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Abstract—More than ninety percent of published Jupyter
notebooks do not state dependencies on external packages. This
makes them non-executable and thus hinders reproducibility
of scientific results. We present SnifferDog, an approach that
1) collects the APIs of Python packages and versions, creat-
ing a database of APIs; 2) analyzes notebooks to determine
candidates for required packages and versions; and 3) checks
which packages are required to make the notebook executable
(and ideally, reproduce its stored results). In its evaluation, we
show that SnifferDog precisely restores execution environments
for the largest majority of notebooks, making them immediately
executable for end users.

Index Terms—Jupyter Notebook, Environment, Python, API

I. INTRODUCTION

Jupyter notebooks—interactive documents that combine

code, text, mathematics, plots, and rich media—have become

a prime medium for scientists to document, replicate, and

illustrate their findings. In contrast to a regular scientific paper,

a notebook allows its writers to directly interact with data

and code, updating tables and diagrams on the spot. This also

extends to users, who can re-execute the notebook code, say

with their own data or changes to the algorithms, and see how

this affects the final results. This makes Jupyter notebooks one

of the most promising tools to allow for widespread replication

and reuse of research results.

What sounds good in theory need not be true in practice,

though, and Jupyter notebooks are no exception. Recent stud-

ies [1] have shown that the vast majority of published Jupyter

notebooks can only be read by users, but not re-executed.

One reason is incompleteness, such as the raw data not being

supplied; and there is not much users can do about this. How-

ever, there are also reasons for notebooks being non-executable

that can be easily avoided. One reason is that notebook code

cells can be executed interactively in any order (and data

scientists happily do so); recent approaches [2] thus focus

on restoring the actual order based on internal dependencies.

Another important reason, however, is that Jupyter notebooks

depend on specific environments in which they were created,

such as specific libraries in specific versions.

In principle, Python code in notebooks provides import

statements, which state the (external) modules are to be used.
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However, Python users install packages, not modules; and

the names of imported modules may be different from the

name of the package that provides them. Different versions

of packages may provide different APIs; hence one has to

determine compatible versions. Also, packages may depend

on other tools or packages to be installed.

This is why Python (like other languages), in good Software

Engineering tradition, has long introduced explicit means to

specify dependencies between libraries and packages. Python

package managers (e.g., pip and conda), for instance, expect

Python packages to provide an explicit list of dependencies,

stating which other packages need to be installed in which

versions. Writers of Jupyter notebooks, however, are first and

foremost data scientists and not software engineers [3]; hence,

they neither know about principles of reusable software, nor

would this be in their focus. Indeed, as we show in this

paper, around 94% of notebooks do not formally state or

document dependencies; among those who do, nearly 30%

are not reliable. In consequence, users who want to execute

published and complete Jupyter notebooks will very likely face

errors of missing packages or incompatible versions.

In this paper, we introduce a novel approach to automati-

cally restore the experimental dependencies of Jupyter note-

books. Our SnifferDog tool takes a Python Jupyter notebook

and automatically detects which packages are required to

reproduce notebook results. To this end, SnifferDog creates an

API bank, a database which holds API information for each

Python library (and each version). By analyzing the Python

code embedded in the notebook, SnifferDog then determines

library candidates that would be API compatible. SnifferDog

then can automatically install the recommended dependencies

and check if they allow the notebook to 1) be executed and

2) reproduce the original results stored in the notebook. When

users thus apply SnifferDog on a notebook, they at least obtain

a list of detected required libraries and their versions. If these

are complete, the notebook can become executable; and in

the ideal case, the notebook is shown to fully reproduce the

original results. Striving for executability, reproduction, and

considering library versions is also what sets SnifferDog apart

from earlier, Python-specific approaches [4].

SnifferDog is efficient and effective: It finishes the analysis

of 5,000 notebooks in 18,141.29 seconds (3.63 seconds per



notebook). In an experiment with 315 notebooks known to be

executable, SnifferDog was able to automatically determine

dependencies for over 90% of them.

