
Subterm-based proof techniques for improving
the automation and scope of security protocol analysis

Cas Cremers
CISPA Helmholtz Center
for Information Security
Saarbrücken, Germany

cremers@cispa.de

Charlie Jacomme
CISPA Helmholtz Center
for Information Security
Saarbrücken, Germany

charlie.jacomme@cispa.de

Philip Lukert
CISPA Helmholtz Center
for Information Security
Saarbrücken, Germany

philip.lukert@cispa.de

Abstract

During the last decades, many advances in the field of automated security protocol analysis have
seen the field mature and grow from being applicable to toy examples, to modeling intricate protocol
standards and finding real-world vulnerabilities that extensive manual analysis had missed.

However, modern security protocols often contain elements for which such tools were not originally
designed, such as protocols that construct, by design, terms of unbounded size, such as counters,
trees, and blockchains. Protocol analysis tools such as Tamarin and ProVerif have some very restricted
support, but typically lack the ability to effectively reason about dynamically growing unbounded-depth
terms.

In this work, we introduce subterm-based proof techniques that are tailored for automated
protocol analysis in the Tamarin prover. In several case studies, we show that these techniques
improve automation (allow for analyzing more protocols, or remove the need for manually specified
invariants), efficiency (reduce proof size for existing analyses), and expressive power (enable new
kinds of properties). In particular, we provide the first automated proofs for TreeKEM, S/Key, and
Tesla Scheme 2; and we show substantial benefits, most notably in WPA2 and 5G-AKA, two of the
largest automated protocol proofs. 1

1. Introduction

The Tamarin prover is a state-of-the-art security protocol analysis tool that has been used for the analysis of
highly detailed models of a wide range of security protocols. Notable examples include TLS 1.3, 5G-AKA, Wifi’s
WPA2, and EMV (Chip-and-Pin) [1], [2], [3], [4], in each case finding attacks or proving new properties. Tamarin
was first released in 2012 [5] and has seen substantial development over the last decade. This includes extending its
range of equational theories (e.g., best-in-class Diffie-Hellman modeling [6], exclusive or [7], multisets and bilinear
pairing [8], and a generalization of subterm-convergent user-specific theories [9]), induction, improved proof-finding
heuristics, improved reasoning methods [10], a wider range of modeling options [11] and support for observational
equivalence [12].

Despite this active development and significant progress, there are still several types of protocol analysis problems
that pose a challenge for Tamarin. In the default setting, Tamarin’s backwards search works by refining so-called
dependency graphs until either a solution is found (typically a counterexample to, or attack on, the intended security
property) or it can be shown that no solutions exist (corresponding to a proof that the property holds). It can
additionally use a form of induction over trace events. However, Tamarin 1.6 (the latest version) cannot reason
about arbitrary-depth subterms. Notably, while arbitrary-depth subterms did not occur in classical simple protocol
models (e.g., [13]), they do occur naturally in detailed case studies of modern protocols. Examples of such protocols
include hash-chain based protocols (blockchains, Tesla, S/Key), protocols based on tree structures (TreeKEM), and
protocols using natural numbers (YubiKey, PKCS#11, WPA2, 5G-AKA). In each of the mentioned protocols, there
is typically a relation between temporal ordering and the construction of a dynamic term. For example, counters
may increase monotonically, trees might be extended while keeping existing subtrees intact, and blockchains are
strictly increasing terms by design. Such protocols pose a new kind of challenge to the automated provers, as they
introduce a new form of unboundedness: not only do we want to consider an unbounded number of sessions, but
each session of the protocol itself may, by design, construct terms of unbounded size.

In this work, we set out to extend the Tamarin prover version 1.6 with a subterm relation and more generic
subterm-based proof techniques. Our goal is two-fold. First, we extend the language of security properties for more

1. An extended abstract of this paper appears at IEEE CSF 2023. This is the full version.

expressive power. Second, we improve the automation of Tamarin for more complex case studies, for example by
improving the analysis times, or by enabling automated analysis of protocols that could previously only been analyzed
with manual guidance (e.g. by specifying reusable lemmas or invariants). This goal of improving automation is one
of the main aspects of our design choices.

Contributions. Our main contribution is the introduction of subterms and subterm-based proof techniques
suitable for automated analysis of security protocols with the Tamarin Prover. This enables, for example, automated
analysis of hash-chain based protocols and reasoning about natural numbers, in the presence of equational theories.

In particular, our new proof techniques enable the first automated analysis of the TreeKEM, S/Key, and Tesla
Scheme 2 protocols, where a subterm relation both helps simplify the proof and expressing the desired security
properties, and additionally significantly improve the automation level in case studies on YubiKey, PKCS#11, CH’07,
and two of the largest Tamarin case studies to date: WPA2 and 5G-AKA; in particular they remove the need for
certain manually specified invariants (reusable lemmas and oracles) and reduce proof size and proving time (up to
30x).

Related Work. ProVerif [14] is the main other widely used automated protocol verifier in the unbounded
setting. It was extended with support for natural numbers with GSVerif [15] and as a builtin later on [16], which
enabled the analysis of versions of the Yubikey and PKCS#11 protocols. They handle natural numbers similar to our
approach, where they have a dedicated type, and a special proof technique that helps reasoning about monotonous
counters. However, our approach is more general as we build over a subterm ordering that has a broader scope of
applications. Furthermore, due to the ProVerif-internal limitation of not having support for associative-commutative
operators, they restrict themselves to natural numbers with an increment operator instead of the more powerful
addition. In practice, this design choice means that in ProVerif one can only model adding a constant to a variable.
In contrast, our approach also allows specifying the addition of two variables. We note that the manual of ProVerif
version 2.04 [17] refers to a subterm predicate, but this is not a proof technique: the subterm predicate can only be
used in the premise of restrictions, and thus only to restrict the possible behaviors of a protocol. We do not know of
any paper or case study in ProVerif that refers to this predicate.

Both Scyther [18] and CPSA [19], [20] use a proof technique that links fresh values occurring inside a term to
where this value originates from. Such a technique implicitly relies on some specific case of a subterm ordering notion,
but in a coarse and very restricted way compared to our approach. Notably, there is no explicit subterm predicate
that can be used to specify invariants over the protocol, like monotonicity. Furthermore, Scyther does not support
equational theories. We are not aware of any fresh-value subterm technique used inside the Maude-NPA [21] tool.

A first prototype of natural numbers for Tamarin was proposed in the Master Thesis of [22]. It contained a
dedicated type system and its proof techniques were quite restricted. It did not contain any proofs of correctness,
and was never integrated into Tamarin.

Some of our case studies use and extend prior Tamarin models by several authors. The two main speed-ups that
we obtain are over the 5G-AKA model [2] and the WPA2 model [3]. In terms of scale, these are also the largest
formal models available for these protocols. We also speed-up YubiKey and PKCS#11, which were studied using the
previously mentioned GSVerif [15] as well as Sapic [23], a Tamarin front-end that uses an applied pi-calculus as its
input language. We note that our extensions naturally carry over to Sapic.

Our novel case studies, TreeKEM [24], S/Key [25], and Tesla Scheme 2 [26], do not have any automated proofs
that we know of. Tesla Scheme 1 was proven secure in [27], in which Scheme 2 was mentioned as an example that
showcases the limitations of Tamarin.

Reproducibility. We provide the source code of our extended Tamarin version as well as our case studies
at [28]. Alternatively, we provide a docker that contains pre-built binaries of the multiple Tamarin versions as well
as our example, allowing to reproduce the results from Tables 1 and 2.

After installing Docker2, one simply has to pull the image and enter it to reproduce our results:
docker pull securityprotocolsresearch/tamarin:st
docker run -it securityprotocolsresearch/tamarin:st bash

Overview. We first provide the required background on Tamarin in Section 2 and then formally describe
in Section 3 our extensions over subterms and natural numbers. We report on our case studies in Section 4. We give
additional details about Tamarin and the full proofs of the soundness and completeness of our extensions in multiple
appendices.

2. Background: The Tamarin Prover

We now introduce the theoretical background needed for our extensions.

2. https://docs.docker.com/get-docker/

2

https://docs.docker.com/get-docker/

Messages. Messages sent over the network are abstracted by so-called terms, which are built over a set of
atoms by function application from a set of function symbols Σ. The atoms are drawn either from a set of constant
values N or a set of variables V , and we denote by TΣ(V,N) the corresponding set of terms. Each atomic value
can be of the generic message sort msg, or of the sub-sort fresh to model the sampling of a random value inside a
protocol, or of the sub-sort pub to model a public and attacker-known constant. fresh values are prefixed by ∼ and
pub values by $. For instance, with Σ = {enc, dec}, the term enc(m,∼sk) models the encryption of some variable
message m with a secret key sk. For a term f(t1, . . . , tn), we say that f occurs at the top of the terms, and that
each ti occurs below f .

