of
distributed MST construction”. In: 40th Annual Symposium on Foundations of Computer
Science. 1999, pp. 253–261.

[PS14] Richard Peng and Daniel A. Spielman. “An efficient parallel solver for SDD linear
systems”. In: Symposium on Theory of Computing, STOC 2014. Ed. by David B.
Shmoys. ACM, 2014, pp. 333–342.

[SRS18] Aaron Schild, Satish Rao, and Nikhil Srivastava. “Localization of Electrical Flows”. In:
SODA ’18. USA: Society for Industrial and Applied Mathematics, 2018, pp. 1577–1584.

[SS08] Daniel A. Spielman and Nikhil Srivastava. “Graph sparsification by effective resistances”.
In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008.
Ed. by Cynthia Dwork. ACM, 2008, pp. 563–568.

[SS13] Stefan Schmid and Jukka Suomela. “Exploiting locality in distributed SDN control”.
In: HotSDN 2013 - Proceedings of the 2013 ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking (2013), pp. 121–126.

[ST14] Daniel A. Spielman and Shang-Hua Teng. “Nearly Linear Time Algorithms for Precon-
ditioning and Solving Symmetric, Diagonally Dominant Linear Systems”. In: SIAM J.
Matrix Anal. Appl. 35.3 (2014), pp. 835–885.

[Tho01] Andrew Thomason. “The Extremal Function for Complete Minors”. In: Journal of
Combinatorial Theory, Series B 81.2 (2001), pp. 318–338.

[Tho84] Andrew Thomason. “An extremal function for contractions of graphs”. In: Mathematical
Proceedings of the Cambridge Philosophical Society 95.2 (1984), pp. 261–265.

[Vis12] Nisheeth Vishnoi. “Lx=b. Laplacian solvers and their algorithmic applications”. In:
Foundations and Trends in Theoretical Computer Science 8 (Jan. 2012).

[Wan+10] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki,
T.S. Eugene Ng, Michael Kozuch, and Michael Ryan. “C-Through: Part-Time Optics in
Data Centers”. In: Proceedings of the ACM SIGCOMM 2010 Conference. SIGCOMM
’10. Association for Computing Machinery, 2010, pp. 327–338.

[Zuz+22] Goran Zuzic, Gramoz Goranci, Mingquan Ye, Bernhard Haeupler, and Xiaorui Sun.
“Universally-Optimal Distributed Shortest Paths and Transshipment via Graph-Based
`1-Oblivious Routing”. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM. 2022, pp. 2549–2579.

23

A The Laplacian Solver
In this section we describe the basic building blocks of the distributed Laplacian solver of [For+20].
Our goal will be to cast their guarantees within our more general framework, leading to the proof of
Theorem 4.2. First, let us introduce some notation related to Laplacian systems.

The Laplacian Matrix Consider a weighted undirected graph G = (V,E,w > 0). The Laplacian
of the graph G is defined as

L(G)u,v =
{∑

{u,z}∈E w(u, z) If u = v,

−w(u, v) otherwise.

The Laplacian matrix of a graph is (i) symmetric (L(G)T = L(G)); (ii) positive semi-definite
(xTL(G)x ≥ 0 for any x); and (iii) weakly diagonally dominant (L(G)u,u ≥

∑
v 6=u |L(G)u,v|).

Definition A.1 (Schur Complement). For a symmetric matrix A ∈ Rn×n and a partition of [n]
into T and S, permute the rows and columns of A such that

A =
[

A[S,S] A[S,T]
A[T ,S] A[T ,T]

]
.

Then, the Schur compelement of A onto T is defined as SC(A, T) := A[T ,T] −A[T ,S]A
†
[S,S]A[S,T],

where M† denotes the Moore-Penrose pseudo-inverse of matrix M. For a graph G and a subset
T ⊆ V (G), we will write SC(G, T) := SC(L(G), T).

Notation Consider two positive semi-definite matrices A,B ∈ Rn×n. For a vector x ∈ Rn we
define ‖x‖A :=

√
xTAx (Mahalanobis norm). We will write A ≈ε B if exp(−ε)A � B � exp(ε)A,

where A � B if and only if the matrix B−A is positive semi-definite. For an edge e = {u, v}, we
will let b(e) := 1u − 1v, where 1u ∈ Rn represents the characteristic vector of node u. For a graph
G with resistances r(e), we define the leverage scores as levG(e) := r(e)−1bT (e)L(G)†b(e). Note
that 0 ≤ levG(e) ≤ 1.

A.1 Low-Congestion Minors

Here we introduce the concept of a low-congestion minor, a central component in the distributed
Laplacian solver of [For+20].

Definition A.2 ([For+20]). A graph G is a minor of G if the following properties hold:

1. For every node uG ∈ V (G) there exists:

(i) A subset of nodes of G, which is termed as a super-node, SG→G(uG), with a leader node
`(uG) ∈ SG→G(uG);

(ii) A connected subgraph of G on SG→G(uG), for which we maintain a spanning tree
TG→G(uG).

24

2. There exists a mapping of the edges of G onto edges of G, or self-loops, such that for any
{uG, vG} ∈ E(G), the mapped edge {u, v} satisfies u ∈ SG→G(uG) and v ∈ SG→G(vG).

Moreover, we say that this minor G has congestion ρ, or G is a ρ-minor, if:

1. Every node u ∈ G is contained in at most ρ super-nodes SG→G(uG), for some uG ∈ V (G);

2. Every edge of G appears as the image of an edge of G or in one of the trees connecting
super-nodes (i.e., TG→G(uG) for some uG) at most ρ times.

Finally, we say that G is ρ-minor distributed over G if every u ∈ V (G) stores:

1. All uG ∈ V (G) for which u ∈ SG→G(uG);

2. For every edge e incident to u, (i) all the nodes uG for which e ∈ TG→G(uG), and (ii) all edges
eG that map to it.

We remark that the basis of Definition A.2 was the earlier concept of a distributed cluster graph
of Ghaffari, Karrenbauer, Kuhn, Lenzen, and Patt-Shamir [Gha+15]. The important connection
is that the congested part-wise aggregation problem we introduced is the central ingredient that
allows performing certain “local” operations on a graph ρ-minor distributed into the underlying
communication network. The following lemma is a direct consequence of Definition A.2.

Lemma A.3. Let G = (V,E) be an n-node graph ρ-minor distributed into an n-node communication
network G = (V ,E) for which Assumption 4.1 holds for some Q = Q(ρ). Then, we can perform
with high probability the following operations in the NCC model, simultaneously for all uG ∈ V (G),
within O(Q(ρ)) rounds:

1. Every leader `(uG) sends an O(logn)-bit message to all the nodes in SG→G(uG);

2. All the nodes in SG→G(uG) compute an aggregation function on O(logn)-bit inputs.

A.2 The Laplacian Building Blocks

To keep the exposition reasonably self-contained, here we review the basic ingredients of the
distributed Laplacian solver developed in [For+20]. Our main goal is to extend the guarantees
established in [For+20] under Assumption 4.1. Then, we will combine these pieces in Appendix A.3
to complete the construction.

