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Abstract Statistical fault localization is an easily deployed technique for
quickly determining candidates for faulty code locations. If a human program-
mer has to search the fault beyond the top candidate locations, though, more
traditional techniques of following dependencies along dynamic slices may be
better suited. In a large study of 457 bugs (369 single faults and 88 multiple
faults) in 46 open source C programs, we compare the effectiveness of statis-
tical fault localization against dynamic slicing. For single faults, we find that
dynamic slicing was eight percentage points more effective than the best per-
forming statistical debugging formula; for 66% of the bugs, dynamic slicing
finds the fault earlier than the best performing statistical debugging formula.
In our evaluation, dynamic slicing is more effective for programs with single
fault, but statistical debugging performs better on multiple faults. Best results,
however, are obtained by a hybrid approach: If programmers first examine at
most the top five most suspicious locations from statistical debugging, and
then switch to dynamic slices, on average, they will need to examine 15% (30
lines) of the code. These findings hold for 18 most effective statistical debug-
ging formulas and our results are independent of the number of faults (i.e.
single or multiple faults) and error type (i.e. artificial or real errors).
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Monash University, Melbourne, Australia
E-mail: marcel.boehme@acm.org

Andreas Zeller
CISPA – Helmholtz Center for Information Security, Saarbrücken, Germany
E-mail: zeller@cispa.saarland

ar
X

iv
:2

10
1.

03
00

8v
1 

 [
cs

.S
E

] 
 8

 J
an

 2
02

1



2 Ezekiel Soremekun et al.

1 Introduction

In the past 20 years, the field of automated fault localization (AFL) has found
considerable interest among researchers in Software Engineering. Given a pro-
gram failure, the aim of fault localization is to suggest locations in the program
code where a fault in the code causes the failure at hand. Locating a fault is
an obvious prerequisite for removing and fixing it; and thus, automated fault
localization brings the promise of supporting programmers during arduous
debugging tasks. Fault localization is also an important prerequisite for auto-
mated program repair, where the identified fault locations serve as candidates
for applying the computer-generated patches (Le Goues et al., 2012; Nguyen
et al., 2013; Kim et al., 2013; Qi et al., 2014).

The large majority of recent publications on automated fault localization
fall into the category of statistical debugging (also called spectrum-based fault
localization (SBFL)), an approach pioneered 18 years ago (Jones et al., 2002;
Zheng et al., 2003; Liblit et al., 2005). A recent survey (Wong et al., 2016)
lists more than 100 publications on statistical debugging. The core idea of
statistical debugging is to take a set of passing and failing runs, and to record
the program lines which are executed (“covered”) in these runs. The stronger
the correlation between the execution of a line and failure (say, because the
line is executed only in failing runs, and never in passing runs), the more we
consider the line as “suspicious”.

As an example, let us have a look at the function middle, used in (Jones
et al., 2002) to introduce the technique (see Figure 1). The middle function
computes the middle of three numbers x, y, z; Figure 1 shows its source
code as well as statement coverage for few sample inputs. On most inputs,
middle works as advertised; but when fed with x = 2, y = 1, and z = 3, it
returns 1 rather than the middle value 2. Note that the statement in Line 8
is incorrect and should read m = x. Given the runs and the lines covered in
them, statistical debugging assigns a suspiciousness score to each program
statement—a function on the number of times it is (not) executed by passing
and failing test cases. The precise function it uses differs for each statistical
debugging technique. Since the statement in Line 8 is executed most often by
the failing test case and least often by any passing test case, it is reported as
most suspicious fault location.

Statistical debugging, however, is not the first technique to automate fault
localization. In his seminal paper titled “Programmers use slices when debug-
ging” (Weiser, 1982), Mark Weiser introduced the concept of a program slice
composed of data and control dependencies in the program. Weiser argued
that during debugging, programmers would start from the location where the
error is observed, and then proceed backwards along these dependencies to find
the fault. In a debugging setting, programmers would follow dynamic depen-
dencies to find those lines that actually impact the location of interest in the
failing run. In our example (Figure 2), they could simply follow the dynamic
dependency of Line 15 where the value of m is unexpected, and immediately
reach the faulty assignment in Line 8. Consequently, on the example origi-
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∎: covered statements x 3 1 3 5 5 2
1 int middle(x, y, z) { y 3 2 2 5 3 1
2 int x, y, z; z 5 3 1 5 4 3
3 int m = z; ∎ ∎ ∎ ∎ ∎ ∎ 3

4 if (y < z) { ∎ ∎ ∎ ∎ ∎ ∎ 4

5 if (x < y) ∎ ∎ 2 2 ∎ ∎ 5

6 m = y; 2 ∎ 2 2 2 2 6

7 else if (x < z) ∎ 2 2 2 ∎ ∎ 7

8 m = y; ∎ 2 2 2 2 ∎ 8

9 } else { 2 2 ∎ ∎ 2 2 9

10 if (x > y) 2 2 ∎ ∎ 2 2 10

11 m = y; 2 2 ∎ 2 2 2 11

12 else if (x > z) 2 2 2 ∎ 2 2 12

13 m = x; 2 2 2 2 2 2 13

14 } 2 2 2 2 2 2 14

15 return m; ∎ ∎ ∎ ∎ ∎ ∎ 15

16 } 4 4 4 4 4 8

Fig. 1 Statistical debugging illustrated (Jones and Harrold, 2005): The middle function
takes three values and returns that value which is greater than or equals the smallest and
less than or equals the biggest value; however, on the input (2, 1, 3), it returns 1 rather than
2. Statistical debugging reports the faulty Line 8 (in bold red) as the most suspicious one,
since the correlation of its execution with failure is the strongest.

nally introduced to show the effectiveness of statistical debugging (Figure 1),
the older technique of dynamic slicing is just as effective (see Figure 2).

Thus, we investigate the fault localization effectiveness of the most effec-
tive statistical debugging formulas against dynamic program slicing. A few
researchers have empirically evaluated the fault localization effectiveness of
different slicing algorithms (Zhang et al., 2007, 2005). However, they did not
compare the effectiveness of slicing to that of statistical debugging. To the
best of our knowledge, this is the first empirical study to evaluate the fault
localization effectiveness of program slicing versus (one of) the most effective
statistical debugging formulas. This is also one of the largest empirical stud-
ies of fault localization techniques, evaluating hundreds of faults (707) in C
programs.

In this paper, we use four benchmarks with 35 tools, 46 programs and
457 bugs to compare fault localization techniques against each other. This set
of bugs comprises of 295 real single faults, 74 injected single faults, and 88
injected multiple faults containing about four faults per program, on average.
In total, we had 707 program faults. Our takeaway findings are as follows:

1. Top ranked locations in statistical debugging can pinpoint the
fault. If one is only interested in a small set of candidate locations, statis-
tical debugging frequently pinpoints the faults, it correctly localizes 33%
of faults after inspecting only the single most suspicious code location. It
outperforms dynamic slicing in the top 5% of the most suspicious locations,
by localizing faults in twice as many buggy programs as dynamic slicing.
In our experiments, looking at only the top 5% of the most suspicious code
locations, statistical debugging would reveal faults for 6% of all buggy pro-
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1. INTRODUCTION
In the past 20 years, the field of automated fault localization has

found considerable interest among researchers in Software Engi-
neering. Given a program failure, the aim of fault localization is
to suggest locations in the program code where a fault in the code
causes the failure at hand. Locating a fault is an obvious prerequi-
site for removing and fixing it; and thus, automated fault localiza-
tion brings the promise of supporting programmers during arduous
debugging tasks. Fault localization is also an important prerequisite
for automated program repair, as the locations suggested by fault
localization would serve as candidates where to apply synthesized
fixes.

The large majority of today’s publications on automated fault
localization fall into the category of Statistical Debugging, an ap-
proach pioneered more than 15 years ago by both Liblit [?] as well
as Jones, Stasko, and Harrold [?]. Today, a recent survey by Wong
et al. [?] lists more than 100 publications on statistical debugging
in the past 15 years.
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⌅: covered statements x 3 1 3 5 5 2
1 int middle(x, y, z) { y 3 2 2 5 3 1
2 int x, y, z; z 5 3 1 5 4 3
3 int m = z; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 3
4 if (y < z) { ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 4
5 if (x < y) 2 ⌅ 2 2 2 2 5
6 m = y; 2 ⌅ 2 2 2 2 6
7 else if (x < z) ⌅ 2 2 2 ⌅ ⌅ 7
8 m = y; ⌅ 2 2 2 2 ⌅ 8
9 } else { ⌅ 2 ⌅ ⌅ 2 2 9

10 if (x > y) 2 2 ⌅ 2 2 2 10
11 m = y; 2 2 ⌅ 2 2 2 11
12 else if (x > z) 2 2 2 2 2 2 12
13 m = x; 2 2 2 2 2 2 13
14 } 2 2 2 2 2 2 14
15 return m; ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 15
16 } 4 4 4 4 4 8

Figure 1: Statistical Debugging illustrated [?]: The middle
function takes three values and returns the middle one; how-
ever, on the input (2, 1, 3), it returns 1 rather than 2. Statis-
tical Debugging reports the faulty Line 8 as the most suspi-
cious one, since the correlation of its execution with failure is
the strongest.

The core idea of statistical debugging is to take a set of passing
and failing runs, and to record which program lines would be exe-
cuted (“covered”) in these runs. If there is a correlation between the
execution of a line and failure (say, because this line is only exe-
cuted in failing runs, and never in passing runs), then the line would
be flagged as “suspicious”; and the stronger the correlation and the
higher the support, the more suspicious a line would become.

To illustrate Statistical Debugging, let us have a look at the middle
function, pioneered in [?] to introduce the technique. middle
computes the middle of three numbers x, y, z; ?? shows its source
code as well as a few sample inputs. On most inputs, middle
works as advertised; but when fed with x = 2, y = 1, and z = 3,
it returns 1 rather than the middle value 2. Given the runs and the
lines covered in each, Statistical Debugging now determines statis-
tical correlations between each line being executed and the program
failing. This correlation is the strongest in Line 8, which also hap-
pens to be the fault location.

Statistical Debugging, however, is not the first technique to auto-
mate fault, localization. In his seminal paper of 1985 “Program-
mers use slicing when debugging”, Mark Weiser introduced the
concept of a program slice composed of data and control dependen-
cies in the program, and argued that during debugging, program-
mers would start from a faulty value, and then proceed backwards
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cious one, since the correlation of its execution with failure is
the strongest.

The core idea of statistical debugging is to take a set of passing
and failing runs, and to record which program lines would be exe-
cuted (“covered”) in these runs. If there is a correlation between the
execution of a line and failure (say, because this line is only exe-
cuted in failing runs, and never in passing runs), then the line would
be flagged as “suspicious”; and the stronger the correlation and the
higher the support, the more suspicious a line would become.

To illustrate Statistical Debugging, let us have a look at the middle
function, pioneered in [?] to introduce the technique. middle
computes the middle of three numbers x, y, z; ?? shows its source
code as well as a few sample inputs. On most inputs, middle
works as advertised; but when fed with x = 2, y = 1, and z = 3,
it returns 1 rather than the middle value 2. Given the runs and the
lines covered in each, Statistical Debugging now determines statis-
tical correlations between each line being executed and the program
failing. This correlation is the strongest in Line 8, which also hap-
pens to be the fault location.

Statistical Debugging, however, is not the first technique to auto-
mate fault, localization. In his seminal paper of 1985 “Program-
mers use slicing when debugging”, Mark Weiser introduced the
concept of a program slice composed of data and control dependen-
cies in the program, and argued that during debugging, program-
mers would start from a faulty value, and then proceed backwards

Fig. 2 Dynamic slicing illustrated (Jones and Harrold, 2005): The middle return value in
Line 15 can stem from any of the assignments to m, but only those in Lines 3 and 8 are
executed in the failing run. Following back the dynamic dependency immediately gets the
programmer to Line 8, the faulty one.

grams, twice as many as slicing (3% of buggy programs). This result is
important for automatic program repair (APR) techniques, as the search
for possible repairs can only consider a limited set of candidate locations;
also, the repair attempt is not necessarily expected to succeed.

2. If one must fix a (single-fault) bug, dynamic slicing is more ef-
fective.1 In our experiments, dynamic slicing is 62% more likely to find
the fault location earlier than statistical debugging, for single faults. In
absolute terms, locating faults along dynamic dependencies requires pro-
grammers to examine on average 21% of the code (40 LoC); whereas the
most effective statistical debugging techniques require 26% (51 LoC). Not
only is the average better; the effectiveness of dynamic slicing also has a
much lower standard deviation and thus is more predictable. Both features
are important for human debuggers, as they eventually must find and fix
the fault: If they follow the dynamic slice from the failing output, they will
find the fault quicker than if they examine locations whose execution cor-
relates with failure. Moreover, dynamic slicing needs only the failing run,
whereas statistical debugging additionally requires multiple similar passing
runs. Although dynamic slicing is more effective on single faults, statistical
debugging performs better on multiple faults (see RQ7 ).

