
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-022-00669-9

GENERAL

TACAS 2020

Assume, guarantee or repair: a regular framework for non regular
properties

Hadar Frenkel1 ·Orna Grumberg2 · Corina S. Păsăreanu3,4 · Sarai Sheinvald5

Accepted: 29 August 2022
© The Author(s) 2022

Abstract
We present Assume-Guarantee-Repair (AGR)—a novel framework which verifies that a program satisfies a set of properties
and also repairs the program in case the verification fails. We consider communicating programs—these are simple C-like
programs, extended with synchronous actions over communication channels. Our method, which consists of a learning-based
approach to assume–guarantee reasoning, performs verification and repair simultaneously: in every iteration, AGR either
makes another step towards proving that the (current) system satisfies the required properties, or alters the system in a way
that brings it closer to satisfying the properties. To handle infinite-state systems we build finite abstractions, for which we
check the satisfaction of complex properties that contain first-order constraints, using both syntactic and semantic-aware
methods. We implemented AGR and evaluated it on various communication protocols. Our experiments present compact
proofs of correctness and quick repairs.

Keywords Compositional verification · Repair · Automata learning · Assume–guarantee reasoning · Concurrent systems

1 Introduction

Verification of large-scale systems is a main challenge in the
field of formal verification. Often, the verification process of
such systems does not scale well.Compositional verification
aims to address this challenge by breaking up the verification
of a large system into the verification of its smaller compo-
nents which can be checked separately. The results of the
verification can be composed back to conclude the correct-
ness of Assume-Guarantee-Repair the entire system. This,

This research was partially supported by the ISRAEL SCIENCE
FOUNDATION (ISF) Grant No. 346/17.

B Hadar Frenkel
hadar.frenkel@cispa.de

1 CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

2 Department of Computer Science, The Technion, Haifa, Israel

3 Carnegie Mellon University, Pittsburgh, USA

4 NASA Ames Research Center, Mountain View, CA, USA

5 Department of Software Engineering, ORT Braude College,
Karmiel, Israel

however, is not always possible, since the correctness of a
component often depends on the behavior of its environment.

The Assume–Guarantee (AG) style compositional veri-
fication [33,39] suggests a solution to this problem. The
simplest AG rule checks if a system composed of M1 and M2

satisfies a property P by checking that M1 under assumption
A satisfies P and that any system containing M2 as a com-
ponent satisfies A.

In thiswork,wepresentAssume-Guarantee-Repair (AGR)—
a fully automated framework which applies the AG rule, and
while seeking a suitable assumption A, incrementally repairs
the given program in case the verification fails. Our frame-
work is inspired by [37], which presented a learning-based
method to finding a suitable assumption A, using the L∗ [4]
algorithm for learning regular languages. However, unlike
previous work, AGR not only performs verification but also
repair.

Our AGR framework handles communicating programs,
which are commonly used for modeling concurrent systems.
These are infinite-state C-like programs, extended with the
ability to synchronously read and write messages over com-
munication channels.Wemodel such programs as finite-state
automata over an action alphabet, which reflects the program
statements. The automata representation is similar in nature

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00669-9&domain=pdf

H. Frenkel et al.

to that of control-flowgraphs. Its advantage, however, is in the
ability to exploit an automata-learning algorithm such as L∗.
The accepting states in the automaton representation model
points of interest in the program, to which the specification
can relate.

We have implemented a tool for AGR and evaluated it
on examples modeling communication protocols of various
sizes and with various types of errors. Our experiments show
that for most examples, AGR converges and finds a repair
after a few (2–5) iterations of verify-repair. Moreover, our
tool generates assumptions that are significantly smaller then
the (possibly repaired) M2, thus constructing a compact and
efficient proof of correctness.

Contributions

To summarize, the main contributions of this paper are:

1. A learning-based Assume–Guarantee algorithm for
infinite-state communicating programs, which manages
overcoming the difficulties such programs present. In par-
ticular, our algorithm overcomes the inherent irregularity
of the first-order constraints in these programs, and offers
syntactic solutions to the semantic problems they impose.

2. An Assume-Guarantee-Repair algorithm, in which the
Assume–Guarantee and the Repair procedures intertwine
to produce a repaired program which, due to our con-
struction, maintains many of the “good” behaviors of the
original program. Moreover, in case the original program
satisfies the property, our algorithm is guaranteed to ter-
minate and return this conclusion.

3. An incremental learning algorithm that uses query results
from previous iterations in learning a new language with
a richer alphabet.

4. A novel use of abduction to repair communicating pro-
grams over first order constraints.

5. An implementation of our algorithm, demonstrating the
effectiveness of our framework.

Contribution over conference version

Preliminary results of this work were published in [17]. This
paper extends the results of [17] by the following new con-
tributions.

– A formal definition of the weakest assumption for com-
municating programs, and a study of special cases for
which the weakest assumption is regular (Sect. 7).

– A full description of the implementation of the teacher
in the context of communicating programs (Sect. 8.1 and
Algorithm 1).

– Convergence of the syntactic repair—characterizing
cases inwhich this repair does not terminate (Sect. 8.4.1).

Fig. 1 Modeling a communicating program (M2) as an automaton

– A formal discussion regarding the soundness of the AG-
rule for communicating programs, completeness and
termination (Sect. 8.5).

– Full proofs and multiple additional examples throughout
the paper.

– A detailed discussion regarding future work and possible
extensions (Sect. 10).

Paper organization

The rest of the paper is organized as follows. In the next
section, we give a high-level overview of AGR, highlight-
ing the salient features of our approach. Section 3 describes
related work. The following three sections set up the back-
ground necessary for understanding our approach. Section 4
gives preliminary definitions, Sect. 5 describes communi-
cating programs and their properties (expressed as regular
languages), and Sect. 6 proves properties of traces that we
use later when proving soundness and completeness of AGR.
Section 7 describes and analyzes the assume–guarantee rule
used by AGR, while Sect. 8 describes in detail the AGR
approach. Finally, Sect. 9 describes our experimental evalu-
ation and Sect. 10 concludes the paper.

2 Overview

Wegive a high level overviewofAGRvia an example. Fig-
ure 1 presents the code of a communicating program (upper
part) and its corresponding automaton M2 (lower part). The
automaton alphabet consists of constraints (e.g. xpw ≤ 999),
assignment actions (e.g. ypw := 2 · ypw in M1 of Fig. 2), and
communication actions (e.g. enc!xpw sends the value of vari-

123

Assume, guarantee or repair: a regular framework for non regular properties

Fig. 2 The program M1 and the specification P

able xpw over channel enc, and get Enc?xpw2 reads a value
to xpw2 on channel get Enc).

The specification P1 ismodeled as an automaton that does
not contain assignment actions. It may contain communica-
tion actions in order to specify behavioral requirements, as
well as constraints over the variables of both system com-
ponents, that express requirements on their values in various
points in the runs.

Consider, for example, the program M1 and the speci-
fication P seen in Fig. 2, and the program M2 of Fig. 1.
M2 reads a password on channel read to the variable xpw,
and once it is long enough (has at least four digits), it sends
the value of xpw to M1 through channel enc. M1 reads this
value to variable ypw and then applies a simple function that
changes its value, and sends the changed variable back to
M2. The property P reasons about the parallel run of the
two programs. The pair (getEnc!ypw, getEnc?xpw2) denotes
a synchronization ofM1 andM2 on channel getEnc. P makes
sure that the parallel run of M1 and M2 always reads a value
and then encrypts it—a temporal requirement. In addition, it
makes sure that the value after encryption is different from
the original value, and that there is no overflow—both are
semantic requirements over the program variables. That is,
P expresses temporal requirements that contain first order
constraints. In case one of the requirements does not hold, P
reaches the state r4 which is an error state. Note that P here is
not complete, for simplicity of presentation (see Definition 8
for a formal definition of a complete program).

The L∗ algorithm aims at learning a regular language U .
Its entities consist of a teacher—anoraclewho answersmem-
bership queries (“is the word w in U?”) and equivalence

1 Throughout the paper we use property and specification interchange-
ably.

queries (“is A an automaton whose language is U?”), and
a learner, who iteratively constructs a finite deterministic
automaton A for U by submitting a sequence of member-
ship and equivalence queries to the teacher.

In using theL∗ algorithm for learning an assumption A for
the AG-rule, membership queries are answered according to
the satisfaction of the specification P: If M1||t satisfies P ,
then the trace t in hand should be in A. Otherwise, t should
not be in A. Once the learner constructs a stable system A,
it submits an equivalence query. The teacher then checks
whether A is a suitable assumption, that is, whether M1||A
satisfies P , and whether the language of M2 is contained in
the language of A. According to the results, the process either
continues or halts with an answer to the verification problem.
The learning procedure aims at learning the weakest assump-
tion Aw, which contains all the traces that in parallel with M1

satisfy P . The key observation that guarantees termination
in [37] is that the components in this procedure—M1,M2, P
and Aw are all regular.

Our setting

Our setting is more complicated, since the traces in the
components—both the programs and the specification con-
tain constraints, which are to be checked semantically and
not syntactically. These constraints may cause some traces
to become infeasible. For example, if a trace contains an
assignment x := 3 followed by a constraint x ≥ 4 (mod-
eling an “if” statement), then this trace does not contribute
any concrete runs, and therefore does not affect the system
behavior. Thus, wemust add feasibility checks to the process.

Constraints in the specification also pose a difficulty, as
satisfiability of a specification is determined by the semantics
of the constraints and not only by the language syntax, and so
there is more here to check than standard language contain-
ment. Moreover, in our setting Aw above may no longer be
regular, see Lemma 5. However, our method manages over-
coming this problem in away that still guarantees termination
in case the verification succeeds, and progress, otherwise. In
addition, we characterize special cases in which the weakest
assumption is in fact regular.

As we have described above, not only do we construct a
learning-based method for the AG-rule for communicating
programs, but we also repair the programs in case the veri-
fication fails. An AG-rule can either conclude that M1||M2

satisfies P , or return a real, non-spurious counterexample
of a computation t of M1||M2 that violates P . In our case,
instead of returning t , we repair M2 in a way that eliminates
the counterexample t . Our repair is both syntactic and seman-
tic, where for semantic repair we use abduction [38] to infer a
new constraint whichmakes the counterexample t infeasible.

Consider again M1 and P of Fig. 2 and M2 of Fig. 1.
The composition M1||M2 does not satisfy P . For example,

123

H. Frenkel et al.

if the initial value of xpw is 263, then after encryption the
value of ypw is 264, violating P . Our algorithm finds a bad
trace during the AG stage which captures this bad behavior,
and the abduction in the repair stage finds a constraint that
eliminates it: xpw < 263, and inserts this constraint to M2.

Following this step we now have an updated M2, and we
continue with applying the AG-rule again, using informa-
tion we have gathered in the previous steps. In addition to
removing the error trace, we update the alphabet of M2 with
the new constraint. Continuing our example, in the following
iteration AGR will verify that the repaired M2 together with
M1 satisfy P , and terminate.

Thus, AGR operates in a verify-repair loop, where each
iteration runs a learning-based process to determine whether
the (current) system satisfies P , and if not, eliminates bad
behaviors from M2 while enriching the set of constraints
derived from these bad behaviors, which often leads to a
quicker convergence. In case the current system does satisfy
P , we return the repaired M2 together with an assumption
A that abstracts M2 and acts as a smaller proof for the cor-
rectness of the system. The original motivation for using the
AG rule for verification is to find small proofs for the cor-
rectness of M1||M2 � P , without the need to compute the
whole composition ofM1||M2, but using the smaller assump-
tion A. In our case, we use the same reasoning, but we do
not only prove correctness or provide a counterexample, we
also repair M2. Thus, we keep learning abstractions to the
repaired M2, and, as we later show, rely on information from
previous iterations in order to learn an abstraction for the next
iteration. Our algorithm produces both a repaired system M ′

2
such that M1||M ′

2 � P; and an assumption A that serves as
an abstraction for M ′

2 and allows to prove the correctness of
the repaired system with respect to P , without the need to
compute the whole composition of M1||M ′

2.
The assumption A can later be used for the verification of

different components other than M2 (or the repaired M ′
2). If

some M ′′
2 is such that M ′′

2 ⊆ A (that is, A is an abstraction of
M ′′

2), then from M1||A � P we conclude that M1||M ′′
2 � P .

That is, given M ′′
2 and the small A, all we need to check is

that A is indeed an abstraction of M ′′
2 , instead of computing

the composition of the whole system and specification.