The remainder of this paper is organized as follows. After

providing background about Python packages and Jupyter

notebooks (Section II), we make the following contributions:

• A study on the prevalence of dependency issues in

Jupyter notebooks (Section III). In a preliminary study,

we investigated causes that make Jupyter notebooks non-

executable, with and without environmental dependen-

cies.

• A novel approach to restore dependencies of Jupyter

notebooks (Section IV). We present the design of our

approach and its implementation in the SnifferDog pro-

totype.

• An evaluation of our approach (Section V). We evaluate

the effectiveness of SnifferDog on a variety of notebooks,

showing that it precisely restores execution environments

for the largest majority of notebooks.

After discussing related work (Section VI), we close with

conclusion and future work (Section VII).

II. BACKGROUND

We start with discussing background knowledge, including

Python libraries and Jupyter notebooks.

A. Python Libraries

Python is well-known for its immense ecosystem, providing

more than 200,000 third-party packages (also known as li-

braries) to developers. Such Python libraries need to be locally

installed onto developers’ implementation environment before

being accessed. The Python Packaging Authority team offi-

cially maintains a standard package management tool called

pip, which allows users to install these libraries from differ-

ent sources (PyPI) [5]. In addition to package management

systems, Python developers can also install a library from its

source code project.

Figure 1 illustrates a typical code structure example of

a Python library. A Python file named setup.py installs the

library locally. However, this file will not install the library’s

environmental dependencies and, hence, requires its users to

fulfill them beforehand. A top-level package giving the library

its name (i.e., pandas) is stored in the same level of setup.py.

Such a package in Python is a directory that contains a specific

file named init .py responsible for initializing the package.

Python packages provide a way to structure Python’s module

namespace, offering an easy means for library users to access

its APIs.A module in Python is a specific term used in Python

to specify Python’s source code (i.e., files containing Python

definitions and statements). Each Python file represents a

Python module; for instance, setup.py defines a Python module

named setup. Directories under the top-level package are the

library’s sub-packages. Similarly, the Python files under sub-

packages are deemed as sub-modules. For example, as shown

in Figure 1, the Python file base.py is defined as a sub-module

named base in sub-package pandas.io.excel.

pandas

__init__.pyio

excel

_base.py __init__.py

Top-level package 

Initialize the pandas package

Initialize the pandas.io.excel sub-package

Define a module named pandas.io.excel._base (or a sub-module in sub-package pandas.io.excel)

pandas

setup.py

Top-directory (project name)

Responsible for 

installing the 

pandas library

api.py

Fig. 1: A typical code structure example of Python libraries.

This partial code structure is extracted from a popular Python

library called Pandas.

In each Python module (or Python file), a set of methods can

be declared and implemented. These methods can be accessed

by other modules (or module users) and hence are referred

to as APIs. For example, the pandas.io.excel.base module

contains an API called read excel() with the fully qualified

name being pandas.io.excel. base.read excel()). When Python

libraries evolve, their declared API sets will likely be updated.

In this work, we will leverage this information to implement

SnifferDog so as to infer environmental dependencies for

Python Jupyter notebooks.

B. Jupyter notebooks

Jupyter notebooks are sequences of cells, which either

contain text (in Markdown format) or executable code (and its

results). In text cells, authors describe (using Markdown and

HTML for rich formatting) the objective of the notebook and

the rationale behind the code presented in the following cells.

In code cells, authors write actual programming code, most

frequently Python code. Figure 2 presents a typical example of

a Jupyter notebook, containing three text cells and six Python

code cells.

Each code cell can be directly executed by the underline

Jupyter engine, which provides the necessary computational

environment such as library dependencies. The code cells in

Jupyter notebooks can be executed in any order (producing

errors if its prerequisites are not satisfied). After one cell is

executed, Jupyter will assign an execution order aligning with

its execution order. For example, the first executed cell will

be marked as “In [1]”, while the fourth executed cell will be

marked as “In [4]”. Cells can be repeatedly executed. In such

a case, the latest execution counter will overwrite the previous

one..