3. Programmers can start with statistical debugging, but should
quickly switch to dynamic slicing after a few locations. In our ex-
periments, it is a hybrid strategy that works best: First consider the top
locations of statistical debugging (if applicable), and then proceed along
the dynamic slice. In our experiments, the hybrid approach is significantly

1 In our evaluation, dynamic slicing is more effective than SBFL on single faults. However,
other factors such as multiple faults (see RQ7 ), test generation (Yang et al., 2017), test
reduction (Yu et al., 2008) and program sizes may influence its effectiveness (see RQ6 and
Section 6).
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more effective than both slicing and statistical debugging. For most errors
(98%), the hybrid approach localizes the fault within the top-20 most sus-
picious statements, in contrast, both slicing and statistical debugging will
localize faults for most errors (98%) after inspecting about five times as
many statements (100 LoC). Notably, the hybrid approach is more effec-
tive than statistical debugging and dynamic slicing, regardless of the error
type (real/artificial) and the number of faults (single/multiple) in a buggy
program (see RQ6 and RQ7, respectively).

The remainder of this paper is organized as follows. After introducing dynamic
slicing and statistical debugging in Section 2, this paper makes the following
key contributions:

1. Section 3 presents a hybrid approach that merges both dynamic slicing and
statistical debugging into a strategy, where the developer switches to slicing
after investigating a handful of the most suspicious statements reported by
statistical debugging.

2. We describe our evaluation setup (Section 4) and empirically evaluate the
fault localization effectiveness of dynamic slicing, statistical debugging and
our hybrid approach (RQ1 to 5 in Section 5).

3. We conduct an empirical study on the effect of error type and the number
of faults on the effectiveness of AFL techniques. We examine the difference
between evaluating an AFL technique on real vs. artificial faults (RQ6 in
Section 5), as well as single vs. multiple faults (RQ7 in Section 5).

In Section 6, we discuss the limitations and threats to the validity of this work.
Section 7 and Section 8 present future work and related work, respectively.
Finally, Section 9 closes with conclusion and consequences.

The contributions and findings of this paper are important for debugging
and repair stakeholders. Programmers, debugging tools and automated pro-
gram repair (APR) tools need effective fault localization techniques, in order
to reduce the amount of time and effort spent (automatically) debugging and
fixing errors. These findings enable APR tools, debuggers and programmers
to be effective and efficient in bug diagnosis and bug fixing.

2 Background

In this section, we provide background on the two main AFL techniques eval-
uated in this paper, namely program slicing and statistical debugging.

2.1 Program Slicing

More than three decades ago, Mark Weiser (Weiser, 1982, 1981) noticed that
developers localize the root cause of a failure by following chains of statements
starting from where the failure is observed. Starting from the symptomatic
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statement s, where the error is observed, developers would identify those pro-
gram locations that directly influence the variable values or execution of s.
This traversal continues transitively, until the root cause of the failure (i.e.,
the fault) is found. This procedure allows developers to investigate those parts
of the program involved in the infected information-flow in reversed order
towards the location where the failure is first observed.

2.2 Static Slicing

Weiser developed program slicing as the first automated fault localization tech-
nique (Weiser, 1982). A programmer marks the statement where the failure
is observed (i.e., the failure’s symptom) as slicing criterion C. To determine
the potential impact of one statement onto another, the program slicer first
computes the Program Dependence Graph (PDG) for the buggy program.

The PDG is a directed graph with nodes for each statement and an edge
from a node s to a node s′ if

1. statement s′ is a conditional (e.g., an if-statement) and s is executed in a
branch of s′ (i.e., the values in s′ control whether or not s is executed), or

2. statement s′ defines a variable v that is used at s and s may be executed
after s′ without v being redefined at an intermediate location (i.e., the
values in s′ directly influence the value of the variables in s).

The first condition elicits control dependence while the second elicits data de-
pendence. The PDG essentially captures the information-flow among all state-
ments in the program. If there is no path from node n to node n′, then the
values of the variables at n have definitely no impact on the execution of n′

or its variable values.
The static program slice (Weiser, 1981; Tip, 1995) computed w.r.t. C con-

sists of all statements that are reachable from C in the PDG. In other words,
it contains all statements that potentially impact the execution and program
states of the slicing criterion. Note that static slicing only removes those state-
ments that are definitely not involved in observing the failure at C. The state-
ments in the static slice may or may not be involved. Static program slices are
often very large (Binkley et al., 2007).

2.3 Dynamic, Relevant, and Execution Slicing

A dynamic program slice (Korel and Laski, 1988; Agrawal and Horgan, 1990)
is computed for a specific failing input t and is thus much smaller than a
static slice. It is able to capture all statements that are definitely involved
in computing the values that are observed at the location where the failure
is observed for failing input t. Specifically, the dynamic slice computed w.r.t.
slicing criterion C for input t consists of all statements whose instances are
reachable from C in the Dynamic Dependence Graph (DDG) for t. The DDG



Locating Faults with Program Slicing: An Empirical Analysis 7

for t is computed similarly as the PDG, but the nodes are the statement
instances in the execution trace π(t). The DDG contains a separate node
for each occurrence of a statement in π(t) with outgoing dependence edges
to only those statement instances on which this statement instance depends
in π(t) (Agrawal and Horgan, 1990). However, an error is not only explained
by the actual information-flow towards C. It is important to also investigate
statements that could have contributed towards an alternative, potentially
correct information-flow.

The relevant slice (Agrawal et al., 1993; Gyimóthy et al., 1999) computed
for a failing input t subsumes the dynamic slice for t and also captures the fact
that the fault may be in not executing an alternative, correct path. It adds
conditional statements (e.g., if-statements) that were executed by t and if
evaluated differently may have contributed to a different value for the variables
at C. It requires computing (static) potential dependencies. In the execution
trace π(t), a statement instance s potentially depends on conditional statement
instance b if there exists a variable v used in s such that (i) v is not defined
between b and s in trace π(t), (ii) there exists a path σ from ϕ(s) to ϕ(b)
in the PDG along which v is defined, where ϕ(b) is the node in the PDG
corresponding to the instance b, and (iii) evaluating b differently may cause this
untraversed path σ to be exercised. Qi et al. (2013) proved that the relevant
slice w.r.t. C for t contains all statements required to explain the value of C
for t.

The approximate dynamic slice (Agrawal et al., 1990; Korel and Laski,
1988) is computed w.r.t. slicing criterion C for failing input t as the set of
executed statements in the static slice w.r.t. C. The approximate dynamic slice
subsumes the dynamic slice because there can be an edge from an instance s
to an instance s′ in the DDG for t only if there is an edge from statement ϕ(s)
to statement ϕ(s′) in the PDG. The approximate dynamic slice subsumes
the relevant slice because it also accounts for potential dependencies: Suppose
instance s potentially depends on instance b in execution trace π(t). Then, by
definition there exists a path σ from ϕ(s) to ϕ(b) in the PDG along at least
one control- and one data-dependence edge (via the node defining v); and if
ϕ(s) is in the static slice, then ϕ(b) is as well. Note that the approximate
dynamic slice is (1) easier to compute than dynamic slices (static analysis),
(2) significantly smaller than the static slice, and still (3) as “complete” as
the relevant slice. In summary, dynamic slice ⊆ relevant slice ⊆ approximate
dynamic slice ⊆ static slice.

Figure 3 (a) and (b) show the static and the dynamic slice for the middle

program, respectively. The slicing criterion was chosen as the return statement
of the program—that statement where the failure is observed. As test case, we
chose the single failing test case x = 2, y = 1, and z = 3. In this example, the
approximate dynamic slice matches exactly the dynamic slice. For our eval-
uation, we implemented approximate dynamic slicing, and in our evaluation
results and discussions we refer to approximate dynamic slicing as “dynamic
slicing”.
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Fig. 3 Slicing Example: Nodes are statements in each line of the middle program (see
Figure 1). Control-dependencies are shown as dashed lines while data dependencies are
shown as concrete lines.

2.4 Statistical Debugging

Almost two decades ago, Jones et al. (2002) introduced the first statistical
debugging technique – Tarantula, quickly followed by Zheng et al. (2003)
and Liblit et al. (2005). The main idea of statistical debugging is to associate
the execution of a particular program element with the occurrence of failure
using so-called suspiciousness measures. Program elements (like statements,
basic blocks, functions, components, etc.) that are observed more often in
failed executions than in correct executions are deemed as more suspicious. A
program element with a high suspiciousness score is more likely to be related
to the root cause of the failure. An important property of statistical debugging
is that apart from measuring coverage, it requires no specific static or dynamic
program analysis. This made it easy to implement and deploy, in particular
as part of several automated program repair techniques (Le Goues et al., 2012;
Nguyen et al., 2013; Kim et al., 2013; Qi et al., 2014), which first consider
the highest ranked, most suspicious elements as patch location. Using a more
effective debugging technique thus directly increases the effectiveness of such
repair techniques.

Figure 4 shows the scores computed for the executable lines in our mo-
tivating example. The statement in Line 8 is incorrect and should read m =

x; instead. This statement is also the most suspicious according to all three
statistical fault localization techniques in the example. Notice that only twelve
(12) lines are actually executable. Evidently, in this example from Jones and
Harrold (Jones and Harrold, 2005), the faulty statement is also the most sus-
picious for these three statistical fault localization techniques.2

2 The scores for the faulty statement in Line 8 are tarantula(s8) =
1
1
/ (

1
1
+

1
5
),

ochiai(s8) =
1

√

1(1+1)
, and naish2(s8) = 1 − 1

1+4+1
.
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In this paper, we focus on four sets of measures consisting of 18 statistical
fault localization formulas; namely seven human-generated optimal measures,
three most popular measures, four Genetic Programming (GP) evolved mea-
sures and four measures targeted at single bug optimality.

1. Human-generated measures: The first set of measures includes two
DStar (D∗) formulas and five formulas which have been theoretically
proven to be optimal and found to be the most effective in existing stud-
ies (Xie et al., 2013b). These formulas include Wong1, Russel Rao, Binary,
Naish1 and Naish2 (Wong et al., 2012, 2013, 2007; Russel et al., 1940;
Naish et al., 2011). For the DStar algorithm, we have selected “star”
(∗) values two and three (i.e., D∗ = {D2,D3

}) which have been demon-
strated to be the most effective values for single and multiple faults, re-
spectively (Wong et al., 2012, 2013). The other five measures were selected
in a theoretical evaluation of over 50 formulas and recommended as the
only optimal formulas to be applied for statistical fault localization (Xie
et al., 2013a,b).

2. Popular measures: These measures are the most popular statistical fault
localization measures, Tarantula, Ochiai, and Jaccard (Jones et al., 2002;
Abreu et al., 2006; Chen et al., 2002; Abreu et al., 2007). They have been
used in recent automated program repair (APR) techniques and have been
shown to improve the effectiveness of program repair (Nguyen et al., 2013;
Assiri and Bieman, 2016).

3. Genetic Programming (GP) evolved measures: These measures are
GP-evolved formulas, which have been found to be human-competitive
(comparable to human-generated measures) and theoretically maximal (i.e.,
the best performing measures), namely GP02, GP03, GP13 and GP19 (Yoo,
2012).

4. Single Bug Optimal measures: These statistical formulas are opti-
mized for programs containing a single bug, based on the observation that
if a program contains only a single bug, then all failing traces cover that
bug (Naish and Lee, 2013). These measures have been empirically demon-
strated to be optimal in a large-scale comparison of 157 measures. The
single bug optimal measures in our study include m9185, Kulczynski2

LexOchiai and Pattern-Similarity. In particular, LexOchiai and Patt-

ern-Similarity measures perform best overall (Landsberg, 2016; Lands-
berg et al., 2015).

3 A Hybrid Approach

Even though dynamic slicing is generally more effective than statistical de-
bugging, we observe that statistical debugging can be highly effective for some
bugs, especially when inspecting only the top most suspicious statements. For
instance, statistical debugging can pinpoint a single faulty statement as the
most suspicious statement for about 40% of the errors in IntroClass and SIR,
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1 int middle(x, y, z) { Tarantula Ochiai Naish2
2 int x, y, z; 0.500 0.408 0.167
3 int m = z; 0.500 0.408 0.167
4 if (y < z) { 0.500 0.408 0.167
5 if (x < y) 0.625 0.500 0.500
6 m = y; 0.000 0.000 −0.167
7 else if (x < z) 0.714 0.578 0.667
8 m = y; 0.833 0.707 0.833
9 } else { 0.000 0.000 −0.333

10 if (x > y) 0.000 0.000 −0.333
11 m = y; 0.000 0.000 −0.167
12 else if (x > z) 0.000 0.000 −0.167
13 m = x; 0.000 0.000 0.000
14 } 0.000 0.000 0.000
15 return m; 0.500 0.408 0.167
16 }

Fig. 4 Statistical Fault Localization Example: Scores for the faulty line 8 are in bold red

i.e. a developer can find a faulty statement after inspecting only one suspicious
statement (see Figure 8). This is further illustrated by the clustering of some
points in the rightmost corner below the diagonal line of the comparison charts
(see Figure 7).