A.2.1 Ultra-Sparsification

As is standard in the Laplacian paradigm, we will require a preconditioner in the form of an
ultra-sparsifier. In particular, the following lemma is established in Appendix B.4, and it is a
refinement of [For+20, Lemma 4.9]:

Lemma A.4 (Ultra-Sparsification). Consider an n-node m-edge graph G which is ρ-minor dis-
tributed into an n-node communication network G for which Assumption 4.1 holds for some Q = Q(ρ).
Then, UltraSparsify(G, k) takes as input a parameter k and returns after no(1)Q(ρ) rounds a
graph H such that

1. H is a subgraph of G;

25

2. H has n− 1 +m2O(
√

logn log logn)/k edges;

3. L(G) � L(H) � kL(G).

Moreover, the algorithm returns Ĝ,Z1,Z2, C such that

1. Ĝ 1-minor distributes into H such that Ĝ = SC(H,C), with |C| = m2O(
√

logn log logn)/k;

2. The operators Z1 and Z2 can be evaluated in O(Q(ρ) logn) rounds, and are such that

L(H)† = ZT1

[
Z2 0
0 L(Ĝ)†

]
Z1.

Let us briefly review the pieces required for this lemma. First, we need the distributed implementation
of the low-stretch spanning tree algorithm of Alon, Karp, Peleg, and West [Alo+95] which is due
to Ghaffari, Karrenbauer, Kuhn, Lenzen, and Patt-Shamir [Gha+15]. Then, this spanning tree
is augmented with off-tree edges based on the sampling procedure of Koutis, Miller, and Peng
[KMP10], leading to a graph with a spectral approximation guarantee with respect to the original
graph. Finally, the parallel elimination procedure of Blelloch, Gupta, Koutis, Miller, Peng, and
Tangwongsan [Ble+14] is used to perform a series of contractions, leading to a subset with size
analogous to the number of off-tree edges. We revisit these steps in detail in Appendix B.4.

A.2.2 Sparsified Cholesky

The next building block is the sparsified Cholesky algorithm of Kyng, Lee, Peng, Sachdeva, and
Spielman [Kyn+16], which manages to effectively eliminate in every iteration a non-negligible
fraction of the nodes. In the distributed context, we state the following lemma which is a refinement
of [For+20, Lemma 4.10].

Lemma A.5 (Sparsified Cholesky). Let G be an n-node graph ρ-minor distributed into a com-
munication network G for which Assumption 4.1 holds for some Q = Q(ρ). Then, for a given
parameter d and error ε, the algorithm Eliminate(G, d, ε) runs in O(Q(ρ)(logc n/εc)d) rounds,
where c represents some universal constant, and returns a subset T ⊂ V (G) and access to operators
Z1 and Z2 such that

1. |T | ≤ (49/50)d|V (G)|;

2. The operators Z1,ZT1 ,Z2 can be applied to vectors in O(Q(ρ)(logc n/εc)d) rounds;

3.
(1− ε)dL(G)† � ZT1

[
Z2 0
0 SC(G, T)†

]
Z1 � (1 + ε)dL(G)†.

This lemma is established based on a distributed implementation of the sparsified Cholesky algorithm
of Kyng, Lee, Peng, Sachdeva, and Spielman [Kyn+16]. In particular, the Cholesky decomposition
essentially reduces solving a Laplacian to inverting (i) any sub-matrix of the Laplacian induced on a
set S, and (ii) the Schur complement on V \ S. Thus, Kyng, Lee, Peng, Sachdeva, and Spielman
[Kyn+16] initially develop a procedure for identifying an "almost independent" subset of nodes F
(more precisely, a strongly diagonally dominant subset) for which inverting the Laplacian restricted on
F can be done efficiently through preconditioning (e.g. via the Jacobi method), while F also contains

26

at least a constant fraction of the nodes. Next, a combinatorial view of the Schur complement based
on a certain family of random walks (see [Dur+19]) is employed to construct a spectral sparsifier
of the Schur complement on T = V \ F . This process is then repeated for d iterations, leading to
Lemma A.5. Several technical challenges that arise are discussed in Appendix B.5. Next, the main
idea is to recurse on the set of terminals T . However, in our context this requires maintaining the
invariant that the underlying subgraph is cast as a minor (with a reasonable congestion) of G. This
is ensured in the following subsection.

A.2.3 Minor Schur Complement

This subsection introduces a subroutine that will be invoked after the Eliminate algorithm to
return a low-congestion minor based on the set of terminals T returned by Eliminate; while doing
so, the algorithm will incur a small overhead in the spectral guarantee, and a limited growth in the
number of nodes with respect to T . This increase will be eventually negligible due to the selection
of parameter d in Eliminate. In this context, the following lemma is a refinement of [For+20,
Theorem 3].

Lemma A.6. Let G be an n-node graph ρ-minor distributed into an n-node communication network
for which Assumption 4.1 holds for some Q = Q(ρ). Then, for an error parameter 0 < ε < 0.1 and
a subset T of nodes, the algorithm ApproxSC returns with high probability a graph H as a ρ-minor
distribution into G such that

1. T ⊆ V (H);

2. H has O(|T | log2 n/ε2) edges;

3. SC(H, T) ≈ε SC(G, T).

This algorithm requires O(log10 n/ε3) calls to a distributed Laplacian solver to accuracy 1/poly(n)
on graphs that 2ρ-minor distribute into G, and an overhead of O(Q(ρ) log10 n/ε3) rounds.

This result builds upon the work of Li and Schild [LS18], who (roughly speaking) established that
randomly contracting an edge with probability equal to its leverage score (and otherwise deleting)
would suffice. In the distributed context, Forster, Goranci, Liu, Peng, Sun, and Ye [For+20] devise
a parallelized implementation of this scheme based on the localization of electrical flows [SRS18].
More precisely, they manage to identify a non-negligible subset of edges—which they refer to as
steady edges—with small mutual (electrical) “correlation”, allowing for independent (and hence
highly parallelized) contractions/deletions within this set. This approach employs the recursive and
sketching-based method of random projections due to Spielman and Srivastava [SS08], similarly
to [LS18], to estimate quantities such as leverage scores and electrical correlation. These steps are
carefully reviewed in Appendix B.6.

A.2.4 Schur Complement Chain

Finally, let us introduce the concept of a Schur complement chain, and explain how it can be
employed to produce a Laplacian solver.

Definition A.7. For an n-node graph G, {(Gi,Zi,1,Zi,2, Ti)}ti=1 is a (γ, ε)-Schur complement chain
if the following conditions hold:

27

1. G1 = G;

2. Ti ⊂ V (Gi+1) ⊂ V (Gi) and SC(Gi, Ti) ≈ε SC(Gi+1, Ti);

3. |V (Gi+1)| ≤ |V (Gi)|/γ for i < t, and |V (Gt)| ≤ γ.

4.
(1− ε)L(Gi)† � ZTi,1

[
Zi,2 0

0 SC(Gi, Ti)†

]
Zi,1 � (1 + ε)L(Gi)†.

In the sequel, a Schur complement chain will be developed through Lemmas A.4 to A.6. Next, the
following lemma implies a solution to the Laplacian system based on a suitable Schur complement
chain.

Lemma A.8 ([For+20]). Consider an n-node communication network for which Assumption 4.1
holds for some Q = Q(ρ), and let {(Gi,Zi,1,Zi,2, Ti)}ti=1 be a (γ, ε)-Schur complement chain for an
n-node graph G for some γ ≥ 2 and ε ≤ 1/(C logn), for a sufficiently large constant C, such that
for all i:

1. Gi ρ-minor distributes into G;

2. The linear operators Zi,1 and Zi,2 can be evaluated in at most no(1)Q(ρ) rounds.

Then, for any given vector b, there is an algorithm which computes a vector x in no(1)Q(ρ) rounds
such that

‖x− L(G)†b‖L(G) ≤ ε logn‖b‖L(G)† .

A.3 Putting Everything Together

In this subsection we combine the building blocks we previously developed to establish Theorem 4.2.
The distributed Laplacian solver of Forster, Goranci, Liu, Peng, Sun, and Ye [For+20] is given in
Algorithm 1. We also include below the formal version of Theorem 4.2.

