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ABSTRACT
NTRUEncrypt is one of the first lattice-based encryption schemes.

Furthermore, the earliest fully homomorphic encryption (FHE)

schemes rely on the NTRU problem. Currently, NTRU is one of

the leading candidates in the NIST post-quantum standardization

competition. What makes NTRU appealing is the age of the cryp-

tosystem and relatively good performance.

Unfortunately, FHE based on NTRU became impractical due

to efficient attacks on NTRU instantiations with “overstretched”

modulus. In particular, currently, NTRU-based FHE schemes to

support a reasonable circuit depth require instantiating NTRU with

a very large modulus. Breaking the NTRU problem for such large

moduli turns out to be easy. Due to these attacks, any serious work

on practical NTRU-based FHE essentially stopped.

In this paper, we reactivate research on practical FHE that can

be based on NTRU. We design an efficient bootstrapping scheme

in which the noise growth is small enough to keep the modulus to

dimension ratio relatively small, thus avoiding the negative conse-

quences of “overstretching” the modulus. Our bootstrapping algo-

rithm is an accumulator-type bootstrapping scheme analogous to

AP/FHEW/TFHE. Finally, we show that we can use the bootstrap-

ping procedure to compute any function over Z𝑡 . Consequently, we
obtain one of the fastest FHE bootstrapping schemes able to com-

pute any function over elements of a finite field alongside reducing

the error.
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1 INTRODUCTION
A fully homomorphic encryption scheme gives the possibility to

compute any function on encrypted data. Early practical homomor-

phic encryption schemes were built either from the ring learning

with errors problem (e.g. BGV [18, 19] and BFV [17, 34]) or the

NTRU problem
1
(LTV [54] and YASHE [14]). Both variants demon-

strated similar performance characteristics [30]. It is worth noting

that NTRUEncrypt by Hoffstein, Pipher, and Silverman [45] was

among the first lattice-based cryptosystems, is currently subject to

standardization [1, 9] and considered to be a leading candidate for

further standards [4].

The first subfield attack against NTRU was due to Gentry and

Szydlo [39] and was directed against the NTRU signature scheme.

However, the attack did not get much attention since the original

NTRU encryption algorithm does not require a large modulus. Fur-

ther, Albrecht, Bai, and Ducas [5] and independently Cheon, Jeong,

and Lee [24] apply the subfield attack to, among other, LTV [54]

and YASHE [14].

Roughly speaking, the NTRU lattice contains a sublattice that,

when recovered, allows an attacker to recover the secret key al-

most immediately. Therefore, when the modulus of an NTRU is

too large in comparison to the dimension, then NTRU is broken.

Kirchner and Fouque [48] later studied the attack and showed that

finding the basis vector of the sublattice is faster than recovering

the secret key already for moduli as small as 𝑄 = 𝑛2.783+𝑜 (1)
. The

same attack does not apply to ring learning with errors. To support

correct computation, all schemes BGV, BFV, LTV, and YASHE need

to increase the modulus with the depth of the circuit unless we

bootstrap the ciphertext, which in itself is a costly operation. Since

for larger moduli, NTRU is broken, to compensate, we would need

to increase its dimension, making NTRU-based fully homomorphic

encryption schemes uncompetitive to RLWE-based schemes. Very

recently, Ducas and van Woerden [33] gave a detailed analysis and

estimations, backed by experiments, on the hardness of the NTRU

problem when the modulus falls into the overstretched regime.

1.1 Our Contribution.
We leverage the results from Ducas and van Woerden [33] and

design a very competitive, fully homomorphic encryption scheme

based on NTRU that we call NTRU-𝜈-um2
. Importantly, we can

keep the modulus of the NTRU instantiation small, and thereby

we get reasonable security levels. What is more, we can leverage a

larger ring dimension to our advantage. At the core of our scheme is

a bootstrapping algorithm, which is based on the homomorphic ac-

cumulator technique [8, 32]. To build the bootstrapping algorithm,

1
The problem is called “Decisional Small Polynomial Ratio Assumption” but here we

refer to it briefly as NTRU.

2
Read NTRU-nium.
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we construct an NTRU-analog of the GSW encryption scheme by

Gentry, Sahai, and Waters [38]. The GSW encryption scheme un-

derlies many previous accumulator-based bootstrapping schemes

[8, 26, 32]. In the fastest bootstrapping schemes [26, 32] GSW is

instantiated with the ring version of the learning with errors prob-

lem. In the case of NTRU, multiplication requires roughly half the

work as an instantiation of GSW with ring learning with errors.

Our bootstrapping algorithm, alongside reducing the error, can

compute all negacyclic functions 𝐹 : Z𝑡 ↦→ Z𝑡 where 𝑡 ∈ N. Using
recent techniques from [53, 61] we extend the method to all func-

tions over Z𝑡 . In other words, we can compute arbitrary functions

over finite fields alongside bootstrapping the ciphertext and reduc-

ing the error. This way, we can leverage a larger ring dimension to

perform computation alongside bootstrapping of higher precision.

Very recently such full domain functional bootstrapping got more

attention [29, 50, 53, 61]. Our bootstrapping algorithm is arguably

the fastest among the currently proposed schemes. We give more

details on the comparison in the main body of the paper, but in

practice, our scheme is roughly two times as fast as the current best

schemes.

We show several parameter sets to correctly bootstrap plaintexts

from Z𝑡 where 𝑡 ≈ 2
8
or more. One appealing property of our

scheme is that we can run in the correct mode and approximate

mode. This means, in particular, that we can set the plaintext space

even as high as log
2
𝑡 = 2

14
if the application can tolerate errors.

We give an efficient implementation and test a few applications.

For example, our bootstrapping allows us to compute univariate

polynomials in time independent of the degree of the polynomial.

Importantly, our scheme can compute modular inversion of field

elements with only a single bootstrapping operation. Consequently,

we show applications to solving systems of linear equation over

encrypted data by evaluating Gaussian elimination. To the best of

our knowledge, this is the first time finite field Gaussian elimination

has been efficiently performed over encrypted data. Solving such

equations may be useful to build, for example, blind signatures

by combining our scheme with multivariate blind signatures like

Rainbow [31, 47, 58] (Round 3 candidate in the NIST PQ Competi-

tion). In contrast, when applying fully homomorphic encryption for

boolean circuits [26, 27, 32], we would need to represent modular

reduction and modular inversion as a boolean circuit. For schemes

designed to compute arithmetic circuits [17–19, 34], we still need

to represent modular inversion as an arithmetic circuit. While it is

theoretically possible to compute such circuits, it is infeasible to

apply these schemes, for example, to Gaussian elimination. Finally,

we can implement binary decomposition of field elements with only

a single bootstrapping, thereby we can efficiently switch between

binary and arithmetic homomorphic computation.

1.2 Overview of NTRU-𝜈-um’s Bootstrapping
Algorithm.

Let us first start by recalling the structure of NTRU samples and

introducing a gadget NTRU version. DenoteR𝑄 = Z𝑄 [𝑋 ]/(𝑋𝑁 +1).
An NTRU sample is a polynomial 𝑐 ∈ R𝑄 of the form 𝑐 = 𝑒1/𝑓 +
𝑒2 +𝑚, where 𝑓 ∈ R𝑄 (usually having coefficients in {−1, 0, 1})
is the secret key, 𝑒1, 𝑒2 ∈ R𝑄 are the error polynomials and have

coefficients from some distributionX, and𝑚 =
𝑄
𝑡 ·𝑚

′
with𝑚′ ∈ R𝑡 .

Note that if we want to add two NTRU ciphertexts 𝑐 , and 𝑐′ =
𝑒′

1
/𝑓 +𝑒′

2
+𝑚′, we simply compute 𝑐+𝑐′ = (𝑒1+𝑒′

1
)/𝑓 +𝑒2+𝑒′

2
+𝑚+𝑚′

which is a valid ciphertext of𝑚 +𝑚′ but with larger error. We can

also multiply a ciphertext by a scalar 𝑎 ∈ R𝑄 such that 𝑐′′ = 𝑐 · 𝑎 =

𝑒1 · 𝑎/𝑓 + 𝑒2 · 𝑎 +𝑚 · 𝑎.
Note that the above scalar multiplication is quite expensive as

the error terms are multiplied by the scalar 𝑎. Hence, to preserve

correctness and allow for decryption, we can only multiply with

sparse polynomials with small coefficients . To resolve the issue,

we introduce a gadget version of NTRU. Gadget NTRU is analo-

gous to the GSW scheme for ring LWE, but we adapt the GSW

technique to NTRU. In this paper, we use gadget NTRU to mul-

tiply two ciphertexts and use the fact that the resulting error is

relatively small. A gadget NTRU sample is a vector c𝐺 = [𝑐𝑖 ]ℓ𝑖=1

with ℓ = logL (𝑄), where each 𝑐𝑖 is a NTRU ciphertext of𝑚𝐺 · L𝑖−1
.

To multiply such ciphertext with a scalar 𝑐 ∈ R𝑄 , we compute the

inner product between c𝐺 and the decomposition of 𝑐 with respect

to the base L. Concretely, let G−1
be the decomposition function

such that c𝐷 ← G−1 (𝑐, L) ∈ RℓL where

∑ℓ
𝑖=1

c𝐷 [𝑖] · L𝑖−1 = 𝑐 . Then

to multiply a gadget NTRU ciphertext c𝐺 with 𝑐 , we compute

𝑐out =
〈
c𝐺 ,G−1 (𝑐, L)

〉
= 𝑒1,𝐺/𝑓 + 𝑒2,𝐺 +𝑚𝐺 · 𝑐

Note that when computing the inner product, we make ℓ scalar

multiplications and additions, where the scalar multiplications are

with polynomials from RL. Furthermore, if 𝑐 is itself an NTRU

ciphertext as above, then we have

𝑐out = 𝑒1,𝐺/𝑓 + 𝑒2,𝐺 +𝑚𝐺 · (𝑒1/𝑓 + 𝑒2 +𝑚)
= (𝑒1,𝐺 +𝑚𝐺 · 𝑒1)/𝑓 + (𝑒2,𝐺 +𝑚𝐺 · 𝑒2) +𝑚𝐺 ·𝑚,

which is a valid NTRU ciphertext. Note that the error, in this case,

depends on the magnitude of𝑚𝐺 .

Blind Rotating a Homomorphic Accumulator. Following the
ideas from [8, 26, 32], we construct a homomorphic accumulator

scheme which we can informally summarize as follows. A LWE

sample is a vector c ∈ Z𝑛+1
2𝑁

, where c[1] = −c[2:𝑛 + 1]⊤s + 𝑒 + 2𝑁
𝑡 𝑚.

To partially decrypt c it is sufficient to compute the linear function

c[1] +c[2:𝑛+1]⊤s = 𝑒 + 2𝑁
𝑡 ·𝑚. Given that the error 𝑒 < 2𝑁

2·𝑡 , we can

further decode the message by

⌊
𝑡

2𝑁
(𝑒 + 𝑁

𝑡 𝑚)
⌉
=𝑚. Note that each

message is encoded in an interval of size

⌊
2𝑁
𝑡

⌋
to ensure correct

decryption.

Now let us consider the operation 𝑎rot · 𝑋 c[1]+c[2:𝑛+1]⊤s = 𝑎rot ·
𝑋𝑒+ 2𝑁

𝑡
·𝑚 ∈ R𝑄 . Note that when R𝑄 = Z𝑄 [𝑋 ]/(𝑋𝑁 + 1), this

operation is a negacyclic rotation of the coefficients of 𝑎rot by c[1] +
c[2:𝑛+1]⊤s = 𝑒 + 2𝑁

𝑡 ·𝑚 mod 𝑁 positions. Hence, the idea is to set

the coefficients of the polynomial 𝑎rot such that after rotating it, the

desired value for 𝑒 + 2𝑁
𝑡 ·𝑚 is encoded in the constant coefficient.