To capture the cryptographic properties of the primitives modeled by the function symbols, we define as an
equational theory the equality relations that hold over terms. For a symmetric encryption, we would declare the
following equation:

dec(enc(m, k), k) = m

In Tamarin, there is a builtin model for pairs, denoted by 〈x, y〉 and with the associated projections fst, snd where
we have the following equation for the first projection

fst(〈x, y〉) = x

Formally, an equation is an unoriented pair t = t′ of terms in TΣ(V), and an equational theory is a set E of
equations, which together introduce a congruence relation =E over terms. In Tamarin, we require from E that each
term can be rewritten to a so-called normal form modulo E. In most cases, E will be clearly fixed by the context in
which case we simply write = for =E .

Looking forward, equations will also be used to capture constraints over terms in the solving procedure. We
will then need to consider the possible set of solutions of an equation. An E-unifier for an equation t = t′ is a
substitution σ that is a mapping from variables to terms with tσ =E t′σ. The set of unifiers for a given equation is
usually infinite, e.g., x = x is true for any substitution of the variable x. Thus, we only consider a so-called complete
set of unifiers CSUE(t = t′), which is a subset of all unifiers such that they can be instantiated to cover all unifiers.
Intuitively, if CSUE(t = t′) is empty for a given equation, it means that it can never be satisfied.

Only the equalities defined by the equational theory hold. A unary function h for which we define no equation
then models an idealized hash function. Tamarin has builtin definitions for many primitives such as symmetric and
asymmetric encryption, signatures, exclusive-or, Diffie-Hellman, etc. Notably, Tamarin has a builtin for multisets
that have been used to model counters and which are built with a union function symbol ++ defined as an associative
and commutative (AC) operator:

x++ y = y ++ x x++ (y ++ z) = (x++ y) ++ z

We say that a symbol function f is cancellative if there exists an equation such that f occurs at the top on one
side and some variable only occurs on the same side, i.e., the variable may be “cancelled”. ⊕ is notably cancellative
due to the equation x⊕ x = 0. We say a function symbol f is reducible if there exists an equation such that f
occurs at the top on the left side of a rewriting rule. For example, both fst and dec are reducible. Note that we do
not consider the builtin multiset symbol ++ to be reducible, because the AC-operator ++ is handled separately in
Tamarin.

Protocols. The states of threads of agents that perform a protocol are modeled with facts of the form
F (t1, . . . , tn) ∈ F , with F taken from a set of fact names and t1, . . . , tn ∈ TΣ(N,V). The global state of all agents is
captured as a multiset S of such facts. A protocol is then modelled as a set of multi-set rewriting rules, where each
rule specifies how the multiset, and thus the protocol state, can evolve through time.

Formally, a rule is a tuple ri = (id, l, a, r) written id : l−[a]→r where id is a unique name and l, a, r are multisets
of facts. To extract properties from this tuple, we define name(ri) = id for the name, prems(ri) = l for the premises
that are consumed by the rule, acts(ri) = a for the actions used to annotate the execution trace, and concs(ri) = r
for the conclusions that are produced by the rule. The actions a are later used for specifying security properties.
Tamarin comes with several builtin facts to model protocols: Fr(∼n) to sample fresh random values such as nonces
and keys, Out(t) and In(t) are used for outputs to and inputs from the attacker-controlled network, and K(t) enables
reasoning about the attacker’s knowledge. Those also come with a set of built-in rules to model the attacker deduction
over the K fact that includes the closure of the knowledge by function application modulo E.
Example 1. The two following rules model the beginning of a hash chain protocol, where R1 models that each agent
samples a fresh identity id and a fresh seed k, and R2 allows to build some arbitrary long hash chain using a loop over
the agent state.

R1 : Fr(∼k), Fr(∼id)−[Init(∼id,∼k)]→State(∼id,∼k)
R2 : State(∼id, x)−[Chain(∼id, x)]→State(∼id, h(x))

3

The computation could be concluded and the hash chain sent over the network by adding the rule

R3 : State(∼id, x)−[]→Out(h(x))

Facts can either be linear or persistent. While a linear fact will be consumed by a rule, a persistent fact will
always stay inside the protocol state once produced. By convention, a persistent fact name is prefixed by the symbol
!. In the previous example State is linear. Turning it into a persistent fact !State would mean that each step of R2
would still store inside the memory the intermediate values of the hash chain — values that could then be reused
inside some other rules.

Formally, a set of rules RU defines a labeled transition relation over protocol states S, where S (l−[a]→r) S′ is
possible when l−[a]→r is a valid instantiation of a rule lx−[ax]→rx from RU , i.e., there exists a substitution σ from
variables to ground terms such that l−[a]→r = lxσ−[axσ]→rxσ, l ⊂ S and S′ = S \] l ∪] r.

An execution in this transition system is a sequence of states Si (i ≥ 0, Si = ∅) which are connected by rules:

S0 (l1−[a1]→r1) S1 . . . Sn−1 (ln−[an]→rn) Sn
The trace of this execution is a1, . . . , an. We denote the set of all traces of a protocol P , as traces(P). Implicitly, the
user-specified rules of P are extended with Tamarin’s built-in rules to generate the transition system.

Security properties. Tamarin allows for specification of properties in a temporal first-order logic that may
hold over the (infinite) set of traces of a protocol. Given a trace a1, . . . , an, each ai corresponds to the multiset of
action facts that occur at timepoint i. The atoms of the logic are then defined over message and timepoint variables
as:
• F (t1, . . . , tk)@i, where F (t1, . . . , tk) ∈ F and i is a timepoint, which is true if there exists such an occurrence of
F (modulo substitution of variables) in ai;

• t = t′, which holds if the equality over the terms hold;
• i < j, which holds if the timepoint ordering holds.

Tamarin’s logic is then built over those atoms with conjunction, disjunction, implication, and universal/existential
quantification over message or timepoint variables. A formula φ holds for a protocol P if it holds over all traces of P .
In Tamarin’s framework, all formulas (including main theorems) are specified as lemmas.
Example 2. We can express over the protocol from Example 1 that the Chain action for a given id is always raised
at most once for a given value x of the hash chain with the following no replay lemma:

∀ id, x, i, j. Chain(id, x)@i & Chain(id, x)@j ⇒ i = j

Looking ahead, this property holds trivially by the fact that the hash chain for a specific id is in some sense strictly
growing. There is, however, no way to express such a property given the existing predicates of Tamarin’s logic. Using
the dedicated K fact that models the attacker knowledge, we could also express that the attacker can only know the last
element of the chain, and not any hash chain value computed before that:

∀ id, x, i. Chain(id, x)@i⇒ ¬(∃ j. K(x)@j)

Constraint solving. To prove or disprove a formula for a protocol, Tamarin essentially solves a constraint
solving problem: The rules generate constraints on the possible executions, and the formula is negated and converted
into a set of logical constraints. Tamarin’s algorithm applies sound and complete constraint solving rules to refine,
simplify, or case-split such constraint systems. If Tamarin can find a solution for the constraint system, this constitutes
a counterexample to the formula; if it can establish that no solution exists, then this constitutes a proof that the
property holds.
Example 3. Consider the formula

∀ id, x, i, j. Chain(id, x)@i & Chain(id, y)@j
& y = h(x) ⇒ ¬(i = j)

Any potential counterexample to this formula would be captured with the constraint system Γ = [Chain(id, x)@i ∧
Chain(id, y)@j ∧ y = h(x) ∧ i = j]. Using its set of constraint solving rules, Tamarin would then prove the formula by
deriving a contradiction from this constraint system, or by finding a counterexample.

We provide in Fig. 1 the rule S≈[5] as an example of a constraint solving rule. It specifies that given Γ and an
equation, we can try to derive a contradiction by exploring all the new constraints obtained when considering the
possible ways to solve this equation. This corresponds to applying each substitution from the CSU to Γ and then
consider the disjunction of the new constraints.

4

Γ s = t

Γσ1 | . . . | Γσn
if CSU (s = t) = {σ1, . . . , σn}

Figure 1: The S≈ rule

Example 4. We have the most general set of unifiers CSU (h(x) = y) = {σ : y 7→ h(x)}, where in this particular
case there is only a single possibility. From Γ of Example 3, a S≈ application over y = h(x) then yields Γ1 =
[Chain(id, x)@i ∧ Chain(id, h(x))@j ∧ i = j]. Using other rules that we do not detail here, we could then deduce, from
the fact that i = j and that the given system never allows raising Chain twice at the same timepoint, that we need to
have x = h(x), which instantly leads to a contradiction, as CSU (x = h(x)) = ∅.

This constraint solving problem is in general undecidable. In practice, Tamarin relies on a set of heuristics to
decide which of the applicable constraint solving rules should be applied to a given constraint system. If Tamarin
terminates, it explored all the possibilities and either yields an attack or a proof. When the analysis fails to terminate
using the default heuristics, users can either use Tamarin’s interactive mode to try to perform the proof themselves,
declare intermediate lemmas that can be reused for later proofs, or define so-called oracles that can programmatically
override the built-in heuristics where needed.

