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ABSTRACT

We introduce Frontmatter: the largest open-access dataset con-

taining user interface models of about 160,000 Android apps. Front-

matter opens the door for comprehensive mining of mobile user

interfaces, jumpstarting empirical research at a large scale, address-

ing questions such as łHow many travel apps require registration?ž,

łWhich apps do not follow accessibility guidelines?ž, łDoes the user

interface correspond to the description?ž, and many more. The

Frontmatter UI analysis tool and the Frontmatter dataset are

available under an open-source license.

CCS CONCEPTS

· Software and its engineering→Automated static analysis; · In-

formation systems → Data mining; · Human-centered com-

puting → User interface design.
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1 INTRODUCTION

What are current trends in modern user interfaces? And what

do these buttons all do? With Web pages and mobile apps being
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ubiquitous, it should be easy to analyze thousands or millions of

user interfaces to answer such questions. However, only a static

code analysis can reveal all aspects of a user interface. This already

rules out Web applications from large-scale analysis, as the code is

typically not available. And even for mobile apps, the analysis must

provide an accurate and comprehensive mapping of user interface

elements and functionality, which is not easy to obtain.

In this paper, we present Frontmatter: the largest and most

precise repository of mobile graphical user interface (GUI) models

to date. Applying a precise and scalable specialized static analysis

on about 160,000 Android apps, we obtain visual, textual, structural,

and interactive properties of their user interfaces, including their

interplay with system services as well as with each other. Front-

matter thus opens the door for comprehensive mining of mobile

user interfaces, jumpstarting empirical research at a large scale.

2 DATA COLLECTION

We now describe the source of the applications that was used to

build the Frontmatter dataset. Next, we provide some details on

the analysis infrastructure we developed. Then, we discuss the chal-

lenges and limitations that we faced when analyzing applications.

2.1 Data Source

Nowadays, there are dozens of Android app markets, of which

the best known is the Google Play StoreÐthe official market of

AndroidÐwith almost 3 million available apps. However, the Google

Play Store has features which complicate large-scale crawling, such

as a limited number of downloads per day, account, and device.

To build the Frontmatter data set, we therefore used Andro-

Zoo [2], the largest publicly available dataset of Android applica-

tions. This repository provides unrestricted access to over 6 million

apps crawled from different marketplaces, allowing straightfor-

ward reproducibility of research. We crawled AndroZoo for all

latest versions of applications downloaded from the Google Play

store in 2018, 2019, and the first half of 2020. In total, we gathered

423,583 APK files.

2.2 Mining Infrastructure

For our analysis, we developed the Frontmatter toolÐa static

analysis framework to automatically mine both user interface mod-

els and behavior of Android apps at a large scale with high precision.
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Figure 1: The workflow of Frontmatter

At the heart of the tool we used the Soot [11] program analysis

framework andBoomerang [10] approach, whose context-sensitive

inter-procedural points-to analysis contributes to the high level

of precision. All implementation details, as well as the compari-

son with competitors can be found in [5]. The code is available at

https://github.com/uds-se/frontmatter.

The mining architecture is implemented on top of Luigi1, which

is a Python library allowing to build pipelines of batch jobs and

boost parallel processing. Our mining workflow comprised the

following steps (see Figure 1):

• First, we selected apps from the list of APKs provided by

AndroZoo
2 taking the latest version of apps uploaded to

Google Play in 2018, 2019, and the first half of 2020;

• Next, we downloaded each apk file from AndroZoo;

• Then, we ran Frontmatter and extracted UI hierarchies,

followed by API analysis;

• Finally, for easier processing, we parsed the mined UI hier-

archies and APIs into a table representation.

We limited the analysis time of each app to 25 minutes. Additionally,

we set a timeout for each points-to analysis query to 20 seconds.

2.3 Mining Challenges

We encountered a couple of challenges preventing us from extract-

ing UI hierarchies of some apps.

First, a lot of applications are games whose user interfaces are

represented by drawings on a canvas. They do not contain standard

Android UI widgets and, thus, cannot be analyzed with our tool.