Specifically, to compute any negacyclic function 𝐹 : Z𝑡 ↦→ Z𝑡 , we
set the rotation polynomial such that 𝑎rot [𝑦 + 1] = 𝐹 (

⌊
𝑡

2𝑁
· 𝑦
⌉
) for

all 𝑦 ∈ [0, 𝑁 ]. Remind that if 𝑦 = 2𝑁
𝑡 ·𝑚 + 𝑒 , where𝑚 ∈ Z𝑡 , then⌊

𝑡
𝑁
· 𝑦
⌉
=𝑚 given that 𝑒 ≤ 𝑁

𝑡 .

The Bootstrapping Procedure. Now we are ready to describe

the bootstrapping procedure. Let’s say that we want to bootstrap

an LWE ciphertext with a secret key s ∈ {0, 1}𝑛 . We publish 𝑛

gadget NTRU ciphertexts that encrypt the bits of the LWE secret
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key. Denote the vector of those gadget NTRU ciphertexts by cBk.
Furthermore, we have an NTRU ciphertext 𝑐acc that encodes 𝑎rot.

We call 𝑐acc the accumulator. To bootstrap an LWE ciphertext c we
compute

𝑐out = 𝑐acc · 𝑋 c[1] ·
𝑛∏
𝑖=1

𝑋 c[𝑖+1] · cBk [𝑖]

= 𝑐′acc · 𝑋 c[2:𝑛+1]⊤s .

where 𝑐′acc encrypts 𝑎rot just as 𝑐acc but with a higher error. Finally,

we have that the message in 𝑐out contains the desired result in its

constant coefficient.

The problem now is that if we want to continue computing and

bootstrapping on the resulting ciphertext, we need to transform

the NTRU ciphertext into an LWE ciphertext which encrypts the

message in the constant coefficient of the NTRU ciphertext. Hence

we design a special key switching procedure that homomorphically

extracts the 𝑑th coefficient, by computing the linear function

(𝑐acc · 𝑓 ) [𝑑] =
𝑁∑︁

𝑖=1, 𝑗=1,
𝑖+𝑗−2 𝑚𝑜𝑑 𝑁=𝑑

𝑐acc [𝑖] · 𝑓 [𝑖]

from the coefficient of the NTRU ciphertext and its secret key.

Furthermore, we use the NTRU to LWE key switching procedure

to pack 𝑁 messages into a single NTRU ciphertext which we can

then extract for bootstrapping. This way, we transmit only a single

integer per message.

Note, however, that there is a problemwith this solution. Namely,

when computing 𝑐acc · 𝑓 we obtain and encryption of 𝑚 · 𝑓 in-

stead of𝑚. In other words, we have the message masked by the

secret key 𝑓 . So how can we possibly continue to bootstrap such

ciphertext? We solve this issue, by including 𝑓 −1 ∈ R𝑄 in the

accumulator 𝑐acc. That is the accumulator will encrypt 𝑓 −1 · 𝑎rot.
When multiplying 𝑓 we immediately recover 𝑎rot (or the negacyclic

rotation of 𝑎rot). Unfortunately, the trick requires us to assume

NTRU is key-dependent message (KDM) secure with respect to

𝑓 −1
. While we do not have a formal reduction, we believe that this

version preserves security as we can write such NTRU samples as

𝑐 = 𝑒1/𝑓 + 𝑒2 +𝑚/𝑓 = (𝑒1 +𝑚)/𝑓 + 𝑒2. In this case, the constant

coefficient of the 𝑒1 error is shifted by𝑚. If coefficients of 𝑒1 are

random variables with expectations equal to zero, then the KDM

version shifts the expectation by the coefficients of𝑚.

Another problem appears when using such a scheme in practice.

Namely, since we require the message in the accumulator to be key-

dependent, an evaluator cannot freely choose rotation polynomials,

and we need to publish all potential accumulators together with the

bootstrapping key. To resolve this issue, instead of publishing an

accumulator with the rotation polynomials, we can publish a gadget

NTRU encryption of
𝑄
𝑡 · 𝑓

−1
. The evaluator can then choose its own

𝑎rot and multiply it with the accumulator. Note that if plaintexts are

Z𝑡 , then 𝑎rot ∈ R𝑡 and 𝑡 << 𝑄 . Hence we actually need to publish

a smaller gadget that supports the composition of numbers up to 𝑡

instead of 𝑄 .

1.3 Related Work
Gentry’s introduction of the bootstrapping technique [37] opened

a floodgate of research on fully homomorphic encryption [7, 17–

19, 22, 34, 38, 41, 42].

The NTRU problem and the corresponding cryptosystem dates

back to the work by Hoffstein, Pipher, and Silverman [45]. One of

the earliest schemes by López-Alt, Tromer, and Vaikuntanathan

[54], and its scale-invariant version YASHE [14] are based on the

Stehlé, and Steinfeld’s [60] variant of the NTRU problem.

The first accumulator-based bootstrapping scheme is due to

Alperin-Sheriff, and Peikert [8]. The techniques require represent-

ing the decryption circuit as an arithmetic circuit, and we do not

rely on Barrington’s theorem. Furthermore, the method exploits er-

ror characteristics of the GSW cryptosystem by Gentry, Sahai, and

Waters [38]. Hiromasa, Abe, and Okamoto [44] improved upon [8]

and build a version of GSW that natively encrypts matrices. Genise

et al. [36] showed an encryption scheme that further improves

the efficiency of matrix operations, albeit using a novel NTRU-like

assumption. Ducas and Miccancio [32], building on [8], design a

practical bootstrapping algorithm called FHEW. FHEWuses the ring

version of the GSW cryptosystem. Chillotti et al. [26, 28] showed

numerous optimizations to FHEW bootstrapping algorithm. On the

other hand, their scheme called TFHE relies on LWE with binary

keys, while FHEW was originally designed to support keys with

much larger coefficients. We refer to the work by Micciancio and

Polyakov [56] for an excellent comparison of both methods. The

FHEW and TFHE bootstrapping algorithms, by far, are the fastest

bootstrapping algorithms to date. Further improvements mostly

relied on incorporating packing techniques [27, 57], and improved

lookup tables evaluation [20, 27]. Initially, FHEW/TFHE were de-

signed to bootstrap ciphertexts with binary plaintexts, but a series

of works [12, 20, 40] showed that extending the computation to

larger plaintexts may be beneficial in practice.

Concurrently, Chillotti et al. [29] and Kluczniak and Schild [50],

who was very quickly followed by Yang et al. [61] and Liu et al.

[53], showed how to resolve the limitation of the FHEW/TFHE

functional/programmable bootstrap. In particular, while previous

schemes could bootstrap larger plaintexts, due to the negacyclicity

of the function that the bootstrapping could compute, it wasn’t easy

to compute arithmetic circuits over Z𝑝 . The works [29, 50, 53, 61]
resolve the issue by using FHEW/TFHE as a subroutine. Still, the

resulting bootstrapping algorithms are inherently slower than the

original TFHE algorithm, and so far, only [50, 53, 61] implemented

their schemes.

Concurrent and Independent Work. We note that Bonte et

al. [13] independently published a fully homomorphic encryption

scheme similar to ours. In particular, they also define a gadget NTRU

cryptosystem and build an accumulator bootstrapping algorithm.

We note that there are several differences in our designs. The most

crucial difference seems to be that Bonte et al. build their scheme

with binary ciphertexts in mind while we compute arbitrary func-

tions on plaintexts from Z𝑡 . There are also some very technical

differences, like the way both works extract LWE ciphertexts. We

describe a generalized algorithm that we can later use to extract

LWE samples from the packed NTRU ciphertexts. Bonte et al. [13]

show a faster blind rotation algorithm for ternary keys. We note
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that the optimization is general and can be used with our algorithm

as well. Finally, we note that Bonte et al. [13] need to reduce the se-

curity of their scheme to a less understood version of the decisional

small polynomial ration (also called NTRU) assumption. In contrast,

we can reduce the security of our scheme to standard NTRU and

RLWE. We describe more details on this in Section 5.

2 PRELIMINARIES
Notation.We denote asR the ring of polynomials Z𝑄 [𝑋 ]/(𝑋𝑁 +1)
where 𝑁 is prime. We denote vectors with bold lowercase letters,

e.g., v. We denote a 𝑛 dimensional column vector as [𝑓 (., 𝑖)]𝑛
𝑖=1

,

where 𝑓 (., 𝑖) defines the 𝑖-th coordinate. For brevity, we will also

denote as [𝑛] the vector [𝑖]𝑛
𝑖=1

, and more generally [𝑛,𝑚]𝑚
𝑖=𝑛

the

vector [𝑛, . . . ,𝑚]⊤. We address the 𝑖th entry of a vector v by v[𝑖],
and denote a slice of the vector by v[𝑖: 𝑗]. In particular, if v =

[𝑣1, 𝑣2, . . . , 𝑣𝑚], then v[𝑖: 𝑗] = [𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣 𝑗 ]. For a random vari-

able 𝑎 ∈ Z we denote as Var(𝑎) the variance of 𝑎 and as E(𝑥)
its expectation. For 𝑎 ∈ R𝑄 , we define Var(𝑎) and E(𝑎) to be the

variance and expectation respectively of the coefficients of the poly-

nomial 𝑎. By Ha(a) we denote the hamming weight of the vector

a, i.e., the number of of non-zero coordinates of a. We represent

numbers in Z𝑄 as integers in [−𝑄/2, 𝑄/2).
At Table 1 we list commonly used parameters. Throughout the

paper, we denote as 𝑄, 𝑃 ∈ N to be moduli. The parameter 𝑛 ∈ N
always denotes the dimension of an LWE sample. For rings, we al-

ways use𝑁 to denote the degree of (𝑋𝑁 +1). We define ℓ = ⌈logL𝑄⌉
for some decomposition base L ∈ N. We define the decomposition

algorithm a = G−1 (𝑐, L) to take a ring element 𝑐 , a decomposition

base L and output a vector a ∈ RL with coefficients in [−L/2, L/2)
such that 𝑐 =

∑ℓ
𝑘=1

a[𝑖] ·L𝑘−1
. Finally, we refer to random variables

from the discrete Gaussian distribution with parameter (standard

deviation) 𝜎 . Remind that the variance of discrete Gaussian random

variables is 𝜎2
.

Assumptions. Belowwe recall the learning with errors assumption

by Regev [59] and recall the error analysis for its linear homomor-

phism.

Definition 2.1 (Learning With Errors). Let s ∈ Xsk be a secret key,
for a secret key distribution Xsk over and and 𝑒 ∈ N be form the

discrete Gaussian distribution of parameter 𝜎 . We define a LWE

sample of a message 𝑚 ∈ Z𝑄 as c = LWE𝜎 (s,𝑚) ∈ Z𝑄 where

c[1] = −c[2:𝑛+1]⊤ · s+𝑒 +𝑚 ∈ Z𝑄 , and c[2:𝑛+1] is a vector that is
chosen from the uniform distribution over Z𝑄 . We define the phase

of c as Phase(c) = c[1] + c[2:𝑛 + 1]⊤ · s. We define the learning

with error distribution LWE𝑛,Xsk,𝜎 , to consist of LWE samples of

zero, as defined above.

The learning with error assumption states that it is hard to dis-

tinguish elements sampled from LWE𝑛,Xsk,𝜎 and elements sampled

uniformly at random over Z𝑛+1
𝑄

.

