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ABSTRACT

Android applications (apps) represent an ever increasing portion of

the software market. Automated test input generators are the state

of the art for testing and security analysis.

We introduce DroidMate-2 (DM-2), a platform to easily assist

both developers and researchers to customize, develop and test

new test generators. DM-2 can be used without app instrumen-

tation or operating system modifications, as a test generator on

real devices and emulators for app testing or regression testing.

Additionally, it provides sensitive resource monitoring or blocking

capabilities through a lightweight app instrumentation, out-of-the-

box statement coverage measurement through a fully-fledged app

instrumentation and native experiment reproducibility. In our ex-

periments we compared DM-2 against DroidBot, a state-of-the-art

test generator by measuring statement coverage. Our results show

that DM-2 reached 96% of its peak coverage in less than 2/3 of the

time needed by DroidBot, allowing for better and more efficient

tests. On short runs (5 minutes) DM-2 outperformed DroidBot by

7% while in longer runs (1 hour) this difference increases to 8%.
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1 INTRODUCTION

The Android mobile application market is highly volatile and com-

petitive with millions of applications (apps) on Google Play Store.

The quality of an app is vital to stay competitive in such a market

and testing is a core technique for quality control.

Since manual app testing is expensive and laborious, several

tools for automated test generation [10] have been developed. Au-

tomated testing is, however, a constantly evolving subject, as testing

techniques improve, so increases the app’s complexity. This results

in a never ending demand for more advanced testing techniques

to cover app behavior as effective and efficient as possible. Quality

control mostly implies defect-free apps and test generators mainly

focus on functionality testing. As the recent Facebook incident [5]

shows, this is no longer sufficient. As security and privacy become

more prominent, security analysis should be part of the testing and

development cycle.

In this work we present DM-2, an extended and improved ver-

sion of the original DroidMate project. While DroidMate was a

test input generator with API monitoring capabilities, DM-2 offers

easy to use mechanics to implement systematic testing strategies on

top of a ready to use selection of strategies such as random, fitness

based or playback of recorded executions. DM-2 is still usable out-

of-the-box as a random test input generator, however, besides major

performance improvements, its improved design gives developers

and researchers means to easily implement and combine their own

custom strategies while abstracting all Android specifics, such as

app setup or device communication, away. Each strategy is auto-

matically selected according to freely configurable conditions, e.g.,

the condition if there is a permission request, accept it can be easily

expressed as boolean check of the currently visible elements for the

permission request identifier. All these test generation algorithms

can benefit from monitoring, mocking or blocking of sensitive re-

sources during analysis as well of a new dynamically generated and

extensible app model, which allows for context aware exploration

strategies. DM-2 runs on stock Android versions between 6 (API

23) and 8 (API 26), on physical devices and emulators without any

need of device rooting or operating system (OS) modification. It

provides out-of-the-box test reproducibility, as well as statement

coverage analysis via app instrumentation.

2 TOOL DESIGN

The architecture of DM-2 consists of three major components, as

illustrated by the dashed frames in Figure 1.

Exploration Engine ś running on the host PC ś creates the UI

state model (on the fly) and determines interactions with the app

under test based on a configurable set of exploration strategies;

Monitoring Proxy ś running on the device ś is responsible for

intercepting API calls between the app and the Android OS to log,

block or mock the responses of these API calls;
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Figure 1: DM-2’s conceptual architecture, highlighting

places where the developer can add custom implementa-

tions (light gray), as well as components from the original

DroidMate extended by DM-2 (dashed).

Automation Engine ś consisting of a PC interface and a device

component which communicate via TCP ś to execute the actions

as determined by the Exploration Engine on the device. Thereby the

device itself is controlled via Android’s native UiAutomator.

2.1 Exploration Engine

Originally, the test generation of DroidMate utilized an explo-

ration loop to determine after each executed device action what

interactions should be issued next. DM-2 extends this mechanism

with a pool of exploration strategies and selectors which determine

the next interaction, based on the current state of the App Model

(see Section 2.1.3). Each selector programmatically specifies, based

on the current and previous model states, if it is able to process the

current state and, if so, which specific strategy should be activated.