Looking closely at Figure 2, we see that the last code

cell is executed before the fourth and fifth code cells. Astute

readers may have also observed that there is no information

(i.e., “In [5]”) indicating the fifth executed code cell. This is

because when code cells are repeatedly executed, the original

execution counter will be overwritten by the last execution

counter—called a skip of execution counter. Skips make it



hard to reproduce the original outputs of a notebook because

the skipped execution counters are not recorded at all [2].

If the execution of a code cell generates an output (text or

pictures such as diagrams), the output will also be recorded

and displayed in the notebook. In Figure 2, a histogram at the

end is the output of the last code cell.

import pandas.io.excel._base
_base.read_excel(…)

In [1]

pandas.DataFrame.hist(…)

In [7]
Execution

Counter

Code
Cell

The following code cells illustrate different 
ways to import Python modules and execute 
Python their APIs

Markdown
Cell

Output

from pandas.io.excel._base import read_excel
read_excel(…)

import pandas
pandas.read_excel(…)

In [3]

In [2]

from pandas import read_excel as re
re(…) # read_excel(…)

from pandas import *
read_excel(…)

In [6]

In [4]

The following code cell demonstrates how to 
draw a histogram using pandas’s DataFrame.

This is an example of Jupyter notebook.

Fig. 2: An example of Jupyter notebook.

III. PRELIMINARY STUDY AND MOTIVATION

In 2019, Pimentel et al. presented a large-scale empiri-

cal study [1] on the quality and reproducibility of Jupyter

notebooks. In this study, the authors looked into 1,159,166

notebooks collected from GitHub, among which only 149,259

(roughly 12.9%) of them were provided with module depen-

dency information describing how the notebooks’ environ-

mental dependencies should be set up. In other words, the

vast majority of existing notebooks in the community do not

provide sufficient information such that notebook users could

execute and replicate them. Since easy replication is one of the

promises of Jupyter Notebooks, there is a need for dependable

automated approaches to infer environmental dependencies for

Jupyter notebooks.

How serious is this problem? We have conducted a

lightweight replication study of Pimentel et al.’s work on

recent Jupyter notebooks. We limit our replication study to

replicating the executibility of notebooks when supplying

dependencies provided by the notebook authors to identify

the main causes for non-reproducibility and thus specifically

address execution environments. To fulfill this purpose, we

propose to answer the following research questions

• RQ1: To what extent do (public) Jupyter notebooks

provide environment setup information?

• RQ2: How useful is dependency information in helping

notebook users configure the execution environment?

• RQ3: Does the provided environment information help

notebook users to execute and reproduce the notebooks?

If not, what are the root causes making them non-

executable?

To answer these research questions, we have collected a

dataset consisting of notebooks with and without experimental

setup information. Our source for notebooks is GitHub, one

of the world’s leading software repository hosting platforms.

We randomly downloaded 100,000 notebooks from GitHub.

Table I summarizes our study results. Among 100,000

notebooks, less than 6% of them (or 4.74%, 1.15%, and 0.12%

respectively for the three selected criteria) have been provided

with environmental dependency information1. This rate is even

lower than the rate (calculated similarly) reported by Pimentel

et al. two years ago.

Note that prior work by Pimentel et al. has investigated

three sources for notebook environment setup information:

(1) requirements.txt, (2) Pipfile, and (3) setup.py. As dis-

cussed previously, setup.py is usually used to locally install

a Python library from the source. It is not responsible for

installing library dependencies. After manually investigating

notebooks that use setup.py, we confirm that setup.py is indeed

not relevant to the environment setup of Jupyter notebooks.

Therefore, we exclude the third criteria setup.py for this study.

Furthermore, when conducting the previous manual analysis,

we additionally find that notebook contributors may provide

environmental setup information through Anaconda (e.g., via

environments.yml). As a result, in our study, we replace the

third criteria setup.py with Anaconda environments.

TABLE I: Distribution of notebooks being provided with

environmental dependency information w.r.t. the selected three

criteria.

requirements.txt
environments.yml

(Anaconda)
Pipfile Total

Notebooks 4741 1146 117 5826
Notebooks (≥3.5) 2923 868 77 3740

Installable 2064 563 77 2646
Executable 518 207 14 725

RQ1: To what extent do (public) Jupyter notebooks provide

environment setup information?