It is well know that the following holds.

Lemma 2.2 (Linear Homomorphism of LWE samples). Let c
= LWE𝜎c (s, 𝑚c) and d = LWE𝜎d (s,𝑚d). If cout ← c + d, then
cout ∈ LWE𝜎out (s,𝑚c +𝑚d), where 𝜎2

out = 𝜎c + 𝜎d. Furthermore, let
𝑑 ∈ (−L/2, L/2). If cout ← c · 𝑑 , then cout ∈ LWE𝜎out (s, 𝑚c · 𝑑),
where 𝜎2

out ≤
L2

4
· 𝜎2

c .

𝑄, 𝑃 Prime moduli such that 𝑄 < 𝑃 .

R𝑄 ,R𝑃 Z𝑄 [𝑋 ]/(𝑋𝑁 + 1) and Z𝑃 [𝑋 ]/(𝑋𝑁 + 1)
𝑛 LWE dimension

Bk,Ksk Blind rotation and key-switching keys

LBk
Decomposition base for the blind rotation key

we have ℓBk = ⌈logLBk (𝑃)⌉

LKsk
Decomposition base for the key switching key

we have ℓKsk = ⌈logLKsk (𝑄)⌉
𝑓 NTRU secret key in R𝑃
s LWE secret key in R𝑄

𝜎Bk, 𝜎Ksk, 𝜎acc

Standard deviations of the noise terms in the

bootstrapping key, key-switching key, and the

ciphertext 𝑐acc respectively.

𝑎rot
𝑎rot ∈ R𝑃 s.t. (𝑎rot · 𝑋 𝑦) [1] = 𝐹 (⌊ 𝑡1

𝑁
· 𝑦⌉),

where 𝑦 ∈ Z𝑁 and 𝐹 : Z𝑡1
↦→ Z𝑡2

.

Table 1: Summary of Variables.

Proof. (Sketch) The proof follows from the elementary calculus

of random variables. The noise variance of the sum of the LWE

ciphertexts follows form the sum of two discrete Gaussian random

variables. The bound on the noise variance for scalar multiplication

follows from the fact that we bound 𝑑 by L/2 and that the noise of

the LWE sample is centered around zero. Remind that Var(𝐵 · 𝑒) =
𝐵2 · Var(𝑒), where 𝑒 has Gaussian parameter 𝜎 . □

Now we recall the decisional small polynomial ratio assumption

[45] (or NTRU assumption).

Definition 2.3 (Decisional Small Polynomial Ratio Assumption).
Let 𝑓 ∈ R𝑄 be a secret key with coefficients samples uniformly

form the ternary distribution, i.e., from {−1, 0, 1} conditioned to

have an inverse in R𝑄 . We define the distribution DSPRAR𝑄 to be

the distribution of elements [𝑔𝑖/𝑓𝑖 ]𝑚𝑖=1
, where 𝑓𝑖 is from the same

distribution as 𝑓 , and 𝑔𝑖 ∈ R𝑄 has coefficients chosen form the

uniform ternary distribution but must not necessarily be invertible

in R𝑄 . The decisional small polynomial ratio assumption says it is

hard to distinguish elements sampled fromDSPRAR𝑄 and elements

sampled uniformly from R𝑄 .

Stehlé and Steinfeld [60] showed that the assumption holds un-

conditionally for a certain choice of parameters. Furthermore, they

showed a reduction to worst-case lattice problems when for the

ring Z𝑄 [𝑋 ]/(𝑋𝑁 + 1), where 𝑁 is a power of two. Homomorphic

encryption schemes like LTV [54] and YASHE [14] follow Stehlé

and Steinfeld’s version of the assumption.

3 HOMOMORPHIC ENCRYPTION
TECHNIQUES FROM NTRU

This section describes the algorithms that we use to build the boot-

strapping algorithm. Below we recall the basic cryptosystem. First

of all, we describe the algorithm as a symmetric key cryptosys-

tem. Specifically, we do not define a public key version, as it is

unnecessary in this paper and simplifies the exposition.

Definition 3.1 (An NTRU Homomorphic Encryption Scheme). Let
the message modulus as be 𝑡 < 𝑄 . Let the secret key 𝑓 have coeffi-

cients from the uniform ternary distribution and have an inverse
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in R𝑄 . We define an NTRU encryption as 𝑐 = NTRU𝜎 (𝑓 ,𝑚) =
𝑒1 · 𝑔/𝑓 + 𝑒2 + 𝑟 + 𝑄

𝑡 ·𝑚, where 𝑒1, 𝑒2 are random variables over

R𝑄 with coefficients from the discrete Gaussian distribution of

parameter 𝜎 , 𝑔 has coefficients form the uniform ternary distribu-

tion, 𝑟 is in [−U(𝑐),U(𝑐)] and𝑚 ∈ R𝑡 . Furthermore, we assume

𝑓 and 𝑔 have the same hamming weight. To decrypt we compute

𝑓 ·𝑚 =
⌊
𝑡
𝑄
· 𝑐 · 𝑓

⌉
∈ R𝑡 .

Note that in this definition we recover 𝑚 · 𝑓 instead of 𝑚. In

this paper, we use a key-dependent version of the scheme, where

we encrypt
𝑄
𝑡 ·𝑚 · 𝑓

−1
. Therefore, the decryption process cancels

the secret key out of the message. Furthermore, we remark that 𝑡

usually does not divide 𝑄 , and in the implementation we round the

fraction

⌊
𝑄
𝑡 ·𝑚

⌋
which adds a small rounding error to the 𝑟 noise.

Note that we introduce the notation U(𝑐) to keep track of the error

term that is not from the discrete Gaussian distribution. Usually

this error stems from rounding operations. In practice the keys 𝑓 , 𝑔

are often generated by choosing an element from {−1, 1} uniformly

at random and setting random 1/3 coefficients to zero. We follow

the same method and set the hamming weights to 2/3 · 𝑁 .

Lemma 3.2 (Correctness of the NTRU Decryption). Let 𝑐 =
NTRU𝜎

(
𝑓 ,

𝑄
𝑡 ·𝑚

)
. We have that 𝑄

𝑡 ·𝑚 · 𝑓 + 𝑒 + 𝑓 · 𝑟 = 𝑓 · 𝑐 , where
Var(𝑒) ≤ 4/3 · 𝑁 · 𝜎2 and 𝐸 ( |𝑓 · 𝑟 |) ≤ 2/3 · 𝑁 · U(𝑐). Furthermore if

|𝑒 | < 𝑄
2·𝑡 − |𝑓 · 𝑟 |, then

⌊
𝑡
𝑄
· 𝑐 · 𝑓

⌉
=𝑚 · 𝑓 ∈ Z𝑡 .

Proof. From definition 3.1 we have that 𝑐 = 𝑒1 ·𝑔/𝑓 +𝑒2 +𝑟 + 𝑄
𝑡 ·

𝑚 ∈ R𝑄 where𝑚 ∈ R𝑡 . Then 𝑓 ·𝑐 = 𝑒1 ·𝑔+ 𝑓 ·𝑒2 + 𝑓 · 𝑟 + 𝑄
𝑡 · 𝑓 ·𝑚 =

𝑒 + 𝑓 · 𝑟 + 𝑄
𝑡 · 𝑓 ·𝑚. Note that 𝑒 = 𝑒1 · 𝑔 + 𝑓 · 𝑒2. Hence

Var(𝑒) = Var(𝑒1 · 𝑔) + Var(𝑓 · 𝑒2) ≤ 2/3 · 𝑁 ·
(
Var(𝑒1) + Var(𝑒2)

)
Remind that 𝑒1 and 𝑒2 are random variables with Gaussian parame-

ter 𝜎 hence their variance is 𝜎2
. Note that we cannot include 𝑓 · 𝑟

into the variance as both 𝑓 and 𝑟 are from the uniform distribu-

tions and not the discrete Gaussian. Hence we upper-bound the

expectation of the final noise term. The above follows from 𝑒1, 𝑒2

being independent and centered around zero. Note that in the ring

R𝑄 multiplication of ring elements corresponds to computing their

negacyclic convolutions. Hence the 𝑑th coordinate of 𝑓 · 𝑒2 is given

by

Var
(
(𝑓 · 𝑒2) [𝑑]

)
=

𝑁∑︁
𝑖=1, 𝑗=1,

𝑖+𝑗−2 𝑚𝑜𝑑 𝑞=𝑑

𝑓 [𝑖] · 𝑒2 [ 𝑗]),

where𝜓 (𝑖, 𝑗) returns 1 if 𝑖 + 𝑗 ≥ 𝑁 and −1 otherwise. Therefore if 𝑓

has Ha(𝑓 ) non-zero coefficients and its non-zero are bounded by 1,

thenwe haveVar
(
(𝑓 ·𝑒2) [𝑑]

)
≤ 2/3·𝑁 ·Var(𝑒2). The same argument

can be made for Var(𝑒1 · 𝑔). Then we bound the expectation by

𝐸 ( |𝑓 · 𝑟 |) ≤ Ha(𝑓 ) · 1 ·U(𝑐) where we bound the infinity norm of 𝑟

by U(𝑐) and on 𝑓 is 1. Finally, if |𝑒 | < 𝑄
2·𝑡 − |𝑓 · 𝑟 |, then⌊ 𝑡

𝑄
· (𝑒 + 𝑓 · 𝑟 + 𝑄

𝑡
· 𝑓 ·𝑚)

⌉
=
⌊ 𝑡
𝑄
· (𝑒 + 𝑓 · 𝑟 ) + 𝑓 ·𝑚

⌉
= 𝑓 ·𝑚

because
𝑡
𝑄
· (𝑒 + 𝑓 · 𝑟 ) < 1

2
. □

Below we analyze the variance of the errors for elementary

homomorphic operations.

Lemma 3.3 (Affine Functions on Encrypted Data). Let 𝑐1 =

NTRU𝜎1
(𝑓 , 𝑚1) and 𝑐2 = NTRU𝜎2

(𝑓 , 𝑚2), and 𝑎 ∈ R𝑄 . We have
the following.
Addition: We have 𝑐1 + 𝑎 = NTRU𝜎1

(𝑓 ,𝑚1 + 𝑎) and 𝑐1 + 𝑐2 =

NTRU𝜎out (𝑓 ,𝑚1 +𝑚2), where 𝜎2

out = 𝜎2

1
+ 𝜎2

2
. Furthermore, U(𝑐1 +

𝑐2) ≤ U(𝑐1) + U(𝑐2).
Scalar Multiplication:We have 𝑐1 ·𝑎 = NTRU𝜎out (𝑓 ,𝑚1 ·𝑎), where
𝜎2

out ≤ Ha(𝑎) · | |𝑎 | |2∞ · 𝜎2

1
. Furthermore, U(𝑐1 · 𝑎) = U(𝑐1) · Ha(𝑎).

Proof. From definition 3.1 we have 𝑐1 = 𝑒1/𝑓 + 𝑒2 + 𝑟 +𝑚1 and

𝑐2 = 𝑒1/𝑓 +𝑒1 +𝑟 +𝑚2. Addition with scalar 𝑎 follows trivially from

𝑐1 +𝑎 = 𝑒1/𝑓 +𝑒2 +𝑚1 +𝑎. Addition of two ciphertexts follows from

𝑐1 + 𝑐2 = 𝑒1/𝑓 + 𝑒2 + 𝑟 +𝑚1 + 𝑒1/𝑓 + 𝑒1 + 𝑟 +𝑚2 = (𝑒1 + 𝑒1)/𝑓 + 𝑒1 +
𝑒1 + 𝑟 + 𝑟 +𝑚1 +𝑚2. Hence the variance of the output noise is the

sum of the input noise variances. For scalar multiplication we have

𝑐1 ·𝑎 = 𝑎·𝑒1/𝑓1+𝑎·𝑒2+𝑎·𝑟+𝑎·𝑚1. Cruciallymultiplying ring elements

from R𝑄 corresponds to computing their negacyclic convolutions.