3. Subterm-based proof techniques

In this section, we formally describe our two main extensions to Tamarin:
• the addition of a subterm ordering and related proof techniques in Section 3.1, and
• a precise model for natural numbers, for which we reuse and build upon the subterm ordering and provide

specialized proof strategies in Section 3.2.
This allows us to provide two new proof techniques:
• the Fresh Ordering rule in Section 3.3, based on the assumption that a random value cannot be used inside a

term before it was created;
• the Monotonicity rule in Section 3.4, which relies on detecting that some facts are manipulating terms that are

always increasing w.r.t. to the subterm ordering, which allows introducing a correlation between the timepoint
ordering and subterm ordering exists.

3.1. Subterms

Our goal is to introduce a subterm predicate that captures a dependency relation on terms. Intuitively, if x is a
subterm of t, then x is needed to compute t. To be amenable to automated reasoning, such a relation must be a strict
partial order and notably satisfy transitivity. A first intuitive definition for this subterm relation is the syntactic
subterm relation:
Definition 1 (Syntactic subterm). @synt is the minimal transitive closure of {ti @synt f(. . . , ti, . . .) | f ∈
functions, ti ∈ terms}

It is, however, more difficult to define a meaningful subterm relation when dealing with an equational theory E.
Morally, it makes sense that if two terms are equivalent modulo E, they can be exchanged in a subterm predicate.
This intuition is formally captured by the consistency notion.
Definition 2 (Consistent relation). We say that @x is consistent modulo E if for all terms s, s′, t, t′, we have:

(s =E s′ ∧ t =E t′)⇒ ((s @x t)⇔ (s′ @x t′))

This property is not satisfied by @synt as we have x ++ y @synt x ++ y ++ z but not x ++ y @synt y ++ z ++ x.
Cancellative function symbols also add a layer of complexity. Exclusive-or is a good example of a cancellative function:
x @synt x⊕ x holds while x @synt 0 does not hold, even though we have that x⊕ x =E 0.

Once a consistent relation has been found, there is the need for a constraint solving strategy over the corresponding
predicate. Tamarin often uses variables as placeholders for arbitrary terms in order to reason symbolically. To deal
with variables, we would ideally want to use a similar strategy as for equations. There, recall that we find the most
general set of unifiers and substitute all variables with them. However, the set of most general unifiers for subterms
s @ t can be infinite, h(x) @ y has for example the unifiers y 7→ g(h(x)) , y 7→ g(g(h(x))) , . . . , y 7→ gn(h(x)), and
we will have to come up with a dedicated proof technique.

5

We now provide in the following the definition of a consistent subterm relation for the equational theories
supported by Tamarin, after which we detail a constraint solving algorithm for subterms.

Equational theory. In Tamarin, E is internally divided into two parts: AC, the Associative and Commutative
part and R, a user-defined convergent rewriting system. For AC, we define @AC as follows:
Definition 3 (AC-subterm).
s @AC t := ∃ s′, t′. (s′ =AC s) ∧ (t′ =AC t) ∧ (s′ @synt t′)

This works well for AC as it is not cancellative. However, if we define @R,AC similarly, we get x @R,AC 0 because
0 can be expanded to the equivalent term x ⊕ x. Luckily, the convergence of the rewriting system R provides a
unique (up to AC) normal form for each term, e.g., x⊕ x ↓R,AC= 0. With this normal form, we can define @R,AC in
a one-way fashion:
Definition 4 (R,AC-subterm).
s @R,AC t := (s ↓R,AC) @AC (t ↓R,AC)

With this definition, we trivially obtain that @R,AC is a consistent relation modulo the equational theory R,AC:
Lemma 1. @R,AC is R,AC consistent.

As the equational theories supported by Tamarin are of the form R,AC, the @R,AC definition is thus a suitable
subterm relation for our purpose in Tamarin, and we choose it as our interpretation of @. In particular, in the
remainder of this paper, we will often write @ as a shorthand for the chosen the subterm relation @R,AC .

Constraint Solving and @R,AC . In the proof search, Tamarin will now produce constraints of the form t @ t′,
for two terms t, t′ that may contain variables. To ensure the validity of a subterm predicate in Tamarin’s constraint
system, we follow a proof strategy with three main points (simplified):

1) Deconstruct the right side of the subterms until we only have variables. I.e., at the end, all subterms are of the
form s @ x where x is a variable. For example, the solving algorithm replaces x @ h(y) with x @ y ∨ x = y.

2) Check that we do not have loops of the form x @ y ∧ y @ x or h(x) @ x, i.e., the transitive closure of @ forms a
directed acyclic graph.

3) At the end, for each subterm s @ x, we apply the substitution x 7→ fun(s) where fun is a fresh function symbol.
This is done implicitly.

This algorithm will either derive a contradiction or provide a valid way to instantiate the constraint. The first
solving step is formally captured in the rule RECURSE of Fig. 2, where we specify that given a constraint containing
t @ f(t1, . . . , tn), we may introduce a disjunction of constraints that either say that t = f(t1, . . . , tn) or that t
is a subterm of one of the ti. This rule does not hold if f is an Associative Commutative function symbol (as
x @ a++ (b++ c) can for instance be satisfied by x @ a++ c), nor when f is reducible. The second solving step where
we check for loops is formally described in the rule CHAIN of Fig. 2, where we write a mod n to denote the modulo
operation for relating xn and t0.

If there is no equational theory, these steps ensure that all subterm constraints are met, as s @ fun(s) holds trivially
under all substitutions. For AC, we can adapt the RECURSE rule as seen in Fig. 3. However, for arbitrary rewriting rules,
we cannot do this kind of recursion. For example, x @ x⊕ y is not equivalent to (x = x)∨ (x @ x)∨ (x = y)∨ (x @ y)
which would be trivially true, independent of y. To avoid this problem, we explicitly exclude reducible operators
from the RECURSE rule, which are the function symbols that are at the top of left sides of rewriting rules. E.g., for
the rule fst(〈x, y〉)→R,AC x we have that fst is reducible, but the pair function 〈, 〉 is not.

In conclusion, the strategy is: Recursing on irreducible operators and hoping that we do not end up with a
reducible operator at the end. If that happens, the result is that we can neither prove nor disprove this claim, but
we observe that reducible operators are quite rare in protocols where subterms make sense, e.g., we could not find a
sensible meaning of subterms for XOR. The most frequent usage is for hashes h, key derivation functions kdf , pairs
〈, 〉, and multisets ++, which are all irreducible.

Finally, subterms can also occur in negated form in a logical constraint. We recurse similarly on them, such
that we end up with a variable on the right-hand side. To automatically derive a contradiction from those negated
subterms, we add the rule NEG in Fig. 3. It inserts two new constraints that rule out the contradictory case of
¬(s @ r) ∧ (s @ r). If we now (implicitly) apply the substitution x 7→ fun(s) for each subterm s @ x at the end, we
know that the negative subterms constraints are not violated. The soundness and completeness of the rules is proved
in Appendix C.

3.2. Refinements for Natural Numbers

We now turn to our extension for natural numbers. Two kinds of numbers are used in protocols: some are used
as nonces or encryption keys, while the others are smaller values typically used for counters. From a security analysis

6

RECURSE:
t @ f(t1, . . . , tn)

t = t1 | t @ t1 | · · · | t = tn | t @ tn
I

if f is not AC and not a reducible operator

CHAIN:
t0 @ x0 · · · tn @ xn

⊥
I

• if xi are variables of sort msg, and
• xi is syntactically in t(i+1) mod (n+1) and not below a

reducible operator

Figure 2: The recurse rule deconstructs the right side of a subterm predicate into a disjunction of equalities and
smaller subterms. The chain rule detects loops in the subterm relation and enables deriving a contradiction. The I
denotes insertion into the constraint system and is added here for consistency with Appendix A.

AC-RECURSE:
t @ t1 ++ · · ·++ tn

∃x. t++ x = t1 ++ · · ·++ tn | t @ t1 | · · · | t @ tn
I

• where x is a new variable,
• ++ is an ac-operator and neither reducible nor the

addition from natural numbers, and
• there is no ti with ++as top operator (flatness)

NEG:
¬s @ r t @ r

¬s @ t s 6= t
I

Figure 3: AC-RECURSE and NEG. AC-RECURSE works similarly to RECURSE while the existential quantification
ensures that cases like t = t4 + t1 are captured. Additionally note, that we require flatness (ti don’t have + as
uppermost operator) as a performance optimization to avoid adding more existential quantifications than necessary.
The NEG rule deals with negative subterms.

point of view, they have two very different sets of properties: nonces and keys cannot be guessed by the attacker, and
we often do not need to consider the underlying algebraic properties of those integers. In contrast, for counters, every
number can be guessed by the attacker with non-negligible probability and we do need to consider the algebraic
properties of the addition.

The first kind is traditionally modeled as fresh random values as we have illustrated before. In the following, we
provide an efficient model for small integer values. We prove the correctness of our encoding in Appendix B.

Modeling decisions. There are two main styles to define numbers: As in Peano arithmetic with a 1 and a
successor function, or as in Presburger arithmetic with a 1 and an addition of two numbers. In contrast to ProVerif
where numbers are implemented in Peano style [15], we use Tamarin’s ability to cope with associative-commutative
operators to implement the + of Presburger arithmetic. This has the substantial advantage that we can sum arbitrary
numbers n+m without having to resort to implementing this with loops that might cause non-termination, e.g., by
applying the successor function m times in a loop.