Algorithm 1: Distributed Laplacian Solver [For+20]: Solver(G, ε)
Input: An undirected weighted graph G ;
G′ := SpectralSparsify(G) ;
(G1,Z1,1,Z1,2, T1, G2) := UltraSparsify(G′, k) ; // Lemma A.4
{(Gi,Zi,1,Zi,2, Ti)}ti=2 := BuildChain(G2, d, ε, k) ;
Solve L(G)x = b via Chebyshev preconditioning ; // Lemma A.8
Procedure BuildChain(G, d, ε, k) ;
if |V (G)| ≤ k then

return ∅ ;
end
(Z1,Z2, C) := Eliminate(G, d, ε) ; // Lemma A.5
H := ApproxSC(G,C, ε) ; // Lemma A.6
return (G,Z1,Z2, C) ∪BuildChain(H, d, ε, k);

Theorem A.9 (Full-Version of Theorem 4.2). Consider a weighted n-node graph G for which
Assumption 4.1 holds for some Q(ρ) = O(ρcQ(G)), where c is a universal constant and Q = Q(G)

28

is some parameter. Then, for any vector b ∈ Rn stored on its nodes and a sufficiently small error
parameter ε > 0, Solver(G, ε) returns after no(1)Q log(1/ε) rounds a vector x distributed on its
nodes such that

‖x− L(G)†b‖L(G) ≤ ε‖b‖L(G).

The proof of this theorem is included in Appendix B.7. We note that a guarantee with respect to the
L(G)†-norm—as in Lemma A.8—can be translated to a guarantee in the L(G)-norm. This incurs
only a logarithmic multiplicative overhead since it is assumed that the weights are polynomially
bounded and the dependence on 1/ε is logarithmic [Vis12, pp. 19–20]. Thus, the overhead is
subsumed by the factor no(1).

B Omitted Proofs
In this section we include all of the proofs deferred from the main body and Appendix A. We
commence from Section 2.

B.1 Proofs from Section 2

Proposition 2.3. Suppose that P1, . . . , Pk is any part-wise aggregation instance in a communication
network G. Given a shortcut of quality Q, we can solve with high probability the part-wise aggregation
problem in Õ(Q) CONGEST rounds.

Proof sketch. Consider only one part Pi in isolation over the network G[Pi]+Hi. First, we claim that
there exists a simple deterministic algorithm that computes the AND-aggregate (where each node
v ∈ Pi has a input bit x(v)) in O(d) rounds, where each edge is used to send at most O(1) messages.
Concretely, any node whose input is 0 will forward its input to all neighbors and deactivate itself.
Any node which hears about the existence of an input-0 will forward this to all of its neighbors and
deactivate itself. After O(d) rounds, either all nodes have heard about the existence of a 0 or they
can conclude all inputs are 1.

We continue considering only one part Pi in isolation. The next step is to elect a leader of Pi by
finding the node with the smallest ID in Pi; then, (1) iterate from the most significant bit of the ID
to the least significant bit of the ID; (2) compute the AND-aggregate of the current bit of all the
nodes’ IDs; (3) if the AND-aggregate is 0, all nodes whose current bit of the ID is 1 will drop out.

Putting these together we have a way of computing the aggregate of a part Pi in isolation in Õ(d)
rounds with each edge carrying Õ(1) messages: First, we elect a leader of Pi. Then, the leader
initiates the computation of a spanning BFS tree of G[Pi] +Hi by broadcasting from itself to all
other nodes, and each node forwards the message to all neighbors; the neighbor from which it hears
the message first is the parent in the tree. Finally, by performing a convergecast over the BFS tree,
one can easily compute the aggregate in O(d) rounds for a single part Pi.

Finally, we have to run the algorithms on all the parts {Pi}i simultaneously. However, this might
incur congestion issues on some edges: algorithms associated with multiple parts want to send a
message through the same edge in the same round. To prevent this, we randomly delay the start of
each algorithm by selecting the delay uniformly at random between 0 and Õ(c). This guarantees
that the total number of messages (across all parts and all rounds) that want to cross a given

29

edge is Õ(c). Hence, randomly delaying all algorithms makes the expected number of messages
crossing a given edge in a fixed round is Θ(1). By Chernoff bounds, this number is bounded by Õ(1)
with high probability. Therefore, by simulating each round of the algorithm using Õ(1) rounds of
communication (where each round of communication carries at most a single message across an
edge), we can schedule the algorithms on all parts simultaneously [Gha15]. In turn, this allows us
to complete all of the aggregates in Õ(d+ c) = Õ(Q) rounds.

B.2 Proofs from Section 3

Lemma 3.3 (Unrestricted Congested Part-Wise Aggregation). Let G be an n-node graph and let
Z≥1 3 ρ ≤ poly(n). Suppose that any (1-congested) part-wise aggregation on ĜO(ρ) can be solved
with a τ -round CONGEST algorithm on ĜO(ρ). Then, there exists an Õ(ρ · τ)-round CONGEST
algorithm on G that solves any ρ-congested part-wise aggregation instance on G.

Proof. Armed with Lemma 3.6, the claim essentially follows by leveraging Haeupler, Wajc, and
Zuzic [HWZ21, Lemma 7.2 in the Full Version]. More precisely, we will have to slightly reformulate
their result. Haeupler, Wajc, and Zuzic [HWZ21] show how, for a given part Pi, one can solve the
part-wise aggregate problem on Pi by reducing it to a sequence of Õ(1)-many (1-congested) part-wise
aggregations between disjoint parts that are restricted to be simple paths P ′i = {P ′i,j}

Õ(1)
j=1 (where

nodes know the paths’ edges they participate in). This is sufficient to prove our result: suppose we
run that reduction on all parts Pi simultaneously. A single call to the part-wise aggregation on all
of parts Pi combined, asks to find a ρ-congested part-wise aggregation in which the parts ⊎i P ′i are
all simple paths. This is ρ-congested since at most ρ parts Pi use any node v, and within each such
Pi, ever oracle call uses the node v at most once (since they are disjoint).

Let us briefly comment on the validity of our interpretation of [HWZ21, Lemma 7.2]. Their statement
has a few easily reconciled differences compared to our previous usage. Most notably, they compute
shortcuts for a set of parts, assuming an oracle for doing so, which is a harder problem that simply
computing part-wise aggregates. However, it can be easily verified that the shortcuts are used only
to facilitate solving part-wise aggregations. Hence, the proof can easily be translated to require an
oracle computing only part-wise aggregations.

Lemma 3.4 (Simulating Ĝρ in G). For any G and any Z≥1 3 ρ ≤ poly(n), we can simulate any
τ -round CONGEST algorithm on Ĝρ with a (ρ · τ)-round CONGEST algorithm on G.

Proof. Let us consider one round of communication in Ĝρ. Each node v will simulate (learn all
messages coming into) its copies v1, . . . , vρ ∈ V (Ĝρ). Therefore, in each round node v ∈ V (G) needs
to learn all messages send to v’s copies v1, . . . , vρ ∈ V (Ĝρ) from their neighbors in Ĝρ. Note that,
by definition, v already knows the messages sent between any two copies vi and vj . Hence, in a
single round v can learn all messages sent to any fixed vi. As a result, ρ rounds of communication
in G suffice to simulate a single round in Ĝρ.

Fact 3.5 (Folklore, [Joh99]). Given a (multi)graph G with n nodes and maximum degree ∆ ≤ poly(n),
there exists a randomized CONGEST algorithm that colors the edges of G with O(∆) colors and
completes in O(logn) rounds, with high probability. The coloring is proper, i.e., two edges that share
an endpoint are assigned a different color.