Similarly as in the proof of Lemma 3.2, we can represent the 𝑑th

coefficient of 𝑎 · 𝑒𝑘 (or 𝑎 · 𝑟 ) for 𝑘 ∈ [2] as a negacyclic convolution
and bound its variance by by Ha(𝑎) · | |𝑎 | |2∞ · 𝜎2

, and U(𝑐 · 𝑎) ≤
U(𝑐1) · Ha(𝑎).

□

NTRU to LWE Key Switching.
The key switching procedure below takes as input an NTRU cipher-

text, and an LWE key switching key outputs an LWE ciphertext

that encrypts a chosen coefficient of the NTRU plaintext.

Definition 3.4 (NTRU to LWE Key Switching). Let LKsk ∈ N be

a decomposition parameter for the key-switching procedure and

denote ℓKsk = ⌈logL𝑄⌉. The NTRU-to-LWE key switching setup

KSSetup(𝑓 , s) takes as input 𝑓 and s, computes and returns the key

switching key

Ksk[𝑖, ∗] ←
[
LWE𝜎Ksk

(
s, 𝑓 [𝑖] · L𝑘−1

Ksk
) ] ℓKsk
𝑘=1

(1)

for 𝑖 ∈ [𝑁 ]. The key switching procedure KSwitch(Ksk, 𝑐, 𝑑) com-

putes

𝑁∑︁
𝑖=1, 𝑗=1,

𝑖+𝑗−2 𝑚𝑜𝑑 𝑁=𝑑

〈
Ksk[𝑖, ∗],G−1

(
𝜓 (𝑖, 𝑗) · 𝑐 [ 𝑗], LKsk

)〉
, (2)

where 𝑐 ∈ R𝑄 is a NTRU ciphertext with respect to the secret key 𝑓 ,

𝑑 ∈ [𝑁 ], and𝜓 (𝑖, 𝑗) returns 1 if 𝑖+ 𝑗 ≥ 𝑁 and −1 otherwise. Remind

that G−1
(
𝜓 (𝑖, 𝑗) ·𝑐 [ 𝑗], LKsk

)
computes the base LKsk decomposition

of𝜓 (𝑖, 𝑗) · 𝑐 [ 𝑗] ∈ Z𝑄 .

Lemma 3.5 (Correctness of NTRU to LWE Key Switching).

Let 𝑐 = NTRU𝜎 (𝑓 ,𝑚) be a NTRU ciphertext andKsk← KSSetup(𝑓 , s)
as in the formula 1. If c = KSwitch(Ksk, 𝑐, 𝑑) for 𝑑 ∈ [𝑁 ], then
cout = LWE𝜎out (s, (𝑓 ·𝑚) [𝑑]), where

𝜎2

out ≤ 𝜎2

Dec + 𝑁 · ℓKsk · L
2

Ksk/4 · 𝜎
2

Ksk,

where 𝜎Dec and the expectation is as for the noise of 𝑐’s decryption
(see Lemma 3.2).
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Proof. Let us denote a decomposition of𝜓 (𝑖, 𝑗) · 𝑐 [ 𝑗] as follows[
𝑎
(𝑖, 𝑗 )
𝑘

] ℓKsk
𝑘=1

= G−1

(
𝜓 (𝑖, 𝑗) · 𝑐 [ 𝑗], LKsk

)
. Note that the decomposed

elements 𝑎
(𝑖, 𝑗 )
𝑘

∈
[
− LKsk/2, LKsk/2

)
are such that

∑ℓKsk
𝑘=1

𝑎
(𝑖, 𝑗 )
𝑘
·

L𝑘−1

Ksk = 𝜓 (𝑖, 𝑗) · 𝑐 [ 𝑗] mod 𝑄 .

Let us first analyze the inner product for each 𝑖 ∈ [𝑁 ] separately.
Particularly, we have

c𝑖 =
〈
Ksk[𝑖, ∗],G−1

(
𝜓 (𝑖, 𝑗) · 𝑐 [ 𝑗], LKsk

)〉
= LWE�̄� (s,

ℓKsk∑︁
𝑘=1

𝑓 [𝑖] · L𝑘−1

Ksk · 𝑎
(𝑖, 𝑗 )
𝑘
)

= LWE�̄� (s, 𝑓 [𝑖] ·𝜓 (𝑖, 𝑗) · 𝑐 [ 𝑗])

where 𝜎2 ≤ ℓKsk ·L2

Ksk/4 ·𝜎
2

Ksk because we perform ℓKsk LWE scalar

multiplications.

Then we have that KSwitch(Ksk, 𝑐, 𝑑) computes

𝑁∑︁
𝑖=1, 𝑗=1,

𝑖+𝑗−2 𝑚𝑜𝑑 𝑁=𝑑

LWE�̄�
(
s, 𝑓 [𝑖] ·𝜓 (𝑖, 𝑗) · 𝑐 [ 𝑗]

)
,

= LWE𝜎 ′
(
s, (𝑓 · 𝑐) [𝑑]

)
because the sum computes the 𝑑th coefficient of the negacyclic

convolution of 𝑓 and 𝑐 . Then we have

LWE𝜎 ′
(
s, (𝑓 · 𝑐) [𝑑]

)
= LWE𝜎 ′

(
s, (𝑒1 · 𝑔) [𝑑] + (𝑓 · 𝑒2) [𝑑] + (𝑓 · 𝑟 ) [𝑑] + (𝑓 ·𝑚) [𝑑]

)
= LWE𝜎

(
s, (𝑓 ·𝑚) [𝑑]

)
,

where 𝜎′2 = 𝑁 · ℓKsk ·L2

Ksk/4 ·𝜎
2

Ksk because there are exactly 𝑁 pairs

𝑖, 𝑗 ∈ [𝑁 ] such that 𝑖+ 𝑗−2𝑚𝑜𝑑 𝑁 = 𝑑 . Then from correctness of the

NTRU decryption procedure we have Var(𝑒1 ·𝑔+ 𝑓 ·𝑒2) ≤ 𝜎2

Dec and

the expectation magnitude is bounded by 2/3 · 𝑁 · U(𝑐). Therefore
𝜎2

out is as in the lemma statement. □

Gadget Encryption and Multiplication.
Below we give the NTRU gadget encryption, and multiplication

algorithm, which is analogous to the GSW encryption scheme [38].

Definition 3.6 (NTRU Gadget Encryption and Multiplication). We

define a gadget NTRU sample of a message𝑚𝐺 ∈ 𝑅𝑄 as

c𝐺 = G-NTRU𝜎Bk (𝑓 ,𝑚𝐺 ) =
[
NTRU𝜎Bk

(
𝑓 ,𝑚𝐺 · L𝑖−1

Bk
) ] ℓBk
𝑖=1

, (3)

where ℓBk = ⌈logLBk (𝑄)⌉. We define the gadget multiplication pro-

cedure GMul as

GMul(c𝐺 , 𝑐) =
〈
c𝐺 ,G−1 (𝑐, LBk)

〉
, (4)

where 𝑐 ∈ R𝑄 and in particular 𝑐 = NTRU𝜎 (𝑓 ,𝑚).

Note that the gadget ciphertext at Eq. 3 is nothing more than

a vector of NTRU ciphertexts of 𝑚𝐺 · L𝑖−1

Bk . Addition and scalar

multiplication for individual gadget ciphertexts are as for NTRU. In

this paper, we will never directly decrypt gadget ciphertexts; hence

we omit to describe the decryption algorithm.

Below we analyze the correctness of the gadget multiplication

algorithm. We use only the case where the message𝑚𝐺 is a mono-

mial with its coefficient in Z2. Hence we will focus the analysis

only on this special case for simplicity. We give the generalized

analysis in Appendix 8 in the full version [49] for completeness.

Lemma 3.7 (Correctness of NTRU Gadget Multiplication).

If 𝑐out =GMul(c𝐺 , 𝑐) and𝑚𝐺 ∈ Z2, then 𝑐out =NTRU𝜎out (𝑓 , 𝑐 ·𝑚𝐺 ),
where 𝜎2

out ≤ 𝑁 · ℓBk · L2

Bk/4 · 𝜎
2

Bk.
If additionally 𝑐 = NTRU𝜎 (𝑓 ,𝑚), then the output ciphertexts is

𝑐𝐺 = NTRU𝜎out (𝑓 ,𝑚 ·𝑚𝐺 ), where 𝜎2

out ≤ 𝜎2 + 𝑁 · ℓBk · L2

Bk/4 · 𝜎
2

Bk,
and U(𝑐out) ≤ U(𝑐) + 𝑁 · ℓBk · LBk · U(𝑐𝐺 ).

Proof. Let us denote the base-LBk decomposition of 𝑐 as
[
𝑐𝑘
] ℓBk
𝑘=1

=

G−1 (𝑐, LBk) which is such that

∑ℓBk
𝑘=1

𝑐𝑘 · L𝑘−1

Bk = 𝑐 mod 𝑄 . From

definition we have

𝑐out =
〈
c𝐺 ,G−1

(
𝑐, LBk

)〉
=

ℓBk∑︁
𝑘=1

NTRU𝜎Bk

(
𝑓 ,𝑚𝐺 · L𝑘−1

Bk
)
· 𝑐𝑘

= NTRU�̃�

(
𝑓 ,𝑚𝐺 ·

ℓBk∑︁
𝑘=1

𝑐𝑘 · L𝑘−1

Bk
)

= NTRU�̃�

(
𝑓 ,𝑚𝐺 · 𝑐

)
.

From linear homomorphism (see Lemma 3.3) of NTRU we have

�̃�2 ≤ 𝑁 ·ℓBk ·L2

Bk/4 ·𝜎
2

Bk. Note that in the above 𝑐𝑘 are ring elements

with coefficients in

[
− LBk/2, LBk/2

)
. Denote NTRU�̃�

(
𝑓 ,𝑚𝐺 · 𝑐

)
=

𝑒′
1
/𝑓 + 𝑒′

2
+𝑚𝐺 · 𝑐 . Since the coefficient of𝑚𝐺 is smaller than or

equal 1 we have

𝑐out = 𝑒′
1
/𝑓 + 𝑒′

2
+ 𝑟 ′ +𝑚𝐺 · 𝑐

= 𝑒′
1
/𝑓 + 𝑒′

2
+ 𝑟 ′ +𝑚𝐺 ·

(
𝑒1/𝑓 + 𝑒2 + 𝑟 +𝑚

)
≤

(
𝑒′

1
+ 𝑒1

)
/𝑓 + 𝑒′

2
+ 𝑒2 + 𝑟 ′ + 𝑟 +𝑚𝐺 ·𝑚.

The same reasoning is applied to the analysis of the random variable

𝑟 ′. To summarize we have 𝜎2

out ≤ 𝜎2 + 𝑁 · ℓBk · L2

Bk/4 · 𝜎
2

Bk, and

U(𝑐out) ≤ U(𝑐) + 𝑁 · ℓBk · LBk · U(𝑐𝐺 ). □

Modulus Switching.
Here we analyze the modulus switching procedure for NTRU and

LWE ciphertexts.