Second, developers of contemporary apps tend to leverage var-

ious frameworks. Many of them allow to develop cross-platform

apps. The code can be written in various languages, like C# or

JavaScript, and then automatically transformed into Java classes.

Usually, this transformation relies on reflection and internal APIs.

Therefore, the final Java code uses custom loaders and does not

operate with standard Android UI creation mechanisms, which

prevents our analysis from reconstructing such UIs. The same hin-

drance occurs with web-based mobile app builder platforms (such

as Kodular and AppyBuilder).

In order to identify platforms, we used several heuristics, espe-

cially involving the class names of activities:

• The com.unity3d prefix points to the Unity platform widely

used in game development;

• Classes in the .Net framework MONO are prefixed with

mono.android; while XAMARIN generates classes whose

names start with a md5 keyword followed by 32 characters;

1https:/github.com/spotify/luigi
2https://androzoo.uni.lu/static/lists/latest.csv.gz
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Figure 2: Distribution of analyzed APKs

• Apache Cordovaśbased apps tend to use listeners, whose

names are prefixed by org.apache.cordova;

• The air. prefix indicates Adobe Air platform; io.kodular

and com.appybuilder refer to Kodular and AppyBuilder.

If the activity classes declared in the manifest cannot be found by

Frontmatter in the code, they are most frequently encrypted and

stored in a separate file, which is dynamically loaded by the app

at runtime.3 When we could not recognize a hierarchy for every

declared activity of an app, we considered it as implemented with a

third-party framework. Moreover, some applications could not be

analyzed due to errors raised by the Soot static analysis framework

or because of a timeout.

Finally, we focused our efforts on applications whose user in-

terface is English. Although developers are encouraged to provide

multilingual support, our preliminary analysis has shown that Eng-

lish resources are by far most complete. Therefore, we additionally

identified the main language of the app and skipped the analysis of

non-English applications. To this end, we extracted string resources

of each app, combined them into one text, and applied the language

detector by N. Shuyo4.

Figure 2 shows the final distribution of apps in the Frontmatter

dataset. A big portion of applications are games (which typically im-

plement their own non-standard user interface) and cross-platform

apps (around a quarter each). Still, we were able to extract hier-

archies and behavior of about 160,000 English apps (38%) created

with the standard Android SDK for user interfaces.

2.4 Static vs. Dynamic UI Analysis

As a static analysis tool, Frontmatter is subject to some inherent

limitations. It is unable to extract those UI elements and their prop-

erties (like text labels), which are not available at static analysis

time. This includes both the data transferred from a server at run

time and that retrieved from databases. Furthermore, static analysis

can be prone to over-approximation, reporting GUI features that

3https://blog.zimperium.com/dissecting-mobile-native-code-packers-case-study/
4https://github.com/shuyo/language-detection/
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are infeasible in actual executions. In contrast, dynamic analysis

suffers from under-approximation, potentially missing UI elements

and functionalities that are not exercised during testing.

In order to estimate how well our approach can capture UI fea-

tures, we compared it with the Rico [3] dataset, which is dynami-

cally obtained. To this end, we first downloaded the set of applica-

tions from AndroZoo that were analyzed in the Rico evaluation.5

Next, Frontmatter produced results for 8,012 apps (the rest was

based on non-analyzable platforms or failed with an error).

The main shortcoming of any dynamic analysis is the lack of

coverage: Not all application screens and states can be explored. On

average, Rico could cover only 25% of activities declared in the app

manifest, of which Frontmatter identified 100%. For the activities

covered by Rico, we used Frontmatter to extract GUI models

and compared them against models reported by Rico. To this end,

we collected UI elements from UI hierarchies and used class name,

resource id, and text properties to identify matches. Although static

analysis does not allow to extract dynamic content, on average,

Frontmatter could retrieve only 35% fewer UI elements and their

contents than were reported by dynamic analysis.

Sometimes, Frontmatter even identified more widgets than

Rico, for instance, when a screen contained several fragments.