3 Related work

Assume–guarantee style compositional verification [33,39]
has been extensively studied. The assumptions necessary for
compositional verificationwere first producedmanually, lim-
iting the practicality of the method. More recent works [7,
10,19,21] proposed techniques for automatic assumption
generation using learning and abstraction refinement tech-
niques, making assume–guarantee verification more appeal-
ing. In [7,37] alphabet refinement has been suggested as

an optimization, to reduce the alphabet of the generated
assumptions, and consequently their sizes. This optimiza-
tion can easily be incorporated into our framework as well.
Other learning-based approaches for automating assumption
generation have been described in [8,9,23]. All these works
address non-circular rules and are limited to finite state sys-
tems. Automatic assumption generation for circular rules is
presented in [13,14], using compositional rules similar to the
ones studied in [30,34]. Our approach is based on a non-
circular rule but it targets complex, infinite-state concurrent
systems, and addresses not only verification but also repair.
The compositional framework presented in [27] addresses
L∗-based compositional verification and synthesis but it only
targets finite state systems.

Several works use abduction. The work in [26] addresses
automatic synthesis of circular compositional proofs based
on logical abduction; however the focus of that work is
sequential programs, while here we target concurrent pro-
grams. A sequential setting is also considered in [2], where
abduction is used for automatically generating a program
environment. Our computation of abduction is similar to that
of [2]. However, we require our constraints to be over a pre-
defined set of variables, while they look for a minimal set.
Moreover, our goal is to repair a faulty program.

The approach presented in [45] aims to compute the inter-
face of an infinite-state component. Similar to our work, the
approach works with both over- and under-approximations
but it only analyzes one component at a time. Furthermore,
the component is restricted to be deterministic (necessary for
the permissiveness check). In contrast we use both compo-
nents of a system to compute the necessary assumptions, and
as a result they can be much smaller than in [45]. Further-
more, we do not restrict the components to be deterministic
and, more importantly, we also address the system repair in
case of dissatisfaction.

Many works study the learnability of symbolic automata,
e.g. [5,15,29,44]. The work of [24] studies alphabet refine-
ment for learning symbolic automata. However, all of these
are restricted to the abstraction of single transitions, where
valuations of variables (states) and their update via program
statements are not considered. We, on the other hand, model
program statements and program states.

There is extensive research on automated program repair.
Examples for testing-based approaches are [22,31,32,35,40],
whereas in this work we repair with respect to a formal spec-
ification rather than a test-suit. In the context of formal repair
with respect to a specification, [41] lays foundations of diag-
nosis of errors in multi-component systems, with respect to
logical specifications. Their setting relies on the logical repre-
sentationof the systemand the specification, and is concerned
with finding all reasons to the violation of the property. In
our work we are indeed looking for error traces that violate
the specification, but our specifications allow us to reason

123

Assume, guarantee or repair: a regular framework for non regular properties

also about the temporal behavior of the program due to its
representation as an automaton. [25] presents an algorithm
to repair finite-state programs with respect to a temporal
specification, where we are concernedwith infinite-state pro-
grams that admit some finite representation. [42,43] present
automated repair algorithms using SAT based techniques for
specifications given as assertions.Note thatwhilewe are aim-
ing at repairing the system, our work is not restricted only
to repair, but also for finding a small proof of correctness, in
the form of the assumption A, that abstracts (the repaired)
M2 and allows a smaller and more efficient composition of
the multiple components.

4 Preliminaries

4.1 Regular languages

In this section we define the notions of finite automata and
regular languages. We then give a high-level description of
the automata learning algorithm L∗.

Definition 1 A Finite Automaton is M = 〈Q, α, δ, q0, F〉,
where all sets are finite and nonempty, and:

1. Q is the set of states and q0 ∈ Q is the initial state.
2. α is the set of alphabet of M .
3. δ ⊆ Q × α × Q is the transition relation. We sometimes

also refer to it as a function δ : Q × α → 2Q .
4. F ⊆ Q is the set of accepting states.

A Finite automaton is deterministic (DFA) if for every q ∈ Q
and every a ∈ α, |δ(q, a)| ≤ 1. It is also complete if for every
q ∈ Q and every a ∈ α, |δ(q, a)| = 1.

Letw = a1, . . . , ak be aword over alphabetα.We say that
M acceptsw if there exists r0, . . . , rk ∈ Q such that r0 = q0,
rk ∈ F and for every i , 0 ≤ i ≤ k − 1, ri+1 ∈ δ(ri , ai+1).
The language of M , L(M), is the set of all words accepted by
M . A set of words W over α is called regular if there exists
a finite automaton M such that W = L(M).

4.1.1 Learning regular languages

In active automata learning we are interested in learning
a DFA A for some regular language U , by issuing queries
to some knowledgeable teacher. L∗ [4] is an algorithm for
active automata learning, usingmembership and equivalence
queries. Its entities consist of a teacher—an oracle who
answers membership queries (mqs) “is the word w in U?”,
and equivalence queries (eqs) “isA an automatonwhose lan-
guage isU?”; and a learner, who iteratively constructs a finite
deterministic automaton A for U by submitting a sequence
of membership and equivalence queries to the teacher.

The learner presents its queries to the teacher following the
instructions of the L∗ algorithm. In particular, membership
queries presentwords in increasing length and in alphabetical
order. Based on its queries, the learner maintains an obser-
vation table T , which accumulates all words learned so far,
together with an indication of whether each word belongs to
U or not. If w is in T and is indicated to be in U we call w a
positive example, denoted by +w, and if it is indicated to not
be in U we call it a negative example, denoted by w.

When the observation table is “stable”, the learner gen-
eralizes the table and constructs a conjectured automaton
A′, which is sent via equivalence query to the teacher. The
teacher either determines that L(A′) = U , in which case
L∗ terminates; or returns a counterexample in the form of a
word which is in the symmetric difference between L(A′)
andU . The learner updates its observation table accordingly
and continues with its construction.

If the teacher answers according to a regular language U ,
then the L∗ algorithm is guaranteed to terminate and learn
a DFA for U , in polynomial time. In the rest of the paper
we rely on the correctness of L∗ and the fact that the learner
queries words in increasing order.

For more details regarding the L∗ algorithm, we refer the
reader to [4].

4.2 Assume–guarantee reasoning

For large systems, composed of two components (or more),
Assume–Guarantee (AG) proof rule [39] is highly effective.
Given a system composed of components M1 and M2 and a
property P , the AG-rule concludes that M1||M2 |� P pro-
vided that an assumption A is found, such that M1||A |� P
and the behaviors of M2 are contained in the behaviors of A.
For M1, M2, P and A that are all Label Transition Systems
(LTSs), an automated AG rule has been suggested in [10].
There, the assumption A is learned using the L∗ algorithm.
Often, the learned A is much smaller (in terms of states and
transitions) than M2. Thus, an efficient composition proof
rule is obtained, for proving that M1||M2 |� P .

In using theL∗ algorithm for learning an assumption A for
the AG-rule, membership queries are answered according to
the satisfaction of the specification P: If M1||t satisfies P ,
then the trace t in hand should be in A. Otherwise, t should
not be in A. Once the learner constructs a stable system A,
it submits an equivalence query. The teacher then checks
whether A is a suitable assumption, that is, whether M1||A
satisfies P , and whether the language of M2 is contained in
the language of A. According to the results, the process either
continues or halts with an answer to the verification problem.
The learning procedure aims at learning the weakest assump-
tion Aw, which contains all the traces that in parallel with M1

satisfy P . The key observation that guarantees termination

123

H. Frenkel et al.

in [37] is that the components in this procedure—M1,M2, P
and Aw—are all regular.

It worth noticing that often A, learned by L∗, is much
smaller than the weakest assumption and than M2.

5 Communicating programs and regular
properties

In this section we present the notion of communicating pro-
grams. These are C-like programs, extended with the ability
to synchronously read and write messages over communi-
cation channels. We model such programs as automata over
an action alphabet that reflects the program statements. The
alphabet includes constraints, which are quantifier-free first-
order formulas, representing the conditions in if and while
statements. It also includes assignment statements and read
and wri te communication actions. The automata represen-
tation is similar in nature to that of control-flow graphs. Its
advantage, however, is in the ability to exploit an automata-
learning algorithm such as L∗ for its verification [4].

We first formally define the alphabet over which com-
municating programs are defined. Let G be a finite set of
communication channels. Let X be a finite set of variables
(whose ordered vector is x̄) and D be a (possibly infinite)
data domain. For simplicity, we assume that all variables are
defined over D. The elements of D are also used as constants
in arithmetic expressions and constraints.

Definition 2 An action alphabet over G and X is α = G ∪
E ∪ C where:

1. G ⊆ { g?x1, g!x1, (g?x1, g!x2), (g!x1, g?x2) : g ∈
G, x1, x2 ∈ X} is a finite set of communication actions.

– g?x is a read action of a value to the variable x through
channel g.

– g!x is a write action of the value of x on channel g.
We use g ∗ x to indicate some action, either read or
write, through g.

– The pairs (g?x1, g!x2) and (g!x1, g?x2) represent
a synchronization of two programs on read-write
actions over channel g (defined later).

2. E ⊆ { x := e : e ∈ E, x ∈ X} is a finite set of assignment
statements, where E is a set of expressions over X∪D. For
an expression e, we denote by e[x̄ ← d̄] the expression
over D in which the variables x̄ ⊆ X are assigned with
the values of d̄ ⊆ D.

3. C is a finite set of constraints over X ∪ D.

Definition 3 A communicating program (or, a program) is
M = 〈Q, X , αM, δ, q0, F〉, where:

1. Q is a finite set of states and q0 ∈ Q is the initial state.
2. X is a finite set of variables that range over D.
3. αM = G ∪ E ∪ C is the action alphabet of M .
4. δ ⊆ Q × α × Q is the transition relation. We sometimes

also refer to it as a function δ : Q × α → 2Q .
5. F ⊆ Q is the set of accepting states.

The words that are read along a communicating program
are a symbolic representation of the program behaviors. We
refer to such a word as a trace. Each such trace induces
concrete executions of the program, which are formed by
concrete assignments to the program variables in a way that
conforms with the actions along the word.

Although communicating programs are an extension of
finite automata, we investigate them from a different per-
spective. Usually, an automaton takes as input a word w and
checks whether w is in the language of the automaton. In
this work we like to think of the automaton as the generator
of the behavior, as it describes the program. Therefore, we
begin with a run of the program, and induce traces from the
run, and not the other way around. We now formally define
these notions.

Definition 4 A run in a program automaton M is a finite
sequence of states and actions r = 〈q0, a1, q1〉 . . . 〈qn−1, an,
qn〉, starting with the initial state q0, such that ∀0 ≤ i <

n we have 〈qi , ai+1, qi+1〉 ∈ δ. The induced trace of r is
the sequence t = (a1, . . . , an) of the actions in r . If qn is
accepting, then t is an accepted trace of M .

From now on we assume that every trace we discuss is
induced by some run. We turn to define the concrete execu-
tions of the program.

Definition 5 Let t = (a1, . . . , an) be a trace and let
(β0, . . . , βn) be a sequence of valuations (i.e., assign-
ments to the program variables).2 Then a sequence π =
(β0, a1, β1, a2, . . . , an, βn) is an execution of t if the fol-
lowing holds.

1. β0 is an arbitrary valuation.
2. If ai = g?x , then βi (y) = βi−1(y) for every y �= x .

Intuitively, x is arbitrarily assigned by the read action, and
the rest of the variables are unchanged.

3. If ai is an assignment x := e, then βi (x) = e[x̄ ←
βi−1(x̄)] and βi (y) = βi−1(y) for every y �= x .

4. If ai = (g?x, g!y) then βi (x) = βi−1(y) and βi (z) =
βi−1(z) for every z �= x . That is, the effect of a syn-
chronous communication on a channel is that of an
assignment.

2 Such valuations are usually referred to as states. We do not use this
terminology here in order not to confuse them with the states of the
automaton.

123

Assume, guarantee or repair: a regular framework for non regular properties

5. If ai does not involve a read or an assignment, then βi =
βi−1.

6. Finally, if ai is a constraint in C, then βi (x̄) � ai (and
since ai does not change the variable assignments, then
βi−1(x̄) � ai holds as well).

We say that t is feasible if there exists an execution of t .

The symbolic language of M , denoted T (M), is the set
of all accepted traces induced by runs of M . The concrete
language of M , denoted L(M), is the set of all executions
of accepted traces in T (M). We will mostly be interested in
feasible traces, which represent (concrete) executions of the
program.

Example 1 – The trace (x := 2 · y, g?x, y := y + 1, g!y)
is feasible, as it has an execution (x = 1, y = 3), (x =
6, y = 3), (x = 20, y = 3), (x = 20, y = 4), (x =
20, y = 4).

– The trace (g?x, x := x2 , x < 0) is not feasible since no
β can satisfy the constraint x < 0 if x := x2 is executed
beforehand.

5.1 Parallel composition

We now describe and define the parallel composition of two
communicating programs, and the way in which they com-
municate.

Let M1 and M2 be two programs, where Mi = 〈Qi , Xi ,

αi , δi , q0i , Fi 〉 for i = 1, 2. Let G1,G2 be the sets of
communication channels occurring in actions of M1, M2,
respectively. We assume that X1 ∩ X2 = ∅.