Recall that the multiset operator ++ is commutative n++m = m++n and associative (n++m) ++ o = n++ (m++ o);
this is why many existing Tamarin models use the multiset operator ++ in combination with a public symbol for ’1’ to
model counters in Presburger arithmetic [3], [2], [29], [30]. For example, a 3 would be represented as ’1’++’1’++’1’, i.e.,
the number of ’1’s in the multiset indicates the number represented. A zero cannot be represented as we otherwise
would need to switch to the theory ACU, where the U stands for unit (n ++ 0 = n), which is not supported by
Tamarin. In practice, there is usually no need for an explicit zero as counters can also start at one without impacting

7

FRESH-ORDER:
i : f j : g i 6= j

i < j
I

where j : g denotes that rule g occurs at timepoint j, and
• f has a premise Fr(s),
• g has a premise fact with the term t,
• s is syntactically in t but not below a reducible operator

Figure 4: The basic fresh order rule

the security analysis.
The problem of the existing modelings is that the multiset operator can be used with terms of any sort, i.e., there

can be other elements than ’1’ inside the multiset, potentially including secret values. This substantially complicates
the proof search which typically significantly slows down the verification of these models. One of the sources of
complexity is that the attacker is required to construct each number individually and that it also tries to extract
information from multisets that represent numbers. In practice, these two behaviors make no sense as the attacker
can directly guess these small numbers. A solution to this is to explicitly define numbers as public values. To this
end, we introduce a new sort nat that precisely captures the natural numbers. The two only ways to construct a
term of sort nat are 1 : nat and the custom AC-operator + : nat× nat → nat. That implies that the attacker can
never extract useful information from a nat and never needs to prove that they can construct a nat. We will see later
that this leads to substantial speedups and aids termination of a protocol’s analysis.

However, these speedups come at a cost as with a strengthened type system, we may hide some type flaw attacks.
For example, consider a protocol with an oracle that is supposed to sign small counters but accidentally also signs
nonces as they are both implemented as 64bit integers. If we model this oracle with nat in Tamarin, we do not
capture the bug. If the second part of the protocol is a challenge which asks the attacker to sign nonces, we have an
attack in the real world but not in the symbolic model. To capture this attack, the model would need to go back
to using the construction with the multiset operator while avoiding the sort nat. This boils down to the general
trade-off between the level of automation and the accuracy of the model. In general, we are guaranteed to model
type flaw attacks if we do not assume messages received from the network to have any specific type. Apart from that,
we can use the sort nat arbitrarily (e.g., in local state or when sending to the network) which still yields automation
improvements.

Less-than relation. When using the subterm relation as a less-than ordering over natural numbers, we observe
that the following holds if m and n are nat:

1) It is a total ordering: (n @ m) ∨ (n = m) ∨ (m @ n). This is used for negating a less-than equation.
2) n @ m can be rewritten to the equation ∃x. n + x = m. This is used at the end of the constraint solving

algorithm for subterms instead of using the fresh function symbol fun for the substitution x 7→ fun(s) (the
symbol fun of the generic constraint solving algorithm cannot be used for numbers as it would violate the type
constraints).

3) It is discrete, which means that we can sometimes extract equations, e.g., from (m @ n)∧ (n @ m+ 1 + 1) follows
that n = m+ 1. We determine these equations with an efficient UTVPI-algorithm (short for Unit Two Variable
Per Inequality). This algorithm builds a graph out of the constraints where variables are nodes in the graph and
(directed) edges are the orderings between them. After construction, the graph is checked for zero-weight cycles
with an adaption of the Bellman-Ford algorithm. For more details, see [31].

We stress that the two variable restriction for the UTVPI algorithm does not imply a restriction of our constraint
solving algorithm: the UTVPI is only used as an optimization, and if it cannot be applied, we fall back to using the
more general approach of using the formulation ∃x. n+ x = m.

3.3. Fresh Ordering

The idea of the Fresh ordering rule is to derive a temporal ordering constraint between creation and usage of
fresh variables: It is intuitively clear that a random variable cannot be used before it is created. This proof strategy
was already used in Scyther [18] but was not adapted in Tamarin because of its support for equational theories: with
equations, it is not easy to determine whether a fresh value is inside a term, e.g., x @ x⊕ y does not hold if y 7→ x.
However, if there are no reducible operators between the two terms, we can show that we can safely add the rule
in Fig. 4. The rule formally specifies that if we have a rule g occurring at timepoint j, denoted j : g, and if there is a
fresh value s that appears syntactically in g (and not below a reducible operator), then we know that j must be

8

after the timepoint i of the rule f that produced s in the premise Fr(s). We describe below informally two variants
of this first rule, and provide the full rule as well as soundness and completeness proofs in Appendix D.

“Subterm” improvement. This rule takes its full meaning when combined with the subterm predicate, which
precisely captures the fact that a value is needed to build some term. Previously, we required that s is syntactically
in the term t and not below a reducible operator. However, the situation can be that we have the predicate s @ t
while s is not (yet) syntactically in t. Then, we can conclude from the subterm predicate that s will be eventually in
t (after some constraint solving steps) and already assume that t “uses” s. Because of transitivity of @, we can also
use chains s @ t1 . . . tn @ t to ensure that t “uses” s and insert the corresponding timepoint ordering.

“Secret path” improvement. We can also refine the previous rule in the cases where a fresh value s is secretly
given to a second rule at time i after the Fresh rule. In this case, we know that no other rule before i can use s
because it is not known to them. I.e., all other occurrences of s have to be after i. This can be extended from a
single further rule to a path of rules where s is passed secretly.

3.4. Monotonicity

We now provide ways to automatically detect the monotonous behaviors appearing inside a protocol and how to
use those behaviors in the constraint solving. To detect facts that may for instance model a counter, we rely on the
existing notion of injective facts in Tamarin, which are instances of facts that are guaranteed to not co-exist in a
trace. Knowing about this kind of injectivity currently enables timepoint ordering simplifications.
Example 5. In Example 1 the State fact is injective, and we know that two instances of the State fact with the
same ∼id cannot both exist at the same time. Tamarin uses this information to derive contradictions, as it can
notably conclude that if a State(∼id, x) fact is produced at timepoint i and consumed at timepoint j, there cannot
exist another State(∼id, y) in between i and j.

We can improve the reasoning over those facts by detecting if they imply monotonous behaviors. To do so, we
must inspect the contents of these injective facts that may be seen in this case as storage cell used to store a set
of values. For instance, we can syntactically see that in Example 1 the variable x models a storage cell containing
a strictly increasing sequence of keys. This means that we can correlate bigger keys with later time points of fact
instances representing the same storage cell. We thus extend the injective fact reasoning with techniques associated
to monotonicity. All in all, we determine five special cases for contents of storage cells: Strictly Increasing, Strictly
Decreasing, Increasing, Decreasing and Constant.

In the following, we first show how to better detect injective facts, which makes our technique more broadly
applicable, and how the monotonous behaviors can be inferred over such facts. We then show how this extra
information can be used inside the constraint solving. The soundness and completeness proofs of our approach can
be found in Appendix E.

Injective monotonous facts. Injective facts were previously detected by ensuring that there exists a fresh
value id that is only used as the first argument of a fact S, there is a single rule that produce the S fact from a
Fr(∼id) fact, and otherwise there are only rules that consume a single S fact and can then produce it. We provide a
more general detection, that notably allows producing multiple injective facts at the same time. We improve the
detection of injective facts in general and now detect this behavior with the following rule-set:
Definition 5. A fact Fact is detected as injective if

1) it is linear and not persistent
2) for each conclusion of Fact(id, . . .) of each rule, there is no other conclusion Fact(id, . . .) with the same first

term and
a) either there is a premise Fr(id)
b) or there is exactly one premise Fact(id, . . .)
The set of injective facts gives us a set of potential storage cells over which we can detect monotonicity properties. In

general, we note that an injective fact can be used to store multiple values, and be, e.g., of the form Store(id, v1, v2, v3),
where we can see each value vi as an independent storage cell. We may also encounter cases where the previous
is written using a tuple as follows Store(id, v1, 〈v2, v3〉). We also detect such usages, and do see v2 and v3 as
independent storage cells. For each such storage cell, we detect by a syntactic analysis over the rules if the cell is:
• constant, when every rule produces the same value it consumed for this cell;
• strictly increasing, when for any rule the value in the premise of the cell is a syntactic subterm (and not below a

reducible operator) of the one in the conclusion;
• decreasing and (non-strict) increasing/decreasing cells by combinations or inversions of the above.