In this paper, we assume that a programmer in the end has to fix a bug,
and a viable “alternative” method is following the dependencies by (dynamic)
slicing. To this end, we investigate a hybrid fault localization approach which
leverages the strengths of both dynamic slicing and statistical debugging. The
goal is to improve on the effectiveness of both approaches by harnessing the
power of statistical correlation and dynamic program analysis. The hybrid
approach first reports the top most suspicious statements (e.g. top five state-
ments) before it reports the statements in the dynamic slice computed w.r.t.
the symptomatic statement.

The concept of examining only the top most suspicious statements is
also backed by user studies on statistical fault localization. In a recent sur-
vey (Kochhar et al., 2016), Kochhar et al. found that three quarter of surveyed
practitioners would investigate no more than the top-5 ranked statements—
which should contain the faulty statement at least three out of four times—
before switching to alternative methods. This is also confirmed by the study
of Parnin and Orso (Parnin and Orso, 2011), who observed that programmers
tend to transition to traditional debugging (i.e., finding those statements that
impact the value of the symptomatic statement) after failing to locate the fault
within the first N top-ranked most suspicious statements. This transition is
exactly what the hybrid approach provides.

Specifically, the hybrid approach proceeds in two phases. In the first phase,
it reports the top N (e.g. N = 5) most suspicious statements, obtained from
the ordinal ranking3 of a statistical fault localization technique. Then, if the
fault is not found, it proceeds to the second phase where it reports the symp-

3 In ordinal ranking, lines with the same score are ranked by line number.
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tom’s dynamic backward dependencies. In the second phase, we only report
statements that have not already been reported in the first phase.4

4 Evaluation Setup

Let us evaluate the effectiveness of all three fault localization techniques and
the influence of the number of faults and error type on the effectiveness of
these AFL techniques. Specifically, we ask the following research questions:

∗ RQ1: Effectiveness of Dynamic Slicing: How effective is dynamic slic-
ing in fault localization, i.e. localizing fault locations in buggy programs?

∗ RQ2: Effectiveness of Statistical Debugging: Which statistical for-
mula is the most effective at fault localization?

∗ RQ3: Comparing Statistical Debugging and Dynamic Slicing: How
effective is the most effective statistical formula in comparison to dynamic
slicing?

∗ RQ4: Sensitiveness of the Hybrid Approach: How many suspicious
statements (reported by statistical debugging, i.e. Kulczynski2) should a
tool or developer inspect before switching to slicing?

∗ RQ5: Effectiveness of the Hybrid Approach: Which technique is the
most effective in fault localization? Which technique is more likely to find
fault locations earlier?

∗ RQ6: Real Errors vs. Artificial Errors: Does the type of error in-
fluence the effectiveness of AFL techniques? Is there a difference between
evaluating an AFL technique on real or artificial errors?

∗ RQ7: Single Fault vs Multiple Faults: What is the effect of the num-
ber of faults on the effectiveness of AFL techniques? Is there a difference
between evaluating an AFL technique on single or multiple fault(s)?

In this paper, we evaluate the performance of statistical debugging, dy-
namic slicing and the hybrid approach in the framework of Steimann, Frenkel,
and Abreu (Steimann et al., 2013) where we fix the granularity of fault lo-
calization at statement level and the fault localization mode at one-at-a-time
(except for multiple faults in RQ7). In this setting with real errors and real test
suites, the provided test suites may not be coverage adequate, e.g. they may
not execute all program statements. Fault localization effectiveness is evalu-
ated as relative wasted effort based on the ranking of units in the order they
are suggested to be examined (see Section 4.4 for more details).

4.1 Implementation

Let us provide implementation details for each AFL technique in this paper.

4 This is to avoid duplication of inspected statements, i.e. avoid double inspection.
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4.1.1 Dynamic Slicing Implementation

The approximate dynamic slice is computed using Frama-C,5 gcov, git-diff,
gdb, and several Python libraries. Given the preprocessed source files of a C
program, Frama-C computes the static slices for each function and their call
graphs as DOT files. The gcov-tool determines the executed/covered state-
ments in the program. The git-diff-tool determines the changed statements
in the patch and thus the faulty statements in the program. The gdb-tool allows
to derive coverage information even for crashing inputs and to determine the
slicing criterion as the last executed statement. Our Python script intersects
the statements in the static slice and the set of executed statements to derive
the approximate dynamic slice. We use the Python libraries pygraphviz6,
networkx,7 and matplotlib8 to process the DOT files and compute the score
for the approximate dynamic slice.

4.1.2 Statistical Debugging Implementation

The statistical debugging tool was implemented using two bash scripts with
several standard command line tools, notably gcov,9 git-diff10 and gdb11.
The differencing tool git-diff identifies those lines in the buggy program
that were changed in the patch. If the patch only added statements, we cannot
determine a corresponding faulty line. Some errors were thus excluded from
the evaluation. The code coverage tool, gcov identifies those lines in the buggy
program that are covered by an executed test case. When the program crashes,
gcov does not emit any coverage information. If the crash is not caused by
an infinite loop, it is sufficient to run the program under test in gdb and
force-call the gcov-function from gdb to write the coverage information once
the segmentation fault is triggered. This was automated as well. However,
for some cases, no coverage information could be generated due to infinite
recursion. Gcov also gives the number of executable statements in the buggy
program (i.e., ∣P ∣).12 Finally, our Python implementation of the scores is used
to compute the fault localization effectiveness.

4.1.3 Hybrid Approach Implementation

The hybrid approach is implemented simply as a combination of both tools. If
the top-N most suspicious statements do not contain the fault, the dynamic

5 http://frama-c.com/
6 https://pygraphviz.github.io/
7 https://networkx.github.io/
8 http://matplotlib.org/
9 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

10 https://git-scm.com/docs/git-diff
11 https://www.gnu.org/software/gdb/documentation/
12 The executable statements refers to statements for which coverage information are ob-

tainable by Gcov, in particular, all program statements except spaces, blanks and comments.
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slicing component is informed about the set of statements already inspected
in the first phase. Given the unranked suspiciousness score of every executable
statement in the program, the hybrid fault localizer performs an ordinal rank-
ing of all statements. It then determines the proportion of the top N rank
of suspicious statements, based on the N value of the hybrid approach. For
instance, a hybrid approach with N = 5 takes the five topmost suspicious state-
ments. Then, it determines the highest ranked faulty statement in the rank
of all suspicious statements. If the faulty statement is in the top N suspicious
positions (e.g. third position), then it reports the number of statements in
the top ranked positions up till the faulty statement, as a proportion of all
executable program statements.

In the case that the suspicious statement is not in the top N suspicious
positions (e.g. seventh position), then it proceeds to slicing and reports the
cardinality of the set union of all N top ranked statements and the number of
inspected statements in the slice before the first faulty statement.

4.2 Metrics and Measures

Odds Ratio ψ. To establish the superiority of one technique A over another
technique B, it is common to measure the effect size of A w.r.t. B. A standard
measure of effect size and widely used is the odds ratio (Grissom and Kim,
2005). It “is a measure of how many times greater the odds are that a member
of a certain population will fall into a certain category than the odds are that
a member of another population will fall into that category” (Grissom and
Kim, 2005). In our case, let “A is successful” mean that fault localization
technique A is more effective than fault localization technique B and let a be
the number of successes for A, b the number of successes for B, and n = a + b
the total number of successes. Then, the odds ratio ψ is calculated as

ψ = (

a + ρ

n + ρ − a
)/(

b + ρ

n + ρ − b
)

where ρ is an arbitrary positive constant (e.g., ρ = 0.5) used to avoid problems
with zero successes. There is no difference between the two algorithms when
ψ = 1, while ψ > 1 indicates that technique A has higher chances of success.
For example, an odds ratio of five means that fault localization technique A is
five times more likely to be successful (i.e., more effective as compared to B)
at fault localization than B.

The Mann-Whitney U -test is used to show whether there is a statistical
difference between two techniques (Mann and Whitney, 1947). In general, it is
a non-parametric test of the null hypothesis that two samples come from the
same population against an alternative hypothesis, especially that a particular
population tends to have larger values than the other. Unlike the t-test it
does not require the assumption that the data is normally distributed. More
specifically, it shows whether the difference in performance of two techniques
is actually statistically significant.
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A cumulative frequency curve is a running total of frequencies. We use
such curves to show the percentage of errors that require examining up to a
certain number of program locations. The number of code locations examined
is plotted on a log-scale because the difference between examining 5 to 10
locations is more important than difference between examining 1005 to 1010
locations.

4.3 Objects of Empirical Analysis

Programs and Bugs: We evaluated each fault localization technique using 45
C programs containing hundreds of (369) errors and thousands of (9012) fail-
ing tests (cf. Table 1). These programs were collected from four benchmarks,
in particular, three benchmarks containing real world errors, namely Intro-
Class, Codeflaws and CoREBench, and one benchmark with artificial faults,
namely the Software-artifact Infrastructure Repository (SIR). We selected
these benchmarks of C programs to obtain a large variety of bugs and pro-
grams. Each benchmark contains a unique set of programs containing errors
introduced from different sources such as developers, students, programming
competitions and fault seeding (e.g. via code mutation). These large set of
bugs allows us to rigorously evaluate each fault localization technique. The
following briefly describes each benchmark used in our evaluation:

1. Software-artifact Infrastructure Repository (SIR) is a repository designed
for the evaluation of program analysis and software testing techniques using
controlled experimentation (Hutchins et al., 1994). It contains small C
programs, with seeded errors and test suites containing thousands of failing
tests. In particular, this benchmark allows for the controlled evaluation of
the effects of large test suites on debugging activities.

2. IntroClass is a collection of small programs written by undergraduate stu-
dents in a programming course (Le Goues et al., 2015). It contains six C
programs, each with tens of instructor-written test suites. This benchmark
allows for the evaluation of factors that affect debugging in a development
scenario, especially for novice developers.

3. Codeflaws is a collection of programs from online programming competi-
tions held on Codeforces.13 These programs were collected for the com-
prehensive evaluation of debugging tools using different types of errors. It
contains 3902 errors classified across 40 defect classes in total (Tan et al.,
2017). In particular, this benchmark allows for the evaluation of fault lo-
calization techniques on different defect types.

4. CoREBench is a collection of 70 real errors that were systematically ex-
tracted from the repositories and bug reports of four open-source software
projects: Make, Grep, Findutils, and Coreutils (Böhme and Roychoud-
hury, 2014).14 These projects are well-tested, well-maintained, and widely-
deployed open source programs for which the complete version history and

13 https://codeforces.com/
14 http://www.comp.nus.edu.sg/~release/corebench/

https://codeforces.com/
http://www.comp.nus.edu.sg/~release/corebench/


Locating Faults with Program Slicing: An Empirical Analysis 15

Table 1 Details of Subject Programs

Benchmark Tool Avg. Size #Errors #Fail. #Pass.
(Error Type) (Program) (LoC) Tests Tests

SIR
(Artificial)

tcas 65.1 37 1356 58140
print tokens 199 3 184 12206
print tokens2 199.5 8 2031 30889
tot info 125 18 1528 17408
schedule 160.5 4 690 9910
schedule2 139.2 4 116 10724

IntroClass
(Real;

Students)

checksum 11.3 3 7 41
digits 17.4 3 16 32
grade 16.1 8 30 114
median 13.5 2 8 18
smallest 13.2 2 16 16
syllables 11.6 2 12 20

Codeflaws
(Real;

Competitions)

WTLW (71A) 10.3 11 60 61
HQ9+ (133A) 10.9 18 270 1260
AG (144A) 24.5 13 302 202
IB (478A) 8.6 20 31 329
TN (535A) 61.2 9 118 778
Exam (534A) 17.5 12 108 68
Holidays (670A) 12.8 9 662 1118
DC (495A) 14.5 13 96 279
VBT(336A) 13.6 14 108 309
PP(509B) 21.2 16 84 98
DHHF (515B) 29.5 15 127 707
HVW2 (143A) 17.5 16 124 707
Ball Game (46A) 10 8 114 148
WE (31A) 14.4 14 187 200
LM (146B) 29.5 11 116 355
SG (570B) 7.5 11 69 531
WD (168A) 7.7 9 132 254
Football (417C) 13.2 13 64 352
MS (218A) 16.5 10 156 156
Joysticks (651A) 12.6 8 66 246

CoREBench
(Real;

Developers)

core. (cut) 306 4 4 6
core. (rm) 110 1 1 63
core. (ls) 1605.5 2 2 73
core. (du) 315 1 1 28
core. (seq) 219.7 3 3 5
core. (expr) 321 1 1 1
core. (copy) 897 1 1 59
find (parser) 119.3 3 3 286
find (ftsfind) 211.5 2 2 183
find (pred) 825 2 2 235
grep (dfasearch) 181.5 2 2 46
grep (savedir) 64 1 1 15
grep (kwsearch) 77 2 2 46
grep (main) 853.5 2 2 45

Total 35 (46) 369 9012 148767
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all bug reports can be publicly accessed. All projects come with an exten-
sive test suite. CoREBench allows for the evaluation of fault localization
techniques on real world errors (unintentionally) introduced by develop-
ers. It has been used in several debugging studies, including a study that
investigates how developers debug and fix real faults (Böhme et al., 2017).