The interface alphabet α I of M1 and M2 consists of all
communication actions on channels that are common to both
components. That is, α I = { g?x, g!x : g ∈ G1 ∩ G2, x ∈
X1 ∪ X2}.

In parallel composition, the two components synchronize
on their communication interface only when one component
writes data through a channel, and the other reads it through
the same channel. The two components cannot synchronize
if both are trying to read or both are trying to write. We
distinguish between communication of the two components
with each other (on their common channels), and their com-
munication with their environment. In the former case, the
components must “wait” for each other in order to progress
together. In the latter case, the communication actions of the
two components interleave asynchronously.

Definition 6 Theparallel compositionofM1 andM2, denoted
M1||M2, is the program M = 〈Q, x, α, δ, q0, F〉, defined as
follows.

1. Q = (Q1 × Q2) ∪ (Q′
1 × Q′

2), where Q′
1 and Q′

2 are
new copies of Q1 and Q2, respectively. The initial state
is q0 = (q10 , q

2
0).

2. X = X1 ∪ X2.
3. α = { (g?x1, g!x2), (g!x1, g?x2) : g ∗ x1 ∈ (α1 ∩

α I) and g ∗ x2 ∈ (α2 ∩ α I)} ∪ ((α1 ∪ α2) \ α I).
That is, the alphabet includes pairs of read-write com-
munication actions on channels that are common to M1

and M2. It also includes individual actions of M1 and M2,
which are not communications on common channels.

4. δ is defined as follows.

(a) For (g ∗ x1, g ∗ x2) ∈ α3:
i. δ((q1, q2), (g ∗ x1, g ∗ x2)) = {(q ′

1, q
′
2)g}.

ii. δ((q ′
1, q

′
2)g, x1 = x2) = {(p1, p2) | p1 ∈

δ1(q1, g ∗ x1), p2 ∈ δ2(q2, g ∗ x2)}.
That is, when a communication is performed syn-
chronously in both components, the data is trans-
formed through the channel from the writing com-
ponent to the reading component. As a result, the
values of x1 and x2 equalize. This is enforced in M by
adding a transition labeled by the constraint x1 = x2
that immediately follows the synchronous communi-
cation.4

(b) For a ∈ α1 \ α I we set δ((q1, q2), a) =
{(p1, q2) | p1 ∈ δ1(q1, a)}).

(c) For a ∈ α2 \ α I we set δ((q1, q2), a) =
{(q1, p2) | p2 ∈ δ2(q2, a)}.

That is, on actions that are not in the interface alphabet,
the two components interleave.

5. F = F1 × F2

Definition 7 For a trace t , we define Mt to be the commu-
nicating program which only follows the trace t , and has no
other transitions. Then, we define M ||t to be the composition
M ||Mt (and similarly for t ||M).

Figure 3 demonstrates the parallel composition of com-
ponents M1 and M2. The program M = M1||M2 reads a
password from the environment through channel pass. The
two components synchronize on channel verify. Assignments
to x are interleaved with reading the value of y from the envi-
ronment.

5.2 Regular properties and their satisfaction

The specifications we consider are also given as some varia-
tion of communicating programs. We now define the syntax
and semantics of the properties that we consider as spec-
ifications. These are properties that can be represented as

3 Note that according to item 3, one of the actions must be a read action
and the other one is a write action.
4 Note that, equality is implied byDefinition 5 item4.Here it is included
syntactically to emphasize this fact. In-fact, when implementing feasi-
bility checks this equality has to be included explicitly.

123

H. Frenkel et al.

Fig. 3 Components M1 and M2 and their parallel composition M1||M2

finite automata, hence the name regular. However, the alpha-
bet of such automata includes communication actions and
first-order constraints over program variables. Thus, such
automata are suitable for specifying the desired and unde-
sired behaviors of communicating programs over time.

In order to define our properties, we first need the notion
of a deterministic and complete program. The definition is
somewhat different from the standard definition for finite
automata, since it takes the semantic meaning of constraints
into account. Intuitively, in a deterministic and complete pro-
gram, every concrete execution has exactly one trace that
induces it.

Definition 8 A communicating program over alphabet α is
deterministic and complete if for every state q and for every
action a ∈ α the following hold:

1. Syntactic determinism and completeness.There is exactly
one state q ′ such that 〈q, a, q ′〉 is in δ.5

2. Semantic determinism. If 〈q, c1, q ′〉 and 〈q, c2, q ′′〉 are in
δ for constraints c1, c2 ∈ C such that c1 �= c2 and q ′ �= q ′′,
then c1 ∧ c2 ≡ f alse.

3. Semantic completeness.LetCq be the set of all constraints
on transitions leaving q. Then (

∨
c∈Cq

c) ≡ true .

A property is a deterministic and complete program with
no assignment actions, whose language defines the set of
desired and undesired behaviors over the alphabet αP .

A trace is accepted by a property P if it reaches a state in
F , the set of accepting states of P . Otherwise, it reaches a
state in Q \ F , and is rejected by P .

Next, we define the satisfaction relation � between a pro-
gram and a property. Intuitively, a program M satisfies a
property P (denoted M � P) if all executions induced by

5 In our examples we sometimes omit the actions that lead to a rejecting
sink for the sake of clarity.

accepted traces of M reach an accepting state in P . Thus, the
accepted behaviors of M are also accepted by P .

A property P specifies the behavior of a program M by
referring to communication actions of M and imposing con-
straints over the variables of M . Thus, the set of variables of
P is identical to that of M . Let G be the set of communica-
tion actions of M . Then, αP includes a subset of G as well as
constraints over the variables of M . The interface of M and
P , which consists of the communication actions that occur
in P , is defined as α I = G ∩ αP .

In order to capture the satisfaction relation betweenM and
P , we define a conjunctive composition between M and P ,
denoted M× P . In conjunctive composition, the two compo-
nents synchronize on their common communication actions
when both read or both write through the same communica-
tion channel. They interleave on constraints and on actions
of αM that are not in αP .

Definition 9 Let M = 〈QM , XM , αM, δM , qM
0 , FM 〉 be a

program and P = 〈QP , XP , αP, δP , qP
0 , FP 〉 be a property,

where XM ⊇ XP . The conjunctive composition of M and P
is M × P = 〈Q, X , α, δ, q0, F〉, where:

1. Q = QM × QP . The initial state is q0 = (qM
0 , qP

0).
2. X = XM .
3. α = { g ∗ x, g ∗ y, , (g?x, g!y), (g!x, g?y) : g ∗ x, g ∗

y, (g ∗ x, g ∗ y) ∈ α I } ∪ ((αM ∪ αP) \ α I)).
That is, the alphabet includes communication actions on
channels common to M and P .
It also includes individual actions of M and P .
Note that communication actions of the form (g∗x, g∗ y)
can only appear ifM is itself a parallel composition of two
programs.

4. δ is defined as follows.

(a) For a = (g ∗ x, g ∗ y) in α I , or a = g ∗ x in α I , we
define δ((q1, q2), a) =
{(qM , qP) | qM ∈ δM (q1, a), qP = δP (q2, a)}.6

(b) For a ∈ αM \ α I we define δ((q1, q2), a) =
{(qM , q2) | qM ∈ δM (q1, a)}.

(c) For a ∈ αP \ α I we define δ((q1, q2), a) =
{(q1, δP (q2, a))}.

That is, on actions that are not common communication
actions to M and P , the two components interleave.

5. F = FM × BP , where BP = QP \ FP .

Note that accepted traces inM×P are those that are accepted
in M and rejected in P . Such traces are called error traces
and their corresponding executions are called error execu-
tions. Intuitively, an error execution is an execution along M

6 Recall that P is deterministic thus its transition relation only corre-
sponds to one state, for each letter.

123

Assume, guarantee or repair: a regular framework for non regular properties

Fig. 4 Partial conjunctive composition of M and P

which violates the properties modeled by P . Such an execu-
tion either fails to synchronize on the communication actions,
or reaches a point in the computation inwhich its assignments
violate some constraint described by P . These executions are
manifested in the traces that are accepted in M but are com-
posed with matching traces that are rejected in P . We can
now formally define when a program satisfies a property.

Definition 10 For a program M and a property P , we define
M � P iff M × P contains no feasible accepted traces.

Thus, a feasible error trace inM×P is an evidence toM � P ,
since it indicates the existence of an execution that violates
P .

Example 2 Consider the program M , the property P and the
partial construction of M × P presented in Fig. 4. The prop-
erty P requires every verified password y to be of length
at least 4. It is easy to see that M � P , since the trace
t = (password?y, y > 0, verify!y, y < 1000) is a feasi-
ble error trace in M × P .

6 Traces in the composed system

Before we discuss our framework for compositional verifi-
cation and repair of communicating systems, we prove some
properties of traces in the composed system. We later use
these properties in order to prove that our framework is sound
and complete (Sect. 7.1), and to prove the correctness and
termination of our algorithm (Sects. 8.3 and 8.5).

Definition 11 Let t be a trace over alphabetα, and letα′ ⊆ α.
We denote by t ↓α′ the restriction of t on α′, which is the
trace obtained from t by omitting all letters in t that are not
in α′. If α contains a communication action a = (g∗x, g∗ y)
and we have g ∗ x ∈ α′ then the restriction t ↓α′ includes

the corresponding communication, g ∗ x , and similarly for
g ∗ y ∈ α′.

Example 3 Letα = {g1!x, x := x+1, x<10, (g2?x, g2!y)},
and α′ = {g1!x, x := x + 1, g2?x}. Then (g2?x, g2!y) ↓α′=
g2?x , and for

t = ((g2?x, g2!y), x := x + 1, x := x + 1, x < 10, g1!x)

we have

t ↓α′= (g2?x, x := x + 1, x := x + 1, g1!x).

For traces in the conjunctive and parallel compositions,
we have the following two lemmas.

Lemma 1 Let M be a communicating program and P be a
property, and let t be a trace of M × P. Then t ↓αM is a
trace of M.

Lemma 2 Let M1, M2 be two programs, and let t be a trace
of M1||M2. Then t ↓αM1 is a trace of M1 and t ↓αM2 is a
trace of M2.

Weprove Lemma 1. The proof of Lemma 2 is similar, with
the special care of communications actions, and is provided
in the full version of this paper [18].

Lemma 1 Let M = 〈QM , XM , αM, δM , qM
0 , FM 〉 and P =

〈QP , XP , αP, δP , qP
0 , FP 〉, and denote M × P = 〈Q, XM ,

α, δ, q0, F〉.7
Let r = 〈q0, c1, q1〉 . . . 〈qm−1, cm, qm〉 be the run in M ×

P such that t is induced from r . Denote by tM = t ↓αM the
trace tM = (ci1 , · · · , cin).

We first observe the following. If (a1, · · · , ak) is a trace
of M × P such that ∀i : ai /∈ αM , and q = (qM , q0P) is
the state in M × P before reading a1, then ∀i ≥ 1 : ∃qiP :
δ((qM , qi−1

P), ai) = (qM , qiP), that is, when reading a trace
that does not contain letters from αM , the program M × P
only advances on the P component. This is true since by the
definition of δ, if ai is not in αM , then δ((qM , qP), ai) =
(qM , δP (qP , ai)).

We now inductively prove that (ci1 , · · · , ci j) is a trace of
M for every 1 ≤ j ≤ n. In particular, for j = n this means
that tM is a trace of M .

Let j := 1 and denote k := i1. Then c1, . . . , ck−1 /∈ αM
since k is the first index of t for which ck ∈ αM . Thus,
∀1 < i < k : ∃qP

i : δ((qM
0 , qP

i−1), ci) = (qM
0 , qP

i). For
ci1 = ck ∈ αM , by the definition of δ, we have

δ((qM
0 , qP

k−1), ci1) = (δM (qM
0 , ci1), q

′)

7 Recall that the set of variables XP is a subset of XM .

123

H. Frenkel et al.

for some q ′ ∈ QP . Then indeed, 〈qM
0 , ci1 , δM (qM

0 , ci1)〉 is a
run in M , making (ci1) a trace of M .

Let 1 < j ≤ n, and assume t j−1 = (ci1 , · · · , ci j−1) is a
trace of M . Let 〈q0, ci1 , q1〉 . . . 〈q j−2, ci j−1 , q j−1〉 be a run
that induces t j−1. Denote i j−1 = k, i j = k + m for some
m > 0. Then, as before, ck+1, . . . , ck+m−1 /∈ αM , thus ∀k <

l < k + m : ∃qP
l : δ(q j−1, qP

l−1), cl) = (q j−1, qP
l). For ci j

it holds that δ((q j−1, qP
k+m−1), ci j) = (δM (q j−1, ci j), q

′))
for some q ′ ∈ QP . Thus (ci1 , · · · , ci j) is a trace of M , as
needed. ��

We now discuss the feasibility of traces in the composed
system.