To cope with cases where multiple conditions are fulfilled at the

same time, a unique priority value has to be specified for each se-

lector. For any iteration in the exploration loop, the selector with

the highest priority which can process the current state is chosen

and its strategy is used to compute the next device interaction.

After each device action DM-2 fetches the current device screen

(window dump) and a screenshot, alongside potential logcat ex-

ceptions. With this information the new app state is derived as

described in App Model. Additionally, all registered model features

are notified about this state transition. These model features pro-

vide the interface to allow for model extensions like a blacklist of

all UI elements which let the app crash or the exploration stagnate.

The new state is then used in the next iteration of the explo-

ration loop as current state of the app. This loop continues until

any strategy triggers a terminate action.

2.1.1 Strategy Selectors. DM-2 supports the definition of criteria

to determine the best strategy for different situations, e.g., when a

permission is requested or the exploration gets stuck. These criteria

are referred to as selectors.

Formally, a selector is defined as a pair
(

p, f (c ) → s
)

where p is

its priority and f (c ) is a mapping function f from a model context c

(e.g., the current state or the action trace) to an exploration strategy

s .DM-2 calculates if the selection criteria is fulfilled f (c ) and choses

the most significant successful selector. That is, the one with highest

priority which returned a strategy s to be used to derive the next

device interaction.

DM-2 provides a set of selectors to activate the default strategies

described in Section 2.1.2. The set of selectors to be used can be

configured via command line or within a configuration file. Custom

selectors can be implemented or existing selectors can be modified

(e.g to change priorities) and passed to DM-2’s initialization.

2.1.2 Strategies. An interaction with an app can be simple, such as

click on coordinates (x ,y), or complex, such as close the app, enable

the device wi-fi, bluetooth and restart the app from its initial screen.

Such complex interactions are abstracted as exploration actions. An

exploration action determines which specific sequence of device

actions should be performed by the automation engine. A strat-

egy decides, based on the current state of the app model, which

exploration action(s) should be issued next.

DM-2 is shipped with a set of strategies, e.g., it is able to ran-

domly explore an arbitrary app without any need of additional

meta information, labeling or manual user interaction. In addition

to random exploration, DM-2 offers the following default strategies

Reset (re-)enables wi-fi, triggers the home button and starts the

app from its main activity.

Terminate closes the app and finishes the exploration.

Back presses the back button of the device.

BiasedRandom randomly selects a UI element from the current

screen, among those which have been least explored, and clicks or

long clicks it.

In particular, we count how often any UI element was clicked in

the context of a specific state and how often over all states. The

least interacted UI element is computed by determining the inter-

actable elements which were least interacted in the context of the

current state and filtering these by the smallest overall interaction

number. If this computation results in more than one UI element,

the target is chosen randomly among them. Apps which belong

to the application package are preferred to guide the exploration

rather to app internal features.

Random randomly clicks on the coordinate of any UI element on

the screen, similar to Monkey [1].

Fitness Proportionate uses a statically mined interaction model

to predict the probability of each UI element having an event, then

use these probabilities as bias for a random selection.

PlayBack selects the next valid interaction from a previously

recorded model trace and replays it.

2.1.3 App Model. The app model constructed during exploration

consists of the UI states ś featuring a set of UI elements. Some

of these UI elements are interactable, meaning the user can, for

example, tick, click or long-click them. This interaction (transition)

may lead into another state. While Androids allows the developer

to specify a resource id for any UI element, it is optional and seldom

used. Thus, we uniquely identify a UI element by computing its id

wId in the form of a UUID (from the Java default library) based on

the concatenation of its display and description text, if available,

or on its image bytes, cut from a screenshot, if not. In addition

to the unique ID, we compute a propId which represents the UI

element configuration by converting all state-related properties

such as position, checked, enabled, click-able etc. to a string and

computing its UUID.
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We aim to identify conceptually identical states, i.e., slight differ-

ences in the rendering like the highlighting of previously interacted

elements should not be interpreted as a different state. Moreover,

we disregard UI elements which do not belong to the app, that is,

possess a different package name; as well as non-interactable and

simply structuring elements as non-essential for the conceptual

identity of the UI state. However, we would still like to be able to

distinguish if, for example, a check-box in the same conceptual

state was ticked or not. With this goal, we specify the identity

id of a state by a tuple stateId = (uniqueId, configId). Where the

uniqueId is computed as the union of the wId of all UI elements

belonging to the app which are either interactable or leafs in the

element hierarchy (non-leaf elements are used for layout and visual

representation purposes) and the configId is the union of the propId

of all currently visible UI elements.