Table 1 lists all the programs and bugs investigated in our study. We use
six programs each from the SIR and IntroClass benchmarks. This includes
tcas – this program is the most well-studied subject according to a recent
survey on fault localization (Wong et al., 2016). We selected 20 programming
competitions from Codeflaws, including popular and difficult contests, such as
“Tavas and Nafas (535A)” and “Lucky Mask (146B)”. From CoREBench, we
used three projects, namely the Coreutils, Grep and Find project. Notably,
all projects in CoREBench come from the GNU open source C programs,
in particular, these three projects contain a total of 103 tools. Due to code
modularity, the program size for a single tool (e.g. cut in coreutils) con-
tains a few hundred LoC (about 306 LoC), however, the entire code base for
CoREBench is fairly large. For instance, Coreutils, Grep and Find have 83k,
18k and 11k LoC, respectively (Böhme and Roychoudhury, 2014). For each
benchmark, we exempted programs where Frama-C could not construct the
Program Dependence Graph (PDG). For instance, because it cannot handle
some recursive or variadic method calls. In addition, we excluded an error if
no coverage information could be generated (e.g., infinite loops) or the faulty
statement could not be identified (e.g., omission faults where the patch only
added statements).

Single Faults: For our evaluation (all RQs except RQ7), we used buggy
programs collected from four well-known benchmarks, where programs con-
tained only a single fault. To determine single faults in our bug dataset, for
each program, we executed all tests available for a project on the fixed version
of the program, in order to determine if there are any failing test cases that
are unrelated to the bug at hand. Our evaluation revealed that our dataset
contained mostly single bugs (368/369=99.7%). Almost all buggy program
versions had exactly one fault, except for a single program – Codeflaws ver-
sion DC 495A. For all benchmarks, only this program contained multiple faults,
i.e. more than one fault. This distribution of single faults portrays the high
prevalence of single faults and single-fault fixes in the wild (Perez et al., 2017).

Multiple Faults: To evaluate the effectiveness of all three fault localization
techniques on multiple faults (see RQ7), we automatically curated a set of
multiple faults using mutation-based fault injection. This is in line with the
evaluation of multiple faults in previous works (Abreu et al., 2009b; Zheng
et al., 2006; DiGiuseppe and Jones, 2011; Wong et al., 2013, 2012).15 We
automatically mutated the original passing version of each program until we
have a buggy version containing between three to five faults. In particular, we
performed logical and arithmetic operator mutation on each passing version

15 To the best of our knowledge, there is no known benchmark of real-world programs
containing multiple faults.
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Table 2 Details of Multiple Faults

Benchmark Tool # Buggy #Faults #Failing #Passing
(Error Type) Programs Tests Tests

SIR-MULT
(Mutated)

tcas 37 144 19973 39523
print tokens 3 11 12074 316
print tokens2 8 28 27630 5290
tot info 18 64 16667 2269
schedule 4 17 9673 927
schedule2 4 16 8616 2224

IntroClass
-MULT

(Mutated)

checksum 1 4 15 1
digits 2 7 30 2
grade 5 22 67 23
median 2 8 13 13
smallest 1 4 8 8
syllables 3 13 34 14

Total 88 338 94800 50610

of the programs contained in the SIR and IntroClass benchmarks. Table 2
provides details of the buggy programs with multiple faults, the number of
faults, as well as the number of failing and passing test cases. For each fault
contained in the resulting program, we store the failing test case(s) that expose
the bug, as well as the corresponding patches for each fault and all faults. In
total, we collected 88 programs with multiple faults containing 338 injected
faults, in total. Each program in this dataset contained about four unique
faults, on average. Specifically, we collected 74 and 14 programs from the SIR

and IntroClass benchmarks, and injected a total of 280 and 58 faults in each
benchmark, respectively. The programs containing multiple faults are called
SIR-MULT and IntroClass-MULT, respectively (see Table 2).

Minimal Patches: The user-generated patches are used to identify those
statements in the buggy version that are marked faulty. In fact, Renieris and
Reiss (Renieris and Reiss, 2003) recommend identifying as faulty statements
those that need to be changed to derive the (correct) program that does
not contain the error. For each error, only patched statements are consid-
ered faulty. All bugs in our corpus are patched with at least one statement
changed in the buggy program, all omission bugs are exempted. Omission bugs
require special handling since they are quite difficult to curate, localize and
fix. Collecting patches and fault locations for omission bugs is difficult because
their patches are similar to the implementation of new features. A faulty code
location is unclear for omission bugs (in the failing commit), this makes them
even more difficult to evaluate for typical AFL techniques, including statistical
debugging and dynamic slicing (Lin et al., 2018).

Slicing Criterion: All aspects of dynamic slicing can be fully automated. To
this end, as the slicing criterion we chose the last statement that is executed or
the return statement of the last function that is executed. For instance, when
the program crashes because an array is accessed out of bounds, the location
of the array access is chosen as the slicing criterion. In our implementation,
the slicing criterion is automatically selected by a bash script running gdb.

Passing and Failing Test Cases: All programs in our dataset come with an
extensive test suite which checks corner cases and that previously fixed errors
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do not re-emerge. For statistical debugging, we execute each of these (passing)
test cases individually to collect coverage information. For dynamic slicing, we
perform slicing for each failing test case.

In summary, for our automated evaluation, we used 457 errors in dozens
of programs from four well-known benchmarks (see Table 1 and Table 2).
Our corpus contained 46 different programs in 35 software tools. Each faulty
program in our corpus had about 11 bugs, 257 failing test cases and thousands
(4250) of passing test cases, on average. For single faults, we have 295 real faults
and 74 injected faults. Meanwhile, we have 88 buggy programs containing
multiple faults, each program contains about four faults, on average.

4.4 Measure of Localization Effectiveness

We measure fault localization effectiveness as the proportion of statements
that do not need to be examined until finding the first fault. This allows us
to assign a score of 0 for the worst performance (i.e., all statements must be
examined) and 1 for the best. More specifically, we measure the score = 1 − p
where p is the proportion of statements that needs to be examined before the
first faulty statement is found. Not all failures are caused by a single faulty
statement. In a study of Böhme and Roychoudhury, only about 10% of failures
were caused by a single statement, while there is a long tail of failures that
are substantially more complex (Böhme and Roychoudhury, 2014). Focusing
on the first faulty statement found, the score measures the effort to find a
good starting point to initiate the bug-fixing process rather than to provide
the complete set of code that must be modified, deleted, or added to fix the
failure. Wong et al. (2016) motivates this measure of effectiveness and presents
an overview of other measures.

4.4.1 General Measures

Ranking. All three fault localization techniques presented in this paper pro-
duce a ranking. The developer starts examining the highest ranked statement
and goes down the list until reaching the first faulty statement. To generate
the ranking for statistical debugging, we list all statements in the order of their
suspiciousness (as determined by the technique), most suspicious first. To gen-
erate the ranking for approximate dynamic slicing, given the statement c where
the failure is observed, we rank first those statements in the slice that can be
reached from c along one backward dependency edge. Then, we rank those
statements that can be reached from c along two backward dependency edges,
and so on. Generally, for all techniques, the score is computed as

score = 1 −
∣S∣

∣P ∣

where S are all statements with the same rank or less as the highest ranked
faulty statement and P is the set of all statements in the program. So, S repre-
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sents the statements a developer needs to examine until finding the first faulty
one.16.

Multiple Statements, Same Rank. In most cases there are several statements
that have the same rank as the faulty statement. For all our evaluations, we
employ ordinal ranking, in order to effectively determine the top N most sus-
picious statements for each technique. This is necessary to evaluate the fault
localization effectiveness of each technique, if a developer is only willing to in-
spect N most suspicious statements (Kochhar et al., 2016). In ordinal ranking,
lines with the same score are re-ranked by line numbers.17 This is in agreement
with evaluations of fault localization techniques in previous work (Wong et al.,
2016; Pearson et al., 2017; Kochhar et al., 2016).

Multiple Faults, Expense Score. For multiple faults, we measure fault lo-
calization effectiveness using the expense score (Yu et al., 2008). The expense
score is the percentage of the program (statements) that must be examined to
find the first fault, in particular, the first faulty statement in the first localized
fault, using the ranking given by the fault localization technique. It is similar
to the score employed for single faults, and it has been employed in previous
evaluations of multiple faults, such as (Wong et al., 2012, 2013). Formally:

expense score =
∣S∣

∣P ∣
∗ 100

where S are all statements with the same rank or less as the highest ranked
faulty statement for the first fault found and P is the set of all executable
statements in the program. So, S represents the statements a developer needs
to examine until finding the first faulty statement, for the first localized fault.
The assumption is that it is the first fault that the developer would begin fixing,
thus, finding the first statement suffices for the diagnosis of all faults (Yu et al.,
2008). In our evaluation of multiple faults, the fault localization effectiveness
score is computed similarly to single faults as

scoremult = 1 − (expense score/100)

4.4.2 Dynamic Slicing Effectiveness

We define the effectiveness of approximate dynamic slicing, the scoreads accord-
ing to Renieris and Reiss (Renieris and Reiss, 2003) as follows. Given a failing
test case t, the symptomatic statement c, let P be the set of all statements in
the program, let ζ be the approximate dynamic slice computed w.r.t. c for t,
let kmin be the minimal number of backward dependency edges between c and
any faulty statement in ζ, and let DS∗(c, t) be the set of statements in ζ that

16 Note that all executable program statements are ranked in the suspiciousness rank,
executable statements that are not contained in the dynamic slice are ranked lowest.
17 Ranking ties are broken in ascending order, i.e. if both lines 10 and 50 have the same

score, then line number 10 is ranked above line number 50.
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are reachable from c along at most kmin backward dependency edges. Then,

scoreads = 1 −
∣DS∗(c, t)∣

∣P ∣

Algorithmically, the scoreads is computed by (i) measuring the minimum
distance kmin from the statement c where the failure is observed to any faulty
statement along the backward dependency edges in the slice, (ii) marking all
statements in the slice that are at distance kmin or less from c, and (iii) mea-
suring the proportion of marked statements in the slice. This measures the
part of code a developer investigates who follows backward dependencies of
executed statements from the program location where the failure is observed
towards the root cause of the failure.

In the approximate dynamic slice in our motivating example (Figure 3),
we have scoreads = 1 − 1

12
= 0.92. The slicing criterion is c = s15. The program

size is ∣P ∣ = 12. The faulty statement s8 is ranked first. Statements s7 and s2

are both ranked third according to modified competition ranking18. Statements
s5 and s4 are ranked fourth and fifth, respectively, while the remaining, not
executed (but executable) statements are ranked 12th.

4.4.3 Statistical Debugging Effectiveness

We define the effectiveness of a statistical fault localization technique, the
scoresfl as follows. Given the ordinal ranking of program statements in pro-
gram P for test suite T according to their suspiciousness as determined by the
statistical fault localization method, let rf be the rank of the highest ranked
faulty statement and P is the set of all statements in the program. Then,

scoresfl = 1 −
rf

∣P ∣

Note that scoresfl = 1−EXAM-score where the well-known EXAM-score (Jones
and Harrold, 2005; Abreu et al., 2009a) gives the proportion of statements that
need to be examined until the first fault is found. Intuitively, the scoresfl is
its complement assigning 0 to the worst possible ranking where the developer
needs to examine all statements before finding a faulty one.

For instance, scoresfl = 1− 1
12

= 0.92 for our motivating example and all con-
sidered statistical debugging techniques. All statistical debugging techniques
identify the faulty statement in Line 8 as most suspicious. So, there is only one
top-ranked statement (Rank 1). But there are six statements with the lowest
rank (Rank 12). If the fault was among one of these statements, the program-
mer might need to look at all statements of our small program middle before
localizing the fault.