Lemma 3 Let M be a program and P be a property, and let t
be a feasible trace of M × P. Then t ↓αM is a feasible trace
of M.

Proof Let t ∈ T (M × P) be a feasible trace. Then, there
exists an execution u on t . Denote t = (b1, · · · , bn) and
u = (β0, b1, β1, · · · , bn, βn). We inductively construct an
execution e on t ↓αM . The existence of such an execution e
proves that t ↓αM is feasible.

Let t ↓αM= (c1, · · · , ck). We set e = (γ0, c1, γ1, · · · ,

ck, γk) where γ0, . . . , γk are defined as follows.

1. Set j := 0, i := 0.
2. Define γ0 := β0 and set j := j + 1.
3. Repeat until j = k :

– Let i ′ > i be the minimal index such that bi ′ = c j .
– Define γ j := βi ′ and set j := j + 1, i := i ′ + 1.

Note that for each i < l < i ′ is holds that bl is a constraint.
Indeed, by the definition of conjunctive composition (Defi-
nition 9), if bl is not a constraint, then bl ∈ αM . But in that
case, bl must synchronizewith some alphabet letter in t ↓αM ,
contradicting the fact that i ′ is the minimal index for which
bi ′ = c j . Thus, since u is an execution, and for all i < l < i ′ :
bl is a constraint, it holds that ∀i ≤ l < i ′ : βi = βl . In par-
ticular, βi ′−1 = βi = γ j−1. Now, since bi ′ = c j , we can
assign γ j to be the same as βi ′ and result in a valid assign-
ment. Thus, e is a valid execution on t ↓αM , making t ↓αM

feasible, as needed. ��
Lemma 4 Let M1, M2 be two programs, and let t be a feasi-
ble trace of M1||M2. Then t ↓αMi is a feasible trace of Mi

for i ∈ 1, 2.

The proof of Lemma 4 is different from the proof of
Lemma 3, since here we can no longer use the exact same
assignments as the ones of the run on M1||M2. In the case
of M × P , the set of variables of M × P is equal to that of
M , and the two runs only differ on the constraints that are
added to the trace of M × P . In M1||M2, on the other hand,

M1 and M2 are defined over two disjoint sets of variables.
Nevertheless, The proof is similar to the proof of Lemma 3,
and is provided in the full version [18].

7 The assume–guarantee rule for
communicating systems

LetM1 andM2 be two programs, and let P be a property. The
classical Assume–Guarantee (AG) proof rule [39] assures
that if we find an assumption A (in our case, a communi-
cating program) such that M1||A � P and M2 � A both
hold, then M1||M2 � P holds as well. For labeled transition
systems over a finite alphabet (LTSs) [10], the AG-rule is
guaranteed to either prove correctness or return a real (non-
spurious) counterexample. The work in [10] relies on the L∗
Algorithm [4] for learning an assumption A for the AG-rule.
In particular, L∗ aims at learning Aw, the weakest assump-
tion for which M1||Aw � P . A crucial point of this method
is the fact that Aw is regular [20], and thus can be learned by
L∗. For communicating programs, this is not the case, as we
show in Lemma 5.

Definition 12 (Weakest Assumption) Let P be a property and
letM1 andM2 be two programs. Theweakest assumption Aw

with respect to M1, M2 and P has the language L(Aw) =
{w ∈ (αM2)

∗ : M1||w � P}. That is, Aw is the set of all
words over the alphabet of M2 that together with M1 satisfy
P .

Lemma 5 For infinite-state communicating programs, the
weakest assumption Aw is not always regular.

Proof Consider the programs M1 and M2, and the property
P of Fig. 5. Let αM2 = {x := 0, y := 0, x := x + 1, y :=
y + 1, sync}. Note that in order to satisfy P , after the sync
action, a trace t must pass the test x = y. Also note that the
weakest assumption Aw does not depend on the behavior of
M2, but only on its alphabet. Assume byway of contradiction
that L(Aw) is a regular language, and consider the language

L = {x := 0} · {y := 0} · {x := x + 1, y := y + 1}∗ · {sync}

By closure properties of regular languages, it holds that L
is a regular language, and thus following our assumption,
we have that L ∩ L(Aw) is regular as an intersection of two
regular languages. However L∩L(Aw) is the set of all words
that after the initialization {x := 0}{y := 0}, contain equally
many actions of the form x := x + 1 and y := y + 1. That is

L ∩ L(Aw) = {x := 0} · {y := 0} · Leq · {sync}

where

Leq = {u ∈ {x := x + 1, y := y + 1}∗ :

123

Assume, guarantee or repair: a regular framework for non regular properties

Fig. 5 A system for which the weakest assumption is not regular

num of x := x + 1 in u is equal to num of y := y + 1 in u}

Leq is not regular since the pumping lemma does not hold
for it. For the same reason L ∩ L(Aw) is also not regular,
contradicting our assumption that L(Aw) is regular. ��

To cope with this difficulty, we change the focus of learn-
ing. Instead of learning the (possibly) non-regular language
of Aw, we learn T (M2), the set of accepted traces of M2.
This language is guaranteed to be regular, as it is represented
by the automaton M2.

7.1 Soundness and completeness of the
assume–guarantee rule for communicating
systems

Since we have changed the goal of learning, we first show
that in the setting of communicating systems, the assume–
guarantee rule is sound and complete.

Theorem 1 For communicating programs, the Assume-
Guarantee rule is sound and complete. That is,

– Soundness: for every communicating program A such
that αA ⊆ αM2, if M1||A � P and T (M2) ⊆ T (A)

then M1||M2 � P.
– Completeness: If M1||M2 � P then there exists an
assumption A such that M1||A � P andT (M2) ⊆ T (A).

Proof Soundness. Assume by way of contradiction that there
exists an assumption A such that M1||A � P and T (M2) ⊆
T (A), butM1||M2 � P . Therefore, there exists an error trace
t ∈ (M1||M2) × P . By Lemma 1 and Lemma 2, it holds that
t2 = t ↓αM2∈ T (M2) and by Lemma 3 and Lemma 4 it
holds that t2 is feasible. Since T (M2) ⊆ T (A), it holds that
t2 ∈ T (A) and thus t is an error trace in (M1||A) × P ,
contradicting M1||A � P .

Completeness. If M1||M2 � P , then for A = M2 it holds
that M1||A � P and T (M2) ⊆ T (A). ��

7.2 Weakest assumption: special cases

As we have proven in Lemma 5, in the context of communi-
cating systems, theweakest assumption is not always regular,
and so we changed our learning goal to the language of M2,
that is, to T (M2). We now consider special cases for which
the weakest assumption is guaranteed to be regular, and can
therefore be used as a target for the learning process. This
may result in the generation of a more general assumption.

We first show that if all components are constraints-free,
then the weakest assumption is guaranteed to be regular.
Intuitively, this is since when there are no constraints in the
composed system (that includes also the specification), all
traces are feasible. Thus we can reduce the problem of find-
ing a weakest assumption for communicating programs to
finding the weakest assumption for finite state automata.

Lemma 6 Let P be a property and M1 and M2 be communi-
cating programs such that αP, αM1 and αM2 do not contain
constraints. Then, the weakest assumption Aw with respect
to M1, M2 and P, is regular.

Proof We construct a communicating system A over αM2,
based on M1 × P , as follows. A state in A is accepting if its
M1 component is rejecting, or its P component is accepting.
We add self loops to all states, labeled by the alphabet of M2

that does not synchronize with M1 and P . We replace the
alphabet ofM1 and P that is not also inM2 with ε-transitions
(and leave the rest unchanged). Finally, we determinize the
result. We therefore have that t is an accepting trace of A
iff all the states that A reaches when reading t are either not
accepting inM1, or accepting (hence, not rejecting) in P . For
the complete details, see the full version [18]. Let L(A) be
the set of all traces of A.

Claim 1 L(A) = L(Aw).
Note that in case that there are no constraints, all traces are

feasible, that is, L(A) = T (A). To show the correctness of
Claim 1, we state the following claim, which can be proved
by induction on the trace t . See [18] for the full proof.

Claim 2 For a trace t ∈ (αM2)
∗, the program A reaches

the same set of states S when reading t , as the set of states
that M1 × P reaches given t .

Claim 1 then follows from the definition of the set of
accepting states of A. Then, to conclude the proof, we have
that L(Aw) = T (A), and therefore is regular. ��

In [20] the authors prove that the weakest assumption
is regular for the setting of LTSs, which are prefix-closed
finite-state automata. Their proof relies on the fact that LTSs
are prefix closed, and they construct the weakest assumption
accordingly.Our proof holds for general communicating pro-
grams, and not only for prefix-closed ones. We can therefore
extend the result of [20] to the case of general finite-state
automata. Corollary 1 follows from the fact that we can refer

123

H. Frenkel et al.

Fig. 6 The flow of AGR

to finite-state automata as communicating programs with-
out constraints; when applying the composition operators
|| and ×, we relax the requirements of synchronization on
read-write channels, to requiring synchronization on mutual
alphabet letters.

Corollary 1 LetA1,A2 andAp be finite-state automata such
that αAp ⊆ (αA1∪αA2). Then, the weakest assumption Aw

for A1,A2 and Ap is regular.

We now consider a more general case for which we can
find regular weakest assumptions. To this end, we define
a refined notion of the weakest assumption, in which we
do not care what the behavior of Aw is, for traces that
are not feasible. We call it the semantic weakest assump-
tion. In the following, for a trace t ∈ (αM2)

∗ we denote
St := T ((M1||t) × P).

Definition 13 (Semantic weakest assumption) Let P be a
property and let M1 and M2 be two communicating pro-
grams. A semantic weakest assumption As with respect to
M1, M2 and P has the following property: ∀t ∈ (αM2)

∗
such that St contains feasible traces, it holds that t ∈ T (As)

iff M1||t � P .

That is, a semantic weakest assumption As contains all
words over the alphabet of M2 that together with M1 satisfy
P non-vacuously. Note that there can be more than one such
assumption, as we do not define its behavior for sets St that
include no infeasible traces.

Lemma 7 For a property P and communicating programs
M1 and M2 we have the following: If for every t ∈ (αM2)

∗
it holds that either all traces in St are feasible, or all of them
are infeasible, then there exists a regular semantic weakest
assumption.

Proof We show that the assumption A from the proof of
Lemma 6 is such a semantic weakest assumption. We prove
that under the terms of Lemma 7, for every trace t ∈ (αM2)

∗
such that St contains feasible traces, it holds that t ∈ T (A)

iff M1||t � P .
Let t ∈ T (A). Then, according to the construction of A,

and similar to the proof of Lemma 6, all paths in (M1||t)× P
reach an accepting state, and thus M1||t � P .

For the other direction, let t ∈ (αM2)
∗ such that M1||t �

P . According to the terms of the lemma, it holds that either
all traces in St are not feasible, or that all of them are feasible.
If the former holds, then we have no requirement on t .

If the latter holds, then, since M1||t � P , then all paths
in (M1||t) × P reach an accepting state, and due to the con-
struction of A, it holds that t ∈ T (A). ��

Note that we restrict the traces in St , since if St contains
both feasible and infeasible traces, then we can no longer
guarantee that all paths of (M1||t) × P reach an accepting
state, even if M1||t � P . For general communicating pro-
grams, for which this restriction does not hold, we can use
the proof as in Lemma 5 to show that there are cases in
which there is no regular semantic weakest assumption, that
is, every semantic weakest assumption is not regular.

As a special case of Lemma 7 we have the following.

Corollary 2 In case the behavior of (M1||M2) × P is deter-
ministic in the sense that for every trace t ∈ (αM2)

∗ there is
only one corresponding trace t ′ ∈ (M1||M2) × P such that
t ′ ↓αM2= t , then there exists a regular semantic weakest
assumption.

123

Assume, guarantee or repair: a regular framework for non regular properties

8 The assume-guarantee-repair (AGR)
framework

In this section we discuss our Assume-Guarantee-Repair
(AGR) framework for communicating programs. The frame-
work consists of a learning-based Assume–Guarantee algo-
rithm, called AGL∗ , and a repair procedure, which are
tightly joined.

Recall that the goal of L∗ in our case is to learn T (M2),
though we might terminate earlier if we find a suitable
assumption for the AG rule: The nature of AGL∗ is such
that the assumptions it learns before it reaches M2 may con-
tain the traces of M2 and more, but still be represented by a
smaller automaton. Therefore, similarly to [10], AGL∗ often
terminates with an assumption A that is much smaller than
M2. Indeed, our tool often produces very small assumptions
(see Sect. 9).