3 FRONTMATTER DATASET

Our dataset currently contains UI models for about 160,000 Android

apps, which makes it, to the best of our knowledge, the largest open-

access dataset containing not only precise GUI hierarchies, but also

Android APIs invoked in response to a user interaction.

3.1 Data Organization

Each app is represented as two JSON files containing UI and API

data. The UI file exposesminingmetadata, a list of the app’s declared

activities with layouts and their GUI hierarchy, and a list of screen

transitions. The API file contains information on which Android

APIs can be triggered by an interaction with a particular UI element.

The mining metadata includes the default UI language of the

app, its typeÐwhether it is based on the standard Android SDK or

a third party frameworkÐ, and the version of the mining tool.

Each activity may be composed of multiple layouts, since an

activity can be assigned different layouts depending on the internal

program state (e.g., for vertical and horizontal orientation). Some-

times Frontmatter recognizes fragments that are attached to a

particular activity, but cannot identify a comprising container view.

These fragments are listed in the orphanedFragments list.

Each layout contains a view hierarchy which captures all UI

elements comprising a GUI, their properties, and attached listeners.

For each UI element Frontmatter exposes its program properties

such as class name, element id, and resource id; visual properties

such as its relative position, dimensionality, displayed text, and

icon; and structural properties such as a list of its children in the

5The Rico paper [3] contains just the package name of an application and the date
when it was downloaded from the Google Play Store, but not its version metadata. So it
is impossible to identify which exact app was analyzed. Therefore, we applied a simple
heuristic: we selected apps with the same package name and DEX file date as reported
by Rico. In cases where no version of the app with an exact date match was found, we
took the latest version published before the reported date. Out of 9,384 applications
contained in Rico we were able to download 8,608 apps.

Table 1: Breakdown of the Frontmatter Dataset

Apps Screens
UI elements

APIs
Total w. Labels w. Icons Interactive

159,371 1,462,782 26,255,086 9,434,176 3,738,814 2,990,532 125,177,717

hierarchy. Among various ways to assign a label we recognize

‘text’, ‘contentDescription’, ‘textOn’, ‘textOff’, ‘title’, ‘label’, and

‘hint’ properties, and their respective setters. For icons we consider

‘src’ and ‘background’. As storing icon files for such a big dataset

would require a lot of space, currently we keep only icon file names.

Still, usually they well describe the purpose of a UI element (e.g.,

icon_delete.png is used for the ‘Delete’ button), and the actual icon

can be easily extracted from an apk on demand. The list of listeners

describes interactive properties of an element, i.e., the ways a user

can interact with it.

Along with the raw data, we provide parsers to transform hier-

archies into the flattened table representation, collecting data on

particular widgets or entire screens. The resulting tables can be

conveniently analyzed with the pandas data manipulation tool or

further converted into a SQL database.

3.2 Example Statistics

Table 1 shows the composition of the Frontmatter dataset. It is

comprised of UI models of 159,371 applications. On average, each

screen comprises around 18 UI elements, with 2 of them being

interactive. Some widgets may trigger just a few Android APIs,

like when starting a new activity, while others can call hundreds

of methods performing database accesses or network communica-

tion. On average each listener invokes 42 APIs. Figure 3 shows the

distribution of the UI sizes in the Frontmatter dataset.
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Figure 3: Distribution of UI size

4 USE CASES

In this section, we present three possible applications of the Front-

matter dataset.

4.1 UI Elements Occurring Together

The first class of applications is straightforward, namely determin-

ing which UI elements occur in an app. Since the Frontmatter

tool precisely determines the activities that UI elements are part

of, one can use our dataset to find out which UI labels occur to-

gether on a screen. Such analyses could be helpful for assessing the
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(a) UI labels occurring together with a

łloginž UI element

(b) APIs (Android classes) triggered by UI

elements whose label is łrecordž

(c) Labels of UI elements interacting with the

FingerprintManager.authenticate() API

Figure 4: Word clouds of APIs and UI elements extracted with Frontmatter

quality of a UI, for instance by determining how many different

semantic concepts a screen is concerned with, or whether there

is a reasonable mapping of concepts to screens. To allow for se-

mantic search we associated each label with a numerical vector

(a multi-dimensional meaning representation of a phrase) using

Word2Vec embeddings [8] implemented in SpaCy[4]; Thus, for in-

stance, querying łloginž related elements would return not only

exact matches but also semantically similar UIs like łsigninž.