Among 100,000 notebooks, only less than 6% provide

environmental dependency information for helping users

execute their notebooks.

For the 5,826 notebooks that have been provided with

environmental dependencies, we further check how reliable

these are. To this end, we implemented scripts to automatically

install such dependencies, using Anaconda [6] to create indi-

vidual environments for each of the aforementioned Jupyter

1Some notebooks may provide two types of information for helping users
setup the execution environments. For example, there are 101 notebooks
contain both requirements.txt and Anaconda information.









A. Experimental Setting

Dataset of Jupyter notebooks. Recall that the goal of this

work is to automatically infer environmental dependencies for

Jupyter notebooks so as to help users execute and reproduce

notebook outputs. To evaluate if our approach can achieve this

objective, we resort to the approach introduced by Pimentel

et al. [1] to collect 100,000 Jupyter notebooks from GitHub

to fulfill our experiments. GitHub is the world’s leading

software development platform hosting millions of software

repositories. The 100,000 notebooks are retrieved from GitHub

projects containing files with Jupyter notebook .ipynb formats

and declaring Python as their programming language.

Dataset of Selected Python Libraries. Recall that the API

bank of our approach is built based on existing libraries, and

it can be easily extended to include more libraries. Generally,

the more libraries considered, the more comprehensive the

API bank will be, and subsequently, the more precise and

sound results SnifferDog can achieve. Since we aim at gen-

erating dependencies for as many notebooks as possible, we

start by selecting the most popular 1,000 modules imported

by the aforementioned 100,000 Jupyter notebooks. We then

leverage PyPI, the official Python package index, to query

the installation wheel files which contain the source code

of library implementation these selected modules. Because

several modules may belong to the same library, or some

modules have not yet been indexed by PyPI, we can only

locate 488 Python libraries (with 17,947 different releases)

for the selected top-1000 modules. Therefore, in this work,

we leverage 488 distinct Python libraries with 17,947 releases

to construct the API bank.

B. RQ4: Effectiveness of API Bank

In this research question, we are interested in evaluating

the usefulness of the API bank. From the selected 488 Python

libraries, the library API mapping module extracts 1,013,718

APIs to fill the API bank. Figure 7 illustrates the distribution

of the number of APIs in each selected library, giving median

and mean values at 321 and 2,281, respectively, after excluding

outliers.

0 500 1000 1500 2000 2500 3000

Fig. 7: The distribution of the number of APIs per library

across all its version after removing outliers.

Towards evaluating the correctness of the constructed API

bank, we resort to a manual process to check if these APIs are

correctly recorded in the API bank. To this end, we randomly

selected 166 APIs from the API bank to be manually validated.

The number of selected APIs is decided by an online Sample

Size Calculator [17] with a confidence level at 99% and a

confidence interval at 10. For each of the selected APIs, we

manually check it against its source code and find that 164 of

them are correct results, giving a precision of 98.8% for our

API bank construction approach.

In addition to the aforementioned manual investigation, we

further resort to a dynamic testing approach to evaluate the

correctness of the constructed API bank. Giving a mapping

from a library version to its APIs, when the library (with the

given version) is installed, all its APIs should be able to be

imported. To this end, we implement a prototype tool to fulfill

this process automatically. Specifically, we first randomly

select 20 libraries, accounting for in total 3,982 APIs, from

the API bank, and install them, respectively. For each of the

installed libraries, we then extract all of its recorded APIs from

the API bank and conduct runtime import testings to check

whether these APIs can be imported at runtime. Among the

3,982 considered APIs, only 252 of them fail to be imported

in our experiment, leading to a success rate of 93.6%. After

analyzing the traceback information of import errors, we find

that most of such failures are related to missing dependencies

that are further required by the libraries under evaluation.

RQ4: (Effectiveness of library mapping) Is SnifferDog

effective in mapping Python libraries to their APIs?