As mentioned before, not only do we determine whether
M1||M2 � P , but we also repair the program in case it
violates the specification. When M1||M2 � P , the AGL∗
algorithm finds an error trace t as a witness for the violation.
In this case, we initiate the repair procedure, which elimi-
nates t from M2. repair applies abduction in order to learn a
new constraint which, when added to t , makes the counterex-
ample infeasible. 8 The new constraint enriches the alphabet
in a way which may eliminate additional counterexamples
from M2, by making them infeasible. We elaborate on our
use of abduction in Sect. 8.3. The removal of t and the addi-
tion of the new constraint result in a new goalM ′

2 forAGL∗ to
learn. Then, AGL∗ continues to search for a new assumption
A′ that allows to verify M1||M ′

2 � P .
An important feature of our AGR algorithm is its incre-

mentality. When learning an assumption A′ for M ′
2 we can

use the information gathered in previous mqs and eqs, since
the answer for them has not been changed (see Theorem 2 in
Sect. 8.2). This allows the learning of M ′

2 to start from the
point where the previous learning has left off, resulting in a
more efficient algorithm.

As opposed to the case where M1||M2 � P , we can-
not guarantee the termination of the repair process in case
M1||M2 � P . This is because we are only guaranteed to
remove one (bad) trace and add one (infeasible) trace in every
iteration (although in practice, every iteration may remove
a larger set of traces). Thus, we may never converge to a
repaired system. Nevertheless, in case of property violation,
our algorithm always finds an error trace, thus a progress
towards a “less erroneous” program is guaranteed.

It shouldbenoted that theAGL∗ part of ourAGRalgorithm
deviates from the AG-rule of [10] in two important ways.
First, since the goal of our learning is T (M2) rather than

8 There are also cases in which we do not use abduction, as discussed
in Sect. 8.4.

L(Aw), our membership queries are different in type and
order. Second, in order to identify real error traces and send
them torepair as early as possible,we add additional queries
to themembership phase that reveal such traces.We then send
them to repair without ever passing through equivalence
queries, which improves the overall efficiency. Indeed, our
experiments include several cases in which all repairs were
invoked from themembership phase. In these cases, AGR ran
an equivalence query only when it has already successfully
repaired M2, and terminated.

8.1 MQs & EQs and the implementation of the
teacher

As our algorithm heavily relies on theL∗algorithm, we begin
with a description of membership and equivalence queries,
both from the side of the learner and the teacher. When using
L∗ in verification, the implementation of the teacher plays a
major role. We therefore describe the queries issued by the
learner, and for each query, we elaborate on how exactly the
query is answered by the teacher. The pseudo-code for the
teacher is given in Algorithm 1.

8.1.1 Membership queries

As a mq, the learner asks whether a given trace t is in the
language of some suitable assumption A. The order of mqs
is as in the L∗ algorithm, that is, we traverse traces in alpha-
betical order and increasing length. The teacher answers the
mq as follows.

– If t /∈ T (M2), answer no.
– If t ∈ T (M2), check if t is an error trace, and if so, turn

directly to repair. That is

– If M1||t � P , pause learning and turn to repair.
– If M1||t � P , answer the mq with yes.

Note that not every membership query is answered immedi-
ately, since the learning process may pause for repairing the
system. If a repair was issued on a trace t , then after repair,
the teacher answers no on the mq on t , but it may provide
additional information as we describe in Sect. 8.2.

8.1.2 Equivalence queries

As an eq, the learner asks, given assumption A, whether A is
a suitable assumption to verify the correctness of the system.
An eq is issued once the learner was able to construct an
automaton that is consistent with all previous mqs, as done
in L∗algorithm. The teacher answers an eq as follows.

123

H. Frenkel et al.

– If M1||A � P , then A is a suitable candidate according to
the AG-rule. Then, we check if the second condition of
the AG-rule holds, that is, if T (M2) ⊆ T (A), and answer
accordingly.

– If M1||A � P , check if the error trace t that violates P is
also a trace of M2. If so, pause learning and turn to repair.
If t is not a real error trace, return no to the eq , along
with a trace to be eliminated from A.

Note that, aswithmqs, not every eq is immediately answered.
In case of a violation, the algorithm first repairs the system,
and only then the teacher returns no to the eq (as the queried
A contained a real error trace). Also as in mqs, the repair
stage might provide the learner with additional information
(Sect. 8.2).

Algorithm1belowpresents the pseudo-code of the teacher
when answering the two types of queries. While M1 and
P remain unchanged, M2 is iteratively repaired (if needed).
The teacher therefore considers at iteration i , the repaired
program Mi

2.

Algorithm 1 The AGL∗ Teacher
1: function mq- oracle (trace t2)
2: if t2 ∈ T (Mi

2) then
3: if M1||t2 � P then
4: let t ∈ (M1||t2) × P be an error trace � t is a cex
5: � proving M1||Mi

2 � P
6: return repair - t
7: else return yes � M1||t2 � P
8: else return no � t2 /∈ T (Mi

2)

9: function eq- oracle (candidate assumption Ai
j)

10: if M1||Ai
j � P then

11: if T (Mi
2) ⊆ T (Ai

j) then return yes
12: else
13: let t2 ∈ T (Mi

2) \ T (Ai
j)

14: return no + t2
15: else � M1||Ai

j � P

16: let t ∈ (M1||Ai
j) × P be an error trace

17: denote t = (t1||tA) × tP
18: if tA ∈ T (Mi

2) then return repair - t
19: else return no - tA

8.2 The assume-guarantee-repair (AGR) algorithm

We now describe our AGR algorithm in more detail (see
Algorithm 2). Figure 6 describes the flow of the algorithm.
AGR comprises two main parts, namely AGL∗ and repair.

The input to AGR are the componentsM1 andM2, and the
property P . While M1 and P stay unchanged during AGR,
M2 keeps being updated as long as the algorithm recognizes
that it needs repair.

The algorithm works in iterations, where in every itera-
tion the next updated Mi

2 is calculated, starting with iteration

i = 0, where M0
2 = M2. An iteration starts with the mem-

bership phase in line 4 of Algorithm 2, and ends either when
AGL∗ successfully terminates (Algorithm 2 line 12) or when
procedure repair is called (Algorithm 2 lines 7 and 15).
When a new system Mi

2 is constructed, AGL∗ does not start
from scratch. The information that has been learned in previ-
ous iterations is still valid for Mi

2. The new iteration is given
additional new trace(s) that have been added or removed from
the previous Mi

2 (Algorithm 2 lines 8, 16).
AGL∗ consists of two phases: membership, and equiva-

lence. In the membership phase (lines 4–9 of Algorithm 2),
the algorithm issues mqs as calls to the function mq-
oracle of Algorithm 1. If, during the membership phase,
we encounter a trace t2 ∈ Mi

2 that in parallel with M1 does
not satisfy P , then t2 is a bad behavior of M2, and repair is
invoked. To this end, we enhance the answers of the teacher
not only to yes and no, but also to repair. This holds also
for eqs.

Once the learner reaches a candidate assumption Ai
j , it

issues an eq (Algorithm 2 lines 10–20). Ai
j is a suitable

assumption if both M1||Ai
j � P and T (Mi

2) ⊆ T (Ai
j) hold.

In this case, AGR terminates and returns Mi
2 as a successful

repair of M2. If M1||Ai
j � P , then a counterexample t is

returned, that is composed of bad traces in M1, Ai
j , and P .

If the bad trace t2, the restriction of t to the alphabet of Ai
j ,

is also in Mi
2, then t2 is a bad behavior of Mi

2, and here too
repair is invoked. Otherwise, AGR updated the L∗ table,
returns to the membership phase, and continues to learn Ai

j .
As we have described, repair is called when a bad trace

t is found in (M1||Mi
2) × P and should be removed. If t

contains no constraints then its sequence of actions is illegal
and its restriction t2 ∈ T (Mi

2) should be removed from Mi
2.

In this case, repair returns toAGL∗ and updates the learning
goal to be T (Mi+1

2) := T (Mi
2) \ {t2}, along with the answer

“- t2” that indicates that t2 should not be a part of the learned
assumption. In Sect. 8.4 we discuss different methods for
removing t2 from Mi

2.
9

The more interesting case is when t contains constraints.
In this case, we not only remove the matching t2 from Mi

2,
but also add a new constraint c to the alphabet, which causes
t2 to be infeasible. This way we eliminate t2, and may also
eliminate a family of bad traces that violate the property in
the same manner— adding a new constraint can only cause
the removal of additional error traces, and cannot add traces
to the system. We deduce c using abduction, as we describe
in Sect. 8.3. As before, repair returns to AGL∗ with a new
goal to be learned, but now alsowith an extended alphabet. In
addition, we are provided with information about two traces:

9 For the different methods for removing t2, we actually end up with a
learning goalT (Mi+1

2) ⊆ T (Mi
2)\{t2} and not necessarilyT (Mi

2)\{t2}
itself. We discuss this further in Sect. 8.4.

123

Assume, guarantee or repair: a regular framework for non regular properties

Algorithm 2 AGR
Input: M1, M2, P
Output: A repaired Mi

2 (if needed) and an assumption Ai that proofs that M1||Mi
2 � P

1: set i = 0, j = 0, Mi
2 = M2

2: function AGL∗
3: while true do � continue running until repairing M2, might not terminate
4: while L∗learner did not converge to a candidate assumption do � issue mqs
5: let t2 ∈ (αMi

2)
∗ chosen according to the L∗learner

6: if mq- oracle (t2) = repair - t then
7: t2, t ′2 := repair(Mi

2, t)
8: add -t2 to the L∗ table and in case of abduction, add +t ′2 to the L∗ table
9: else add t2 to the L∗ table according to the answer of the mq
10: let Ai

j be the candidate assumption generated by the L∗ learner � issue eq

11: if eq- oracle (Ai
j) = yes then

12: return M1||Mi
2 � P together with the assumption Ai

j
13: else
14: if eq- oracle (Ai

j) = repair - t then

15: t2, t ′2 := repair(Mi
2, t)

16: add -t2 to the L∗ table and in case of abduction, add +t ′2 to the L∗ table
17: else � eq- oracle (Ai

j) = no ± t
18: let t2 be the cex from the eq
19: add t2 to the L∗table according to the answer of the eq � after issuing an eq, the algorithm returns to the mqs phase
20: set j := j + 1
21: function repair(Mi

2, t)
22: let t1 ∈ M1, t2 ∈ Mi

2, tp ∈ P such that t = (t1||t2) × tp
23: if t does not contain constraints then
24: set Mi+1

2 := T (Mi
2) \ {t2}

25: set i := i + 1, j := 0 � i is set to 0, start a new iteration of learning Mi+1
2

26: return - t2
27: else � t contains constraints, use abduction to eliminate t
28: let c be the new constraint learned during abduction and let t ′2 = t2 · c
29: update αMi+1

2 := αMi
2 ∪ {c}

30: set Mi+1
2 := (T (Mi

2) \ {t2}) ∪ {t ′2}
31: set i := i + 1, j := 0 � i is set to 0, start a new iteration of learning Mi+1

2
32: return - t2, + t ′2

t2 that should not be included in the new assumption, and
(t2 · c) that should be included.

8.2.1 Incremental learning

One of the advantages of AGR is that it is incremental, in the
sense that answers tomembership queries from previous iter-
ations remain unchanged for the repaired system. Formally,
we have the following.

Theorem 2 Assume that T i is the L∗ table (see Sect. 4.1.1)
at iteration i , and let Mi+1

2 be the repaired component after
that iteration. Then, T i is consistent with Mi+1

2 .

FromTheorem 2 it follows that, in particular, T i is consis-
tent with (1) traces that are removed between Mi

2 and Mi+1
2 ;

and (2) traces that are learned using abduction and added to
Mi+1

2 .

Proof Traces are added to the L∗ table in three scenarios:
during mqs; as counterexamples to eqs; and while repairing
the system, removing error traces and adding traces learned

by abduction. The difference between Mi
2 and Mi+1

2 is only
due to the repair part, that is, in error traces that are removed
and traces that were added due to abduction. The two com-
ponents agree on all other traces, and so T i is consistent with
all traces in Mi+1

2 that are not part of repair.
Let t2 ∈ T (Mi

2) \ T (Mi+1
2) be an error trace that was

removed during repair. We consider the two cases—in
which repair is invoked during a mq, or during an eq.

In the former case, this is the first time the L∗ learner
queries t2, as the L∗ learner does not issue mqs on traces that
are already in the table. Therefore, t2 is not part of T i yet,
and there is no inconsistency.

If t2 is an error trace that is found during an eq, then
M1||t2 � P (Algorithm1, line 16). SincewhetherM1||t2 � P
only depends on M1, P and the specific trace t2, and not on
Mi

2, and since M1 and P remain constant, it holds that t2 was
an error trace also in previous iterations. Therefore, t2 cannot
appear in T i as a positive trace. This concludes the case of
traces that are removed from Mi

2 during repair.