9

Protocol Properties LoC H. Lemmas Runtime (s) Oracle
New models

TreeKEM[24] Forward Secrecy 389 4 8 yes
S/Key [25] Authentication 101 1 1 no
Tesla Scheme 2[26] Authentication, Secrecy 286 5 8 no

Previous models
Old New Old New Old New

WPA2 [3] Secrecy, Authentication 2446 74 73 5189 559 yes yes
5G-AKA[2] Secrecy, Authentication 978 7 6 467 131 yes yes
YubiKey [29] Authentication, Replay-Resistance 134 4 3 19 1 no no
PKCS#11 [30] Key Generation Properties 301 4 0 74 10 yes no
CH’07 RFID [7] Unlinkability 92 0 0 3197 97 no no

LoC : lines of code (approximate complexity measure)
H. lemmas: helper lemmas automatically proved by Tamarin, but manually added to help prove the target property
Oracle: whether an oracle was needed to help guide the proof search, “no” means more automation

TABLE 1: Benchmark overview: new models and improvements for previous models

Runtime in seconds
Original Models Models using dedicated Subterms and Natural Numbers modelsProtocol

Original Fresh Order Basic Fresh Order Monotonicity Monotonicity + Fresh Order
TreeKEM[24] - - ∞ 8 ∞ 8
S/Key [25] - - 1 1 1 1
Tesla Scheme 2[26] - - 8 11 6 8
WPA2 [3] 5189 5750 5142 5142 386 559
5G-AKA[2] 480 467 90 124 108 131
YubiKey [29] 19 21 1 1 1 1
PKCS#11 [30] 74 79 36 24 5 10
CH’07 RFID [7] 3197 96 3197 96 2721 97

We compare the running time between the original models (when they exist), and the models modified to use subterms. For
the original models, we can compare the plain model only with the Fresh Ordering as it’s our only extension that can speed-up models
which are not using the subterm operator. On the right side, we modify the models and use the Fresh Order and Monotonicity techniques
in all combinations. We highlight some of the most significant changes implied by the individual features.

TABLE 2: Benchmark: impact of individual extensions on new and old models

Monotonicity properties. We now consider the case where a monotonous storage cell (corresponding to
an injective fact) is used to store the term s at timepoint i and the term t at timepoint j. Then, the following
simplifications can be performed for constant and increasing storage cells:
• If the cell is constant:

(1) insert s = t

• If the cell is strictly increasing:
(2) if s = t, then insert i = j
(3) if s @ t, then insert i < j
(4) if i < j or j < i, then insert s 6= t
(5) if ¬s @ t and s 6= t, then insert j < i

For (3) and (5) we do not require s @ t to be an explicit predicate in the constraint system but also apply the rule
if s @ t is trivially true, e.g., for syntactic inclusion. Note that (5) holds as t @ s holds because of totality within the
increasing injective fact. Interestingly, this totality (s @ t)∨ (s = t)∨ (t @ s) does not hold in general, but holds here
because s and t are used in the same monotonic storage cell which yield a total ordering on the possible contents of
the storage cell. If the cell is non-strictly increasing, we can only use rules (3) and (5).

4. Case Studies

In this section, we demonstrate the usefulness of our Tamarin extensions. In particular:
1) We improve existing analyses by reducing their verification time and removing the need for helper lemmas or

oracles. Notably, we reduce the proving time from hours to minutes on a model of WPA2. Furthermore, we have
improvements on models of 5G-AKA, YubiKey, PKCS#11, and CH’07.

2) We provide novel case studies of the TreeKEM, S/Key and Tesla Scheme 2 protocols. Here, we highlight the
model of TreeKEM which is especially complex due to its tree-based data structure.

We give the high-level results in Section 4.1. We then discuss some details of improved existing models in Section 4.2,
before turning to the details of the three novel case studies in Section 4.3, 4.4, and 4.5.

10

4.1. Overview

We describe the considered models in Table 1, including both older models that we improve on and new models
that we developed from scratch. For each model, we summarize the security properties verified, the total running time
of the model, how many helper lemmas needed to be specified by hand, and whether the model needs an additional
handwritten oracle to help guide the proof. We used 3 threads for each run on a server with a 64 cores Intel(R)
Xeon(R) CPU E5-4650L 0 @ 2.60GHz with 750GB of RAM. This scaling was mainly useful for parallelizing multiple
case studies - one can also run all case studies sequentially on a normal 4-core machine and 16GB of RAM. We round
to the nearest full second, except for times below 1 second, which we always round to 1. For previously existing
models, we compare our patched Tamarin version to the most recent Tamarin 1.6, with the notable highlights of:
• a 30x speed-up on the CH’07 RFID protocol, a 24x speed up on the YubiKey model and, 9x, 8x and 4x speed-up

on PKCS, WPA2, and 5G-AKA,
• removing the need for an oracle in PKCS, and
• reducing the number of helper lemmas in all cases.
To evaluate the relative impact of each of our individual extensions, we also perform a more in-depth benchmark.

In particular, we consider whether the fresh order rule is useful even outside the subterm context, whether dedicated
natural number and subterm models without additional proof technique are already useful, and what happens when
we add to the dedicated models either the Fresh Ordering rule, the Monotonicity reasonings, or both. We summarize
this benchmark in Table 2. Overall, we find that
• just having a dedicated natural number model and a subterm predicate is already useful and speeds up the

5G-AKA, YubiKey and PKCS#11 case studies (recall that it reduces the number of possible unifiers), and also
enables our three new case studies;

• the Fresh Ordering rule very strongly impacts TreeKEM (without it, the verification does not terminate) and a
30x speedup for CH’07 RFID;

• the monotonicity reasonings cause a huge speed-up for WPA2 and PKCS#11.
We observe that adding only the fresh order or the monotonicity features may actually cause a slowdown compared
to Tamarin 1.6, as the time they spend trying to derive contradictions may be wasted if no contradiction is found.
However, we always see a significant speed-up compared to the original model when we combine all our extensions.
Note that our new proof techniques never increase the proof size (not shown in the tables).

Implementation. The implementation of the subterm predicate, the natural number modeling and of all their
associated proof techniques adds around 1400 lines of Haskell code to Tamarin.

The Unicode symbol @ or alternatively << can be used to state a subterm predicate between two terms in a
formula. Even if no subterm predicate is used inside the model, Tamarin will still use the monotonicity and the fresh
ordering techniques.

As discussed previously, there are some cases where the subterm reasoning will fail in the presence of cancellation
operators. This introduces a new behavior for Tamarin: previously, it would always give a positive or a negative
answer when it terminated; it may now fail to conclude in some branches of the proof search. In our setting, this does
not have strong consequences: for attack finding, one can continue to explore the other branches and for proving, one
can try to do the proof without any of the subterm optimizations.

If users now want to use numbers in Tamarin, they have to include the builtin natural-numbers. Variables n can be
typed with sort nat in two ways: n:nat or %n. The 1 must be typed to avoid clashes with the one from Diffie-Hellman,
i.e., we use 1:nat or %1 for natural numbers. Finally, the addition operator is denoted by %+ to avoid clashes with
the multiset operator ++ which is denoted + in Tamarin.

4.2. Speed-ups of Existing Models

WPA2. WiFi Protected Access 2 is a protocol used for securing wireless data transmission. Since 2018, there is
a newer protocol WPA3 that provides additional security features, although it is to be expected that WPA2 will still
used in many devices in the coming years. Because of its wide usage, WPA2 has been extensively studied, revealing
multiple attacks. Among the most severe is the krack attack [32], which enabled decryption of the internet traffic of
other devices if the attacker is in range of the WiFi.

[3] provides a full formal model of WPA2 in Tamarin. They formally reproduce the krack attack and provide
proofs of secrecy and authentication for a fixed version of WPA2. They additionally developed an external tool
ut-tamarin which they use instead of an oracle to automate most of the proofs. However, four proofs could not be
automated this way and were provided as manual proofs. Overall, the model has over 2400 lines and takes 1.5 hours
to prove all automated properties.

11

Analyzing WPA2 is challenging because it requires modeling counters, which protect against replay attacks.
The authors use the multiset encoding of numbers described in Section 3.2. To express that the counter n is
smaller than m, they use an existential quantification ∃x. n ++ x = m. This is, inter alia, used in the lemma
gtk encryption nonces increase strictly over time which is exactly monotonicity of a counter. Unfortunately, our
automatic detection of strictly increasing injective facts does not apply for this lemma because its injectivity relies
on more values than the first identifier. Still, proving the lemma gets a performance improvement of 60% due to the
UTVPI computation when replacing the existential quantification by the subterm operator.

Another highlight of our improvements is the longest lemma authenticator ptk nonce pair is unique which
ensures that there are no two states with the same counter - taking 1.4 hours to prove. With the monotonicity proof tech-
nique, we can not only prove this lemma instantly, but can also remove its implied lemma ptk nonce pair is unique
completely without any impact on other lemmas and theorems. All in all, we reduce the proving time of the model
from 1.5 hours to 9 minutes. We also remove the dependency for ut-tamarin and automate the four manual proofs
with an oracle. This improves the overall usability and maintainability of the model as it only uses tools included
and maintained within Tamarin.