18 In this case, when several statements have the same rank as the faulty statement, we
made the conservative assumption that a developer finds the faulty statement among other
statements with the same rank.
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Table 3 Effectiveness of Dynamic Slicing on Single Faults

Benchmark Score

% Errors Localized
if developer inspects N

most suspicious LoC
5 10 20 30

IntroClass 0.83 70.00 100 100 100
Codeflaws 0.78 75.30 92.71 98.79 100

CoREBench 0.85 18.52 18.52 29.63 40.74
Real 0.79 69.73 86.39 92.52 94.56

Artificial (SIR) 0.79 32.43 44.59 55.41 60.81
Avg. (Bugs) 0.774 62.23 77.99 85.05 87.77

4.4.4 Hybrid Approach Effectiveness

We define the effectiveness of the hybrid approach, the scorehyb as follows.
Let R be the set of faulty statements, H be the N most suspicious statements
– sorted first by suspiciousness score and then by line numbers and P is the set
of all statements in the program. Given the failing test case t and a statement c
that is marked as symptomatic, we have

scorehyb =

⎧
⎪⎪
⎨
⎪⎪
⎩

min(scoresfl,N) if R ∩H ≠ ∅

1 − ∣H ∪DS∗(c, t)∣ / ∣P ∣ otherwise

Essentially, scorehyb computes the score for the statistical fault localization
technique if the faulty statement is within the first N most suspicious state-
ments, and the score for approximate dynamic slicing while accounting for the
statements already reported in the first phase. For instance, for N = 2 we have
scorehyb = 1 − 1

12
= 0.92 for the motivating example in Figure 1 since the fault

is amongst the N most suspicious statements.

4.5 Infrastructure

We performed the experiments on a virtual machine (VM) running Arch Linux.
The VM was running on a Dell Precision 7510 with a 2.7GHz Intel Core i7-
6820hq CPU and 32GB of main memory.

5 Evaluation Results

Let us discuss the results of our evaluation and their implications. All research
questions (RQs) are evaluated using single faults (i.e., RQ1 to RQ6), except
for RQ7, which is evaluated on both single and multiple faults.

5.1 RQ1: Effectiveness of Dynamic Slicing.

How effective is dynamic slicing in fault localization? To investigate the fault
localization effectiveness of dynamic slicing, we examined the proportion of
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statements a developer would not need to inspect after locating the faulty
statement (score in Table 3). Then, we examine the percentage of errors
for which a developer can effectively locate the faulty statement, if she in-
spects only N most suspicious statements reported by dynamic slicing for
N ∈ {5,10,20,30} (% Errors Localized in Table 3).

Overall, a single faulty statement is ranked within the first quarter of the
most suspicious program statements reported by dynamic slicing, on average
(cf. Table 3). This implies that a developer (using dynamic slicing) inspects
21% (about 40 LoC) of the executable program statements before locating the
fault, on average (i.e., equal to 1 − score). This performance was independent
of the source or type of the errors (i.e., real or seeded errors). Dynamic slicing
was particularly highly effective in locating faults for errors in CoREBench
and errors in IntroClass, where it ranks the faulty statements within the top
15% (81 LoC) and 17% (3 LoC) of the program statements, respectively (cf.
Table 3).

For all programs, dynamic slicing reports the faulty statement within the
top 21% (40 LoC) of the most suspicious statements, on average.

A developer or tool using dynamic slicing will locate the faulty statement
after inspecting a handful of suspicious statements. In our evaluation, for most
errors, the faulty statement can be identified after inspecting only five to ten
most suspicious statements reported by dynamic slicing. Specifically, the faulty
statement is ranked within the top five to ten most suspicious statements for
62% to 78% of all errors, respectively (cf. Table 3). Notably, a developer will
locate the faulty statement for 55% of artificial errors and 92% of real errors
if she inspects the top 20 most suspicious statements. Overall, most programs
(85%) can be debugged by inspecting the top 30% (58 LoC, on average) of the
statements reported by dynamic slicing. These results demonstrate the high
effectiveness of dynamic slicing in fault localization.

Dynamic slicing reports a single faulty statement within the top 5–10 most
suspicious statements for most errors (62% to 78%, respectively).

5.2 RQ2: Effectiveness of Statistical Debugging

Which statistical formula is the most effective at fault localization? First, we
investigate the effectiveness of 18 statistical formulas using four benchmarks
containing 369 errors (cf. Table 1). To determine the most effective statisti-
cal formula, for each formula, we examined the proportion of statements a
developer would not need to inspect after locating a single faulty statement
(score in Table 4). Figure 5 (a) and (b) further illustrate the effectiveness of
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Table 4 Effectiveness of Statistical Debugging on Single Faults. Best scores for each
(sub)category are in bold; higher scores are better. For instance, Kulczynski2 is the best
performing (single bug optimal) formula for all programs (0.737), on average.

SBFL
Formula SIR

Intro Code Core Average
Family Class flaws bench (Bugs) (Prog.)

Popular
Tarantula 0.78 0.76 0.70 0.79 0.709 0.732
Ochiai 0.83 0.76 0.69 0.79 0.709 0.735
Jaccard 0.80 0.76 0.69 0.79 0.702 0.728

Human
Generated

Naish 1 0.83 0.74 0.69 0.79 0.710 0.733
Naish 2 0.81 0.74 0.69 0.79 0.709 0.731
Russel Rao 0.67 0.59 0.57 0.77 0.602 0.611
Binary 0.69 0.59 0.57 0.77 0.603 0.614
Wong 1 0.67 0.59 0.57 0.77 0.602 0.611
D2 0.73 0.62 0.56 0.80 0.598 0.618
D3 0.75 0.62 0.56 0.80 0.601 0.622

GP
Evolved

GP 02 0.75 0.72 0.66 0.69 0.668 0.688
GP 03 0.77 0.68 0.63 0.63 0.643 0.663
GP 13 0.81 0.74 0.69 0.79 0.709 0.731
GP 19 0.56 0.69 0.65 0.75 0.631 0.649

Single Bug

Optimal

PattSim 2 0.85 0.68 0.69 0.76 0.705 0.721
lex Ochiai 0.83 0.74 0.69 0.79 0.710 0.733
m9185 0.83 0.74 0.70 0.79 0.715 0.735
Kulczynski2 0.83 0.76 0.70 0.79 0.713 0.737
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Fig. 5 Effectiveness of each SBFL formula on Single Faults; Results are grouped into bars
for each family showing (a) the performance of each SBFL formula on each benchmark and
(b) the cumulative results for all benchmarks using stacked bars

the SBFL formulas. Then, for the best performing statistical formula, we in-
spected the percentage of errors for which a developer can effectively locate
the faulty statement, if she inspects only N most suspicious statements for
N ∈ {5,10,20,30} (% Errors Localized in Table 5).

Overall, the single bug optimal formulas are the most effective family of sta-
tistical formulas, they are the best performing formulas across all errors and
programs. In particular, on average, PattSim2 performed best for injected
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Fig. 6 Effectiveness of the most effective statistical debugging formula in (a) each family
(bars are grouped by benchmarks), and (b) the overall average (i.e., mean) for all benchmarks

errors (i.e. SIR), while Kulczynski2 outperformed all other formulas for real
errors, especially for IntroClass (cf. Table 4). Bold values in Table 4 indicate
the best performing formula for each family and (sub)category. For instance,
Kulczynski2 is the best performing (single bug optimal) formula for all pro-
grams (0.737). The performance of single-bug optimal formulas supports the
results obtained in previous works (Landsberg, 2016). This family of statisti-
cal formulas are particularly effective because they are optimized for programs
containing a single bug; based on the observation that if a program contains
only a single bug, then all failing traces cover that bug (Naish and Lee, 2013).

The single bug optimal statistical formulas outperformed all other
SBFL formulas, for both injected and real errors, on average.

The most effective statistical formula is Kulczynski2, it outperformed all
other formulas in our evaluation (see Table 4 and Figure 5 (a) and (b)). The
most effective statistical formula for each family are Ochiai, Naish 1, GP 13

and Kulczynski2 for the popular, human-generated, genetically-evolved and
single bug optimal families, respectively. Figure 6 (a) and (b) compares the
performance of the most effective formula in each family. For instance, in the
popular statistical family, Ochiai is the best performing formula, both for
all errors (0.709) and all programs (0.735) (cf. Table 4). Meanwhile, in the
single bug optimal family, Kulczynski2 is the best performing formula for all
programs (0.737) (cf. Table 4).

Indeed, a developer using Kulczynski2 will inspect the least number of
suspicious program statements before finding the faulty statement. On aver-
age, Kulczynski2 required a developer to inspect about 26% (51 LoC) of the
program code before finding the faulty statement. Among all statistical for-
mulas, it has the highest suspiciousness rank for 40% (14 out of 35) of the
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Table 5 Effectiveness of Kulczynski2 (i.e., the most effective statistical formula) on Single
faults

Benchmark Score

% Errors Localized
if developer inspects N

most suspicious LoC
5 10 20 30

IntroClass 0.76 80.00 85.00 100 100
Codeflaws 0.69 64.37 86.23 97.57 99.19
CoREBench 0.79 22.22 25.93 37.04 48.15
Real 0.72 61.56 80.61 92.18 94.56
Artificial (SIR) 0.83 35.14 41.89 68.92 71.62
Avg. (Bugs) 0.713 56.25 72.83 87.50 89.95

Table 6 Statistical Tests for the most effective Statistical Debugging Formulas; Odds ra-
tio ψ (all ratios are statistically significant Mann-Whitney U-test< 0.05 for all tests)

Odds Ratio ψ (Mann Whitney test score U)
Benchmark Kulczynski2 Kulczynski2 Kulczynski2

vs. Ochiai vs. Naish1 vs. GP 13

SIR 0.2985 (0.0002) 0.0004 (0) 0.0004 (0)
IntroClass 0.0006 (0) 0.0183 (0) 0.0059 (0)
Codeflaws 0.0013 (0) 0.0005 (0) 0.0002 (0)
CoREBench 0.0003 (0) 0.0003 (0) 0.0003 (0)
All Bugs 0.0106 (0) 0.0006 (0) 0.0002 (0)

programs and 72% (265 out of 369) of all errors. It is also the most effective
statistical formula for localizing real errors.19

Kulczynski2 is the most effective statistical formula, requiring a developer
to inspect 26% of code (51 LoC) before finding the fault, on average.

A tool or developer using Kulczynski2 will locate the faulty statement
after inspecting five to ten most suspicious statements. The faulty statement
is ranked within the top five to ten most suspicious statements for most errors,
i.e. 56% to 73% of all errors, respectively (cf. Table 5). Overall, most programs
(60%) can be debugged by inspecting the top 30% (58 LoC) of the suspicious
statements reported by Kulczynski2.

Kulczynski2 reports the faulty statements within the top 5–10 most
suspicious statements for 56% to 72% of all errors, respectively.

Is the difference in the performance of Kulczynski2 statistically significant,
in comparison to the best performing formula for each statistical debugging
family? In our evaluation, the difference in the performance of Kulczynski2

(i.e. the best performing formula) is not statistically significant. Table 6 high-
lights the statistical tests comparing Kulczynski2 to the best performing sta-
tistical formula in each family, i.e. Kulczynski2 vs. {Ochiai, Naish1, GP13}.

19 Further evaluations (on single faults) in this paper use Kulczynski2 as the default
“statistical debugging” formula.



26 Ezekiel Soremekun et al.

0.0 0.2 0.4 0.6 0.8 1.0

Statistical Debugging Effectiveness

0.0

0.2

0.4

0.6

0.8

1.0

S
li

ci
n

g
E

ff
ec

ti
ve

n
es

s

SIR

0.0 0.2 0.4 0.6 0.8 1.0

Statistical Debugging Effectiveness

0.0

0.2

0.4

0.6

0.8

1.0

S
li

ci
n

g
E

ff
ec

ti
ve

n
es

s

IntroClass

(a) SIR (b) IntroClass

0.0 0.2 0.4 0.6 0.8 1.0

Statistical Debugging Effectiveness

0.0

0.2

0.4

0.6

0.8

1.0

S
li

ci
n

g
E

ff
ec

ti
ve

n
es

s

Codeflaws

0.0 0.2 0.4 0.6 0.8 1.0

Statistical Debugging Effectiveness

0.0

0.2

0.4

0.6

0.8

1.0
S

li
ci

n
g

E
ff

ec
ti

ve
n

es
s

Corebench

(c.) Codeflaws (d.) CoREBench

Fig. 7 Direct comparison of fault localization effectiveness between statistical debugging
(Kulczynski2) and dynamic slicing (on single faults) in each benchmark

Notably, the performance of Kulczynski2 is not statistically significant, in
comparison to the best statistical formula for each family. This is evident from
the fact that the odds ratio is less than one (ψ < 1) for all test comparisons
(see Table 6). This suggests that Kulczynski2 has no statistically significant
advantage over the best performing statistical formulas in each family; despite
the fact that, in absolute terms, Kulczynski2 outperforms the best formula
in each family.

Kulczynski2 has no statistically significant advantage over the best
formula in other SBFL families (i.e., Ochiai, Naish1 and GP13).