Lemma 3.8 (Modulus Switching for NTRU). Let us denote 𝑐 =
NTRU𝜎 (𝑓 , 𝑄𝑡 ·𝑚). We define the NTRU modulus switching procedure
as

ModSwitch(𝑐, 𝑞) =
⌊
𝑐 · 𝑞

𝑄

⌉
,

where 𝑞 ≤ 𝑄 .
If 𝑐out = ModSwitch(𝑐, 𝑞), then 𝑐out = NTRU𝜎out (𝑓 ,

𝑞
𝑡 ·𝑚), where

𝜎2

out =
(
𝑞

𝑄
· 𝜎

)
2

and U(𝑐out) ≤ 𝑞

𝑄
· U(𝑐) + 1.
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Proof. Denote 𝑐 = 𝑒1/𝑓 + 𝑒2 + 𝑄
𝑡 ·𝑚. From definition we have:

𝑐out =
⌊ 𝑞
𝑄
· 𝑐
⌉
=

𝑞

𝑄
· 𝑐 + 𝑟 ′

=
𝑞

𝑄
· 𝑒1/𝑓 +

𝑞

𝑄
· (𝑒2 + 𝑟 ) + 𝑟 ′ +

𝑞

𝑄
· 𝑄
𝑡
·𝑚

≤ 𝑞

𝑄
· 𝑒1/𝑓 +

𝑞

𝑄
· 𝑒2 +

𝑞

𝑄
· 𝑟 + 𝑟 ′ + 𝑞

𝑡
·𝑚,

where 𝑟 has coefficients in [−1/2, 1/2]. Note however, that the signs
of the coefficients are the same as the signs of 𝑒2. Therefore, the

rounding error shifts the expectation of the 𝑒2 + 𝑟 from 0 at most 1.

Hence 𝜎2

out ≤
(
𝑞

𝑄
· 𝜎

)
2

, and the infinity norm on the expectation

of the noise terms is bounded by 1 due to the rounding error. □

Below we remind the modulus switching algorithm LWE. Since

this is a standard algorithm, we give its correctness proof in Ap-

pendix ?? for completeness.

Lemma 3.9 (Modulus Switching for LWE). Let us define the
following ciphertext c = LWE𝜎

(
s, 𝑄𝑡 ·𝑚

)
, where s ∈ Z𝑛

𝑄
. Let us define

the LWE modulus switching procedure as

ModSwitch(c, 𝑞) =
⌊ [
c · 𝑞

𝑄

]𝑛+1
𝑖=1

⌉
for 𝑞 ≤ 𝑄 .

If cout ← ModSwitch(c, 𝑞), then cout = LWE𝜎out
(
s, 𝑞𝑡 ·𝑚

)
, where

𝜎2

out ≤
( 𝑞
𝑄
· 𝜎

)
2

+ Ha(s) · Var(𝑠)

the bound on the expectation of the noise term is at most 1 due to the
rounding error.

4 COMPUTING ON CIPHERTEXTS AND
BOOTSTRAPPING

In this section, we give our bootstrapping algorithm. At Figure 1

we give the adaptation of TFHE-style blind rotation [26] and the

plug it into the FHEW-style bootstrapping [32, 56] and functional

bootstrapping [53, 61] algorithm. Figures 1 and 2 give the basic

schemes. In particular, we assume that the bootstrapping algorithm

gets as input an accumulator holding a rotation polynomial. At the

end of this section, we discuss how to build such an accumulator for

a chosen rotation polynomial. For simplicity, we describe only the

version that uses blind rotation (see Figure 1) LWE ciphertexts with

binary secret keys. We note that we may extend the bootstrapping

algorithm to bootstrap LWE ciphertexts with ternary or Gaussian

distributed secret keys via standard techniques [32, 56]. Finally,

at Table 2 we summarize all noise of ciphertexts output by the

procedures from this section and Section 3.

Setting up the Rotation Polynomial and the Accumulator.
Before giving the formal analysis of the bootstrapping algorithm,

let us briefly explain how to choose the rotation polynomial 𝑎rot.

Suppose we want to bootstrap a ciphertext that holds the message

𝑚 ∈ Z𝑡1
, and along the way, we want to compute the function

𝐹 : Z𝑡1
↦→ Z𝑡2

. To do so, we need to construct a rotation polynomial

𝑎rot ∈ R𝑄 . We set 𝑎rot [𝑁 − 𝑦] = −𝐹 (⌊ 𝑡1 ·𝑦
2·𝑁 ⌉) mod 𝑃 for all 𝑦 ∈

[1, 𝑁 ] and 𝑎rot [1] = 𝐹 (0).
When using the Bootstrap algorithm, we can compute functions

𝐹 such that 𝐹 (𝑥 + 𝑡1/2 mod 𝑡1) = −𝐹 (𝑥 mod 𝑡1) mod 𝑡1 for 𝑥 ∈

Z𝑡1
and even 𝑡1. When running FunctionalBootstrap we do not

have the above restriction. In particular, we can compute any 𝐹 :

Z𝑡1
↦→ Z𝑡2

and any 𝑡1 < 𝑁 . For the FunctionalBootstrap algorithm

we have another rotation polynomial 𝑎sgn, whose coefficients are

all set to 6𝑁 /4. We compute 𝑎sgn · 𝑋 𝑦
, which constant coefficient

is 2𝑁 /4 for 𝑦 ∈ [1, 𝑁 ] and 6𝑁 /4 for 𝑦 ∈ [𝑁 + 1, 2𝑁 ]. When we

modulus switch the ciphertext cpre to Z𝑁 instead of Z2𝑁 , then we

have 𝑦 = 𝑏pre − a⊤pres = 𝑚pre + 𝑒pre + 𝑘𝑁 mod 2𝑁 . Now when

𝑘 = 0, then 𝑎sgn returns 2𝑁 /4, hence we do not add anything in

step 6. For 𝑘 = 1, we add 6𝑁 /4 − 2𝑁 /4 = 𝑁 and we get rid of the

𝑘 · 𝑁 term in 𝑦. Thereby, we ensure that the second blind rotation

rotates 𝑎rot by numbers from Z𝑁 instead of Z2𝑁 . See the proof of

Theorem 4.1 for more details.

4.1 The Bootstrapping Algorithms
Below we give the correctness and noise analysis of our bootstrap-

ping algorithm.

Theorem 4.1 (Correctness of the BootstrappingAlgorithm).

Let 𝑎rot ∈ R𝑃 be such that (𝑎rot ·𝑋 𝑦) [1] = 𝐹 (⌊ 𝑡1

𝑁
·𝑦⌉), where𝑦 ∈ Z𝑁

and 𝐹 : Z𝑡1
↦→ Z𝑡2

.
Let cin and 𝑐out be as in step 2 and 4 of the Bootstrap (resp. step 6

and 8 of the FunctionalBootstrap) algorithm at figure 2. Then

cin = LWE𝜎in
(
s,
𝑁

𝑡1
·𝑚 · 𝑓 −1

)
and

𝑐out = NTRU𝜎out

(
𝑓 ,
𝑄

𝑡2
· 𝐹 (𝑚) · 𝑓 −1

)
where 𝜎in and 𝜎out are given by Table 2, and𝑞 = 2𝑁 for theBootstrap
(resp. 𝑞 = 𝑁 for the FunctionalBootstrap) algorithm.

Proof. We will divide the proof into four parts. First we give

the analysis of the BlindRotate algorithm from Figure 1. Then

we give the analysis of 𝑐out that is returned by Bootstrap and

FunctionalBootstrap. Finally, we give the correctness and the noise
analysis of 𝑐in. Note that correctness and the noise analysis of the

three last parts mostly follows from the correctness of the underly-

ing algorithms. The most involved part of the proof is blind rotation

given below.

Blind Rotation. Let us first inspect the 𝑖th iteration for the blind

rotation’s For loop. Denote 𝑐acc,𝑖 = NTRU𝜎acc,𝑖

(
𝑓 , 𝑀𝑖

)
, where𝑀𝑖 ∈

R𝑃 is the message in the current iteration. Remind that Bk[𝑖] en-
crypts s[𝑖] ∈ {0, 1}. Hence there are two cases we must consider.

1. The case for s[𝑖] = 0. In this case, the GMul algorithm out-

puts an NTRU encryption of 0 with Gaussian parameter 𝜎𝐺
to which we add 𝑐acc,𝑖 . Hence we have that

𝑐acc,𝑖+1 = NTRU𝜎𝐺

(
𝑓 , 0

)
+ 𝑐acc,𝑖

= NTRU𝜎𝐺

(
𝑓 , 𝑐acc,𝑖

)
.

Remind that from Lemma 3.7, we have 𝜎2

𝐺
≤ 𝑁 · ℓBk · L2

Bk/4 ·
𝜎2

Bk. Therefore, this step adds 𝜎2

𝐺
to the error variance 𝜎2

acc,𝑖
of 𝑐acc,𝑖 .

2. The case for s[𝑖] = 1. In this case GMul output an NTRU

ciphertext 𝑐𝐺,𝑖 = NTRU𝜎𝐺

(
𝑓 , 𝑐acc,𝑖 ·𝑋 cin [𝑖 ] −𝑐acc,𝑖

)
to which
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BootKeyGen(s, 𝑓 , 𝑃):
Input:

- LWE secret key s ∈ {0, 1}.
- NTRU secret key 𝑓 ∈ R𝑄 .

- Integer 𝑃 s.t.𝑄 < 𝑃 .

1 : For 𝑖 ∈ [𝑛]:
2 : Set Bk[𝑖 ] ← G-NTRU𝜎Bk

(
𝑓 , s[𝑖 ]

)
∈ R𝑃 .

3 : Ksk← KSSetup
(
𝑓 , s

)
.

4 : Return Ksk and Bk.

BlindRotate(c,Bk, 𝑐acc):
Input:

- Ciphertext c = LWE𝜎
(
s,

2𝑁

𝑡1

·𝑚
)
.

- Blind rotation key Bk.

- Accumulator 𝑐acc = NTRU𝜎acc

(
𝑓 ,

𝑃

𝑡2

· 𝑎rot · 𝑓 −1
)
.

1 : 𝑐acc,1 ← 𝑐acc · 𝑋 c[1]
.

2 : For 𝑖 ∈ [𝑛]:

3 : 𝑐acc,𝑖+1 ← GMul
(
Bk[𝑖 ], 𝑐acc,𝑖 · 𝑋 c[𝑖+1] − 𝑐acc,𝑖

)
+ 𝑐acc,𝑖 .

4 : Return 𝑐acc,𝑛+1.

Figure 1: Bootstrapping Key Generation and Blind Rotation

Bootstrap(𝑐,Ksk,Bk, 𝑐acc, 𝑑):
Input:

- Ciphertext 𝑐 = NTRU𝜎

(
𝑓 ,

𝑄

𝑡1

·𝑚 · 𝑓 −1

)
.

- NTRU to LWE key-switching key Ksk.

- Blind rotation key Bk.

- Accumulator 𝑐acc = NTRU𝜎acc

(
𝑓 ,

𝑃

𝑡2

· 𝑎rot · 𝑓 −1

)
.

- Index 𝑑 ∈ [𝑁 ].

1 : cLWE ← KSwitch
(
Ksk, 𝑐, 𝑑

)
.

2 : cin ← ModSwitch
(
cLWE, 𝑁

)
.

3 : 𝑐acc,out ← BlindRotate
(
cin,Bk, 𝑐acc

)
.

4 : Return 𝑐out ← ModSwitch
(
𝑐acc,𝑄

)
.

FunctionalBootstrap(𝑐,Ksk,Bk, 𝑐acc, 𝑐sgn, 𝑑, 𝑡):
Input:

- Ciphertext 𝑐 = NTRU𝜎

(
𝑓 ,

𝑄

𝑡1

·𝑚 · 𝑓 −1

)
.