30

Proof sketch. A simple edge-coloring algorithm presented in [Joh99] works by choosing a color
uniformly at random from the set {1, . . . , O(∆)} for each edge. Each edge will, with constant
probability, choose a color not used by its neighbors. Then, this color stays fixed and the edge drops
out. Hence, after O(logn) iterations the edges will be properly colored. Implementation-wise, we
can assume there is an additional node in the middle of each edge which represents that edge (this
only makes the problem harder). Each edge randomly chooses and sends its color to its endpoints
which, in turn, inform on whether there is a conflict. Then, the edges send back to its endpoints
whether it dropped out. This iteration is then repeated until we reach a proper coloring.

Claim 3.7. D(Ĝρ) ≤ D(G) + 1.

Proof. First, consider any two nodes ui, vj ∈ V (Ĝρ) such that π(ui) 6= π(vj), with i, j ∈ [ρ]. By
construction of the layered graph Gi, there exists a path of length at most D(G) in the i-th layer of
Ĝρ between ui to vi. Thus, it follows that the (hop) distance between ui and vj is at most D(G)
given that vj and vi, with i 6= j, are adjacent—the copies form a clique in the layered graph. This
also implies that the distance between any two nodes ui and uj , with π(ui) = π(uj), is 1, concluding
the proof.

B.3 Useful Routines

Before diving into the proofs of the Laplacian building blocks it will be useful to present several
operations that can be performed efficiently under Assumption 4.1. We stress that the proofs related
to the Laplacian solver closely follow the approach in [For+20]. Our goal here is to translate them
into our more general setting.

Corollary B.1 (Matrix-Vector Products). Consider a matrix A with non-zeroes supported on the
edges of an n-node graph G which is ρ-minor distributed over a communication network G for which
Assumption 4.1 holds for some Q = Q(ρ), with values stored in the endpoints of the corresponding
edges, and a vector x ∈ Rn stored on the nodes `(uG) for uG ∈ V (G). Then, we can compute the
vector Ax ∈ Rn stored on the leader nodes `(uG) for all uG ∈ V (G) after O(Q(ρ)) rounds with high
probability.

The proof of this corollary follows the one by Forster, Goranci, Liu, Peng, Sun, and Ye [For+20,
Corollary 4.4], but nonetheless we state it here for completeness.

Proof of Corollary B.1. The first step is to use Assumption 4.1 to disseminate the coordinates of
vector x to the corresponding super-nodes after Q(ρ) rounds; that is, for every uG ∈ V (G) the
leader `(uG) passes to SG→G(uG) the corresponding coordinate. Then, every node performs locally
all the multiplications for its corresponding indices, and after ρ rounds the node can deliver this
information to the corresponding super-node. Observe that this is possible because A is supported
on edges of G, and Definition A.2 imposes an edge-congestion bound. Finally, we invoke again
Assumption 4.1 to sum all of the values of each super-node to the leader node, which gives the
desired output requirement.

Another important corollary of Assumption 4.1 is that we can simulate the spectral sparsification
algorithm of Koutis (henceforth SpectralSparsify) on G [Kou14]:

31

Corollary B.2 (Spectral Sparsification). Consider an n-node graph G that ρ-minor distributes into
an n-node communication network G for which Assumption 4.1 holds for some Q = Q(ρ). Then,
for any 0 < ε < 0.1 we can implement the SpectralSparsify algorithm of Koutis for G after
O(Q(ρ) log7 n/ε2) rounds, which returns with high probability a graph G̃ distributed as a ρ-minor
into G such that

• L(G) ≈ε L(G̃) (Spectral approximation);

• G̃ is a reweighted subgraph of G with O(n log6 n/ε2) edges in expectation.

The proof of this corollary is fairly simple (see [For+20, Corollary 4.4]), but we give a sketch for
completeness.

Proof of Corollary B.2. The SpectralSparsify algorithm of Koutis iteratively uses the spanner
scheme of Baswana and Sen [BS07]. The latter algorithm gradually grows clusters. In particular,
in each round clusters are sampled at random—a “leader” node determines whether the cluster is
included in the sample, and then forwards the information to the rest of the cluster. Then, nodes
compare the weights of their incident edges to decide whether they will join some cluster, and which
incident edges will be added to the spanner. As a result, all the operations of the Baswana-Sun
algorithm can be performed via the routine of Assumption 4.1, and the claim follows.

Composition of Minors We also state the extensions of [For+20, Lemma 4.6] and [For+20,
Corollary 4.7], which are related to the composition of ρ-minors.

Lemma B.3 (Composing Minors). Consider a graph G2 which is ρ2-minor distributed into a
communication network G for which Assumption 4.1 holds for some Q = Q(ρ), and a graph G1
which is ρ1-minor distributed into G2. Then, we can compute with high probability and after
Õ(Q(ρ1ρ2)) rounds a (ρ1 × ρ2)-minor distribution of G1 into G.

Corollary B.4 (Parallel Contraction). Consider a graph G which is ρ-minor distributed into a
communication network G for which Assumption 4.1 holds for some Q = Q(ρ). If F represents a
subset of the edges of graph G, we can obtain with high probability a ρ-minor distribution of G/F
into G in Õ(Q(ρ)) rounds.

Recall that the notation G/F implies the graph obtained from G after contracting all the edges in
the set F ⊆ E(G).

B.4 Ultra-Sparsification: Proof of Lemma A.4

The first ingredient required for Lemma A.4 is a distributed version of the celebrated Alon-Karp-
Peleg-West (AKPW) low-stretch spanning tree construction [Alo+95], which is due to Ghaffari,
Karrenbauer, Kuhn, Lenzen, and Patt-Shamir [Gha+15]. We commence by stating their definition
of a distributed N -node cluster graph, which incidentally was the basis for Definition A.2.

Definition B.5 (Distributed Cluster Graph, [Gha+15]). A distributed N -node cluster graph is a
5-tuple G = (V, E ,L, T , ψ) satisfying the following properties:

1. V = {S1, . . . , SN} forms a partition of the node set into N clusters;

2. E represents a multi-set of (weighted) edges;

32

3. L is the set of leaders such that every cluster Si has exactly one leader `i ∈ L. The ID of the
leader node will also serve as the ID of the cluster, while it is assumed that nodes know the
ID of their leader, as well as the size of their cluster;

4. T = {T1, . . . , TN} is a set of cluster trees such that each cluster tree Ti = (Si, Ei) is a (rooted)
spanning tree of the induced subgraph G[Si] of G, with root the leader of the cluster `i ∈ Si
(observe that this implies that the subgraph induced by each cluster Si is connected);

5. ψ : E 7→ E is a bijective function that maps every edge {Si, Sj} ∈ E to some edge {ui, uj} ∈ E
connecting the corresponding clusters; i.e., it holds that ui ∈ Si and uj ∈ Sj . It is assumed
that the two nodes ui and uj know that the edge {ui, uj} is used to connect their respective
clusters, as well as its weight.

Having introduced the concept of a distributed cluster graph, we state the following lemma, which
is a direct corollary of the communication primitives we previously described.

Lemma B.6. Let G = (V,E) be an n-node graph ρ-minor distributed into an n-node communication
network G = (V ,E) for which Assumption 4.1 holds for some Q = Q(ρ). If G = (V, E ,L, T , ψ) is a
distributed cluster graph for G, the following operations can be performed in Õ(Q(ρ)) rounds:

1. The leader `i of each cluster Si broadcasts an O(logn)-bit message to every node in Si;

2. Computing aggregation functions on O(logn)-bit inputs simultaneously for all clusters, assum-
ing the tree Ti is known.