5.3 RQ3: Comparing Statistical Debugging and Dynamic Slicing

How effective is the most effective statistical formula in comparison to dynamic
slicing? We compare the performance of the most effective statistical formula
(Kulczynski2) to that of dynamic slicing (cf. Figure 7 and Figure 8).
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Fig. 8 Cumulative frequency of the locations to be examined, for dynamic slicing vs. sta-
tistical debugging vs. the hybrid approach (on single faults) in each benchmark

We find that, on average, dynamic slicing is more effective than statistical
debugging at fault localization. Slicing is about eight percentage points more
effective than the best performing statistical formula for all programs in our
evaluation (cf. Figure 8, Table 3 and Table 5). For all errors in our study,
a programmer using dynamic slicing needs to examine about three-quarters
(78%) of those statements that she would need to examine if she used statis-
tical debugging.20 This result is independent of the type of errors or program.
Figure 8 shows that dynamic slicing consistently outperforms statistical debug-
ging for each benchmark, with slicing consistently localizing all faults ahead
of statistical debugging.

Overall, dynamic slicing was eight percentage points more effective than
the best performing statistical debugging formula, i.e. Kulczynski2.

For two-third of bugs (66%, 243 out of 369 errors), dynamic slicing will
find the fault earlier than the best performing statistical debugging formula.
Figure 7 shows a direct comparison of the scores computed for slicing and

20 Percentage improvement is measured as 1−0.794
1−0.737

. Note that score by itself gives the
number of statements that need not be examined.
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Table 7 Statistical Tests for all three Fault Localization Techniques: Odds ratio ψ (Mann-
Whitney U-test p-values (U) are in brackets), odds ratio with statistically significant p-values
determined by Mann-Whitney (U-test ) are in bold

Benchmark Odds Ratio ψ (Mann whitney test score)
Slicing Slicing Hybrid-2

vs. Kulczynski2 vs. Hybrid-2 vs. Kulczynski2
SIR 4.25 (0.0000) 0.81 (0.2568) 5.44 (0.0000)

IntroClass 2.16 (0.1087) 0.68 (0.2713) 0.68 (0.2713)
Codeflaws 1.16 (0.2094) 0.41 (0.0000) 1.05 (0.3938)
CoREBench 2.06 (0.0904) 0.06 (0.0000) 16.74 (0.0000)
All Bugs 1.62 (0.0006) 0.42 (0.0000) 1.69 (0.0002)

statistical debugging. Each scatter plot shows for each error the effectiveness
score of statistical debugging on the x-axis and the effectiveness score of slicing
on the y-axis. Errors plotted above the diagonal line are better localized us-
ing dynamic slicing. For all benchmarks, the majority of the points are above
the diagonal line which indicates that slicing outperforms statistical debug-
ging in most cases. We can see that dynamic slicing consistently outperforms
statistical debugging across all benchmarks.

For two-third (66%) of bugs, dynamic slicing locates the fault earlier than
the best performing statistical debugging formula, i.e. Kulczynski2.

To compare the significance of dynamic slicing and statistical debugging,
we compute the odds ratio and conduct a Mann-Whitney U -test (cf. Slicing vs.
Kulczynski2 in Table 7). The odds ratio is in favor of dynamic slicing (ψ > 1) for
all projects. In particular, slicing is 62% more likely to find a faulty statement
earlier than statistical debugging, this likelihood is also statistically significant
according to the Mann-Whitney test. The statistically significant odds ratio is
explained by slicing being more effective than statistical debugging in most
cases. For instance, slicing is more effective than statistical debugging for 50
out of 74 bugs in the SIR benchmark and for 18 out of 27 bugs in CoREBench.

Dynamic slicing is significantly more likely to find a faulty statement
earlier than statistical debugging.

5.4 RQ4: Sensitiveness of the Hybrid Approach

How many suspicious statements (reported by statistical debugging, i.e. Kul-
czynski2) should a tool or developer inspect before switching to slicing? We
examine the sensitiveness of the hybrid approach to varying absolute values
of N . We evaluate how the number of suspicious statements inspected be-
fore switching to slicing influences the effectiveness of the hybrid approach. In
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Fig. 9 Hybrid sensitiveness to different values of N ∈ {2,5,10,15,20} showing (a) the
cumulative frequency of locations to be examined for all errors (left), and (b) the effectiveness
score for each benchmark using the hybrid approach (right).

particular, we investigated the effect of N values (2, 5, 10, 15, 20) on the per-
formance of the hybrid approach, in order to determine the optimal number
of suspicious statements to inspect before switching to slicing.

A programmer that switches to slicing after investigating the top five most
suspicious statements can localize more errors than if switching after investi-
gating more suspicious statements. Figure 9 shows the impact of other values of
N on the effectiveness of the hybrid approach. Note that the hybrid approach
degenerates to dynamic slicing when N = 0 and to statistical debugging when
N is large (e.g., program size). We see that Kochhar’s suggestion of N = 5 is
a good value for our subjects, in particular inspecting at most five statements
before switching to slicing outperforms both slicing and statistical debugging.
As we see in Figure 10, the hybrid approach with N = 2 and N = 5 outperforms
both slicing and statistical debugging (Kulczynski2). Hence, a developer is
most effective if she inspects at most five most suspicious statements reported
by statistical debugging before switching to slicing.

A tool using our hybrid approach is most effective when inspecting only
the top two most suspicious statements (N = 2) reported by statistical debug-
ging, before switching to slicing. Hence, we recommend the use of the hybrid
approach (with N = 2) for fault localization, and at most five suspicious state-
ments should be inspected before switching to slicing.21

The hybrid approach is most effective when a programmer inspects at most
two statements (N = 2) before switching to slicing.

21 Further evaluations of the hybrid approach use the best values of N (i.e. N = 2 and
N = 5).
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Table 8 Effectiveness of the Hybrid approach with N = 2 (i.e., Hybrid-2)

Benchmark Score

% Errors Localized
if developer inspects N

most suspicious LoC
5 10 20 30

IntroClass 0.83 90.00 100 100 100
Codeflaws 0.80 83.00 97.57 100 100
CoREBench 0.97 59.26 70.37 85.19 85.19
Real 0.83 81.29 95.24 98.64 98.64
Artificial (SIR) 0.94 50.00 72.97 97.30 100
Avg. (Bugs) 0.844 75.00 90.76 98.37 98.91

5.5 RQ5: Effectiveness of the Hybrid Approach

Which technique is the most effective in fault localization? Which technique is
more likely to find fault locations earlier? We now investigate the effectiveness
of the hybrid approach, in comparison to slicing and statistical debugging.
First, we examine the number of program statements that need to be inspected
to localize all faults for each technique (Figure 10), as well as the absolute
effectiveness score of each technique (Table 3, Table 5 and Table 8). Then,
we evaluate the likelihood of each technique to find the fault locations earlier
than the other two techniques (Table 7).

Notably, if the programmer is willing to inspect no more than 20 state-
ments, the hybrid approach will localize the fault location for almost all (98%)
of the bugs (cf. Table 8 and Figure 10). In contrast, both statistical debugging
and slicing can only localize almost all (98%) faults after inspecting about five
times as many statements, i.e. 100 LoC. In fact, if the programmer inspects 20
LoC, slicing and statistical debugging would find the fault location for about
85% and 88% of the bugs, respectively.

The hybrid approach can localize the fault location for almost all (98%) of
the bugs after inspecting no more than 20 LoC.

In absolute numbers, the hybrid approach is the most effective fault local-
ization technique, followed by slicing, which is more effective than statistical
debugging (see Table 8, Figure 8 and Figure 10). The hybrid approach (N = 2)
is about seven percentage points more effective than slicing, and about fifteen
percentage points more effective than statistical debugging (cf. Table 3, Table 5
and Table 8). Overall, it improves the performance of both slicing and statis-
tical debugging. For instance, a programmer using the hybrid approach needs
to examine about half (58%) and three-quarter (75%) of those statements
that she would need to examine if she used slicing and statistical debugging,
respectively.

The hybrid approach is significantly more effective than slicing and
statistical debugging, respectively.
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Fig. 10 Cumulative frequency of the locations to be examined for the hybrid approach,
in comparison to statistical debugging (Kulczynski2) and dynamic slicing, for all (Single)
Faults. As expected, inspecting only the top two suspicious code locations, Hybrid-2 and
statistical debugging perform similarly (localizing about 39% of errors each); they are out-
performed by dynamic slicing (47% of errors localized). However, inspecting only the top
five locations, Hybrid-2 clearly outperforms statistical debugging and dynamic slicing by
localizing 75% of errors, while slicing performs better than statistical debugging (62% vs.
56% of errors).

We compute the odds ratio and conduct a Mann-Whitney U -test, in order
to determine the significance of the hybrid approach. The odds ratio for all
projects is strictly in favor of the hybrid approach (ψ > 1 in Table 7). Specif-
ically, the hybrid approach is (69%) more likely to find a faulty statement
earlier than statistical debugging (cf. “Hybrid-2 vs. Kulczynski2” in Table 7).
Moreover, a programmer is (42%) less likely to find the fault location early if
she localizes with dynamic slicing instead of the hybrid approach (cf. “Slicing
vs. Hybrid-2” in Table 7).

The statistically significant odds ratio is explained by the hybrid approach
being more effective than slicing and statistical debugging in most cases. The
majority of bugs is best localized by the hybrid approach. For more than half
of the bugs (56%, 208 out of 369 errors), the hybrid approach will find the
fault earlier than both slicing and statistical debugging. In particular, for
CoREBench, the hybrid approach is more effective than both techniques for
19 out of 27 bugs, as well as for 33 out of 74 bugs in SIR.
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Table 9 Effectiveness of AFL techniques on Real versus Artificial faults, as well as their
effectiveness on small and large programs containing real faults (N/A = Not applicable)

Program Size

(Avg. # LoC)

Percentage (# LoC) of Statements
Benchmark Inspected before locating fault

Slicing Kulczynski2 Hybrid
IntroClass small (15.5) 17% (3) 24% (4) 17% (3)
Codeflaws small (17.7) 23% (4) 31% (5) 20% (3)
CoREBench large (540.4) 15% (80) 21% (112) 3% (14)
Real N/A (200.3) 18% (29) 25% (40) 13% (7)
Artificial (SIR) N/A (148.1) 21% (31) 18% (26) 6% (9)
All Bugs N/A (193.5) 21% (40) 26% (51) 15% (30)

The hybrid approach is significantly more likely to find a faulty statement
earlier than dynamic slicing and statistical debugging.

5.6 RQ6: Real Errors vs. Artificial Errors

In this section, we evaluate the effect of error type on the effectiveness of an
AFL technique, in particular, the difference between evaluating AFL tech-
niques on artificial errors (i.e., SIR22) versus real errors (i.e., IntroClass,
Codeflaws and CoREBench). We examine the performance of each technique
on each error type and portray the bias and differences in such evaluations.
For real faults, we also evaluated the effect of program size on the effective-
ness of an AFL technique. In particular, the difference in the performance of
these AFL techniques on small programs containing 16 to 18 executable LoC
(i.e. IntroClass and Codeflaws) and large programs with about 540 LoC
(CoREBench), on average (see Table 9). Figure 7 and Figure 8 highlight the
difference between evaluating a fault localization technique on real or artificial
errors. Table 9 summarizes the difference in the effectiveness of each AFL tech-
nique when using real or artificial faults, as well as their performance on small
or large programs. Table 3, Table 5 and Table 8 also quantify the difference in
the effectiveness of all three AFL techniques (i.e., dynamic slicing, statistical
debugging and the hybrid approach, respectively) on real and artificial faults.

What is the most effective statistical debugging formula for artificial or
real faults? In our evaluation, the error type influences the effectiveness of
a statistical debugging formula. PattSim 2 is the most effective statistical
formula for artificial faults (score=0.85 ), this is closely followed by Ochiai

and Naish 1 with score = 0.83 (see Table 4). Meanwhile, for real faults, the
most effective statistical formulas are Kulczynski2 and Tarantula with scores
0.76, 0.70 and 0.79 for IntroClass, Codeflaws and CoREBench, respectively
(see Table 4). Notably, the most effective formula for artificial faults is not
the most effective formula for real faults. This implies that the error type can

22 The SIR benchmark is the most used subject for the evaluation of AFL techniques,
especially statistical fault localization (Wong et al., 2016).



Locating Faults with Program Slicing: An Empirical Analysis 33

influence the performance of an AFL technique. Thus, we recommended to
always evaluate debugging aids using real faults.

The performance of a statistical debugging formula depends on the error
type: the most effective formula differs for artificial (PattSim 2) and real

faults (Kulczynski2 and Tarantula).

How does the effectiveness of statistical debugging compare to that of dy-
namic slicing, for artificial and real faults? On one hand, dynamic slicing
performs worse than statistical debugging on artificial faults (SIR): A devel-
oper (or tool) has to inspect 21% of the program to find the fault, in contrast
to 18% for Kulczynski2, on average (see Table 9). On the other hand, dy-
namic slicing performs better than statistical debugging on real faults (i.e.,
IntroClass, Codeflaws and CoREBench). For real errors, a developer has to
inspect (7%) less statements when using dynamic slicing (18%) compared to
slicing (25%). Again, this shows that the error type has a significant influence
on the effectiveness of an AFL technique.