- NTRU to LWE key-switching key Ksk.

- Blind rotation key Bk.

- Accumulator 𝑐acc = NTRU𝜎acc

(
𝑓 ,

𝑃

𝑡2

· 𝑎rot · 𝑓 −1

)
.

- Accumulator 𝑐sgn = NTRU𝜎acc

(
𝑓 ,

𝑃

𝑡2

· 𝑎sgn · 𝑓 −1

)
.

- Index 𝑑 ∈ [𝑁 ] and integer 𝑡 ∈ N.

1 : cKsk ← KSwitch
(
Ksk, 𝑐, 𝑑

)
∈ Z𝑛+1𝑄 .

2 : cpre ← ModSwitch
(
cKsk, 𝑁

)
+
[ ⌊𝑁

2𝑡

⌉
, 0
]
.

3 : 𝑐acc,msg ← BlindRotate
(
Bk, 𝑐sgn, cpre

)
.

4 : cmsg ← KSwitch
(
Bk, cmsg, 1

)
∈ Z𝑛+1𝑄 .

5 : cm̂sg ← ModSwitch
(
cmsg, 2𝑁

)
∈ Z𝑛+1

2𝑁 .

6 : cin ← cpre + cm̂sg −
2𝑁

4

∈ Z𝑛+1
2𝑁 .

7 : 𝑐acc,out ← BlindRotate
(
Bk, 𝑎rot, cin

)
.

8 : Return 𝑐out ← ModSwitch
(
𝑐acc,𝑄

)
.

Figure 2: Bootstrap and Full Domain Functional Bootstrapping.

we add 𝑐acc,𝑖 . Note that from additive homomorphism the

𝑐acc,𝑖 cancel out and we have

𝑐acc,𝑖+1 = NTRU𝜎𝐺

(
𝑓 , 𝑐acc,𝑖 · 𝑋 cin [𝑖 ] ) .

Furthermore, since the scalar 𝑋 cin [𝑖 ]
has infinity norm equal

one, we have that the ciphertext 𝑐acc,𝑖 · 𝑋 cin [𝑖 ]
has the same

noise variance as the ciphertext 𝑐acc,𝑖 . As in the previous case,

the iteration add 𝜎2

𝐺
to the error variance 𝜎2

acc,𝑖 of 𝑐acc,𝑖 .

Remind that we initialize the ciphertext 𝑐acc,1 with the message

𝑀 ·𝑋 cin [1]
, where𝑀 = 𝑃

𝑡2

·𝑎rot ·𝑓 −1
. Furthermore, the 𝑐acc,1 has noise

parameter 𝜎acc, which is the same noise parameter as 𝑐acc. After

the 𝑛th iteration the ciphertext 𝑐acc,𝑛+1 encrypts𝑀 ·∏𝑛
𝑖=1

𝑋 c[𝑖 ] =

𝑀 ·𝑋Phase(cin )
. The bound on the final noise term follows from the

noise analysis of GMul in Lemma 3.7. Namely, each iteration of the

loop adds the additive term ℓBk · L2

Bk/4 · 𝜎
2

Bk to the total noise. To

summarize we have

𝜎2

acc,𝑛+1 ≤ 𝜎2

acc + 𝑛 · 𝑁 · ℓBk · L2

Bk/4 · 𝜎
2

Bk .

Bootstrap. The correctness of this part immediately follows from

the correctness of BlindRotate andModSwitch. However to sum-

marize, we have that BlindRotate outputs a NTRU ciphertext of

𝑃
𝑡2

· 𝑎rot · 𝑓 −1 ·𝑋Phase(cin )
, which after modulus switching becomes

a ciphertext of
𝑄
𝑡2

· 𝑎rot · 𝑓 −1 · 𝑋Phase(cin )
. From the assumption
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Algorithm Noise variance of the output ciphertext

Dec(𝑐) 𝜎2

Dec ≤ 4/3 · 𝑁 · 𝜎2

KSwitch(Ksk, 𝑐, 𝑑) 𝜎2

Dec + 𝑁 · ℓKsk · L
2

Ksk/4 · 𝜎
2

Ksk

GMul(c𝐺 , 𝑐) 𝜎2 + 𝑁 · ℓBk · L2

Bk/4 · 𝜎
2

Bk

ModSwitch(𝑐, 𝑞)
(
𝑞

𝑄
· 𝜎

)
2

ModSwitch(c, 𝑞)
(
𝑞

𝑄
· 𝜎

)
2

+ Ha(s) · Var(𝑠)

Bootstrap(𝑐,Ksk,Bk, 𝑐acc, 𝑑)
𝜎2

out ≤
(
𝑞

𝑄

)
2

·
(
𝜎2

in ≤ 𝜎2

acc + 𝑛 · 𝑁 · ℓBk · L2

Bk/4 · 𝜎
2

Bk

)
𝜎2

in ≤
(
𝑞

𝑄

)
2

·
(
𝜎2

Dec + 𝑁 · ℓKsk · L
2

Ksk/4 · 𝜎
2

Ksk

)
+ Ha(s) · Var(𝑠)

FunctionalBootstrap(𝑐,Ksk,Bk, 𝑐acc, 𝑐sgn, 𝑑, 𝑡)
𝜎2

out ≤
(
𝑞

𝑄

)
2

·
(
𝜎2

in ≤ 𝜎2

acc + 𝑛 · 𝑁 · ℓBk · L2

Bk/4 · 𝜎
2

Bk

)
𝜎2

in ≤ 2 ·
(
𝑞

𝑄

)
2

·
(
𝜎2

Dec + 𝑁 · ℓKsk · L
2

Ksk/4 · 𝜎
2

Ksk

)
+ 2 · Ha(s) · Var(𝑠)

Table 2: Summary of the Noise Variances.We assume all algorithms and their inputs are generated as the respective definition. For the

inout ciphertexts we assume 𝑐 and c to be an NTRU and LWE a ciphertext both with Gaussian parameter 𝜎 .

on 𝑎rot we have that the constant coefficient of 𝑐out’s plaintext is
𝑄
𝑡2

· 𝐹 (⌊ 𝑡1

𝑁
· Phase(cin)⌉).

Functional Bootstrap. Correctness of the full domain functional

bootstrapping is as follows. Denote cpre = [𝑏pre, apre] such that

𝑏pre = a⊤pres+𝑚pre+𝑒pre+ ∈ Z𝑁 . Note that since we add

[ ⌊
𝑁
2𝑡

⌉
, 0
]
we

ensure that 0 ≤ 𝑚pre+𝑒pre < 𝑁 . This shifting operation is important

as otherwise we would not be able to choose an appropriate rotation

polynomial.We set all coefficients of the rotation polynomial 𝑎sgn to

6𝑁 /4 except for the constant coefficient that is set to 2𝑁 /4. We blind

rotate cpre modulo 2𝑁 with 𝑎sgn, so 𝑏pre − a⊤pres =𝑚pre + 𝑒pre +𝑘𝑁
mod 2𝑁 for some 𝑘 ∈ {0, 1}, where𝑚pre is the modulus switching

of the message𝑚 that is encoded in c. From correctness of blind

rotation, and the key and modulus switching we have that cm̂sg

decrypts to
2𝑁
4

if 𝑘 = 0 and
3·2𝑁

4
if 𝑘 = 1. We can write the

decryption of cm̂sg as 𝑘 · 6𝑁
4
+ (1 − 𝑘) · 2𝑁

4
. So when we add

cpre + cm̂sg − 2𝑁
4
, the term 𝑘𝑁 + 𝑘 · 6𝑁

4
+ (1 − 𝑘) · 2𝑁

4
− 2𝑁

4
is zero

for both 𝑘 ∈ {0, 1}. Hence we have 𝑏in = a⊤s+𝑚pre + 𝑒in mod 2𝑁 ,

where𝑚pre+𝑒 < 𝑁 . Therefore, we can choose the coefficients of the

rotation polynomial such that (𝑎rot ·𝑋
𝑁
𝑡
𝑚pre+𝑒 ) [1] = 𝐹 ( 𝑁𝑡 ·𝑚pre+𝑒).

Note that wewill onlymultiply the rotation polynomials by𝑋𝑚pre+𝑒
,

where 0 ≤ 𝑚pre + 𝑒 < 𝑁 . In particular, the negacyclicity problem

never occurs. In other words, we directly set the coefficient to

encode the lookup table, and we do not worry that the rotation

exceeds the number of coefficients and changes the sign of the

output. Finally, the variance 𝜎2

out follows from the analysis of blind

rotation and modulus switching as for the Bootstrap algorithm.

The “Small" Modulus LWE Ciphertext. The correctnes and

the noise variance for cin follows from correctness of KSwitch
(Lemma 3.5) and the LWE ModSwitch (Lemma 3.9). In the case

of FunctionalBootstrap we actually add cpre and cm̂sg to obtain

cin. Note that the noise terms of both cpre and cm̂sg are the same

noise variance as cin in the Bootstrap algorithm, because both

are products of key switching and LWE modulus reduction on

NTRU ciphertexts returned blind rotation and key switched from

𝑃 to the 𝑄 modulus. To summarize, for the full domain functional

bootstrapping the variance of cin’s noise is twice as high as for

Bootstrap.
□

4.2 Computing on Encrypted Data and Packing
To compute on encrypted data, we can use the homomorphism

of NTRU ciphertexts to compute affine functions over Z𝑡1
. After

bootstrapping a ciphertext holding a message𝑚 at position 𝑑 we

obtain an NTRU ciphertext encrypting 𝑔 =
𝑄
𝑡2

𝑎rot · 𝑓 −1 · 𝑋
𝑁
𝑡
2

𝑚+𝑒
.

The extraction and key switching steps return a LWE ciphertext

of (𝑓 · 𝑔) [1] = 𝑄
𝑡2

𝐹 (𝑚). Note that we can still compute affine func-

tions on these ciphertexts with monomials of degree zero. But any

further bootstrapping must extract the LWE from position 𝑑 = 1.

Note that it may be tempting to key switch to LWE right after the

blind rotation step. Unfortunately, this requires us to take the LWE

with the larger modulus 𝑄 or pay a high price in terms of lower

correctness when trying to bootstrap such ciphertext again.

When working over Z𝑄 [𝑋 ]/(𝑋𝑁 + 1), we can compute any

negacyclic function 𝐹 on Z𝑡1
. Furthermore, when applying the

FunctionalBootstrap technique from [53, 61] we can generalize the

method to compute any function on Z𝑡1
. In this case we can for

example correctly compute 𝑥2
mod 𝑡1 or 𝑥−1

mod 𝑡2 for 𝑥 ∈ Z𝑡1
.

If furthermore Z𝑡1
contains inverses of 4 then we can compute

𝑥 · 𝑦 = ( 𝑥+𝑦
2
)2 − ( 𝑥−𝑦

2
)2 mod 𝑡1 with only two invocations of the

bootstrapping algorithm. This way we can efficiently compute arith-

metic circuits. Furthermore, the arithmetic can be easily extended to

composite Z𝑝 with 𝑝 =
∏𝑚

𝑖=1
𝑡1,𝑖 where all 𝑡1,𝑖 are pairwise co-prime

from the Chinese remainder theorem.

Building Accumulators. Note that the accumulator we give as

input to the bootstrapping procedure is key-dependent. We do the

following to allow the evaluator to choose its rotation polynomials,

thus selecting the circuit to be computed. We publish additionally
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a gadget encryption of 𝑓 −1
. The evaluator obtains the accumulator

by gadget multiplying the encryption with the rotation polynomial

of its choice. We note that the error due to gadget multiplication is

a tiny fraction of the error due to blind rotation. As we will show

in Section 5, in practice, we have over 2
9
gadget multiplications in

the blind rotation step. Furthermore, this multiplication has to be

executed only once per rotation polynomial because the evaluator

can store and reuse his accumulators.