This metric for unique ids allows us to efficiently re-identify con-

ceptually identical UI states as well as UI elements which reoccur

within different UI states (like menu or help buttons), independently

of their position or layout. The metric for configId allows to iden-

tify which configurations were explored for each UI state. Both

functionalities are essential for advanced exploration strategies.

2.2 Automation Engine

The Automation Engine abstracts and manages all communication

between the exploration and app using a synchronous protocol

based on actions and responses. Strategies send one action at a

time to the Automation Engine (PC side), which forwards it to its

on-device instance and halts the exploration while this action is

processed.

The on-device Automation Engine converts actions into automa-

tion commands or API calls. Before issuing a response to the ex-

ploration, the on-device Automation Engine must wait until the

app stabilizes, that is, until it finishes performing the previous ac-

tion and has at least one element from the app to interact with.

This synchronization is a natural bottleneck of most Android test

generators which allow for state-aware UI actions. It is, however,

necessary to correctly emulate a user’s behavior, who would have

to wait until a new screen is loaded to continue the exploration.

The time to execute an action varies according to the functional-

ity being performed ś ticking a checkbox is faster than clicking a

login button ś as well as external factors, such as network speed

and server availability. The Automation Engine copes with varying

load times as follows: first, it waits for the device to be idle, that is,

ready to receive and handle commands again. It then waits until

at least one UI element can be interacted with. It discards any UI

elements displayed only during this transition period, e.g., progress

bars, as they do not provide any explorable behavior.

Once the app stabilizes, the on-deviceAutomation Engine issues a

response containing the structural (screen dump) and visual (screen-

shot) state of the device to its PC counterpart, which forwards it to

the Exploration Engine for processing.

2.3 Monitoring Proxy

TheMonitoring Proxy is a payload deployed to the device in order to

work as a proxy between the app and OS. It monitors a configurable

list of privacy-sensitive resources and intercepts API invocations

without changing the app code. This functionality is only available

Figure 2: Average coverage over time between DM-2, Droid-

Bot andMonkey for the test dataset.

on physical devices or emulators with ARM processor architecture.

In order to use it, the app has to be instrumented to activate this

payload before starting the app. DM-2 offers this instrumentation

functionality through its inline mechanism, which inserts an acti-

vation call to the payload in the entry point of the app, keeping the

remainder of the app unaltered.

While originally developed for API monitoring, the Monitoring

Proxy allows custom code to be triggered for each API, as well as to

individually define security policies such as mocking or blocking

API access. When active, Monitoring Proxy’s standard mocking

behavior is to return a default value for primitive type APIs, such

as 0 for integers and empty string for strings. When blocking, it by

default raises a security exception.

3 EMPIRICAL EVALUATION

We conducted a set of experiments to evaluate DM-2’s efficiency

and effectiveness. In particular we aim to answer the following

research question: Does DM-2 reach a coverage peak faster than

current tools?

We compared DM-2 against DroidBot, which presents similar

functionality and has been shown to outperform most current test

generators [2] and Monkey, the standard test generator from An-

droid. As an evaluation metric we used statement coverage, which

has been extensively used to determine the effectiveness of testing

tools and is regarded as a good predictor for fault detection [6]. We

evaluated all tools on 11 different apps, randomly chosen from [3].

Each app exploration was executed for 1 hour on a real Google

Nexus 5X device, with 10 runs per app to mitigate noise.

Our results in Figure 2 show that concrete strategies are superior

to pure random events for the tested app set. Even thoughMonkey

implements more input types (e.g., swipe and zoom) than the other

tools it has the worst overall coverage. This is in particular true for

apps which have ‘deeper functionality‘, meaning the user has to

navigate through a few screens until certain features are accessible.