The API bank constructed by the Library API mapping

module is precise: 98.8% of APIs are correctly extracted;

93.6% can be successfully imported.

Among the 1,013,718 APIs inferred from the 488 libraries,

686,915 of them could further introduce compatibility issues

to their client applications (if incorrect library versions are

installed), resulting in, for example, module not found errors

and import errors. The incompatible APIs include 543,387

(53.60%) newly added APIs after the first libraries’ releases,

345,234 (34.06%) removed APIs compared to the libraries’

latest versions, and 58,594 (5.78%) APIs have their parameters

changed over the libraries’ evolution. Figure 8 further presents

the distribution of newly added, removed, and updated APIs

in each of the considered libraries, respectively.

Given the fact that 67.76% of the APIs (including added,

removed, and updated ones without duplication) may introduce

compatibility issues, there is a strong need to also infer the

correct versions of the dependent libraries when inferring the

environmental dependencies for Jupyter notebooks, Our API

bank records the detailed evolution changes of considered

libraries and is designed to infer not only the dependent

libraries, but also their correct versions.

RQ4 (Usefulness of API bank) Is SnifferDog effective in

mapping Python libraries to their APIs?

In our evaluation, more than half of the library APIs were

added, removed, or updated at some point in the libraries’

life cycles. This underlines the need to check for compatible

library versions, as SnifferDog does.
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Fig. 8: The median values for the number of added and

removed and updated APIs are 45, 25 and 5 respectively after

excluding outliers.

C. RQ5: Effectiveness of SnifferDog

Let us now evaluate the effectiveness of SnifferDog in

inferring environmental dependencies for Jupyter notebooks.

We evaluate the effectiveness through one in-the-lab and one

in-the-field experiment.

1) In-the-lab experiment: Recall that our preliminary study

has identified 725 notebooks that are (1) provided with in-

stallable required dependencies, and (2) demonstrated to be

executable after the provided dependencies are installed. We

hence take these 725 notebooks as the ground truth to fulfill

our in-the-lab experiment (because these notebooks are known

executable). Unfortunately, 385 (out of the 725) notebooks

have accessed libraries that are not yet considered by the

current API bank (constructed based on around 488 libraries).

Therefore, we have to exclude them from the ground truth. Our

final ground truth is hence made up of 340 Jupyter notebooks

and their required libraries.

For the 340 notebooks, we then apply SnifferDog to auto-

matically generate experimental dependencies for them. After

that, we follow the same approach (as discussed in Section III)

to automatically install the generated libraries and execute

the corresponding notebooks. Experimental results show that

SnifferDog can successfully generate installation requirements

for 315 (92.65%) notebooks, among which 284 are successfuly

executed, giving a recall rate at 83.52%.

The installation failures are mainly related to library com-

patibility issues brought by the selected Python version (which

is usually not provided by notebook contributors) and the

underline Python setuptools [18]. For the 31 non-executable

cases, our manual investigation reveals that the failures (8

ImportError, 7 ModuleNotFoundError and 16 other type of

rumtime errors) are caused by inaccurate version constraints

yielded by SnifferDog.

RQ5: (in-the-lab) How accurate is SnifferDog in inferring

environment dependencies for Python Jupyter notebooks?

In a lab setting, SnifferDog is effective in automatically in-

ferring execution environments for Jupyter notebooks, suc-

cessfully generating installation requirements for 315/340

(92.6%) of notebooks. 284/315 (90.2%) of notebooks could

be executed automatically.

2) In-the-field experiment: In this setting, we randomly

select 5,000 notebooks and launch SnifferDog to generate

execution environments for them. SnifferDog completes its

analysis in 18,141.29 seconds, or 3.63 seconds per notebook

on average.

We now check to which extent the generated environments

support the execution of notebooks. To reduce human influence

to a minimum, we restrict ourselves to a subset of notebooks

to fulfill this purpose as it is time-consuming to evaluate a

notebook, which involves installing all the dependencies and

executing all of its code cells. To this end, we apply the

following inclusion criteria to retain notebooks that (1) have

been provided with pre-defined dependencies, which, however,

cannot support their executions, and (2) are within the capacity

of our API bank. This gives us 722 notebooks for the in-the-

wide experiment.