Encrypting Data. To send encrypted data, we have a few options.

We can either send LWE ciphertexts, with modulus 𝑁 and error

distribution being a Gaussian with standard deviation matching the

standard deviation of the error of the LWE ciphertext after switch-

ing the modulus. Then, instead of key switching the input NTRU

ciphertexts, we can immediately start to compute step four on the

LWE ciphertexts. The downside of this method is that we require

𝑛 + 1 elements in Z𝑁 to transmit a single message. Another method

is to set a message into a coefficient of the NTRU ciphertext. This

way, we may transmit 𝑁 messages at the cost of only 𝑁 elements in

Z𝑄 . We note that for the initial NTRU ciphertext, we may actually

take a smaller modulus and obtain an even better ciphertext rate.

The moduli𝑄 and 𝑃 are chosen to support the error induced by the

blind rotation as well as the NTRU to LWE key switching part.

Finally, the naive way to return the outcome of the computation

is to return the NTRU ciphertext from the last invocation of boot-

strapping (or after additionally computing some affine functions on

a vector of NTRU ciphertexts). In this case, the ciphertext rate for

the result is rather weak since we transmit 𝑁 elements in Z𝑄 per

message. What we can do, is either run the NTRU to LWE switching

procedure to reduce the rate to 𝑛 + 1 elements in Z𝑞 , or we can try

to pack the outcome of multiple NTRU ciphertexts into a single

NTRU ciphertext. For this purpose, we need an additional packing

key that works as the NTRU to LWE key switching procedure but

has NTRU ciphertexts instead of LWE ciphertexts.

Amortization.We can use similar techniques as showed by Carpov

et al. [20] to compute multiple functions on the same input with

only a single invocation of the bootstrapping algorithm. Namely

instead of setting the accumulator to be a NTRU ciphertext of
𝑃
𝑡2

·
𝑎rot ·𝑓 −1

, we set it to
𝑃
𝑡2

·𝑓 −1
. Then before step 7 of the bootstrapping

procedure, we multiply the blind rotated accumulator with 𝑎rot. It

is easy to see that the resulting message is the same, but we note

that the noise rate will be greater and dependent on the norm of

𝑎rot. Nevertheless, for applications like binary decomposition of

field elements, we set 𝑎rot to have only binary coefficients.

5 SECURITY, PARAMETERS AND
CORRECTNESS

We present all parameter sets on Table 3. All our parameters are

targeted to achieve at least 128-bits of security. The NTRU secret key

𝑓 is always assumed to have coefficients from {−1, 0, 1}. We chose

𝑒2 such that Var(𝑒2) = 1

16
. For every NTRU ciphertext we sample a

fresh 𝑔 with coefficients in {−1, 0, 1}. We set 𝑒1 such that Var(𝑒1) =
2/3. We take 𝑄 as close to 𝑁 as possible, but we are limited by the

error of the key switching procedure. The smaller𝑄 , the smaller the

key switching key, and the bigger the error in the resulting LWE

ciphertext that stems from the key switching procedure. The key

switching key is instantiated over the smaller modulus 𝑄 . When

choosing the LWE parameters for the key switching key, we observe

that the LWE dimension 𝑛 is one of the most crucial parameters

for the system’s performance. Hence we try to minimize 𝑛. But, on

the other hand, we need to take the modulus 𝑄 large enough to fit

the key switching error. Furthermore, we take the decomposition

base for the key switching key to be 2 across all parameter sets.

However, we note that choosing a larger decomposition base for

key switching would cost us either valuable precision, or a larger

modulus 𝑄 but smaller key size overall. We decided to go with

larger keys.

5.1 Estimating Security.
Assumptions in This and Concurrent Work. Let us remind

that we do not publish a public key in the form of an element

𝑐 = 𝑔/𝑓 is the case for LTV [54] and YASHE [14]. Crucially, note

that if we would publish a public key ℎ = 𝑔/𝑓 , and encrypt a

message as 𝑐 = 𝑒 · 𝑔/ℎ +𝑚, then for two ciphertexts encrypting the

same message, an adversary could easily compute (𝑐1 − 𝑐2)/ℎ =

(𝑒1 − 𝑒2) which is small. In our case, the attack would be disastrous

because the adversary would be allowed to query the bits of the

LWE secret key encrypted in the bootstrapping key. But in our

scheme, like in the concurrent work [13], ℎ is never published.

The work [13] does not use 𝑔 as we do. Specifically their NTRU

ciphertext takes the form 𝑐𝑖 = 𝑔𝑖/𝑓 +𝑚𝑖 , where 𝑔𝑖 is from the same

distribution as 𝑓 , and is freshly chosen for each ciphertext. Hence

we cannot reduce the problem to the standard DSPRA-assumption.

From the decision small polynomial ratio assumption, we have that

a ciphertext in the form ℎ = 𝑔/𝑓 is indistinguishable from uniform

random. However, it is not entirely clear whether a sequence 𝑐1 =

𝑒1/𝑓 , . . . , 𝑐2 = 𝑒𝑚/𝑓 , where 𝑒1, . . . , 𝑒𝑚 are sampled independently

and 1/𝑓 is reused across all 𝑐1, . . . , 𝑐𝑚 is indinsinghishable from

random as well. To summarize, it seems that [13] must assume a

modified decision small polynomial ratio assumption 2.3 to argue

indistinguishability.

We choose our parameters more conservatively and add another

layer of scrambling with the 𝑒1 error and the 𝑒2 error. This way we

can argue security, by arguing for each ciphertext 𝑐𝑖 = 𝑒1𝑔𝑖/𝑓 + 𝑒2

that the parts 𝑔𝑖/𝑓 are chosen independently at random from the

decision small polynomial ratio assumption (Definition 2.3). Note

that it is sufficient to use just one 𝑔 across all ciphertexts, but we

chose it freshly as an additional defense. The DSPRA-assumption

states indistinguishability when all the 𝑔𝑖 ’s are equivalent. Then

from the RLWE assumption [55, 59] for the ring Z𝑃 [𝑋 ]/(𝑋𝑁 + 1),
with 𝑁 -power-of-two, we can argue indistinguishability of 𝑐𝑖 even

if the parts 𝑔𝑖/𝑓 would leak and would reuse the same 𝑔𝑖 ’s. Finally,

we stress that the argument above is a standard argument, and for

formal proof, we refer to [60]. For completeness we recall the proof

in Appendix 8 in the full version [49].

Estimating Security of the Parameters. To estimate security

for the (R)LWE samples used the LWE estimator [6], but we note

that for our parameters, the dimension of the rings is so large that

the RLWE security is much above the 128-bit level. The security

bottleneck lies in the key-switching key, which has a relatively

small dimension. Below we discuss how we estimate the security

for NTRU. However, we observe that the estimated security is far

above 128-bits due to the large ring dimensions.
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𝑛 log(𝑃 ) log(𝑄 ) 𝑁 LBk ℓBk ℓKsk stddevKsk
Binary LWE Secret Key

NTRU-𝜈-um-11-B 2
9 + 125 2

30
2

25
2

11
2

6
5 25 2

10

NTRU-𝜈-um-12-B 2
9 + 238 2

45
2

33
2

12
2

15
3 33 2

14

NTRU-𝜈-um-13-B 2
9 + 315 2

45
2

34
2

13
2

15
3 34 2

14

NTRU-𝜈-um-14-B 2
9 + 390 2

45
2

36
2

14
2

15
3 36 2

14

Table 3: Parameter Sets. The hamming weight of these parameters is not enforced, and all coefficients are from the same distribution. In

other words we have Ha(𝑓 ) = 𝑁 and Ha(s) = 𝑛.

Binary LWE Secret Key

Set: 11-B 12-B 13-B 14-B

log(𝑡 ) \ sk 10.45% 64.43% 93.36% 82.96%

4 (0, 2
−13 ) (0, 0) (0, 0) (0, 0)

5 (2−33
, 2
−4 ) (0, 0) (0, 0) (0, 0)

6 (2−9
, 0.32) (0, 2

−15 ) (0, 0) (0, 0)
7 (0.10, 0.62) (0, 2

−5 ) (0, 2
−12 ) (0, 2

−37 )
8 (0.41, 0.80) (0, 0.28) (0, 2

−4 ) (2−39
, 2
−10 )

9 (0.68, 0.90) (0, 0.59) (2−42
, 0.33) (2−11

, 2
−4 )

10 (0.83, 0.95) (2−46
, 0.72) (2−12

, 0.63) (0.07, 0.38)
11 (0.91, 0.97) (2−13

, 0.89) (0.06, 0.81) (0.37, 0.66)
Table 4: Correctness Estimates. Each entry contains two proba-

bilities of failing to bootstrap correctly. The first is the probability

that the ciphertext 𝑐out yields an incorrect output. The second is

that the ciphertext cin is erroneous due to noise from a previous

bootstrapping, key switching, and modulus switching. Given the

variance of a random variable, we calculate the probability of failure

by the erf function. Remind that 𝑡 is the plaintext modulus, and the

percentage gives the contribution of the rounding error cin.

Set uSVP Avg 𝛽 𝜆

NTRU-𝜈-um-11-B 178.7 360.84 136

NTRU-𝜈-um-12-B 319.6 361.0 137

NTRU-𝜈-um-13-B 710.2 1068.0 344

NTRU-𝜈-um-14-B 1575.2 3048.68 923

Table 5: Security Estimations for the DSPRA-assumption
(NTRU) and RLWE.The second column gives the cost estima-

tions of usvp against the RLWE assumption (this is the lowest cost

that we obtained). 𝛽 is the BKZ-block size against DSPRA. 𝜆 gives

us the estimated security parameter. To summarize, our parame-

ters give larger security than we need allowing us to increase the

modulus 𝑃 if necessary.

For NTRU, we consider two types of attacks. The first is a direct

attack on theNTRU secret key that we call the SKR event (Secret Key

Recovery). In this case, we consider recovering a vector of the short

lattice basis as a successful attack against NTRU. The second event

is recovering a basis vector of the dense sublattice contained in the

NTRU lattice. We call this event the DSD event (Dense Sublattice

Discovery). For more details on the attacks we refer to [33]. It

has been observed that recovering the dense sublattice is much

more efficient when the ratio between the modulus 𝑃 and the ring

dimension is large. We call the ratio between 𝑃 and 𝑁 after which

the event of finding a basis vector of the sense sublattice is more

likely than finding a vector as short as the secret key vector of the

fatigue point. Two concurrent works byAlbrecht, Bai, andDucas [5],

and Cheon, Jeong, and Lee [24] initiate the study of the so-called

overstretched regime
3
. Kirchner and Fouque [48] improve their

results and set the asymptotic fatigue point at 𝑁 2.783+𝑜 (1)
. Very

recently, Ducas and van Woerden [33] give a tighter prediction

and set the fatigue point at 𝑃 = 𝑁 2.484+𝑜 (1)
. Importantly, Ducas

and van Woerden [33] predict the hardness of the decisional small

polynomial ratio problem in the overstretched regime. Namely, they

predict the hardness of the DSD event when the modulus 𝑃 exceeds

the fatigue point. Moreover, they back up their prediction with

extensive experiments. At Table 5 we give the results of running

the estimator from [33]
4
and form [6]. Remind that our ciphertexts

assume NTRU and RLWE. For RLWE we report on the uSVP cost as

returned by the estimator. We note that this is the lowest estimated

attack cost.