Statistical debugging performs better on artificial faults, while dynamic
slicing performs better on real faults.

What is the most effective AFL approach on artificial and real faults? The
hybrid approach is the most effective AFL approach, outperforming both dy-
namic slicing and statistical debugging (see Table 9). In particular, depending
on the error type, a developer or tool using the hybrid approach inspects one-
third to less than three-quarter (0.3 to 0.7) of the statements inspected when
using dynamic slicing or statistical debugging. This shows that the effective-
ness of the hybrid approach is independent of error type.

The hybrid approach is the most effective approach, regardless of error
type, i.e. artificial or real faults.

We observed that fault localization effectiveness on artificial errors does
not predict results on real faults. In our evaluation, the performance of dy-
namic slicing and statistical debugging are different depending on the error
type. For instance, Table 9 clearly shows that dynamic slicing performs better
on real faults, while statistical debugging performs better on artificial faults.
This result illustrates that the performance of an AFL technique on artificial
faults is not predictive of its performance in practice. Hence, it is pertinent to
evaluate AFL techniques on real faults rather than artificial faults, this is in
line with the findings of previous studies (Pearson et al., 2017).
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The effectiveness of an AFL technique on artificial faults does not predict
its effectiveness on real faults.

Does program size affect the effectiveness of individual statistical debug-
ging formulas? Does the most effective SBFL formula vary as program size
varies, i.e. small versus large programs? Among real faults, the most effective
SBFL formula depends on the program size. Evidently, the most effective for-
mula for small programs is not the most effective formula for large programs:
For instance, Tarantula and Kulczynski2 performed significantly better than
DStar on small programs, but DStar was the most effective formula for large
programs.23 Generally, the effectiveness of individual SBFL formulas varies
as program size varies. Even though some SBFL formulas performed consis-
tently well across program sizes (e.g. Tarantula and Kulczynski2), others
are specialized for specific program sizes, e.g. DStar performs better on large
programs (CoREBench). These results suggest that program size influences
the effectiveness of individual statistical debugging techniques.

The effectiveness of individual SBFL formulas varies as program sizes
varies: Tarantula and Kulczynski2 are the most effective formulas for

small programs, but DStar is the most effective formula for large programs.

Does the comparative effectiveness of our AFL techniques (i.e., Hybrid vs.
Slicing vs. SBFL) vary as program sizes varies? For real faults, we investigated
if there is a difference in the comparative effectiveness of our AFL techniques
on small or large programs. Among real faults, the most effective technique is
the same across program sizes (see Figure 7 and Table 9): Consistently, the
hybrid approach performs best and slicing outperforms statistical debugging,
regardless of program size. This observation holds across program sizes, for all
three AFL techniques (see Figure 8). These results suggest that program size
does not influence the comparative effectiveness of these techniques. In fact,
the comparative effectiveness of these AFL techniques is predictable across
program sizes; the hybrid approach performs best, followed by slicing then
statistical debugging (i.e., Kulczynski2).

For real faults, the comparative effectiveness of our AFL techniques is
predictable across program sizes; the hybrid approach performs best,

followed by slicing then statistical debugging.

23 Table 4 shows that Tarantula and Kulczynski2 performed best on small programs with
effectiveness scores 0.76 and 0.70 for IntroClass and Codeflaws, respectively. Despite the
fact that DStar performs best on large programs (i.e. CoREBench) by slightly outperforming
Tarantula and Kulczynski2 (0.80 vs. 0.79); it performed significantly worse than Tarantula

and Kulczynski2 on small programs, with effectiveness score 0.62 and 0.56 for IntroClass

and Codeflaws, respectively.
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Table 10 Effectiveness of all AFL techniques on Single and Multiple Faults for SIR and
IntroClass benchmarks. Single Fault Scores are in italics and bracketed, i.e. (Single), while
Multiple Fault Scores are in normal text. For multiple faults, the best scores for each
(sub)category are in bold; higher scores are better. For instance, Tarantula is the best
performing (popular) statistical debugging formula for all programs with multiple faults
with score 0.8269, on average.

AFL
Technique

Formula/

Approach

SIR
MULT
(Single)

IntroClass
MULT
(Single)

Average (Mean)

Programs Bugs

Popular

SBFL

Tarantula
0.8214 0.8324 0.8269 0.7878

(0.6907 ) (0.7464 ) (0.7186 ) (0.6266 )

Ochiai
0.7796 0.7747 0.7772 0.7560

(0.7337 ) (0.7464 ) (0.7401 ) (0.6514 )

Jaccard
0.7720 0.7747 0.7734 0.7532

(0.7029 ) (0.7464 ) (0.7247 ) (0.6342 )

Human
Generated

SBFL

Naish 1
0.7215 0.7638 0.7426 0.7136

(0.7399 ) (0.7448 ) (0.7423 ) (0.6682 )

Naish 2
0.7484 0.7747 0.7615 0.7404

(0.7207 ) (0.7464 ) (0.7336 ) (0.6596 )

Russel Rao
0.7350 0.7586 0.7468 0.7185

(0.6088 ) (0.6394 ) (0.6241 ) (0.6051 )

Binary
0.7125 0.7553 0.7339 0.6975

(0.6283 ) (0.6378 ) (0.633 ) (0.6129 )

Wong 1
0.7350 0.7586 0.7468 0.7185

(0.6088 ) (0.6394 ) (0.6241 ) (0.6051 )

D2 0.7718 0.7747 0.7732 0.7553
(0.7345 ) (0.7464 ) (0.7404 ) (0.6523 )

D3 0.7680 0.7747 0.7714 0.7553
(0.7484 ) (0.7464 ) (0.7474 ) (0.6611 )

GP
Evolved
SBFL

GP 02
0.7633 0.7747 0.7690 0.7498

(0.6725 ) (0.7157 ) (0.6941 ) (0.6133 )

GP 03
0.7473 0.7747 0.7610 0.7402

(0.6813 ) (0.6169 ) (0.6491 ) (0.6285 )

GP 13
0.7456 0.7747 0.7602 0.7398

(0.7211 ) (0.7464 ) (0.7338 ) (0.6606 )

GP 19
0.7629 0.7558 0.7593 0.7279

(0.4673 ) (0.6237 ) (0.5455 ) (0.4876 )

Single Bug

Optimal

SBFL

PattSim 2
0.7608 0.7747 0.7677 0.7301

(0.7537 ) (0.6544 ) (0.704 ) (0.6506 )

lex Ochiai
0.7532 0.7747 0.7640 0.7396

(0.7356 ) (0.7464 ) (0.741 ) (0.6646 )

m9185
0.8183 0.8315 0.8249 0.7664

(0.7570 ) (0.7225 ) (0.7397 ) (0.6646 )

Kulczynski2
0.7885 0.7747 0.7816 0.7588

(0.7572 ) (0.7464 ) (0.7518 ) (0.6689 )
Program

Slicing

Dynamic

Slicing
0.8357 0.5487 0.6922 0.7840

(0.7935 ) (0.8602 ) (0.8269 ) (0.7535 )

Hybrid

Approach

Hybrid-2
0.9627 0.9057 0.9342 0.9457

(0.9358 ) (0.888 ) (0.9119 ) (0.9237 )

Hybrid-5
0.9505 0.8406 0.8955 0.9206

(0.9397 ) (0.814 ) (0.8768 ) (0.8974 )



36 Ezekiel Soremekun et al.

1 2 5 10 20 50 100 200
Locations examined to find fault location

0%

20%

40%

60%

80%

100%

E
rr

o
rs

lo
ca

li
ze

d

Locations examined for all single-fault SIR and IntroClass versions

Slicing Kulczynski2 Tarantula Hybrid 5 Hybrid 2

1 2 5 10 20 50 100 200
Locations examined to find fault location

0%

20%

40%

60%

80%

100%

E
rr

o
rs

lo
ca

li
ze

d

Locations examined for all multiple-fault SIR and IntroClass versions

Slicing Kulczynski2 Tarantula Hybrid 5 Hybrid 2

(a) Single Faults (b) Multiple Faults

Fig. 11 Cumulative frequency of the locations to be examined for (a) single-fault and (b)
multiple-fault versions of the SIR and IntroClass, using the hybrid approach, statistical
debugging (Kulczynski2 and Tarantula) and dynamic slicing

5.7 RQ7: Single Fault vs. Multiple Faults

In this section, we compare the effectiveness of all three AFL techniques on
programs with multiple faults. Then, we examine the effect of multiple faults
on the performance of each technique and the difference between evaluating
an AFL technique on single or multiple fault(s). In this experiment, we employ
the original single-fault versions of the SIR and IntroClass benchmarks, as
well as the multiple-fault versions of the same benchmarks, called SIR-MULT

and IntroClass-MULT, respectively. Table 10 highlights the results for single
and multiple fault(s) for all AFL techniques, including statistical debugging,
hybrid and dynamic slicing. Figure 11, Figure 12 and Figure 13 illustrate the
difference in the performance of each technique when given programs with a
single fault or multiple faults.

What is the most effective statistical debugging formula for multiple faults?
In our evaluation, the most effective SBFL formula for multiple faults is
Tarantula (0.8269), from the popular SBFL family. It outperforms the other
SBFL formulas (cf. Table 10 and Figure 12). For the other statistical debug-
ging families, the most effective formula for multiple faults are DStar (D2

and D3), GP02 and m9185 for the popular, human-generated and genetically
evolved families, respectively (cf. Table 10). The performance of Tarantula

is closely followed by that of the single-bug optimal formulas m9185 (0.8249).
However, the difference in the performance of m9185 and Tarantula is not
statistically significant, i.e. ψ < 1 (odds ratio ψ = 0.14, Mann-Whitney U -test
p-value U = 0). Notably, the most effective single-bug optimal formulas (i.e.
m9185) outperformed the human-generated and genetically evolved formulas
(cf. Table 10). This illustrates that single bug optimal formulas are also effec-
tive for multiple faults, despite being specialized for single faults.
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Fig. 12 Effectiveness of each technique for Single and Multiple Fault(s) in SIR and
IntroClass: (a) Scores for each benchmark and (b) Scores for both benchmarks

Tarantula is the most effective statistical debugging formula for multiple
faults; it outperforms all other statistical debugging formulas.

For multiple faults, how does the effectiveness of statistical debugging (Tara-
ntula) compare to that of dynamic slicing and hybrid? Tarantula performs
better than dynamic slicing (0.8269 vs. 0.6922) for multiple faults, our results
show that the effectiveness of slicing is 16% worse than that of Tarantula

on multiple faults in the SIR-MULT and IntroClass-MULT programs (see Ta-
ble 10). This is despite the fact that dynamic slicing (0.8269) outperforms
Tarantula (0.7186) by 15% on single fault programs (i.e., in SIR and IntroCla-

ss benchmarks). Indeed, there is a 13% decrease in the performance of dynamic
slicing on multiple faults. This is evident in Figure 12 (a) where the perfor-
mance of dynamic slicing drops for multiple faults for IntroClass-MULT. This
shows that it is beneficial for an AFL technique to employ coverage data from
(numerous) failing test cases when diagnosing programs with multiple faults.
As expected, it is more difficult for dynamic slicing to diagnose multiple faults:
Since a dynamic slice is constructed for only a single failing test case, it is dif-
ficult to account for the effect of multiple faults. Overall, the performance of
the hybrid approach remains superior to that of dynamic slicing and statisti-
cal debugging, regardless of the number of faults present in the program (cf.
Table 10, Figure 11 and Figure 12).

Statistical debugging performs better on multiple faults: Tarantula is 19%
more effective than dynamic slicing on multiple faults.

Given single or multiple faults, does the effectiveness of an AFL technique
improve or worsen? Figure 12 (a) illustrates the difference in the performance
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Fig. 13 Effectiveness of each technique on Single and Multiple Faults compared by bench-
mark, i.e., SIR and IntroClass

of all techniques for single and multiple faults. Results show that all techniques
(except dynamic slicing) perform better on multiple faults in comparison to
single faults, improvements range from two to 11 percentage points. Notably,
Tarantula’s performance improved by 11% on multiple faults. Meanwhile,
other approaches improved by two to three percentage points, in particular,
the hybrid approach, Kulczynski2 and DStar (D2 and D3). This illustrates
that most AFL approaches – especially SBFL – perform better on multiple
faults than single faults (see Figure 12 (a) and Figure 13).

Statistical debugging is better suited for diagnosing multiple faults, while
dynamic slicing is more effective at localizing single faults.