Among the 722 notebooks, SnifferDog can successfully

generate installable dependencies for 667 of them, among

which 223 of them can further lead to successful executions

of the corresponding notebooks.

Note that over half of the notebooks remain non-executable.

Why is that so? Our manual analysis reveals the following two

main reasons (apart from issues raised by notebooks’ code

qualities).

• Reason 1: The majority of notebooks fail to be executed

because of the existence of so-called optional dependen-

cies, which are not directly accessed by the notebooks

(hence overlooked by SnifferDog) but are required by the

notebooks’ directly dependent libraries.

• Reason 2: A number of failed notebooks are due to

the usage of magic functions, a special Jupyter notebook

feature allowing the access of Python modules without

following Python’s syntax [19]. At the moment, magic

functions are simply ignored by SnifferDog.

Moreover, for the failed notebooks, we further look into

their error messages and compare them against that outputed

from executions with their own dependencies (considered

as the Baseline). In this experiment, only such notebooks

that fail on both sides are considered. Figure 9 presents the

comparison results. Clearly, the number of errors related to the

execution environment for SnifferDog is significantly smaller

than that of the Baseline. Oppositely, SnifferDog leads to

more errors related to the code quality of the notebooks (e.g.,

FileNotFound, NameError, or HTTPError) compared to that

of the Baseline. This experimental result shows that, while the

notebooks fail to be executed in both environmental settings,

the settings resulted from SnifferDog are more likely to be





messages. While, in principle, DockerizeMe could also be ap-

plied to fully analyzed Jupyter notebooks, there are important

conceptual differences compared to ours. First, DockerizeMe

only considers the latest version of packages. It hence cannot

deal with programs containing deprecated, removed, renamed

APIs in the latest version of packages. Indeed, as empirically

reported by Horton et al. [20] by an empirical study about

the executability of Python code snippets on GitHub. Their

experimental results show that most gists are not executable

in a default Python environment, and while a naive approach

can infer dependencies for some gists, it fails to do so in the

majority of cases. Second, DockerizeMe does not execute code

to validate its findings, let alone compare results against pub-

lished results—whereas SnifferDog automatically determines

the configuration that makes the notebook executable, ideally

even reproducing the results. The authors further proposed

the tool V2 that takes the program crashes information to

guide the search for correct environment dependencies [21].

However this approach relies on repeated execution of code

snippets and does not handle the case when no crash happen

and dependencies are incorrect. On the contrary, SnifferDog

is a static approach that analyzes dependencies using pre-built

knowledge.

B. Studies on Jupyter Notebooks

Despite their popularity, research on Jupyter notebooks is

still limited. In 2019, Pimentel et al. conducted a large scale

study on the executability and reproducibility issues of over

one million selected notebooks [1]. Their experimental results

show that around 25% of the notebooks can be executed

without any runtime errors, and among which only 4.03% of

them can eventually produce the original results. Loenzen et

al. [22] empirically investigate the code duplication and reuse

in Jupyter notebooks and find that notebook repositories have

a mean self-duplication rate of 7.6%. More recently, Wang

et al [23] conduct a large scale study on the code quality

and empirically find that even notable Jupyter notebooks are

frequently suffered from technical debts (e.g., deprecated API

uses).

Following the discovery of low-reproducibility issues

among Jupyter notebooks, Wang et al. [2] went further to

propose to address the root causes leading to non-reproducible

notebooks by offering the community a tool called Osiris. This

tool attempts to reproduce Jupyter notebooks by leveraging

code instrumentation to find out and address the uncertainties

when executing Jupyter notebooks. However, due to a lack

of appropriate execution environments, around 80% selected

notebooks failed to be fully executed. Following this research

line, Fangohr et al. [24] have further proposed another tool

called nbval (implemented as a plugin for pytest) aiming at

supporting automated testing and validation of Jupyter note-

books. As argued by the authors, nbval could be leveraged to

promote reproducible science such as checking that deployed

software behaves as its documentation suggests.