Below, we describe the estimations for the DSPRA-assumption.

The NTRU estimator gives us the block size 𝛽 at which Progressive

BKZ detects the SKR or DSD event. For all our parameter sets,

we obtained the DSD event first, meaning that running BKZ with

block size 𝛽 , we get the DSD event with a probability close to 1.

On the other hand, the SKR event for the given 𝛽 was close to 0.

Hence at table 5, we list the parameters necessary to brake NTRU

by obtaining a DSD event.

Based on thhe BKZ-block size 𝛽 and the ring dimension 𝑁 , we

estimate the cost of running the lattice reduction by the cost model

from [10]. Namely, we estimate the cost in (brute force-equivalent

bits) by

𝜆 = 0.292 · 𝛽 + 16.4 + log(8 · 𝑁 ).
Despite operating in the overstretched regime, we note that our

dimensions 𝑁 are so high that our parameters have much larger

security than necessary. For example, for NTRU-𝜈-um-C-13-B, the

NTRU instances are estimated to have 405-bits of security! For the

parameters with the smallest dimension, we get 136-bits of security,

which is already much higher than our 128-bit goal.

5.2 Correctness of the Parameter Sets.
Below we show correctness estimates for plaintext spaces Z𝑡1

and

Z𝑡2
, for 𝑡1 and 𝑡2 = 2

4, . . . , 211
. Our estimates are depicted at Table 4.

The sk row gives the share of variance from the rounding when

modulus switching. Specifically, we calculate what percentage of

3
Although the first attack is due to Gentry and Szydlo [39]

4
We slightly modified the estimator code to allow us to estimate security for larger

dimensions.
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≈ 𝑁 NTRU-𝜈-um [50] [61] [53]

2
11

7644 29400 28672 -

2
12

6000 34300 12672 15660

2
13

6616 44100 - -

2
14

7216 - - -

Table 6: The number of the FFT/NTTs for NTRU-𝜈-um.We

take only the fastest parameters from previous work.

Set BR [s] KS [s] Ksk [MB] Bk [MB] ct [KB]
11-B 0.09 0.01 130.08 25.97 8.15

12-B 0.14 0.03 507.18 55.25 20.46

13-B 0.32 0.06 1152.68 121.90 40.94

14-B 0.81 0.2 2662.56 265.96 81.90

Table 7: Performance of NTRU-𝜈-um. Columns BR and KS re-

fer to blind rotation and key switching respectively. The columns

Ksk, Bk give the evaluation key sizes, and ct gives the size of the
ciphertext.

the total variance of cin consists of the variance of the rounding

error. The reason to point out the rounding’s share is to give an intu-

itive limit on the ciphertext space’s size for a given ring dimension

and without sparse secret keys.

6 IMPLEMENTATION AND PERFORMANCE
We implement [3] and test NTRU-𝜈-um in C++ using the fftw li-

brary [35] to compute fast Fourier transforms and Intel HEXL [11]

to compute number theoretic transforms. We use FFT’s for the

NTRU-𝜈-um with ring size 2
11
. For all other parameter sets, we

use the NTT to compute negacyclic convolutions. Let us briefly

describe the main loop of the bootstrapping algorithm. In each iter-

ation, we perform a rotation of the coefficients of 𝑐acc, subtraction,

addition, and a gadget multiplication. Clearly, gadget multiplication

is the most expensive operation. Similarly, as in previous imple-

mentations, we precompute the FFT/NTT’s of the polynomials of

the blind rotation keys. That is, the polynomials are stored in the

evaluation form. The accumulator is stored in the coefficient form.

Hence, for every gadget multiplication we decompose the NTRU

sample 𝑐acc ·𝑋 cin [𝑖+1] − 𝑐acc, and we compute a FFT/NTT for every

element of the decomposition. Then we compute a multisum with

the corresponding bootstrapping key in the evaluation form and

compute an inverse FFT/NTT.

We give a brief theoretical comparison of the FFT/NTT’s re-

quired to compute a bootstrapping between our scheme, FDFB [50]

and [53, 61]. The comparison is on Table 6. We limit ourselves

only to a theoretical comparison, for the following reasons. All

papers [50, 53, 61] provide parameters and report timings on their

implementations. Nevertheless, we find that comparing the imple-

mentation times may be difficult and unfair. For example FDFB

[50, 53] are implemented on top of Palisade, which timings may

vary depending on whether hardware acceleration is used or not.

Furthermore, some parameter sets like [53] use a 54-bit modulus,

whereas we have only 45 bits, what allows them to choose much

larger decomposition bases and reduce the number of NTT’s. As

1 2 3 4 5 6 7 8 9
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T
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e
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Figure 3: Comparison for timing between NTRU-𝜈-um and the

BGV/BFV to compute

∏𝑘
𝑖=1

𝑎𝑖𝑥
𝑖
. Remind that all BGV/BFV are

leveled and do not include bootstrapping and modulus raising.

noted earlier, our ring dimensions actually allow us to increase our

modulus. We note that all the schemes can be implemented using

the same arithmetic. We can calculate the number of FFT/NTT’s in

our blind rotation by 𝑛 · (ℓBk + 1). In contrast for the blind rotation

used in previous work, that is based on RLWE, we have 2·𝑛 · (ℓBk+1).
Therefore, we expect of achieve a 2× speedup over prior work. As

we can see, NTRU-𝜈-um appears to achieve a major speedup in

terms of the number of FFT/NTT’s. For example, our binary set

for 𝑁 ≈ 2
12

is approximately 2.12 times faster than [53, 61] and

5.9 faster than [50]. What is worth noting is that [53, 61] and [50]

also use binary keys. Finally, we tested our implementation on a

commodity laptop with an Intel(R) Core(TM) i7-11850H 2.50GHz

processor and 32.0 GB RAM. We performed all tests on a single

core. Table 7 shows the average timing of a single bootstrapping

operation and the size of the key material.

6.1 Applications.
This section describes several example applications and reports on

timings for those applications.

Computing Univariate Functions over Finite Fields. We show

how NTRU-𝜈-um compares to BGV/BFV-type schemes [17–19, 34]

when computing univariate functions in finite fields. In particular,

we take the function

∏𝑘
𝑖=1

𝑎𝑖𝑥
𝑖
. The comparison is given by Fig-

ure 3 with the recent results from Kim, Polyakov, and Zucca [46]

implemented in PALISADE [2]. There are a few important observa-

tions. First, NTRU-𝜈-um evaluates an arbitrary univariate function

over Z𝑡 in time independent of the depth of the function. Second,

the experiments in [46] assume that |𝑎𝑖 | < 2
4
. The coefficients are

much smaller than the plaintext modulus, which is around 16-bits.

For larger coefficients, we would need to adjust the parameters for

BGV/BFV and take a larger ciphertext modulus. In contrast, NTRU-

𝜈-um is independent of the size of the coefficients. However, to

compute correctly for larger plaintext spaces using our parameter

sets, we need to represent the plaintexts in the CRT form. Note that

a similar optimization is made in [46]. In contrast to [46], NTRU-

𝜈-um outputs an already bootstrapped (noise reduced) ciphertext,

which allows an evaluator to resume computation immediately. For
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Figure 4: Timings for solving a system of linear equations via the

Gaussian elimination algorithm.
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Figure 5: Error for approximate “bootstrapping” of the Relu.

BGV/BFV-type schemes to resume computation, we need to raise

the modulus and bootstrap the resulting ciphertexts [22, 41, 42]. On

the other hand, when an NTRU-𝜈-um bootstrapping invocation is

the last, and the ciphertext is returned to the client, we can take a

much larger precision.

Homomorphic Gaussian Elimination. The next application is

to compute the Gaussian elimination algorithm. Let us remind that

Gaussian elimination requires computing the multiplicative inverse

of field elements. Importantly, with BGV/BFV techniques, while it

is theoretically possible to compute any polynomial-size arithmetic

circuit, in practice evaluating the Extended Euclidean algorithm is a

very costly operation.With NTRU-𝜈-um, we computemultiplicative

inverses in just one bootstrapping operation. Figure 4 presents the

results of computing Gaussian elimination for several dimensions

and parameter sets.

Computing Approximate Functions. We can compute in an

approximate mode by taking 𝑡1 even as large as the ring dimension.

In this case, a ciphertext that may have been the result of a previous

bootstrap operation is modulus reduced to Z𝑁 . Hence if 𝑡1 = 𝑁 , we

have essentially no rounding of the ciphertext just like in CKKS

[25]. This way, we can compute any approximate function with a

single bootstrapping operation. This is very useful when evaluating

neural networks on encrypted queries. Neural networks can be seen

as circuits with gates of the form 𝐹 (𝑏 +∑𝑚
𝑖=1

𝑎𝑖 · 𝑥𝑖 ) where [𝑎𝑖 ]𝑚𝑖=1

are called weights and 𝑏 is the bias. When using NTRU-𝜈-um we

compute the affine part 𝑏 +∑𝑚
𝑖=1

𝑎𝑖 ·𝑥𝑖 at nearly no cost. In practice,

the size of the affine function rarely exceeds𝑚 ≤ 1000. Hence the

computing time is dominated by computing the non-linear function

𝐹 .

In CKKS-type schemes, to compute any function, we first need

to approximate the function, for example, with a Taylor series, and

then evaluate the approximation with a CKKS-style approximate

homomorphic encryption. Furthermore, similarly to BGV/BFV, after

computing a function with CKKS, we need to raise the modulus

to resume computation, whereas for NTRU-𝜈-um we can compute

immediately after bootstrapping. Raising themodulus in CKKS-type

schemes is currently subject to extensive studies [15, 21, 23, 43, 51],

as it is the major efficiency and accuracy bottleneck. For NTRU-𝜈-

um the time to compute a function is as given by Figure 7. We find

it instructive to showcase how the approximation error behaves

for a functional bootstrapping algorithm like NTRU-𝜈-um. Notably,

the approximation error is very different than the error for schemes

like CKKS. As a demonstration, we depict in Figure 5 the result

of bootstrapping the Relu function with an oversized plaintext

modulus. The Relu function on input 𝑥 ∈ Z output 𝑥 if 𝑥 ≥ 0

and 0 otherwise. As we can see, the larger the size of the plaintext

modulus, the larger the impact of the error on the outcome of

the computation. What stands unique for NTRU-𝜈-um and other

functional bootstrapping algorithms [13, 16, 20, 27, 50, 61] is that

the error depends on the computed function. In the case of Relu,

we can see that when the function is constant on a section of the

domain, the error does not affect the outcome of the bootstrapping.

The reason is as follows. The error may cause the homomorphic

rotation of 𝑎rot polynomial to be shifted. Suppose the shift sets the

constant-coefficient to the same value as for correct computation.

In that case, the bootstrapping procedure will output the correct

value conditioned that the bootstrapping error does not distort it,

but as we can see from Table 4 the bootstrapping error and size of

the modulus 𝑃 allow for a much larger plaintext modulus. Finally,

note that as all existing approximate HE schemes, NTRU-𝜈-um in

approximate mode will not be CPA
𝐷
-secure [52].

7 CONCLUSIONS
We showed that it is possible and advantageous to build fully homo-

morphic encryption secure in the “overstretched” modulus regime.

What is important to note is that the functional bootstrapping tech-

nique might be applied in combination with BGV/BFV and CKKS

schemes. In particular, it seems that while multiplying two field

elements for NTRU-𝜈-um is possible with two bootstrapping op-

erations, multiplication without bootstrapping is much faster in

BGV/BFV. Furthermore, it may be that for the ring dimensions,

it may be possible to provide a secure instantiation of LTV and

YASHE that could support a small number of multiplications.
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