Generally, we found that the performance of a technique on programs
containing single faults does not predict its performance on multiple faults.
For instance, although Kulczynski2 outperformed the other statistical formu-
las for single faults (0.7518), it is outperformed by m9185 for multiple faults
(0.7816 vs. 0.8249) (cf. Table 10). This result is also evident from Figure 12
(a) and Table 10, where dynamic slicing outperforms statistical debugging
(Kulczynski2) for SIR single faults (0.8269 vs. 0.7518), but statistical debug-
ging (m9185 and Kulczynski2) clearly outperform dynamic slicing for mul-
tiple faults. These results suggest that the number of faults in the program
influences the effectiveness of an AFL technique.
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The effectiveness of an AFL technique on single faults does not predict its
effectiveness on multiple faults.

6 Threats to Validity

We discuss the threats to validity for this fault localization study within the
framework of Steimann et al. (2013).

6.1 External Validity

External validity refers to the extent to which the reported results can be
generalized to other objects which are not included in the study. The most
immediate threats to external validity are the following:

– EV.1) Heterogeneity of Probands. The quality of the test suites provided
by the object of analysis may vary greatly which hampers the assessment
of accuracy for practical purposes. However, in our study the test suites
are well-stocked and maintained. All projects are open source C programs
which are subject to common measures of quality control, such as code
review and providing a test case with bug fixes and feature additions.

– EV.2) Faulty Versions and Fault Injection. For studies involving artificially
injected faults, it is important to control the type and number of injected
faults. Test cases become subject to accidental fault injection. Some fail-
ures may be spurious. However, in our study we also use real errors that
were introduced (unintentionally) by real developers. Failing test cases are
guaranteed to fail because of the error.

– EV.3) Language Idiosyncrasies. Indeed, our objects contain well-main-
tained open-source C projects with real errors typical for such projects.
However, for instance errors in projects written in other languages, like
Java, or in commercially developed software may be of different kind and
complexity. Hence, we cannot claim generality for all languages and sug-
gest reproducing our experiments for real errors in projects written in other
languages as well.

– EV.4) Test Suites. The size of a test suite can influence the performance
of an AFL technique. Testing strategies that reduce or increase test suite
size such as test reduction or test generation methods (i.e. removing tests
or generating new tests) have been shown to improve the performance of
some AFL techniques (Yang et al., 2017; Yu et al., 2008). We mitigate the
effect of test suite size by employing projects with varying test suite sizes
(ranging from tens to tens of thousands of test cases) as provided by our
subject programs. In our evaluation, we do not generate additional tests or
remove any tests from the test suite provided by the benchmarks, in order
to simulate the typical debugging scenario for the software project.



40 Ezekiel Soremekun et al.

– EV.5) Missing Statements in Slices. Although, there is a risk of discard-
ing faulty statements during program slicing, dynamic slicing rarely miss
faulty statements during fault localization. Reis et al. (2019) found that
dynamic slicing reports the faulty statement in the top-ten most suspicious
statement 91% of the time. We further mitigate this risk by first inspecting
statements in the dynamic slice before inspecting other executable state-
ments. Thus, dynamic slicing (eventually) finds the faulty statement for all
bugs in our evaluation.

6.2 Construct Validity

Construct validity refers to the degree to which a test measures what it claims
to be measuring. The most immediate threats to construct validity are the
following:

– CV.1) Measure of Effectiveness. Conforming to the standard (Wong et al.,
2016), we measure fault localization effectiveness as ranking-based rela-
tive wasted effort. The technique that ranks the faulty statement higher
is considered more effective. Parnin and Orso find that “programmers
will stop inspecting statements, and transition to traditional debugging,
if they do not get promising results within the first few statements they
inspect” (Parnin and Orso, 2011). However, Steimann et al. (2013) insist
that one may question the usefulness of fault locators, but measures of
ranking-based relative wasted effort are certainly necessary for evaluating
their performance, particularly in the absence of the subjective user as the
evaluator.

– CV.2) Implementation Flaws. Tools that we used for the evaluation process
may be inaccurate. Despite all care taken, our implementation of the 18
studied statistical fault localization techniques, or of approximate dynamic
slicing, or of the empirical evaluation may be flawed or subject to random
factors. However, we make all implementations and experimental results
available online for public scrutiny.

7 Future Work

Fault localization based on dependencies still has much room for improvement.
For instance:

Cognitive load. In our investigation, we did not consider or model the cog-
nitive load it takes to understand the role of individual statements in con-
text. Since following dependencies in a program is much more likely to
stay within same or similar contexts than statistical debugging, where the
ranked suspicious lines can be strewn arbitrarily over the code, we would
expect dependency-based techniques to take a lead here. The seminal study
of Parnin and Orso (Parnin and Orso, 2011) found that ranked lists of
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statements are hardly helping human programmers—let us find out which
techniques work best for humans.

Alternate search techniques. Furthermore, there would be other search
strategies along dependencies (for instance, starting with the input, and
progressing forward through a program; starting at some suspicious or
recently changed location; or moving along coarse-grained functions first,
and fine-grained lines later) that may be even more efficient both in terms
of nodes visited as well as from the assumed cognitive load. Again, all this
calls for more human studies in debugging.

Experimental techniques. such as delta debugging (Zeller and Hildebrandt,
2002) offer another means to reduce the cognitive load—by systematically
narrowing down the conditions under which a failure occurs. The work
of Burger and Zeller (Burger and Zeller, 2011) on minimization of calling
sequences with delta debugging showed dramatic improvements over dy-
namic slicing, reducing “the search space to 13.7 % of the dynamic slice or
0.22 % of the source code”. In a recent human study, delta debugging “sta-
tistically significantly increased programmers efficiency in failure detection,
fault localization and fault correction.” (Hammoudi et al., 2015).

Symbolic techniques. Finally, following dependencies is still one of the sim-
plest methods to exploit program semantics. Applying symbolic execution
and constraint solving would narrow down the set of possible faults. Model-
based debugging (Wotawa et al., 2002) was one of the first to apply this
idea in practice; the more recent bugassist work of Jose and Majumdar
“quickly and precisely isolates a few lines of code whose change eliminates
the error.” (Jose and Majumdar, 2011).

All these techniques would profit from wider evaluation and assessment;
however, they can also be joined and combined; for instance, one could start
with suspicious statements as indicated by statistical fault localization, follow
dependencies from there, and skip influences deemed impossible by symbolic
analysis. What we need, though, is true defects which we can use to compare
the techniques with—and a willingness to actually compare state of the art
techniques, as we do in this paper.

8 Related Work

8.1 Evaluation of Fault Localization Techniques

The effectiveness of various fault localization approaches have been studied by
several colleagues, see Wong et al. (2016). Most papers investigated the effects
of program, test and bug features on the effectiveness of statistical debugging.
Abreu et al. (2009a) examined the effects of the number of passing and failing
test cases on the effectiveness of statistical debugging, they established that
the suspiciousness scores stabilize starting from an average six (6) failing and
twenty (20) passing test cases. Pearson et al. (2017) evaluated the difference
between evaluating fault localization techniques on real faults versus artificial
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faults, using two main techniques, namely statistical debugging and mutation-
based fault localization. Notably, their evaluation results shows that results
on artificial faults do not predict results on real faults for both techniques,
and a hybrid technique is significantly better than both techniques. Keller
et al. (2017) and Heiden et al. (2019) evaluated the effectiveness of statistical
fault localization on real world large-scale software systems. The authors found
that, for realistic large-scale programs, the accuracy of statistical debugging is
not suitable for human developers. In fact, the authors emphasize the obvious
need to improve statistical debugging with contextual information such as
information from the bug report or from version history of the code lines.
In contrast to our work, none of these papers evaluated the fault localization
effectiveness of program slicing, nor compare the effectiveness of slicing to that
of statistical debugging.

A few approaches have evaluated the effectiveness of dynamic slices in fault
localization (Zhang et al., 2007, 2005; Li and Orso, 2020). In particular, Zhang
et al. (2005) evaluated the effectiveness of three variants of dynamic slicing
algorithms, namely data slicing, full (dynamic) slicing, and relevant slicing. Re-
cently, Li and Orso (2020) proposed the concept of potential memory-address
dependence (PMD) to improve the accuracy of dynamic slicing. Traditional
dynamic dependence graphs (DDG) do not account for PMDs since they are
not actual data or control dependencies in the program (Li and Orso, 2020).
In particular, PMD-slicer determines the potential memory dependencies in a
program and represents them on the DDG. This allows developers to detect
faults that are due to program assignments that modify the wrong code loca-
tion. Like our study, these papers also found that (variants of) program slicing
considerably reduces the number of program statements that need to be ex-
amined to locate faulty statements. However, in contrast to our study, these
papers have not empirically compared the performance of dynamic slicing to
that of statistical debugging.

8.2 Improvements of Statistical Fault Localization

Several authors have proposed approaches to improve statistical fault localiza-
tion. Most approaches are focused on reducing the program spectra (i.e. the
code coverage information) fed to statistical debugging, sometimes by using
delta debugging (Christi et al., 2018), program slicing (Alves et al., 2011; Lei
et al., 2012; Guo et al., 2018), test generation (Liu et al., 2017), test prioriti-
zation (Zhang et al., 2017) or machine learning (Zou et al., 2019; B. Le et al.,
2016). In particular, some techniques apply program slicing to reduce the pro-
gram spectra fed to statistical debugging formulas (Shu et al., 2017; Alves
et al., 2011; Liu et al., 2016; Alves et al., 2011; Lei et al., 2012; Guo et al.,
2018). The popular page rank algorithm has been used to boost statistical
debugging effectiveness by estimating the contributions of different tests to re-
compute program spectral (Zhang et al., 2017). Machine learning algorithms
(such as learning to rank) have also been used to improve the effectiveness of
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statistical debugging (B. Le et al., 2016; Zou et al., 2019). Besides, BARINEL
employs a combination of bayesian reasoning and and statistical debugging to
improve fault localization effectiveness, especially for programs with multiple
faults (Abreu et al., 2009b). BARINEL combines statistical debugging and
model-based diagnosis (MBD), i.e., logic reasoning over a behavioral model to
deduce multiple-fault candidates: The goal is to overcome the high computa-
tional complexity of typical MBD. Search-based test generation has also been
combined with SBFL, in order to improve the performance of statistical de-
bugging for Simulink models (Liu et al., 2017). However, none of these papers
localize faults by following control and data dependencies in the program, i.e.
they do not directly use program slicing as a fault localization technique.

Zou et al. (2019) found that the combination of fault localization techniques
improves over individual techniques, the authors recommend that future fault
localization techniques should be evaluated in the combined setting. Wotawa
(2010) proposed a combination of model-based debugging and program slic-
ing for fault localization, called slicing hitting set computation (SHSC). In
contrast to our work, SHSC combines slices of faulty variables, which causes
undesirable high ranking of statements executed in many test cases (Hofer and
Wotawa, 2012). To address this, Hofer and Wotawa also proposed SENDYS
– a combination of statistical debugging and SHSC to improve the ranking
of faulty statements (Hofer and Wotawa, 2012). The focus of this work is to
provide fault locations at a finer granularity than program blocks. In contrast
to dynamic slicing, SENDYS analyzes the execution information from both
passing and failing test cases and uses statistical debugging results as a-priori
fault probabilities of single statements in SHSC (Hofer and Wotawa, 2012).

9 Conclusion and Consequences

As it comes to debugging, dynamic slicing remains the technique of choice for
programmers. Suspicious statements, as produced by statistical debugging, can
provide good starting points for an investigation; but beyond the top-ranked
statements, following dependencies is much more likely to be effective. As it
comes to teaching debugging, as well as for interactive debugging tools, we
therefore recommend that following dependencies should remain the primary
method of fault localization—it is a safe and robust technique that will get
programmers towards the goal.

For automated repair techniques, the picture is different. Since current
approaches benefit from a small set of suspicious locations, focusing on a small
set of top ranked locations, as produced by statistical debugging, remains the
strategy of choice. Still, automated repair tools could benefit from static and
dynamic dependencies just as human debuggers.

While easy to deploy, the techniques discussed in this paper should by
no means be considered the best of fault localization techniques. Experimen-
tal techniques which reduce inputs (Zeller and Hildebrandt, 2002; Hammoudi
et al., 2015), or executions (Burger and Zeller, 2011) may dramatically improve
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fault localization by focusing on relevant parts of the execution. Grammar-
based techniques that debug inputs (Kirschner et al., 2020), generalize in-
puts (Gopinath et al., 2020) or determine the circumstances of failure (Kamp-
mann et al., 2020) may provide contextual information for developers during
debugging by focusing on input features that explain failures. Symbolic tech-
niques also show a great potential—such as the technique of Jose and Majum-
dar, which “quickly and precisely isolates a few lines of code whose change
eliminates the error” (Jose and Majumdar, 2011). The key challenge of auto-
mated fault localization will be to bring the best of the available techniques
together in ways that are applicable to a wide range of programs and useful
for real programmers, who must fix their bugs by the end of the day.

Additional material. All of our scripts, tools, benchmarks, and results are
freely available as an artifact, in order to support scrutiny, evaluation, repro-
duction, and extension:

https://tinyurl.com/HybridFaultLocalization
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