DroidBot and DM-2, both, try to systematically explore differ-

ent UI elements. DroidBot applies a depth-first strategy, mean-

while DM-2 uses BiasedRandom. This fact together with the better

performance of DM-2 (2s instead of 3-4s per action) lead to faster

and more efficient explorations. On average, DM-2 achieved 8%

better coverage than DroidBot after 1 hour, with a 7% difference

in 5 minute runs. In addition, this chart shows that DM-2 achieved

96% of its maximum coverage in approximately 15 minutes, while

DroidBot reached the same ration in approximately 24 minutes.

4 USAGE SCENARIOS

We envision DM-2 as a tool beneficial to both research and industry

due to its modular architecture and out-of-the-box functionality.

Below we describe a few scenarios where DM-2 can be applied.
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Record and Replay System Tests. During the test execution, DM-2

records each action performed, UI element seen and state reached,

it also provides out-of-the-box statement coverage measurement.

An initialDM-2 run ś or a set of runs with different configurations ś

can be executed to test a system. During the release of a new version

of the app these tests can be replayed and the following evaluations

performed: (1) does the functionality tested on the previous app

version still work the same? (2) Are there any previously tested code

segments which are no longer tested?

Sensitive Resource Impact Analysis. DM-2 can be used to analyze

the impact of access restriction to sensitive resources. While Droid-

Mate was capable of monitoring API access it did not provide any

means to restrict ś or impersonate ś them. By combining DM-2’s

API restricting capabilities with its record and replay feature and

code coverage metric, it is possible to measure the impact when

restricting access to a sensitive resource.

App Behavior Analysis. DM-2 creates an app model during explo-

ration, which can be used to generate new test inputs. This model

can be easily extended with custom features, like tracking APIs

triggered after clicking UI elements with certain text labels.

Previous research [7] demonstrated that such information can

be used to identify anomalous behaviors within app categories. Our

model allows such studies to be performed with context-awareness

(current and previous app states) and on finer granularity level.

New Test Generation Strategies. DM-2’s architecture offers ma-

jor assistance for the development of new Android test generation

algorithms.DM-2 can be used to abstract all low-level Android com-

munication and to create tests from a model representation of the

app, mitigating the development efforts. In addition, DM-2 provides

natively experiment reproducibility (through record and replay) as

well as coverage metrics for comparison between techniques.

5 RELATED WORK

Automated Test Input Generation in mobile apps is a frequent re-

search topic. Three major approaches are used for input generators,

namely: random, model-based, and systematic.

Random testing tools create sequences of events to explore apps.

Representatives are Monkey [1] ś the lightweight test generator

shipped with Android, as well as DroidMate [8]. DM-2 supports

the same feature, while providing more functionality.

Model-based input generators use a ś previously defined or on

the fly generated ś model to produce inputs. For example Droid-

Bot [9] employs different methods to dynamically construct and

consume app models. DM-2’s offers similar features. A developer

can easily implement custom strategies which use the on the fly

constructed model. DroidBot’s methods to quantify test effective-

ness are orthogonal to our approach and may be integrated in the

future. SwiftHand [4] uses statically generated models to guide test

generation. DM-2 provides out-of-the-box a Fitness Proportionate

strategy which consumes a static model for test generation. This

mechanism can be applied to arbitrary input models.

Systematic testing approaches systematically test an app with a

specific goal. EvoDroid [11] and Sapienz [12] attempt to improve

test coverage, while IntelliDroid [13] attempt to trigger specific

behaviors. With DM-2’s extensive app model it is straightforward

to support all these approaches or to try out other new strategies.

Besides the performance benefits as presented in Section 3,DM-2

offers additional features like reproducibility (playback strategy),

an extensible architecture and a more powerful app model.

6 CONCLUSION

We present DM-2, a platform for Android test generation, which

can be used on all stock Android versions 6 to 8.1. While DM-2 can

be used out of the box for random testing, with API monitoring and

privilege restriction, or for recording and replaying system tests,

its major advantage is the easement for development, combination,

extension and comparison of different test generation strategies.

DM-2 simplifies the work for developers by abstracting all device

related issues and providing a dynamically constructed app model,

which can be used to verify test criteria or for strategy development.

Our evaluation showed thatDM-2 is able not only to achieve a better

coverage than both a state-of-the-art and Android’s standard test

generators, but that it is also able to reach its peak coverage earlier,

allowing for faster more efficient testing.
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