Proof. The definition of a distributed N -node cluster graph (Definition B.5) implies that G is 1-minor
distributed over G, and in turn ρ-minor distributed into G. Note that the induced distributed
mapping can be obtained using Õ(Q(ρ)) rounds of communication by virtue of Lemma B.3. Thus,
Assumption 4.1 leads to the desired claim.

As a result, it follows that the SplitGraph algorithm in [Gha+15] can be simulated on a graph G
which is ρ-minor distributed into G after no(1)Q(ρ) communication rounds—under Assumption 4.1.
In particular, this observation directly gives a distributed construction of a low-stretch spanning
tree:

Lemma B.7 ([For+20; Gha+15]). Consider an n-node m-edge graph G which is ρ-minor distributed
into an n-node communication network G for which Assumption 4.1 holds for some Q = Q(ρ).
Then, we can construct a spanning tree T of G after no(1)Q(ρ) rounds such that the nodes know
upper bounds on the corresponding stretches that sum to at most m2O(

√
logn log logn).

Importantly, it turns out that the guarantee of Lemma B.7 suffices to sample edges by stretch, as
implied by the following lemma.

Lemma B.8 ([KMP10]). Consider an n-node graph G and a tree T such that the nodes know
upper bounds on the corresponding stretches that sum up to α. Then, for any parameter k there is a
sampling procedure, implementable locally, that gives a graph H which satisfies with high probability
the following:

1. L(G) � L(H) � kL(G);

2. H contains the edges of T and O(α logn/k) additional edges.

33

The final step for establishing Lemma A.4 uses the parallel elimination procedure of Blelloch, Gupta,
Koutis, Miller, Peng, and Tangwongsan [Ble+14], which requires a logarithmic number of rounds
under the PRAM model of computation. Thus, we can show the following lemma:

Lemma B.9. Consider an n-node graph H which is ρ-minor distributed into an n-node communi-
cation network G for which Assumption 4.1 holds for some Q = Q(ρ). Moreover, let T be a spanning
tree of H and W be the set of off-tree edges of H with respect to T . Then, there is an algorithm
which runs in O(Q(ρ) logn) rounds and returns a graph Ĝ, 1-embeddable into H, satisfying the
following:

1. Ĝ contains O(|W |) nodes and edges;

2. There are operators Z1 and Z2, which can be evaluated in O(Q(ρ) logn) rounds, such that

L(H)† = ZT1

[
Z2 0
0 L(Ĝ)†

]
Z1.

With these pieces in place, Lemma A.4 follows directly from Lemma B.7, Lemma B.8, and Lemma B.9.

B.5 Sparsified Cholesky: Proof of Lemma A.5

The proof of Lemma A.5 mainly relies on a distributed implementation of the Schur Complement
Chain (SCC) construction of Kyng, Lee, Peng, Sachdeva, and Spielman [Kyn+16]. In particular,
the first step is to formalize a notion of almost-independence:

Definition B.10. A matrix M is α-diagonally dominant (henceforth α-DD) if

Mi,i ≥ (1 + α)
∑
j 6=i
|Mi,j |, ∀i.

Moreover, an index set F is α-DD if M[F,F] is α-DD.

An important observation is that computing the inverse M−1[F, F] for an α-DD set can be efficiently
performed using a preconditioned gradient descent method. In this context, Kyng, Lee, Peng,
Sachdeva, and Spielman [Kyn+16] give a simple sampling algorithm for finding “large” α-DD sets
given a Laplacian matrix. More precisely, their algorithm initially selects a random subset of nodes,
and then it filters out these which do not met the condition of Definition B.10. This leads to the
following result:

Lemma B.11. Let G be an n-node graph ρ-minor distributed into a communication network G
for which Assumption 4.1 holds for some Q = Q(ρ). Then, if L is the Laplacian matrix of G and
α ≥ 0 some parameter, there is an algorithm which computes an α-DD subset F of L of size at least
n/(8(1 + α)) in O(Q(ρ) logn) rounds with high probability.

Indeed, the algorithm of Kyng, Lee, Peng, Sachdeva, and Spielman [Kyn+16] determines an α-DD
subset of size n/(8(1 + α)), while the round-complexity guarantee follows similarly to the proof
in [For+20, Lemma 6.7]. Here we should note that the global aggregation steps required in the
distributed implementation of [For+20, Lemma 6.7] can be trivially performed in O(Q(1)) rounds.

The next step is to construct an operator that approximates L−1
[F,F], where F is an α-DD set, and

can be efficiently applied to vectors. This is ensured by the following lemma:

34

Lemma B.12 ([For+20]). Let G be a graph ρ-minor distributed into an n-node communication
network G for which Assumption 4.1 holds for some Q = Q(ρ). Moreover, let L be the Laplacian
matrix associated with G, and F be a subset of V (G) such that L[F,F] is α-DD for some α ≥ 4.
Then, for any vector b stored on the leaders of the super-nodes, there is an algorithm which returns
in O(Q(ρ) log(1/ε)) rounds the vector Zb stored on the same nodes, where Z is a linear operator
such that

L[F,F] � Z−1 � L[F,F] + ε · SC(L, F),

for any sufficiently small ε > 0.

Again, this lemma follows from the guarantee in [Kyn+16] regarding the Jacobi procedure, as well
as by directly adapting the distributed implementation in [For+20] using Corollary B.1.

Approximating the Schur Complement. Moreover, α-DD sets will be useful in the approxi-
mation of the Schur complement induced by the complementary subset of nodes. First, let us recall
a combinatorial view of the Schur complement as a Laplacian matrix with weights estimated by
certain random walks:

Lemma B.13 ([Dur+19]). Let G be an n-node weighted graph and a subset of nodes T . Moreover,
consider parameters 0 < ε < 1 and µ = O(logn/ε2). If H is an initially empty graph, repeat for
every edge {u, v} ∈ E(G) and for µ iterations the following procedure:

1. Simulate a random walk starting from u until it first hits T at some node t1;

2. Simulate a random walk starting from v until it first hits T at some node t2;

3. Combine these two walks to get a walk t1 = u0, . . . , u` = t2, where ` is the length of the
combined walk.

4. Add the edge {t1, t2} to H with weight

1
µ
∑`−1
i=0 1/w(ui, ui+1)

.

Then, the resulting graph H satisfies L(H) ≈ε SC(G, T) with high probability.

It should be noted that the random walks in the lemma are implied in the usual sense, wherein a step
from a node is taken with probability proportional to the edge-weights of the incident edges. In the
sequel, we will compute an α-DD set F via Lemma B.11, and then the goal will be to approximate
the Schur complement on the set T = V \ F . Importantly, given that F is α-DD, we can guarantee
that the random walks required in Lemma B.13 will be short in expectation. Nonetheless, a challenge
that arises in the distributed context—and in particular under the CONGEST model—is that
the expected congestion of an edge may by prohibitively large. This issue will be resolved by
incorporating new nodes to the terminals whenever they exceed some threshold of congestion. At
the same time, however, we also have to limit the node-congestion since G is minor distributed into
G, and we can only deal with limited congestion. This will be addressed by invoking the spectral
sparsification algorithm, ensuring that the average degree, and subsequently the congestion, remains
limited.

35

Before we proceed with the algorithm that approximates the Schur complement, we note that we
can implement the random walks of Lemma B.13 in Õ(Q(ρ)) rounds under Assumption 4.1, as
implied by the approach in [For+20].