123

H. Frenkel et al.

Now, let t ′2 be a positive trace added to Mi+1
2 using abduc-

tion, that is t ′2 = t2 · c for t2 that was removed by repair. If
the constraint c is a new alphabet letter, then in particular t ′2
is not over the alphabet of Mi

2 and cannot appear in T i .
We now consider the case in which the added constraint

c is already a part of αMi
2. If the error trace t2 was found

during a mq, then, since the L∗ learner issues queries in an
increasing-length order, it holds that t ′2 was not queried in a
mq in previous iterations as |t2| < |t ′2|. Moreover, it cannot
be the case that t ′2 was a negative counterexample to an eq
since these are only derived from error traces (Algorithm 1,
lines 16–19), and t ′2 is not an error trace. The same argument
holds also if t2 was found during an eq.

We are left to show that if t2 was found during an eq, it
cannot be the case that t ′2 was previously queried during a
mq. In this case it holds that the L∗ learner did not issue a
mq on t2. Since the L∗ learner issues queries in increasing
length, and since |t2| < |t ′2|, it holds that t ′2 was not previously
queried. ��

8.3 Semantic repair by abduction

We now describe our repair of Mi
2, in case the error trace t

contains constraints (Algorithm 2 line 27). Error traces with
no constraints are removed from Mi

2 syntactically (Algo-
rithm 2 lines 24–26), while in abduction we semantically
eliminate t bymaking it infeasible. The new constraint is then
added to the alphabet of Mi

2 and may eliminate additional
error traces. Note that the constraints added by abduction can
only restrict the behavior of M2, making more traces infea-
sible. Therefore, we do not add counterexamples to M2.

The process of inferring new constraints from known facts
about the program is called abduction [12]. We now describe
how we apply it. Given a trace t , let ϕt be the first-order
formula (a conjunction of constraints), which constitutes the
SSA representation of t [3]. In order to make t infeasible, we
look for a formula ψ such that ψ ∧ ϕt → false.10

Example 4 Consider the component M2 of Fig. 1 and the
component M1 and specification P of Fig. 2 from Sect. 1.
The following t is an error trace in (M1||M2) × P:

t = (read?xpw, 999 < xpw, (enc?ypw, enc!xpw),

ypw = 2 · ypw, (getEnc!ypw, getEnc?xpw2), xpw �= xpw2,

ypw ≥ 264)

due to the execution

(read?263, 999 < 263, (enc?263, enc!263), ypw = 2 · 263,

10 Usually, in abduction, we look forψ such thatψ ∧ϕt is not a contra-
diction. In our case, however, since ϕt is a violation of the specification,
we want to infer a formula that makes ϕt unsatisfiable.

(getEnc!264, getEnc?264), 263 �= 264, 264 ≥ 264).

We then look for a constraint ψ that will make the
sequence t , and in particular the violation of the last con-
straint ypw ≥ 264, infeasible.

Note that t ∈ T (M1||Mi
2) × P , and so it includes vari-

ables both from X1, the set of variables of M1, and from X2,
the set of variables of Mi

2. Since we wish to repair Mi
2, the

learnedψ is over the variables of X2 only. In Example 4, this
corresponds to learning a formula over xpw.

The formulaψ ∧ϕt → false is equivalent toψ → (ϕt →
false). Then, ψ = ∀x ∈ X1 : (ϕt → false) = ∀x ∈
X1(¬ϕt), is such a desired constraint: ψ makes t infeasi-
ble and is defined only over the variables of X2. We now
use quantifier elimination [46] to produce a quantifier-free
formula over X2. Computing ψ is similar to the abduction
suggested in [12], but the focus here is on finding a formula
over X2 rather than over any minimal set of variables as
in [12]; in addition, in [12] they look for ψ such that ϕt ∧ ψ

is not a contradiction, while we specifically look for ψ that
blocks ϕt . We use Z3 [11] to apply quantifier elimination and
to generate the new constraint.

Example 5 For t of Example 4, the process described above
results in the constraint ψ = xpw < 263. Note that while
ψ blocks the erroneous behavior of t , it allows all execu-
tions of t in which xpw is assigned with smaller values than
263. In addition, it does not only block the one execution in
which xpw = 263, but the set of all erroneous executions in
(M1||M2) × P of the example.

After generating ψ(X2), we add it to the alphabet of Mi
2

(line 29 of Algorithm 2). In addition, we produce a new trace
t ′2 = t2 · ψ(X2). The trace t ′2 is returned as the output of the
abduction.

We now turn to prove that by making t2 infeasible, we
eliminate the error trace t .

Lemma 8 Let t = (t1||t2) × tP . If t2 is infeasible, then t is
infeasible as well.

Proof This is due to the fact that tP can only restrict the
behaviors of t1 and t2, thus if t2 is infeasible, t cannot be
made feasible. Formally, Lemma 8 follows from Lemma 3
and Lemma 4 given in Sect. 6. By Lemma 3, if t = (t1||t2)×
tP is feasible, then t1||t2 is a feasible trace of M1||M2. By
Lemma 4, if t1||t2 is feasible, then t2 is feasible as well.
Therefore, if t2 is infeasible, then t is infeasible, proving
Lemma 8. ��

In order to add t2 · ψ(X2) to Mi
2 while removing t2, we

split the state q that t2 reaches in Mi
2 into two states q and

q ′, and add a transition labeled ψ(X2) from q to q ′, where
only q ′ is now accepting (see Fig. 7). Thus, we eliminate the

123

Assume, guarantee or repair: a regular framework for non regular properties

Fig. 7 Adding the constraint ψ(X2) to block the error trace t2. Note
that ψ is also added to traces other than t2, for example to t ′. Then,
ψ(X2) blocks assignments of t ′ that violate P in the same way as t2,
but it allows for other assignments of t ′ to hold

Fig. 8 The repaired component M1
2

violating trace from M1||Mi
2. repair now returns to AGL∗

with the negative example—t2 and the positive example +t ′2
to add to the L∗ table T i+1 of the next iteration, in order to
learn an assumption for the repaired componentMi+1

2 (which
includes t ′2 but not t2).

Example 6 Figure 8 presents the repaired component M1
2 we

generate given M2 of Fig. 1 and M1 and P of Fig. 2. As
there is only one error trace (that induces many erroneous
executions), the repaired component is achieved after one
iteration. The new constraint, ψ = xpw < 263, is added
at the end of the trace t2 = t ↓αMi

2
for t of Example 4.

Intuitively, this constraint is equivalent to adding an assume
statement in the program.

8.4 Syntactic removal of error traces

Recall that the goal of repair is to remove a bad trace t2
from M2 once it is found byAGL∗ . If t2 contains constraints,
we remove it by using abduction as described in Sect. 8.3.
Otherwise, we can remove t2 by constructing a systemwhose
language is T (M2) \ {t2}. We call this the exact method for
repair. However, removing a single trace at a timemay lead to
slow convergence, and to an exponential blow-up in the sizes
of the repaired systems. Moreover, as we have discussed, in
some cases there are infinitely many such traces, in which
case AGR may never terminate.

For faster convergence, we have implemented two addi-
tional heuristics, namely approximate and aggressive. These
heuristics may remove more than a single trace at a time,

while keeping the size of the systems small. While “good”
traces may be removed as well, the correctness of the repair
is maintained, since no bad traces are added. Moreover, an
error trace is likely to be in an erroneous part of the system,
and in these cases our heuristics manage to remove a set of
error traces in a single step.

We survey the three methods.

– Exact. To eliminate only t2 from M2, we construct the
program Mt2 that accepts only t2, and complement it to
construct M̄t2 that accepts all traces except for t2. Finally,
we intersect M̄t2 with M2. This way we only eliminate t2,
and not other (possibly good) traces. On the other hand,
thismethod converges slowly in case there aremany error
traces, or does not converge at all if there are infinitely
many error traces.

– Approximate Similarly to our repair via abduction in
Sect. 8.3, we prevent the last transition that t2 takes from
reaching an accepting state. Let q be the state that M2

reaches when reading t2. We mark q as a non-accepting
state, and add an accepting state q ′, to which all in-going
transitions to q are diverted, except for the last transition
on t2. This way, some traces that lead to q are preserved
by reaching q ′ instead, and the traces that share the last
transition of t2 are eliminated along with t2. As we have
argued, these transitions may also be erroneous.

– Aggressive In this simple method, we remove q, the state
that M2 reaches when reading t2, from the set of accept-
ing states. This way we eliminate t2 along with all other
traces that lead to q. In case that every accepting state is
reached by some error trace, this repair might result in
an empty language, creating a trivial repair. However, our
experiments show that inmost cases, this method quickly
leads to a non-trivial repair.

8.4.1 Towards convergence of syntactic repair

As discussed above, the exact repair may not terminate in
case of infinitely many traces that introduce the same error.
Indeed, we now claim that when provided with long-enough
counterexamples, we can conclude that the exact repair will
not converge, and justifiably turn to the other repair types.

In the following, we claim that once a long-enough error
trace is found, it is induced from some run in the underlying
automaton, that contains a cycle. Then, all similar traces that
follow the same sequence of states are also error traces, and
the cycle induces infinitely many error traces that cannot be
removed together using the exact repair method. We now
formalise this intuition.

Wemake use of the pumping lemma for regular languages,
as stated in the following claim.

123

H. Frenkel et al.

Claim Let L be a regular language and letA be a finite state
automaton for L , with n states. Let z ∈ L such that |z| > n.
Then, we can write z = uvw such that for every i ≥ 0, it
holds that uviw ∈ L .

Lemma 9 Let t ∈ T ((M1||M2) × P) be an error trace with-
out constraints. Let N be the number of states in (M1||M2)

×P. Then, if |t | > N, it induces an error trace t2 ∈ T (M2),
such that we can write t = uvw for |v| > 0 and for every i
it holds that t2i := uviw also corresponds to an error trace.

Proof DenoteM = (M1||M2)×P . Let t ∈ T (M) be an error
trace such that |t | > N . Then, the run of M on t contains a
cycle. SinceM is the composition of three components, there
is a state (p, q, r) of M that appears more than once on the
run of M on t . Let us denote

t = t[1]t[2] · · · t[j] · · · t[k] · · · t[m]

such that the run of M on t visits the state (p, q, r) when
reading t[j] and t[k]. Consider the partition t = u · v · w

where

u = t[1] · · · t[j], v = t[j + 1] · · · t[k], w = t[k + 1] · · · t[m]

Then, using the argument of the pumping lemma, it holds
that ti := uviw is a trace of M , that reaches the same state as
t , for every i ≥ 0. Now, note that for every trace t ′ that does
not contain constraints, and for every systemM ′, it holds that
t ′ is a trace of M ′ iff t ′ is a feasible trace of M ′. In particular,
since t does not contain constraints, then ti is a feasible trace
of M for every i , and therefore is an error trace for every i .
In particular, it holds that t2i = ti ↓αM2 is an error trace in
M2 and should be eliminated, for every i . ��

Lemma 9 proves that once a long-enough error trace t is
detected, in case that t does not contain constraints, then it
induces infinitely many error traces. Thus, the exact repair
process will never terminate. Note that in this scenario, the
approximate repair can fix the system, as it diverts all traces
of the same nature to a non-accepting state.

We remark that the same reasoning cannot be applied to
traces with constraints.

Example 7 Consider the programs M1 and M2 and the prop-
erty P of Fig. 9, and consider the trace

t = (x := 0, (x := x + 1)90, sync, x < 100)

where (x := x+1)90 means repeating the letter (x := x+1)
for 90 times.

The trace t is of length 93, and it is an error trace in the
system (M1||M2) × P , which is of size at most 9.11 Then,

11 In fact, when composing the systems, the resulting system is of size
5.

Fig. 9 Programs and a property for Example 7.

even-though |t | > 9, we cannot decompose it as stated in the
claim. This, since after applying x := x + 1 more than 100
times, it will no longer be an error trace of the system.

Following the discussion in Sect. 7.2, note that if all
the three components—M1, M2, and P do not contain con-
straints, then only syntactic queries are needed, and only
syntactic repair is applied.

8.5 Correctness and termination

For this discussion, we assume a sound and complete teacher
who can answer the membership and equivalence queries in
AGL∗ , which require verifying communicating programs and
properties with first-order constraints. Our implementation
uses Z3 [11] in order to answer satisfiability queries issued
in the learning process. The soundness and completeness of
Z3 depend on the underlying theory (induced by the program
statements we allow). For first-order linear arithmetic over
the reals, as we consider in this work, this is indeed the case.
However, our method can be applied to all theories for which
there exists a sound solver.12

As we have discussed earlier, AGR is not guaranteed to
terminate, due to its repair part. There are indeed cases for
which the repair stage may be called infinitely many times.
However, in case that no repair is needed, or if a repaired
system is obtained after finitely many calls to repair , then
AGR is guaranteed to terminate with a correct answer.