5G-AKA. Billions of users connect to the internet via a mobile device using the cellular network provided by
multiple carriers. To authenticate with a SIM-Card to the home carrier, an Authentication and Key Agreement
(AKA) protocol is used. The latest such protocol is called 5G-AKA which is part of the 5G protocol standardized by
the 3GPP, the successor of 4G/LTE. It provides authentication and secrecy for the following messages encrypted
with the key agreed upon.

In [2], the authors provide a full analysis of 5G-AKA within 1500 lines of Tamarin code. Proving all 124 lemmas
takes around 5 hours and needs oracles of an additional 1000 lines of Python code. Properties proven include especially
authentication, confidentiality and privacy in a multitude of different versions including binding vs. non-binding
channels. During the analysis, the authors find several weaknesses in the protocol and recommend fixes.

The main challenges in modeling 5G-AKA are the incrementing sequence numbers that persist over multiple
sessions. The authors introduce a special monotonicity lemma which is crucial for their proof, and is the largest
lemma. Unfortunately, we cannot automatically detect this monotonicity with our new proof technique, as it is quite
specialized. However, our extensions still reducing the proof steps needed for this lemma from over 2100 steps to
under 400. Additionally, we drastically reduced the proof steps needed for lemmas connected to injective agreement
and two invariant lemmas became obsolete because of the different modeling with natural numbers. Here, we focus
on the main version of the protocol, comprising 15 of the total 124 lemmas and which takes 8 minutes to prove.
Using our extensions, we can cut down this time to less than two minutes.

YubiKey. The YubiKey is a USB token that enables second factor authentication. After the registration of the
public key of the YubiKey to a web server, every login of the user onto the web server will require the YubiKey to
sign a challenge sent by the server along with a counter stored inside the YubiKey. The YubiKey mechanism was
first studied with Tamarin in [29], where the counter was modelled using a multiset, and one of the key lemmas
required the monotonicity of the counters. We migrated the model to our natural number modeling, which reduces
the proof time from 20 seconds to 1 second.

PKCS#11. We updated the PKCS#11 key wrapping API model from the recent Tamarin analysis from [30].
The API heavily relies on a notion of integer to attach levels to secret keys, where a key of one level can only be
used to encrypt keys with higher levels. The original model required the authors of [30] to write dedicated oracles to
help the verification, which then ran in 74 seconds. For this model, each of our optimizations leads to a speed-up,
until we reach a 9 second verification time, and we no longer need an oracle. We thus removed the need for writing
an oracle, which can be a long and tedious step in a Tamarin analysis.

CH’07. The CH’07 [33] scheme is an RFID based tag authentication protocol, previously analyzed with Tamarin
in [7]. It relies on a challenge-response mechanism and notably uses the xor operation, and one of its main goals is
to guarantee tag unlinkability. This example offer an interesting variant from the previous examples: first, it does
not use any counter, hash chain or similar constructs; second, it involves proving observational equivalence. On this
example, the fresh order rule has a strong impact as it speeds up the observational equivalence proof from almost an
hour to under 2 minutes.

4.3. TreeKEM

In 2018, an internet engineering task force on messaging layer security (IETF-MLS) was founded to standardize
the key exchange for messaging apps. End-to-end encrypted messaging between two parties is already standard for
most messengers. However, in a group setting, the currently employed protocols either lack security or performance.
This is what the MLS working group aims to provide with a continuous group key agreement (CGKA) protocol
based on the TreeKEM protocol [24]. A CGKA is a protocol to derive a group key in an updatable way, i.e., if group

12

members join or leave the group or just want to renew the secrecy of the group key. This update mechanism aims to
achieve two main properties:

1) forward secrecy states that if the attacker compromises a key at a certain point in time, the previous keys are
still secret.

2) post compromise secrecy (PCS) states that if the attacker compromises a key, participants can heal the key
when the attacker is temporarily passive. That is, if the participants update the key, then the new key is again
secret.

The main complexity of TreeKEM arises from the use of a distributed tree structure. A private/public key pair is
saved inside each node of a binary tree. Each leaf of the tree corresponds to a participant in the group, and each
participant knows exactly the secret keys on the path from their leaf to the root. This implies that the secret key on
a leaf is only known by the corresponding participant while the key at the root node is known by all participants.
This root key is then the one used to derive a shared group key.

If a participant wishes to update their leaf key, they will update all the secrets on the path from their leaf to the
root key, notably updating the root key, and sending the information needed for the updates to the other members by
using the public key of each node. After an update, the new shared group key is computed through the application
of a key derivation over both the previous group key and the new root key.

Modeling and analyzing the TreeKEM protocol raises two challenges:
• a participant needs to store a list of key pairs of an arbitrary size, and be able to go through all of them to

update it;
• the group key is produced through an infinitely growing hash chain.
We address the first challenge by using a Tamarin model of ordered lists that relies on our implementation of

natural numbers, and the second one by using the subterm predicate.
Our model. From the version proposed in [24], we take the following parts to model a single group with an

unbounded number of participants:
1) a rule to create a group with one participant
2) rules for a new participant to join a group
3) rules for a participant to update their secrets
4) a theorem proving forward secrecy

The natural numbers allowed us efficiently model the storage of the path of secrets from the leaf to the root of
the tree as an ordered list. Tamarin does not directly support this data structure, so it has to be built out of smaller
primitives. Without our extension, a natural choice would be to model it with pairs, e.g., the list [a, b, c, d] would be
represented as 〈a, 〈b, 〈c, d〉〉〉. However, this has the disadvantage that elements at the end or in the middle of the list
can only be accessed by a loop which deconstructs the structure. A smarter way is to use a multiset with indices,
i.e., 〈1, a〉++ 〈2, b〉++ 〈3, c〉++ 〈4, d〉. There, we can access any element by pattern matching on it with the index n:
〈n, elem〉++ rest and iterate trough the list by incrementing n. With such a model of the data structure, we were
able to encode all the loops that need to go through the list, e.g. to update the values, in an efficient way.

Proving Forward Secrecy. We specify forward secrecy formally as follows: the group key gk of participant id
cannot be known by the attacker if no participant of the group is compromised in a state where their group key gk2
was a predecessor of gk. We write the corresponding Tamarin lemma as:
Tamarin Lemma 1 (TreeKEM Forward Secrecy).

∀ id, gk, i. GroupKey(id, gk)@i
⇒ ¬∃ id2, gk2, j. (Leak(id2, gk2)@j

& gk2 @ gk)
⇒ ¬(∃ l. K(gk)@l)

Note that it does not make sense to refer to time-wise constraints like ”if there was no compromise before, the
attacker will never know gk”. With that, it could be that the attacker compromises a client in the future that did
not receive updates and is thus in an old state. Instead, we use the group key to express the progress of a client. As
group keys are computed from old group keys with a key derivation function gkNew = kdf (gkOld, rootSecret), it is
the case that gkOld @ gkNew, even for arbitrarily old group keys. This is an interesting setting where the subterm
predicate is not only a proof technique but actually needed to specify the security property in some intelligible and
straightforward way.

When first trying to prove forward secrecy for TreeKEM, Tamarin found a trace that contradicted the security
property. The attack came from the fact that in the original specification, the first group key is initialized with a
public constant instead of a fresh random variable, and as long as no update was performed and only new group
members were added, the protocol would not provide forward secrecy. By comparing with the current draft of

13

the MLS standard, we saw that the issue had already been discovered manually and fixed in draft 10 of the MLS
standard.3 After applying the fix, we were able to prove the forward secrecy property. It required writing four helper
lemmas, which is relatively low, and the proof runs in a few seconds.

Limitations. Note that we do not model deletion of group members. Moreover, we only have a restricted join
operation that inserts new participants always on the right side of the tree which yields non-balanced binary trees.
The most severe limitation of our protocol is that we were not able to prove PCS. There are two challenges to a PCS
proof for TreeKEM, that we are not sure how to address yet, and consider out of scope of this paper:
• PCS relies on an invariant over the whole tree structure which is unfortunately distributed over arbitrarily many

clients. Expressing such an invariant over a structure which is abstract and never explicitly occurs inside a state
is complex in Tamarin.

• In addition, TreeKEM clients in the same group can be widely out of sync for many steps, which makes it a
challenge to express a meaningful notion of PCS while accounting for the temporal dependencies.

4.4. S/Key

The S/Key protocol uses a hash chain to provide a One Time Password (OTP) authentication scheme [25]
integrated into the Linux kernel. The user first generates the hash chain hn(password), keeps all the iterations, and
provides only the first element hn(password) to the server through a secure channel. Then, at step i, hn−i(password)
is given to the server which can check if the hash of the given value matches its stored value and keep this hash as
the new stored value.

While it is one of the most classical OTP schemes, it was never automatically analyzed before due to the
complexity of the arbitrary large – first increasing and then decreasing – hash chain. This is a case for which writing
down the protocol is deceptively simple and only takes a dozen of lines, yet the proof is involved. For this protocol, we
prove the authentication property that specifies that the server will only accept a token for which the user explicitly
revealed a previous value. If we denote by User(x) the action raised when a user is using the value x from the chain
to try to authenticate (thus explicitly revealing it), and by Server(x) the action raised by the server accepting a
chain value, we prove authentication for S/Key:

Tamarin Lemma 2 (S/Key Authentication).