Lemma B.14 ([For+20]). Let G be an n-node graph ρ-minor distributed into an n-node communi-
cation network G for which Assumption 4.1 holds for some Q = Q(ρ). Moreover, let F be an α-DD
set, T = V \ F the set of terminals, ε ∈ (0, 1) some error parameter, and γ ≥ 1 the congestion
parameter. Then, the algorithm RandomWalkSchur runs in O(α−1γQ(ρ) log2 n/ε2) rounds, and
returns a graph H along with its (α−1γ lognρ)-minor distribution into G such that

L(H) ≈ε SC(G, T̂),

with high probability, where T̂ ⊇ T has size at most n− |F |+O(α−1mε−2 log2 n/γ).

Proof. Let us briefly describe the RandomWalkSchur algorithm. First, we compute the expected
congestion of the family of random walks W predicted by Lemma B.13 with respect to the set
of terminals T . This is done by propagating the congestion to neighbors for O(α−1 logn) steps.
Then, we create a new set T̂ which includes T as a subset, as well as all the nodes which exceeded
the congestion threshold of γ based on the estimation procedure of the previous step. Note that
the congestion of a node with respect to W is simply the number of times this particular node
participates in some random walk ofW . By construction, it follows that the size of T̂ is n−|F | along
with all the nodes that exceeded the congestion threshold of γ. However, since F is an α-DD set it
follows that the length of a random walk is O(α−1 logn) with high probability, while for every edge
we simulate µ = O(logn/ε2) random walks (this is related to the concentration of the corresponding
random variables, as implied by Lemma B.13), in turn implying that the total congestion generated
by these random walks is O(α−1mε−2 log2 n). As a result, only O(α−1mε−2 log2 n/γ) nodes can
have congestion more than γ, verifying the assertion regarding the size of T̂ . Next, the algorithm
implements the random walks of Lemma B.13, but with respect to the augmented set of terminals
T̂ . A Chernoff bound argument assures us that all nodes in V \ T̂ will have congestion O(γ) with
high probability.

In terms of the distributed implementation, estimating the congestion can be implemented in
O(α−1Q(ρ) log2 n/ε2) rounds; this follows since every walk has length O(α−1 logn) with high
probability, and we execute µ = O(logn/ε2) iterations for every edge. Also note that a single
step in the procedure estimating the congestion can be implemented in O(Q(ρ)) rounds. Next,
the generation of the random walks with respect to the augmented set T̂ can be performed in
O(α−1γQ(ρ) log2 n/ε2) rounds with high probability; this uses the aforementioned guarantee for
the congestion. The final step is to minor-distribute the graph H with weights as dictated by
Lemma B.13. This is done by assigning to the terminals the leaders of all intermediate (non-terminal)
nodes. The congestion guarantee ensures that the resulting mapping is an O(α−1γ lognρ)-minor
distribution into G.

Proof of Lemma A.5. The Eliminate algorithm proceeds in d rounds, initializing M(0) to be an
ε-spectral sparsifier of L(G) (recall Corollary B.2). In every round i ≥ 1, (i) we compute an α-DD
set Fi with α := 4; (ii) we employ Lemma B.12 to have access to an operator that approximates
M(i−1)

[F,F] ; and (iii) we compute an ε-spectral sparsifier M(i) of the Schur complement SC(M(i−1), T̂i)
approximated via Lemma B.14; here, T̂i = T̂i−1−Fi +Ui, where Ui represents the set of extra nodes

36

added to ensure low congestion. In particular, Lemma B.14 is invoked with congestion parameter
γ := 1000Cα−1 log8 n/ε4, where C is a sufficiently large constant. The sparsification algorithm of
Koutis (Corollary B.2) tells us that the number of edges will be m = (n log6 n/ε2), in turn implying
that the number of nodes drops by at least a multiplicative factor of 49/50.

In terms of the distributed implementation, notice that due to the selection of the parameters the
approximation of the Schur complement (Lemma B.14) can be performed in O(Q(ρ) log10 n/ε6)
rounds. Next, the spectral sparsification step can be implemented in O(Q(ρ′) log7 n/ε2), where
ρ′ = α−1γ lognρ = O(log9 n/ε4)ρ. Thus, by virtue of Assumption 4.1 we can infer that Q(ρ′) =
O(logc′

n/εc
′)Q(ρ), where c′ is some universal constant. Thus, after d iterations the cost of these

operations is bounded by O(Q(ρ)(logc n/εc)d), where c is some universal constant. Finally, the
error guarantee follows directly from Lemmas B.12 to B.14, after a direct argument bounding the
accumulation of the error.

B.6 Minor Schur Complement: Proof of Lemma A.6

We commence this subsection by introducing the notion of steady edges, which are in a sense edges
which are mutually "uncorrelated":

Definition B.15 ([For+20]). A stochastic subset of edges Z ⊆ E is called (α, δ)-steady with respect
to an m-edge graph H if

1. EZ
[∑

e∈Z r(e)−1b(e)b(e)T
]
� αL(H);

2. For all e ∈ Z we have ∑e6=f∈Z
|b(e)TL(H)†b(f)|√

r(e)
√
r(f)

≤ δ;

3. For all e ∈ Z it holds that

r(e)−1b(e)TL(H)†
[
SC(H, T) 0

0 0

]
L(H)†b(e) ≤ 32|T |

m
.

In words, the first constraint ensures that no edge will be selected in the steady set with too high of
a probability; the second corresponds to the localization constraint, circumscribing the (mutual)
correlation of edges within the set; and the final constraint imposes a bound on the variance, and
will be used in the martingale analysis (to apply Freedman’s inequality). It should be stressed that
the existence of such objects is highly non-trivial, and follows from the localization of electrical flows
recently shown by Schild, Rao, and Srivastava [SRS18]. In the distributed setting, the following
result will be established:

Lemma B.16 ([For+20]). Let G be an n-node m-edge graph ρ-minor distributed into G for which
Assumption 4.1 holds for some Q = Q(ρ). For a constant δ ∈ (0, 1) and a subset of terminals
T ⊆ V (G), there exists an algorithm which has access to a distributed Laplacian solver, and
returns with high probability a set of at least δm/(2000C log2m) edges in expectation which is
(δ/(1000C log2m), δ)-steady, where C is a sufficiently large constant. This algorithm requires
O(log2 n) calls to a distributed Laplacian solver to 1/poly(n) accuracy on graphs that 2ρ-minor
distribute into G, and O(Q(ρ) log2 n) communication rounds.

The first step towards establishing this lemma is to approximate the correlation of edges within
some arbitrary set:

37

Lemma B.17 ([For+20]). Let G be an n-node graph with resistances r, ρ-minor distributed into a
communication network G for which Assumption 4.1 holds for some Q = Q(ρ). Then, there is an
algorithm, with access to a distributed Laplacian solver, which for any subset W ⊆ E(G) and any
edge e ∈W returns with high probability the quantity

∑
e6=f∈W

|b(e)TL(G)†b(e)|√
r(e)

√
r(f)

to within a factor of 2. This algorithm requires O(log2 n) calls to a distributed Laplacian solver
on graphs that ρ-minor distribute into G to accuracy 1/ poly(n), and an additional O(Q(ρ) log2 n)
communication rounds.

The proof of this lemma follows directly from [For+20, Lemma 5.13], and leverages the `1-sketch of
Indyk [Ind06]. Similarly, a sketch can be employed to estimate the effect of each edge on the Schur
complement:

Lemma B.18 ([For+20]). Let G be an n-node with resistances re, ρ-minor distributed into a
communication network G for which Assumption 4.1 holds for some Q = Q(ρ). Then, for a subset
T ⊆ V (G), there exists an algorithm which returns with high probability an estimate of

r(e)−1b(e)TL(G)†
[
SC(G, T) 0

0 0

]
L(G)†b(e)

to within a factor of 2. This algorithm requires O(logn) calls to a distributed Laplacian solver to
accuracy 1/ poly(n) on graphs that 2ρ-minor distribute into G, and O(Q(ρ) logn) communication
rounds.