To see why, consider a repaired system Mi
2 for which

M1||Mi
2 � P . Since the goal of AGL∗ is to learn T (Mi

2),
which is (syntactically) regular, this stage will terminate at
the latest whenAGL∗ learns exactly T (Mi

2) (it may terminate
sooner if a smaller appropriate assumption is found). Notice

12 In casewe use an incomplete solver, then termination ofL∗ iterations
is not guaranteed.

123

Assume, guarantee or repair: a regular framework for non regular properties

that, in particular, if M1||M2 � P , then AGR terminates with
a correct answer in the first iteration of the verify-repair loop.

repair is only invokedwhen a (real) error trace t2 is found
in Mi

2, in which case a new system Mi+1
2 , that does not

include t2, is produced by repair. If M1||Mi
2 � P , then

an error trace is guaranteed to be found by AGL∗ either in
themembership or equivalence phase. Therefore, also in case
that M1||Mi

2 violates P , the iteration is guaranteed to termi-
nate.

In particular, since every iteration of AGR finds and
removes an error trace t2, and no new erroneous traces are
introduced in the updated system, then in case that M2 has
finitely many error traces, AGR is guaranteed to terminate
with a repaired system, which is correct with respect to P .13

To conclude the above discussion, Theorem 3 formally
states the correctness and termination of the AGR algorithm.
Recall that in Algorithm 2 we set M0

2 := M2 and that Mi
2 is

the repaired component after i iterations of repair.

Theorem 3 1. If M1||M2 � P then AGR terminates with the
correct answer. That is, the output of AGR is an assump-
tion A0 such that M1||A0 � P and M2 ⊆ A0.

2. If, after i iterations, a repaired program Mi
2 is such that

M1||Mi
2 � P, then AGR terminates with the correct

answer. That is, AGR outputs an assumption Ai for the
AG rule (this is a generalization of item 1).

3. If an iteration i of AGR ends with an error trace t, then
M1||Mi

2 � P.
4. If M1||Mi

2 � P then AGR finds an error trace. In addition,
Mi+1

2 , the system post repair, contains fewer error traces
than Mi

2.

The proof of Theorem 3 follows from Lemmas 10, 11,
and 12, given below.

Lemma 10 Every iteration i of the AGR algorithm termi-
nates. In addition, unless repair is invoked, answers tomqs
and eqs are consistent with T (Mi

2).
14 That is, whenever the

AGL∗ teacher (Algorithm 1) returns yes for a mq on t2 or
+t2 as a counterexample for an eq, then indeed t2 ∈ T (Mi

2);
and whenever theAGL∗ teacher returns no for a mq or t2 as
a counterexample for an eq, then indeed t2 /∈ T (Mi

2).

Proof Consistency of mqs with Mi
2 is straight forward as

the mq- oracle (Algorithm 1) answers mqs according to
membership in T (Mi

2), or invokes repair. The same holds
for eqs – in case repair is not invoked, eq- oracle returns

13 Note that finitely many error traces might induce infinitely many
erroneous executions, that are all eliminated togetherwhenwe eliminate
t2.
14 If repair is invoked then, as we remove the trace from Mi

2, the
answer will not be consistent with Mi

2, but it will be consistent with
Mi+1

2 .

the counterexample +t2 (Algorithm 1 line 14) if it is in Mi
2

but not part of the assumption, and it returns t2 (Algorithm 1
line 19) if it is in the assumption but not in Mi

2.
If repair was not invoked, we have that since both types

of queries are consistent with T (Mi
2), which is a regular lan-

guage, the current iteration terminates due to the correctness
of L∗. If repair was invoked, then obviously the iteration
terminates, by calling repair. Also note that repair is only
called when a real error is found, that is, a trace t2 ∈ T (Mi

2)

such that M1||t2 � P . ��
Lemma 11 If M1||Mi

2 � P, the AGR algorithm terminates
with an assumption Ai for the AG rule. If M1||Mi

2 � P,
AGR finds a counterexample witnessing the violation (and
continues to repair Mi

2).

Proof Assume thatM1||Mi
2 � P . By Lemma 10, the answers

to mqs and eqs are consistent with T (Mi
2), and from the

correctness of L∗ algorithm we conclude that the algorithm
will eventually learn T (Mi

2). Note that in case thatM1||M2 �
P and that AGR learned T (Mi

2), that is T (Ai) = T (Mi
2),

then the the eq- oracle returns yes (Algorithm 1 line 11)
and the algorithm terminates with the assumption Ai as a
proof of correctness (Algorithm 2 line 12).

Assume that M1||Mi
2 � P . Then there exists an error

trace t ∈ (M1||Mi
2) × P . From Lemmas 3, 4 it holds that

t2 = t ↓αMi
2
is feasible in M2. In particular, it holds that t

is an error trace of (M1||t2) × P . Thus, M1||t2 � P . Since
AGR converges towards T (Mi

2) (by Lemma 10), either t2
shows up as anmq, and themq- oracle indicates that repair
is needed (Algorithm 1 lines 2–6); Or AGR comes up with
a candidate assumption and issues an eq on it. There, again,
t2 (or some other error trace) will come up as an error trace
t2 ∈ T (Mi

2), and the eq- oracle will indicate that repair is
needed (Algorithm 1 lines 15–18). ��

Note that although each phase converges towards T (Mi
2),

it may terminate earlier. We show that in case that the algo-
rithm terminates before finding T (Mi

2), it returns the correct
answer.

Lemma 12 1. If AGR outputs an assumption A, then M1||A
� P and there exists i such that T (Mi

2) ⊆ T (A), thus
we can conclude M1||Mi

2 � P.
2. If a phase i of AGR ends with finding an error trace t,

then M1||Mi
2 � P.

Proof Item 1. Assume AGR returns an assumption A. Then
there exists i such that T (Mi

2) ⊆ T (A) and M1||A � P ,
since this is the only scenario in which an assumption A is
returned (Algorithm 1 lines 10–11 and Algorithm 2 lines 11–
12). From the soundness of the AG rule for communicating
systems (Theorem 1) it holds that M1||Mi

2 � P .
Item 2. Assume now that a phase i of AGR ends with

finding an error trace t (and a call to repair). We prove that

123

H. Frenkel et al.

M1||Mi
2 � P . First note that AGR may output such a trace

both while making a mq and while making an eq. If t was
found during a mq (Algorithm 1 lines 3-6), then there exists
t2 ∈ T (Mi

2) such that M1||t2 � P , and t ∈ (M1||t2) × P .
Since t2 ∈ T (Mi

2), it holds that t is also an error trace of
(M1||Mi

2) × P , proving M1||Mi
2 � P .

If t was found during an eq (Algorithm 1 lines 15-18),
then t is an error trace in (M1||Ai

j) × P . Moreover, t ↓αAi
j
∈

T (Mi
2). This makes t an error trace of (M1||Mi

2)×P as well,
thus M1||Mi

2 � P . This concludes the proof. ��
The proof of Theorem 3 follows almost directly from the

lemmas above.

Proof of Theorem 3 Lemma 11 states that if M1||Mi
2 � P

then AGR terminates with the correct answer. This implies
item 1 and item 2.

In addition, Lemma 11 states that if M1||Mi
2 � P then

AGR finds an error trace witnessing the violation. Once such
an error trace is found, repair is invoked. Since repair elim-
inates at least one error trace, the systempost repair contains
fewer error traces, and item 4 follows.

Lemma 12 states that if an iteration i of AGR ends with
an error trace, then M1||Mi

2 � P . This implies item 3. ��

9 Experimental results

We implemented our AGR framework in Java, integrating
the L∗ learner implementation from the LTSA tool [28]. We
used Z3 [11] to implement calls to the teacher while answer-
ing the satisfaction queries in Algorithm 1, and for abduction
in repair.

Table 1 displays results of running AGR on various exam-
ples, varying in their sizes, types of errors—semantic and
syntactic, and the number of errors. Additional results are
available in [16]. The examples are available on [1]. The
iterations column indicates the number of iterations of the
verify-repair loop, until a repaired M2 is achieved. Examples
with no errors were verified in the first iteration, and are indi-
cated by verification. We experimented with the three repair
methods described in Sect. 8.4. Figure 10 presents compar-
isons between the three methods in terms of run-time and the
size of the repair and assumptions. The graphs are given in
logarithmic scale.

Most of our examples model multi-client-server commu-
nication protocols, with varying sizes. Our tool managed to
repair all those examples that were flawed.

As can be seen in Table 1, our tool successfully generates
assumptions that are significantly smaller than the repaired
and the original M2.

For the examples that needed repair, in most cases our
tool needed 2-5 iterations of verify-repair in order to suc-
cessfully construct a repaired component. Interestingly, in

Fig. 10 Comparing repair methods: time and repair size (logarithmic
scale)

example #15 the aggressive method converged slower than
the approximatemethod. This is due to the structure ofM2, in
which different error traces lead to different states. Marking
these states as non-accepting removed each trace separately.
However, some of these traces have a common transition, and
preventing this transition from reaching an accepting state, as
done in the approximatemethod, managed removing several
error traces in a single repair.

Example #22 models a simple structure in which, due
to a loop in M2, the same alphabet sequence can generate
infinitely many error traces. The exact repair method timed
out, since it attempted removing one error trace at a time. On
the other hand, the aggressive method removed all accept-
ing states, creating an empty program—a trivial (yet valid)
repair. In contrast, the approximate method created a valid,
non-trivial repair.

Example 8 As long as the system needs repair, no assumption
can be learned. When we reach a correct M2, we are usually
able to find a smaller assumption that proves the correctness
of M1||M2 with respect to P . Our tool preforms the best
on examples in the spirit of M1 and P of Fig. 11 and M2

of Fig. 12. There, the specification P allows all traces in
which first M2 acts on one of its channels (G1,G2 or G3),
and then M1 acts on its channel (C). The program M2 in
Fig. 12 is more restrictive than P requires—once the variable
x is read through some channel, M2 continues to use only
this channel. M1||M2 � P due to the restriction on their
synchronization using sync1 and sync2. We are then able to
learn the assumption A of Fig. 13, which is much smaller
than M2, and allows proving the correctness of M1||M2 with
respect to P .

123

Assume, guarantee or repair: a regular framework for non regular properties

Table 1 AGR algorithm results on various examples

Example M1 Size M2 Size P Size Time (sec.) A size Repair size Repair method #Iterations

#4 64 64 3 95 7 verification

#6 2 27 2 0.106 5 27 aggress. 2

0.126 6 28 approx. 2

0.132 8 81 exact 2

#7 2 81 2 0.13 6 81 aggress. 2

0.138 7 82 approx. 2

0.165 9 243 exact 2

#8 2 243 2 0.15 8 243 aggress. 2

0.17 8 244 approx. 2

0.223 10 729 exact 2

#11 5 256 6 4.88 92 verification

#14 5 256 6 4.44 109 verification

#15 3 16 5 0.69 12 16 aggress. 5

0.28 13 18 approx. 3

4.27 44 864 exact 5

#16 4 256 8 6.63 113 256 aggress. 2

5.94 113 257 approx. 2

12.87 155 1280 exact 2

#19 3 16 5 1.07 18 18 aggress. 3

1.12 18 18 approx. 3

1.26 18 18 exact 3

#22 2 4 2 0.09 1 4 (trivial) aggress. 4

0.21 6 8 approx. 5

timeout exact timeout

Fig. 11 Program M1 and specification P of Example 8

This example demonstrates a similar behavior to that of
examples #4, #6, #7 and #8 of Table 1.

Example 9 Consider nowM1 and P of Fig. 2 and the repaired
M1

2 of Fig. 8. In this case, we learn an assumption with 5

Fig. 12 Program M2 of Example 8

Fig. 13 Assumption A of Example 8

123

H. Frenkel et al.

states, that is the result of merging states q1 and q2 in M1
2 .

This is since we answer queries according to M1
2 , which has

a more unique structure than the structure of M2 of Fig. 12.
This demonstrates the behavior of example #19 in Table 1.

10 Conclusion and future work

We have presented the model of communicating programs,
which is able to capture program behavior and synchroniza-
tion between the systemcomponents,while exploiting afinite
automata representation in order to apply automata learning.
We then presented AGR, which offers a new take on the
learning-based approach to assume–guarantee verification,
by managing to cope with complex properties and by also
repairing infinite-state programs.

Our experimental results show that AGR can produce
very succinct proofs, and can repair flawed communicating
programs efficiently. AGR leverages the finite automata-like
representation of the systems in order to apply the L∗ algo-
rithm and to learn small proofs of correctness.

We prove that in general, the weakest assumption that is
often used for compositional verification, is not regular for
the case of communicating programs, and we come up with a
new goal for the learning process. In addition, we find types
of communicating programs for which the weakest assump-
tion is regular. We leave finding the full characterization of
programs for which the weakest assumption is regular for
future work.

In this work, we repair the system by eliminating error
traces, and locate new constraints learned using abduction, at
the end of the error trace, in order tomake it infeasible. A pos-
sible extension of this process is to wisely locate constraints
over the error trace. Intuitively, we would like the constraint
to be as “close” as possible to the error location.However, this
is not a trivial task, as the error can be the result of multiple
actions of the two communicating programs. Another exten-
sion to the repair process is changing the program behavior,
rather than blocking it. Examples for such a mutation-based
approach to program repair are [6,36,42].