∀ x, i. Server(x)@i⇒
∃ y, j. User(y)@j & j < i & (x = y | y @ x)

Similarly to the TreeKEM case, this illustrates how the subterm predicate can be help express complex security
properties. We prove the previous security property (lifted to an unbounded number of sessions) in a few seconds
with one helper lemma.

4.5. TESLA Scheme 2

TESLA Scheme 2 [26] is a stream authentication protocol. From a high-level point of view, it can be seen as
using the basic S/Key concept as a building block, but turned into a full-fledged system where each part of the hash
chain authenticates a sequence of messages. The expected security is the authenticity of each message accepted by
the server, which is expressed as:

Tamarin Lemma 3 (Tesla Authentication).

∀ m, i. Accept(m)@i⇒ ∃ j. Sent(m)@j & j < i

A first Tamarin model of it was proposed in 2012 [27], as an example of things that Tamarin was not able to prove.
The reason for that is the complex construction with an inverse hash chain which might skip an arbitrary number of
intermediate steps. With subterms, we were able to express such a skip and write helper lemmas, which especially
expressed monotonicity and uniqueness. Here, the subterms are only used as an intermediate proof technique to
prove a generic and subterm independent property. We were able to prove authentication as well as some additional
secrecy requirements in about 5 seconds with 5 helper lemmas.

3. https://github.com/mlswg/mls-protocol/pull/385

14

https://github.com/mlswg/mls-protocol/pull/385

5. Conclusions

We extend the Tamarin prover with a subterm predicate and multiple associated proof techniques, as well as a
dedicated support for natural numbers. We illustrate on multiple case studies how this improves the automation and
the scope of the tool, providing both speed-ups of old models and novel case studies.

Our extensions have significant impact on our case studies: our techniques can enable verification which had not
succeeded before (getting rid of non-termination in e.g. TreeKEM), removing the need for manually-specified helper
lemmas or oracles, and we observed a speed-up factor of over 30x in one case (CH’07 RFID).

While our techniques were initially developed for Tamarin, they appear to be rather generic and it should be
possible to, e.g., introduce a general subterm predicate to ProVerif that can be used in lemmas and queries.

References

[1] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe, “A Comprehensive Symbolic Analysis of TLS 1.3,” in ACM
Conference on Computer and Communications Security. ACM, 2017, pp. 1773–1788.

[2] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler, “A formal analysis of 5G authentication,” in Proceedings of
the 2018 ACM SIGSAC conference on computer and communications security, 2018, pp. 1383–1396.

[3] C. Cremers, B. Kiesl, and N. Medinger, “A formal analysis of IEEE 802.11’s WPA2: Countering the Kracks Caused by Cracking the
Counters,” in 29th USENIX Security Symposium (USENIX Security 20), 2020, pp. 1–17.

[4] D. Basin, R. Sasse, and J. Toro-Pozo, “The EMV standard: Break, fix, verify,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 1766–1781.

[5] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analysis of Diffie-Hellman protocols and advanced security properties,”
in 2012 IEEE 25th Computer Security Foundations Symposium. IEEE, 2012, pp. 78–94.

[6] C. Cremers and D. Jackson, “Prime, order please! Revisiting small subgroup and invalid curve attacks on protocols using Diffie-Hellman,”
in 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). IEEE, 2019, pp. 78–7815.

[7] J. Dreier, L. Hirschi, S. Radomirovic, and R. Sasse, “Automated unbounded verification of stateful cryptographic protocols with
exclusive or,” in 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 2018, pp. 359–373.

[8] B. Schmidt, R. Sasse, C. Cremers, and D. Basin, “Automated verification of group key agreement protocols,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 179–194.

[9] J. Dreier, C. Duménil, S. Kremer, and R. Sasse, “Beyond subterm-convergent equational theories in automated verification of stateful
protocols,” in International Conference on Principles of Security and Trust. Springer, 2017, pp. 117–140.

[10] V. Cortier, S. Delaune, and J. Dreier, “Automatic generation of sources lemmas in Tamarin: towards automatic proofs of security
protocols,” in European Symposium on Research in Computer Security. Springer, 2020, pp. 3–22.

[11] D. Jackson, C. Cremers, K. Cohn-Gordon, and R. Sasse, “Seems legit: Automated analysis of subtle attacks on protocols that use
signatures,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019, pp. 2165–2180.

[12] D. Basin, J. Dreier, and R. Sasse, “Automated symbolic proofs of observational equivalence,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015, pp. 1144–1155.

[13] J. A. Clark and J. L. Jacob, “A survey of authentication protocol literature: Version 1.0,” 1997.
[14] B. Blanchet, “Modeling and verifying security protocols with the applied pi calculus and ProVerif,” Foundations and Trends in

Privacy and Security, vol. 1, no. 1-2, pp. 1–135, 2016.
[15] V. Cheval, V. Cortier, and M. Turuani, “A little more conversation, a little less action, a lot more satisfaction: Global states in

ProVerif,” in 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 2018, pp. 344–358.
[16] B. Blanchet, V. Cheval, and V. Cortier, “Proverif with lemmas, induction, fast subsumption, and much more,” in 42nd IEEE

Symposium on Security and Privacy (S&P’22), 2022.
[17] “ProVerif Manual, version 2.04,” https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf, visited May 2022.
[18] C. Cremers, “The Scyther Tool: Verification, falsification, and analysis of security protocols,” in International conference on computer

aided verification. Springer, 2008, pp. 414–418.
[19] J. D. Guttman, “Shapes: Surveying crypto protocol runs,” in Formal Models and Techniques for Analyzing Security Protocols. IOS

Press, 2011, pp. 222–257.
[20] M. D. Liskov, J. D. Ramsdell, and J. D. Guttman, “CPSA: A Cryptographic Protocol Shapes Analyzer,” The MITRE Corporation,

2016.
[21] S. Escobar, C. Meadows, and J. Meseguer, “Maude-NPA: Cryptographic protocol analysis modulo equational properties,” in

Foundations of Security Analysis and Design V. Springer, 2009, pp. 1–50.
[22] C. Staub, “Adding support for user-defined sorts and sorted function symbols to Tamarin,” Master’s thesis, Eidgenössische Technische

Hochschule Zürich, 2013.
[23] S. Kremer and R. Künnemann, “Automated analysis of security protocols with global state,” Journal of Computer Security, vol. 24,

no. 5, pp. 583–616, 2016.

15

https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf

[24] K. Bhargavan, R. Barnes, and E. Rescorla, “TreeKEM: Asynchronous decentralized key management for large dynamic groups,”
p. 20, 2018, https://hal.archives-ouvertes.fr/hal-02425247/.

[25] L. Lamport, “Password authentication with insecure communication,” Communications of the ACM, vol. 24, no. 11, pp. 770–772,
1981.

[26] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient authentication and signing of multicast streams over lossy channels,” in
Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000. IEEE, 2000, pp. 56–73.

[27] S. Meier, “Advancing automated security protocol verification,” Ph.D. dissertation, ETH Zurich, 2013.

[28] C. Cremers, C. Jacomme, and P. Lukert, “Extended Tamarin-prover and case-studies,” https://cispa.saarland/group/cremers/
tamarin/subterm/index.html.

[29] R. Künnemann and G. Steel, “YubiSecure? Formal security analysis results for the Yubikey and YubiHSM,” in International Workshop
on Security and Trust Management. Springer, 2012, pp. 257–272.

[30] A. Dax, R. Künnemann, S. Tangermann, and M. Backes, “How to Wrap it up-A Formally Verified Proposal for the use of Authenticated
Wrapping in PKCS# 11,” in 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). IEEE, 2019, pp. 62–6215.

[31] S. K. Lahiri and M. Musuvathi, “An efficient decision procedure for UTVPI constraints,” in International Workshop on Frontiers of
Combining Systems. Springer, 2005, pp. 168–183.

[32] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing nonce reuse in WPA2,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 1313–1328.

[33] H.-Y. Chien and C.-W. Huang, “A lightweight RFID protocol using substring,” in International Conference on Embedded and
Ubiquitous Computing. Springer, 2007, pp. 422–431.

[34] B. Schmidt, “Formal analysis of key exchange protocols and physical protocols,” Ph.D. dissertation, ETH Zurich, 2012.

[35] S. Escobar, R. Sasse, and J. Meseguer, “Folding variant narrowing and optimal variant termination,” The Journal of Logic and
Algebraic Programming, vol. 81, no. 7-8, pp. 898–928, 2012.

[36] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Transactions on information theory, vol. 29, no. 2, pp. 198–208,
1983.

[37] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer, and J. F. Quesada, “Maude: Specification and programming in
rewriting logic,” Theoretical Computer Science, vol. 285, no. 2, pp. 187–243, 2002.

Appendix A.
Detailed Preliminaries

The foundations of Tamarin are defined in the PhD thesises of Benedict Schmidt [34] and Simon Meier [27]. As
they differ slightly, we will stick to Schmidts thesis for notation. For a more detailed introduction to the equational
theory, we refer to [35]. In the remainder of this section, we introduce the formal definitions and give an introduction
to the foundations of Tamarin.