As a result, Lemma B.16 is established based on the algorithm FindSteady in [For+20], with the
round complexity guarantee following directly from Lemma B.17 and Lemma B.18.

The next ingredient is a pre-processing step which ensures that all the edges have leverage scores
bounded away from 0 and 1.

Lemma B.19 ([LS18]). Let G be an n-node graph ρ-minor distributed into a communication
network G for which Assumption 4.1 holds for some Q = Q(ρ). If 1.1-approximate leverage scores
l̃evG(e) for the edges in G are known, then there exists a process which returns after Õ(Q(ρ)) rounds
a graph H such that

1. H is electrically equivalent to G;

2. H is 2ρ-minor distributed into G;

3. All the leverage scores of edges in H are between [3/16, 13/16].

Moreover, there exists a procedure which takes as input G and returns in O(Q(ρ)) rounds a graph
resulting from collapsing paths and parallel edges, and removing non-terminal leaves, along with a
ρ-minor distribution into G.

The distributed implementation of this lemma is fairly simple, and relies on Lemma B.3. We will
also use the following lemma, which is based on the random projection scheme of Spielman and
Srivastava [SS08]:

38

Lemma B.20 ([For+20]). Let G be an n-node graph ρ-minor distributed into a communication
network G for which Assumption 4.1 holds for some Q = Q(ρ). Then, there is an algorithm with
access to a distributed Laplacian solver which for all edges e ∈ E(G) approximates the leverage score
levG(e) to within a factor of 1 + δ with high probability. This algorithm requires O(logn/δ2) calls to
a distributed Laplacian solver on graphs which ρ-minor distribute into G to accuracy 1/poly(n), as
well as O(Q(ρ) logn/δ2) communication rounds.

The proof of this lemma follows directly from [For+20, Lemma 5.4], and uses Achliopta’s variant of
the Johnson-Lindenstrauss lemma [Ach03]. With these pieces at hand, we are ready to describe
the algorithm for computing a minor Schur complement. At each iteration we first determine
a set of steady edges via Lemma B.16. Then, we estimate the leverage scores via the random
projection scheme of Lemma B.20, and each edge in the steady set is contracted (independently)
with probability given by its (approximate) leverage scores; otherwise, the edge is deleted (for this
we will use Corollary B.4). We also employ Lemma B.19 in every iteration to ensure that leverage
scores are bounded away from 0 and 1. This process is repeated as long as the number of edges
exceeds a threshold, leading to the algorithm ApproxSC in [For+20]. The next theorem was shown
in [For+20] using matrix martingale analysis:

Lemma B.21 ([For+20]). The algorithm ApproxSC takes as input a graph G with a set of
terminals T and an error parameter ε, and returns with high probability a graph H satisfying
|E(H)| = O(|T | log2 n/ε2) and SC(H, T) ≈ε SC(G, T).

Proof of Lemma A.6. First, the algorithm only performs deletions and contractions, implying that
it indeed returns a minor. Moreover, the correctness follows directly from Lemma B.21. To bound
the requirements of the algorithm note that ApproxSC executes O(logm/α) iterations, where
α := δ/(1000C log2m) = O(ε/ log4m), with high probability. In each iteration the dominant cost in
terms of calls to a distributed Laplacian solver follows from the subroutine approximating leverage
scores, which requires O(logn/δ2) = O(log5 n/ε2). Thus, we may conclude that ApproxSC requires
O(log10 n/ε3) calls to a distributed Laplacian solver. The bound in terms of the round complexity
follows similarly.

B.7 Proof of Theorem A.9

Theorem A.9 (Full-Version of Theorem 4.2). Consider a weighted n-node graph G for which
Assumption 4.1 holds for some Q(ρ) = O(ρcQ(G)), where c is a universal constant and Q = Q(G)
is some parameter. Then, for any vector b ∈ Rn stored on its nodes and a sufficiently small error
parameter ε > 0, Solver(G, ε) returns after no(1)Q log(1/ε) rounds a vector x distributed on its
nodes such that

‖x− L(G)†b‖L(G) ≤ ε‖b‖L(G).

Proof. The correctness of the algorithm follows directly from Lemmas A.4 to A.6 and A.8, so let us
focus on the round complexity. By the guarantee of Lemma A.4 we know that the UltraSparsify
routine returns a graph G2 such that |V (G2)| = |V (G1)|2O(

√
logn log logn)/k; this follows since we

have sparsified the graph in the first step. Thus, for k = 2(logn)2/3 we can infer that |V (G2)| ≤
|V (G1)|/k1−o(1). Next, with regards to the Schur complement chain, Lemmas A.5 and A.6 imply
that |V (Gi+1)| ≤ |V (Gi)|O(0.98d log2 n/ε2). Hence, setting d = 2(log logn)2 and ε = 1/(logn)2 gives
us that |V (Gi+1)| ≤ |V (Gi)|2−Θ((log logn)2).

39

As a result, BuildChain returns a (2Θ((log logn)2), ε)-Schur complement chain, which in turn implies
that this chain has length O(logn/(log logn)2). Thus, Lemma A.8 implies that we can use this
chain to produce a solution in ρno(1)Q(ρ) rounds, where ρ represents the maximum congestion of a
graph along the chain; it will be establish that ρ = no(1).

Let f(n, ρ) represent the number of rounds required by Solver on a graph with n nodes which
ρ-minor distributes into G, and g(n, ρ) the number of rounds required by BuildChain with input
an n-node graph which ρ-minor distributes into G. Then, if we ignore lower order terms, it follows
that

f(n, ρ) = no(1)Q(ρ) + g(n/k1−o(1), ρ),

where we used that |V (G2)| ≤ |V (G1)|/k1−o(1). Moreover, we have that

g(n, ρ) = O
(
(logc n/εc)(log logn)2

Q(ρ)
)

+ f(n, 2ρ)O(log10 n/ε3) + g(n/2Θ((log logn)2), ρ)

= no(1)Q(ρ) + polylog(n)f(n, 2ρ) + g(n/2Θ((log logn)2), ρ),

where we used that |V (Gi+1)| ≤ |V (Gi)|2−Θ((log logn)2), and we ignored lower order terms. As
a result, the overall increase in congestion is 2O(logn/(log logn)2) = no(1). That is, all the graphs
constructed (no(1))-minor distribute into G. Finally, the theorem follows since by Assumption 4.1
the dependence of Q(ρ) on ρ is polynomial.

B.8 Proof of Proposition 1.1

Proposition 1.1. Consider a graph G with shortcut quality SQ(G). Then, solving a Laplacian
system on G with ε ≤ 1

2 requires Ω̃(SQ(G)) rounds in both CONGEST and Supported-CONGEST
models.

Proof. First of all, as pointed out in [For+20, Theorem 2], it suffices to establish the lower bound
for a high-precision solver, i.e. for a sufficiently small ε = 1/poly(n). Indeed, a low-accuracy solver
(ε ≤ 1

2) can always be “boosted” with only an O(logn) overhead in the overall complexity.

In this context, let H be the input to the spanning connected subgraph problem. We construct a
resistor network H ′ so that r(e) = 1 if e ∈ E(H), and r(e) = n4 for every edge e /∈ E(H). Moreover,
let us select arbitrarily a node v ∈ V (G). The key idea of the proof is to consider as input to the
Laplacian solver a vector b ∈ Rn such that b(u) = −1 for all u ∈ V (G) \ {v}, while b(v) = n− 1.