As a simple example, consider Figure 4a, depicting a word cloud

over all UI labels for all screens in AndroZoo that contain a łlo-

ginž button. Not very surprisingly, łloginž is the most common

UI label, but we also see that it commonly occurs together with

łpasswordž and łaccountž labels. Though, only a small fraction of

łloginž screens refers to information about łprivacyž or łpolicyž.

4.2 APIs Invoked by Specific UI Elements

Frontmatter also contains information onwhich APIs are invoked

by which UI elements. This allows to easily determine all UI ele-

ments associated with a specific set of APIs. Figure 4b shows a cloud

of Android API classes whose methods are invoked by UI elements

whose label is łrecordž. We see that the Android MediaRecorder

class is most frequently invoked; however, we also see that łrecordž

buttons launch another activity via the Activity and Intent APIs.

Beyond empirical studies as discussed in Section 4.1, such as-

sociations can be used to detect outliersÐthat is, UI elements that

access resources that users would not expect given the UI wording.

4.3 UI Elements Invoked By Specific APIs

Rather than looking up the APIs invoked by particular UI elements,

we can also go the other way round and determine UI elements that

interact with a particular API call. Figure 4c shows the labels of UI

elements that all interact with the Android FingerprintManager

API, which provides fingerprint authentication. The labels we see

indeed all relate to authentication domains such as payment, cards,

activations, currency, or wallets.

Typical applications of such a mapping are the same as in Sec-

tion 4.2, namely empirical studies and anomaly detection. Here,

an anomaly detection would detect mislabeled or uncommon UI

elements. If, for instance, the term łamountž in a foreign language

would have been translated to łquantityž instead of łamountž, a

distribution of words as in Figure 4c would show that in the given

context (authentication with fingerprints), łamountž would be the

more common choice of translation.

5 OTHER DATASETS

A number of researchers have conducted empirical research on

Android. Shirazi et al. [9] collected 400 Android apps from the

Google Play Store and analyzed the common design patterns of

these apps. They estimated the complexity of each app design by

counting the number of activities, layout files, and images, and

computed descriptive statistics such as the most frequent interface

elements. Alharbi et al. [1] applied a differential analyses to study

design pattern changes over time in 24,436 Android apps. Deka et

al. [3] created the Rico dataset by dynamically mining apps and

captured view hierarchies, screenshots, and user interactions. The

Rico dataset contains design data from more than 9.7k Android

apps. It exposes visual, textual, structural, and interactive design

properties of more than 72k unique UI screens. Based on the Rico

dataset, Micallef et al. [7] investigated whether smartphone apps

use login features, and what relationships exist between login fea-

tures and app popularity. In contrast to Rico, Frontmatter relies

on static analysis, which allows to determine and assess all user

interface elements without having to explore them at runtime. Liu

et al. [6] proposed an automatic approach for annotating mobile

UI elements with both structural semantics such as buttons or tool-

bars and functional semantics such as add or search, and computed

semantic annotations for the 72k unique UIs in the Rico dataset.

This technique can be used to augment Frontmatter with UX

concepts as well.

6 CONCLUSION

In this work, we presented the Frontmatter dataset containing

around 160,000 UI models of Android applications which include

apps’ accessible screens, user interface elements, their textual and

graphical features, as well as Android APIs invoked in response

to user interaction. This dataset opens the door for comprehensive

mining of mobile user interfaces, jumpstarting empirical research

at a large scale. The Frontmatter dataset is available under an

open-source license at

https://zenodo.org/record/5084655
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