In addition to researches from the Software Engineering

community, Jupyter notebooks have been selected frequently

as subjects by our fellow researchers in other domains [25]–

[33]. For example, Perkel et al. [3] have studied why Jupyter

notebooks are popular among data scientists. Kery et al. [26]

have introduced a tool named Verdant to support users with

efficient retrieval and sensemaking of messy version data. It

allows users to compare, replay, and trace the relationships

amongst different versions of artifacts of both non-code and

code in the editors. Furthermore, Rule et al. [34] look into the

notebooks from the aspects of human factors, and empirically

observed that computational notebooks may lack the explana-

tory textual information.

C. Dependency Analysis

One of the most representative ones targeting Python de-

pendencies would be the work recently proposed by Ying

et al., who attempt to resolve dependency conflicts in the

Python library Ecosystem [35]. They designed and imple-

mented a tool named Watchman to detect dependency conflicts

among libraries indexed by the PyPI repository. They also

reported 117 potential dependency issues to the developers

of the corresponding projects. Despite Python has become

one of the most popular programming languages nowadays,

studies on Python projects focus on library API issues and

their evolution patterns [36], [37], there has not been much

relevant research aiming at resolving Python dependencies.

Nevertheless, dependency analysis has been a hot research

topic for many other programming languages [38]–[44]. The

concepts of these approaches, such as resolving compatibility

issues caused by the evolution of libraries [45], [46], auto-

mated replacing outdated libraries [47], or updating deprecated

library APIs [48], we believe, should also be appliable to

Python software applications.

VII. CONCLUSION AND FUTURE WORK

Jupyter notebooks may be touted as a prime means to

obtain reproducible and replicable research results. In practice,

however, they suffer from problems that Software Engineering

has solved long ago: bad code quality, insufficient docu-

mentation, and—as shown in this paper—little to nonexistent

management of dependencies. It will take time until the

community of Jupyter notebook authors will learn to see their

notebooks not only as entities to be published, but also as

living code that should be designed to be readable, reusable,

and maintainable. Until then, it will be up to the Software

Engineering community to reverse engineer notebooks such

that they can be executed and tested.

In this paper, we have taken a major step towards this

goal, namely restoring the execution environments of Jupyter

notebooks. We found that dependencies are hardly ever

stated explicitly, and that this problem seriously impedes re-

execution of Jupyter notebooks. By analyzing imports and

API usages in notebooks and matching them against Python

libraries in various versions, our tool SnifferDog can identify

library candidates that were used for notebook creation. By

searching for candidate configurations that make the notebook

executable again (and hence fully reproducible), SnifferDog



provides notebook users with essential information that makes

notebooks usable again. Given the popularity of notebooks,

SnifferDog thus shows how Software Engineering can make

an important contribution towards reproducible and extensible

science.

There is still lots to do, though. Our future work will focus

on the following topics:

Larger API Bank. Our API bank is only built based on

488 libraries. While these make up the most popular

libraries, having a larger API Bank will further extend

the capability of our approach.

Python and C code. A small number of “Cython” libraries

combine both C and Python syntax to achieve C-like

performances, letting a small set of library APIs be

overlooked.

Advanced features. As already stated in Section V, some

advanced Jupyter notebook and Python features are not

yet supported by SnifferDog, notably magic functions and

indirect dependencies.

Beyond Python. The SnifferDog principles are not limited to

Python. We plan to extend SnifferDog to other popular

Jupyter notebook languages such as R and Julia.

Beyond notebooks. The SnifferDog principles also extend

beyond notebooks. SnifferDog could be equally applied to

C source code to determine which library versions would

be required for construction and execution. A version of

SnifferDog for LATEX that automatically determines re-

quired packages and versions may be especially welcome

in scientific communities.

SnifferDog is available as open source (with explicit depen-

dencies, of course). A complete replication package including

all experimental data is available at

https://github.com/SMAT-Lab/SnifferDog.git
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