To analyze the output of that Laplacian system, we first analyze the simpler Laplacian system with
input a vector χv,u ∈ Rn for which the coordinate corresponding to node v is 1; the coordinate
corresponding to node u is −1; and any other coordinate is set to 0. We recall the following
well-known facts.

Fact B.22. Let φ = L(H ′)†χv,u. Then, for any node w ∈ V (G) it holds that φ(v) ≥ φ(w) ≥ φ(u).

Fact B.23. Let φ = L(H ′)†χv,u. Then, the v − u effective resistance is such that resH′(v, u) =
φ(v)− φ(u).

40

As argued in [For+20], the output of the Laplacian with input χv,u and a sufficiently small error
ε = 1/poly(n) can be used to determine whether v and u are connected. Indeed, the following
arguments have been extracted from their lower bound.

Claim B.24. If u and v are connected in H it follows that resH′(v, u) ≤ n− 1.

Proof. It is well-known that the effective resistances satisfy the triangle inequality. Moreover, given
that v and u are connected in H, it follows that there exists a path of length at most n− 1 in H ′
so that every edge has resistance 1 (by construction of the resistor network H ′). As a result, the
triangle inequality implies that resH′(v, u) ≤ n− 1.

Claim B.25. If v and u are not connected in H it follows that resH′(v, u) ≥ n2.

Proof. Suppose that e1, . . . , ek are the edges leaving the connected component of v in H, for some
k ≤ n2. Then, the Nash-Williams inequality implies that

resH′(v, u) ≥ 1∑k
i=1

1
r(ei)

≥ n2,

by construction of the resistor network.

The next step of the proof is to incorporate in the analysis the error of the solver. To this end, let
φ′ be an ε-approximate solution to the linear system L(H ′)φ = χv,u in the sense that

‖φ′ − L(H ′)†χv,u‖L(H′) ≤ ε‖χv,u‖L(H′)† = ε
√

resH′(v, u).

Moreover, since the Laplacian matrix has integer resistances up to range poly(n), it follows that for
any x, ‖x‖∞ ≤ poly(n)‖x‖L. Thus, by setting ε = 1/ poly(n) to be sufficiently small, we have that

resH′(v, u)− 1
n
≤ φ′(v)− φ′(u) ≤ resH′(v, u) + 1

n
.

Now we will use these bounds to argue about the initial Laplacian system with input vector b. By
linearity, a solution of the Laplacian system with input b can be expressed as the sum of solutions
of Laplacians with input χv,u over all u ∈ V (G) \ {v}. Next, we let φ = L(H ′)†b, and φ′ be the
output of the Laplacian solver for a sufficiently small ε = 1/ poly(n). Our analysis distinguishes
between the following cases.

Case I Suppose that H is connected. In turn, this implies that v is connected with any node
u ∈ V (G). As a result, it follows from Fact B.22, Fact B.23 and Claim B.24 that for any node u,

φ′(v)− φ′(u) ≤ (n− 1)2 + 1. (1)

41

Case II In the contrary case, there must be node u such that v and u are disconnected on H. By
Claim B.25 andFact B.22 this yields that

φ′(v)− φ′(u) ≥ n2 − 1. (2)

Thus, (1) and (2) imply that the output φ′ of the Laplacian solver contains enough information to
determine whether H is connected or not since n2 − 1 > (n− 1)2 + 1 for any n ≥ 2.

To leverage this in the CONGEST model we proceed as follows. First, node v sends to every
other node in the graph its own part of the output from the Laplacian solver. This step can be
clearly completed after D(G) rounds. Then, each node u inspects whether the value φ′(v)− φ′(u)
is larger than n2 − 1. In that case, node u can transmit this information to the entire network;
this step is easily seen to be implementable in D(G). As a result, assuming that SQ(G) ≥ 3D(G),
the proof follows immediately from Theorem 4.3. But the contrary case is also immediate since on
any topology solving a Laplacian system trivially requires Ω(D(G)) rounds. This completes the
proof.

C Congested Part-Wise Aggregation in the NCC Model
The purpose of this section is to establish Lemma 3.15 by appropriately leveraging the machinery
developed by Augustine, Ghaffari, Gmyr, Hinnenthal, Scheideler, Kuhn, and Li [Aug+19]. To this
end, let us first describe one of their key communication primitives.

The Aggregation Problem In the aggregation problem, as defined by Augustine, Ghaffari,
Gmyr, Hinnenthal, Scheideler, Kuhn, and Li [Aug+19], we are given a distributive function and a
set of aggregation parts {P1, . . . , Pk}, with Pi ⊆ V (G) for all i. Every aggregation part is associated
with some target node ti ∈ Pi.8 Assuming that every node holds exactly one input value for each
aggregation part of which it is a member, the goal is to let all the target nodes learn the aggregate
values with respect to the associated aggregation parts. This setting allows a node to be part of
multiple groups, and in particular, we let ` be the local load: the number of groups a given node
may be included in—or an upper bound thereof. In addition, if L = ∑k

i=1 |Pi| represents the global
load of the aggregation problem, Augustine, Ghaffari, Gmyr, Hinnenthal, Scheideler, Kuhn, and Li
[Aug+19, Theorem 2.3] established the following result.

Lemma C.1 ([Aug+19]). There exists an aggregation algorithm which solves with high probability
the aggregation problem in O(L/n+ `/ logn+ logn) rounds of NCC.

In the context of the ρ-congested part-wise aggregation problem (Definition 3.1), it is clear that
` ≤ ρ and L ≤ ρn. Thus, we are now ready to establish Lemma 3.15, the statement of which is
recalled below.

Lemma 3.15. Let G be an n-node communication network. Then, we can solve with high probability
any ρ-congested part-wise aggregation problem on G after O(ρ+ logn) rounds of NCC.

Proof. We first employ the communication protocol of Lemma C.1 so that after O(ρ+ logn) rounds
of NCC each target node learns with high probability the aggregate values with respect to the

8In [Aug+19] the target node does not have to belong to the corresponding aggregation part, but this additional
flexibility will not be required for our purposes.

42

associated aggregation parts. Next, we can essentially reverse in time the previous communication
pattern, but this time using the aggregate values as determined by the target nodes. As a result,
every node will know with high probability the aggregate value for each of its aggregation parts
after O(ρ+ logn) rounds of NCC.

43

	1 Introduction
	1.1 Overview of our Contributions and Techniques
	1.1.1 The Congested Part-Wise Aggregation Problem
	1.1.2 Almost Universally Optimal Laplacian Solvers

	1.2 Further Related Work

	2 Preliminaries
	3 The Congested Part-Wise Aggregation Problem
	3.1 Solving Congested Instances in the CONGEST Model
	3.1.1 The Layered Graph
	3.1.2 Treewidth-Bounded Graphs
	3.1.3 General Graphs

	3.2 The NCC Model

	4 Almost Universally Optimal Laplacian Solvers
	5 Conclusions
	A The Laplacian Solver
	A.1 Low-Congestion Minors
	A.2 The Laplacian Building Blocks
	A.2.1 Ultra-Sparsification
	A.2.2 Sparsified Cholesky
	A.2.3 Minor Schur Complement
	A.2.4 Schur Complement Chain

	A.3 Putting Everything Together

	B Omitted Proofs
	B.1 Section 2
	B.2 Proofs from Section 3
	B.3 Useful Routines
	B.4 Ultra-Sparsification: Proof of lemma:ultrasparsification
	B.5 Sparsified Cholesky: Proof of lemma:eliminate
	B.6 Minor Schur Complement: Proof of lemma:approxSC
	B.7 Proof of theorem:laplacian-abstract-full
	B.8 Proof of Theorem 4.7

	C Congested Part-Wise Aggregation in the NCC Model