For syntactic repair, we characterize cases in which the
repair process does not converge. This may happen also in
the case of semantic repair, in which infinitely many new
constraints are learned and the repair process does not ter-
minate. As future work, we intend to incorporate invariant
generation, according to reoccurring error traces, in order to
help the convergence of the semantic repair process.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. URL: https://github.com/hadarlh/AGR
2. Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specifica-

tion synthesis. In: POPL (2016). https://doi.org/10.1145/2837614.
2837628

3. Alpern, B.,Wegman,M.N., Kenneth Zadeck, F.: Detecting equality
of variables in programs. In: POPL (1988). https://doi.org/10.1145/
73560.73561

4. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/
0890-5401(87)90052-6

5. Argyros, G., D’Antoni, L.: The learnability of symbolic automata.
In: CAV (2018). https://doi.org/10.1007/978-3-319-96145-3_23

6. Bloem, R., Drechsler, R., Fey, G., Finder, A., Hofferek, G.,
Könighofer, R., Raik, J., Repinski, U., Sülflow, A.: Forensic- an
automatic debugging environment forCprograms. In:HVC(2012).
https://doi.org/10.1007/978-3-642-39611-3_24

7. Chaki, S., Strichman, O.: Optimized L*-based assume-guarantee
reasoning. In: TACAS, (2007). https://doi.org/10.1007/978-3-
540-71209-1_22

8. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-
K., Wang, B.-Y.: Automated assume-guarantee reasoning through
implicit learning. In: CAV (2010). https://doi.org/10.1007/978-3-
642-14295-6_44

9. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.:
Learning minimal separating DFA’s for compositional verification.
In: TACAS (2009). https://doi.org/10.1007/978-3-642-00768-2_3

10. Cobleigh, J. M., Giannakopoulou, D., Pasareanu, C. S.: Learning
assumptions for compositional verification. In: TACAS. (2003).
https://doi.org/10.1007/3-540-36577-X_24

11. DeMoura, L., Bjørner, N.: Z3:An efficient SMT solver. In: TACAS
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

12. Dillig, I., Dillig, T.: Explain: a tool for performing abductive infer-
ence. In: CAV (2013). https://doi.org/10.1007/978-3-642-39799-
8_46

13. Elkader, K. A., Grumberg, O., Pasareanu, C. S., Shoham, S.: Auto-
mated circular assume-guarantee reasoning. In: FM (2015). https://
doi.org/10.1007/978-3-319-19249-9_3

14. Elkader, K. A., Grumberg, O., Pasareanu, C. S., Shoham, S.: Auto-
mated circular assume-guarantee reasoning with n-way decompo-
sition and alphabet refinement. In: CAV, (2016). https://doi.org/10.
1007/978-3-319-41528-4_18

15. Fisman, Dana, Frenkel, Hadar, Zilles, Sandra: Inferring symbolic
automata. In: CSL (2022). URL: https://doi.org/10.4230/LIPIcs.
CSL.2022.21

16. Frenkel, H.: Automata over infinite data domains: learnability
and applications in program verification and repair. PhD the-
sis (2021). https://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
info.cgi/2021/PHD/PHD-2021-09

17. Frenkel,H.,Grumberg,O., Pasareanu,C.S., Sheinvald, S.:Assume,
guarantee or repair. In: TACAS (2020). https://doi.org/10.1007/
978-3-030-45190-5_12

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/hadarlh/AGR
https://doi.org/10.1145/2837614.2837628
https://doi.org/10.1145/2837614.2837628
https://doi.org/10.1145/73560.73561
https://doi.org/10.1145/73560.73561
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/978-3-642-39611-3_24
https://doi.org/10.1007/978-3-540-71209-1_22
https://doi.org/10.1007/978-3-540-71209-1_22
https://doi.org/10.1007/978-3-642-14295-6_44
https://doi.org/10.1007/978-3-642-14295-6_44
https://doi.org/10.1007/978-3-642-00768-2_3
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-39799-8_46
https://doi.org/10.1007/978-3-642-39799-8_46
https://doi.org/10.1007/978-3-319-19249-9_3
https://doi.org/10.1007/978-3-319-19249-9_3
https://doi.org/10.1007/978-3-319-41528-4_18
https://doi.org/10.1007/978-3-319-41528-4_18
https://doi.org/10.4230/LIPIcs.CSL.2022.21
https://doi.org/10.4230/LIPIcs.CSL.2022.21
https://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2021/PHD/PHD-2021-09
https://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2021/PHD/PHD-2021-09
https://doi.org/10.1007/978-3-030-45190-5_12
https://doi.org/10.1007/978-3-030-45190-5_12

Assume, guarantee or repair: a regular framework for non regular properties

18. Frenkel, H., Grumberg, O., Pasareanu, C. S., Sheinvald, S.:
Assume, guarantee or repair: a regular framework for non regular
properties (full version). CoRR, (2022). https://doi.org/10.48550/
ARXIV.2207.10534

19. Gheorghiu, M., Giannakopoulou, D., Pasareanu, C.S.: Refining
interface alphabets for compositional verification. In: TACAS
(2007). https://doi.org/10.1007/978-3-540-71209-1_23

20. Giannakopoulou, D., Pasareanu, C. S., Barringer, H.: Assump-
tion generation for software component verification. In: ASE
IEEE Computer Society (2002). https://doi.org/10.1109/ASE.
2002.1114984

21. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component
verification with automatically generated assumptions. Autom.
Softw. Eng. 12(3), 297–320 (2005). https://doi.org/10.1007/
s10515-005-2641-y

22. Goues, C.L., Nguyen, T., Forrest, S., Weimer,W.: Genprog generic
method for automatic software repair. IEEE Trans. Softw. Eng.
38(1), 54–72 (2012). https://doi.org/10.1109/TSE.2011.104

23. Gupta, A., McMillan, K.L., Zhaohui, F.: Automated assumption
generation for compositional verification. Formal Methods Syst.
Des. 32(3), 285–301 (2008). https://doi.org/10.1007/s10703-008-
0050-0

24. Howar, F., Steffen, B., Merten, M.: Automata learning with auto-
mated alphabet abstraction refinement. In:VMCAI, (2011). https://
doi.org/10.1007/978-3-642-18275-4_19

25. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a
game. In: CAV, (2005). https://doi.org/10.1007/11513988_23

26. Li, B., Dillig, I., Dillig, T.,McMillan, K. L., Sagiv,M.: Synthesis of
circular compositional program proofs via abduction. In: TACAS
(2013). https://doi.org/10.1007/978-3-642-36742-7_26

27. Lin, Shang-Wei, Hsiung, Pao-Ann: Compositional synthesis of
concurrent systems through causal model checking and learning.
In: FM, (2014). https://doi.org/10.1007/978-3-319-06410-9_29

28. Magee, J., Kramer, J.: Concurrency: State Models and Java Pro-
grams. Wiley, Hoboken (1999)

29. Maler, O., Mens, I.-E.: Learning regular languages over large
alphabets. In: TACAS, (2014). https://doi.org/10.1007/978-3-642-
54862-8_41

30. McMillan, K.L.: Circular compositional reasoning about liveness.
In: CHARME (1999). https://doi.org/10.1007/3-540-48153-2_30

31. Mechtaev, S., Yi, J., Roychoudhury, A.: Directfix: looking for
simple program repairs. In: ICSE, (2015). https://doi.org/10.1109/
ICSE.2015.63

32. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalablemultiline
program patch synthesis via symbolic analysis. In: ICSE, (2016).
https://doi.org/10.1145/2884781.2884807

33. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE
Trans. Softw. Eng. 7(4), 417–426 (1981). https://doi.org/10.1109/
TSE.1981.230844

34. Namjoshi, K.S., Trefler, R.J.: On the competeness of compositional
reasoning. In: CAV (2000). https://doi.org/10.1007/10722167_14

35. Duong T.N., Hoang, Q., Dawei, R., Abhik, C., Satish: Semfix:
program repair via semantic analysis. In: ICSE (2013). https://doi.
org/10.1109/ICSE.2013.6606623

36. Nguyen, T.-T., Ta, Q.-T., Chin, W.-N.: Automatic program repair
using formal verification and expression templates. In: VMCAI
2019. https://doi.org/10.1007/978-3-030-11245-5_4

37. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh,
J.M., Barringer, H.: Learning to divide and conquer: applying the
L* algorithm to automate assume-guarantee reasoning. Formal
Methods Syst. Des. (2008). https://doi.org/10.1007/s10703-008-
0049-6

38. Peirce, C.S., Hartshorne, C.: Collected Papers of Charles Sanders
Peirce. Belknap Press, Cambridge (1932)

39. Pnueli, A.: In transition from global to modular temporal rea-
soning about programs. In: Logics and models of concurrent
systems, NATO ASI Series, (1985). https://doi.org/10.1007/978-
3-642-82453-1_5

40. Qi,Y.,Mao,X., Lei,Y.: Efficient automated program repair through
fault-recorded testing prioritization. In: 2013 IEEE International
Conference on Software Maintenance, (2013). https://doi.org/10.
1109/ICSM.2013.29

41. Reiter, R.: A theory of diagnosis from first principles.
Artif. Intell. 32(1), 57–95 (1987). https://doi.org/10.1016/0004-
3702(87)90062-2

42. Rothenberg, B.-C., Grumberg, O.: Sound and complete mutation-
based program repair. In: FM 2016. https://doi.org/10.1007/978-
3-319-48989-6_36

43. Rothenberg, B.-C., Grumberg, O.: Must fault localization for pro-
gram repair. In: CAV. (2020). https://doi.org/10.1007/978-3-030-
53291-8_33

44. Sheinvald, S.: Learning deterministic variable automata over infi-
nite alphabets. In: FM. (2019). https://doi.org/10.1007/978-3-030-
30942-8_37

45. Singh, R., Giannakopoulou, D., Pasareanu, C.S.: Learning compo-
nent interfaces with may and must abstractions. In: CAV (2010).
https://doi.org/10.1007/978-3-642-14295-6_45

46. Weispfenning, V.: Quantifier elimination and decision procedures
for valued fields. In: Models and Sets. Lecture Notes in Mathemat-
ics (LNM). 1103, 419–472 (1984)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.48550/ARXIV.2207.10534
https://doi.org/10.48550/ARXIV.2207.10534
https://doi.org/10.1007/978-3-540-71209-1_23
https://doi.org/10.1109/ASE.2002.1114984
https://doi.org/10.1109/ASE.2002.1114984
https://doi.org/10.1007/s10515-005-2641-y
https://doi.org/10.1007/s10515-005-2641-y
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1007/s10703-008-0050-0
https://doi.org/10.1007/s10703-008-0050-0
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/11513988_23
https://doi.org/10.1007/978-3-642-36742-7_26
https://doi.org/10.1007/978-3-319-06410-9_29
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1007/3-540-48153-2_30
https://doi.org/10.1109/ICSE.2015.63
https://doi.org/10.1109/ICSE.2015.63
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1109/TSE.1981.230844
https://doi.org/10.1109/TSE.1981.230844
https://doi.org/10.1007/10722167_14
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1007/978-3-030-11245-5_4
https://doi.org/10.1007/s10703-008-0049-6
https://doi.org/10.1007/s10703-008-0049-6
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1109/ICSM.2013.29
https://doi.org/10.1109/ICSM.2013.29
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-319-48989-6_36
https://doi.org/10.1007/978-3-319-48989-6_36
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/978-3-030-30942-8_37
https://doi.org/10.1007/978-3-030-30942-8_37
https://doi.org/10.1007/978-3-642-14295-6_45

	Assume, guarantee or repair: a regular framework for non regular properties
	Abstract
	1 Introduction
	Contributions
	Contribution over conference version
	Paper organization

	2 Overview
	Our setting

	3 Related work
	4 Preliminaries
	4.1 Regular languages
	4.1.1 Learning regular languages

	4.2 Assume–guarantee reasoning

	5 Communicating programs and regular properties
	5.1 Parallel composition
	5.2 Regular properties and their satisfaction

	6 Traces in the composed system
	7 The assume–guarantee rule for communicating systems
	7.1 Soundness and completeness of the assume–guarantee rule for communicating systems
	7.2 Weakest assumption: special cases

	8 The assume-guarantee-repair (AGR) framework
	8.1 mqs & eqs and the implementation of the teacher
	8.1.1 Membership queries
	8.1.2 Equivalence queries

	8.2 The assume-guarantee-repair (AGR) algorithm
	8.2.1 Incremental learning

	8.3 Semantic repair by abduction
	8.4 Syntactic removal of error traces
	8.4.1 Towards convergence of syntactic repair

	8.5 Correctness and termination

	9 Experimental results
	10 Conclusion and future work
	References