A.1. Terms and Equations

We use terms to represent messages. They are drawn from an order-sorted term algebra with sorts =
{msg, fresh, pub} where msg is the top sort with all others being incomparable subsorts of it described by the relation
≤S . The sort fresh is used for random values and pub for public names. The functions of the term algebra are given
by Σbase = {h, enc, dec, 〈·, ·〉 , fst, snd, . . . } where Σbase contains the operators for hashing, encryption, pairs, Diffie-
Hellman and more., which are defined in [34]. In Tamarin 1.6, all functions have the signature msg× . . .×msg → msg.

The variables of the algebra are drawn from the sets Vs where s denotes the sort. Sometimes, we use V =⋃
s∈sorts Vs for all variables. The names are countably infinite sets Ns and N similarly to the variables. They provide

an infinite set of constant values. Summarizing these parts, we call Tbase or (if V,N not clear from the context)
TΣbase (V,N) the set of terms and TGbase or TΣbase (N) the set of ground terms that do not contain variables. When
using a variable or name x, we always denote its sort by x : s. With this, we define a sort function S, which returns
the sort of names and variables S(x : s) = s. With the function signatures given in Σbase, we can lift S to terms. A
function f : s→ s′ can only be applied to a term t if S(t) ≤S s.

A substitution σ : V → Tbase maps variables to terms and can be lifted to terms by replacing each variable in a
term by its substitution. A substitution σ is called sort-decreasing if for all σ(x : s) = t it holds that S(t) ≤S s. In
this paper, all substitutions, we encounter, are sort-decreasing.

An equation is an unoriented pair t = t′ with t, t′ ∈ Tbase. An equation is sort-preserving if for all substitutions
σ it holds that S(tσ) = S(t′σ). We use equations in two situations. One is to specify security properties where we
perform unification. Secondly, to define an equational theory. An equational theory is a set of equations E, which
induce a congruence relation =E on Tbase.

16

https://hal.archives-ouvertes.fr/hal-02425247/
https://cispa.saarland/group/cremers/tamarin/subterm/index.html
https://cispa.saarland/group/cremers/tamarin/subterm/index.html

An E-unifier for an equation t = t′ is a substitution σ with tσ =E t′σ. The set of unifiers for a given equation is
usually infinite, e.g., x = x is true for any substitution of the variable x. Thus, we only consider a so-called complete
set of unifiers CSUE(t = t′), which is a subset of all unifiers such that they can be instantiated to cover all unifiers.
Further explanation of this can be found in [35].

A rewrite rule is an oriented equation l→ r with l, r ∈ Tbase and l /∈ X. Intuitively, a rewrite rule replaces a
subterm l of a bigger term by r. It is sort-decreasing if for all substitutions σ it holds that S(rσ) ≤S S(lσ). A set
of rewriting rules R form a rewriting relation →R. A transition t →R t′ is possible if there is a position p in t, a
substitution σ and a rule l→ r ∈ R such that t|p = lσ and t′ = t[rσ]p, i.e., the subterm t|p, which matches lσ, gets
replaced by rσ. The rewriting relation is terminating if there is no infinite chain t1 →R t2 →R · · · . It is confluent if
for all t1 ∗

R ← t→∗R t2 there is a t3 with t1 →∗R t3
∗
R ← t2 where →∗R denotes the transitive and reflexive closure of

→R. If we have a confluent and terminating rewriting relation, we can define a unique canonical form of a term t.
We do this by executing arbitrary rewriting steps until no more can be applied. Confluence guarantees uniqueness of
the resulting term t′, which we denote by t↓R.

Rewriting modulo is necessary if we have an equational theory for which the rewriting rules hinder confluence
and termination. For example, associativity and commutativity AC = {(x+ y) + z = x+ (y + z), x+ y = y + x},
which are essential in Tamarin. Luckily, we have a practical unification algorithm for AC, which we explicitly use
during rewriting. Doing so, we can remove AC from the rewriting rules R and reclaim confluence and termination
while handling AC externally with the given unification algorithm. More general, we do rewriting modulo a set
of equations Ax (Axioms), which are in our case AC. A modulo rewriting step t→R,Ax t

′ is possible if there is a
position p in t, a substitution σ and a rule l → r ∈ R such that t|p =Ax lσ and t′ = t[rσ]p. The only difference to
normal rewriting is that we check for equality t|p =Ax lσ modulo Ax. We define the same notions of confluence,
termination and canonical forms for this relation.

An R,Ax-variant of a term t is a pair (t′, σ) where t′ is the canonical form tσ ↓R,Ax of t after applying σ.
Formally, we define the set of variants dte∗R,Ax = {(t′, σ)|σ is a substitution and tσ↓R=Ax t

′}. If R,Ax is clear, we
write dte∗. Similarly to the unifiers, we do not need the whole (usually infinite) set of variants as most of them are
instances of some most general variants. Thus, we only consider complete subsets of them, which is explained in [35].
These are denoted dteR,Ax without a star. In Tamarin, we require that the rewriting theory R,Ax has the finite
variant property (FVP), i.e., there is a finite complete set of variants. These variants can be used to compute unifiers
as follows:
Lemma 2 (Variant-based Unification). A substitution σ is a unifier for t = t′ iff ∃(, σ) ∈ dte∗ ∪ dt′e∗.
Analogously, we can compute a complete set of unifiers with a complete set of variants [35]. As we assume the FVP
for our equational system, we can compute the complete set of variants and thus the CSU .

We will often talk about multisets, which are similar to sets but can contain elements multiple times. Given
a set A, we denote the set of multisets of A with A#, which is analogous to the powerset P(A) for normal sets.
Similarly, we can lift several operators to multisets, which we know from normal sets. For instance, we define ⊆#,
∪#, and \# for multiset-subset, -union, and -difference in the straightforward way.

A.2. Protocols

We model protocols with multiset rewriting rules over facts. Facts are built of terms in Tbase and have names
from a set Σbase, which is partitioned into two types called persistent and linear facts. From these names, we build
the set of facts F = {F (t1, . . . , tn) | ti ∈ Tbase, F ∈ Σbase}. If we restrict ourselves to ground terms in TGbase, we
call the set G.

A protocol rule is a tuple ri = (id, l, a, r) written id : l−[a]→r where id is a unique name and l, a, r ∈ F#. To
extract properties from this tuple, we define name(ri) = id for the name, prems(ri) = l for the premises, acts(ri) = a
for the actions, and concs(ri) = r for the conclusions. The actions a are later used for specifying security properties.
An E-instance of a rule r is a rule r′ for which there is a substitution σ with r′ =E rσ where rσ treats rules as terms
to define the substitution application. For a set of rules P , which we denote a protocol, we define the set of ground
instances groundiE(P) as all E-instances of ri ∈ P that are ground, i.e., do not contain variables. Lastly, we can
define the labeled transition relation →P ⊆ G# × G# × G#, which is the backbone of Tamarin:

ri = id : l−[a]→r ∈E groundiE(P) linear(l) ⊆# S pers(l) ⊆ S
S

a−−→P ((S \# linear(l)) ∪# r)

where S is the current state and linear(l) and pers(l) are the linear/persistent facts of l. Note that the relation
operates modulo E, which is why we use ∈E . In general, a rule transforms a state S to a successor state S′ by
removing the linear facts of l and adding the facts r. Here, we see that linear facts get consumed by applying a rule

17

while persistent facts always remain in the state once added. For getting familiar with these rules, we define the
built-in message deduction rules MD:

MD = {Fresh : ∅−[]→Fr(x : fresh),
Output : Out(x)−[]→K(x),
Input : K(x)−[K(x)]→In(x),
FreshK : Fr(x : fresh)−[]→K(x : fresh),
Public : ∅−[]→K(x : pub)}

∪ {Constructf : K(x1), . . . ,K(xn)−[]→
K(f(x1, . . . , xn) | f ∈ Σbase with arity n}

These rules introduce some facts, which we will use frequently. Fr() denotes a fresh random variable and can never
appear on the right side of a rule except for the Fresh rule. In() and Out() facts model receiving/sending on network
with a Dolev-Yao adversary [36], which learns all messages and can insert arbitrary messages. This is modeled by the
rules Output and Input where the fact K represents the knowledge of the attacker. Note that other types of networks
with weaker adversaries can be modeled as well. Additional capabilities of the attacker are generating random
variables (FreshK), knowing public constants (Public) and building terms out of known subterms (Constructf).

With the labeled transition relation from these rules, we define a labeled transition system whose initial state
is the empty multiset S0 = ∅ and which transforms a multiset S according to the relation. An execution in this
transition system is a sequence of states Si, which are connected by rules:

S0 (l1−[a1]→r1) S2 . . . Sn−1 (ln−[an]→rn) Sn
Here (Si−1, (li−[ai]→ri), Si) must be a valid step. The trace associated with this execution is a1, . . . , an. We denote
the set of all traces of a protocol P as traces(P). Over these traces, we define a security property in Tamarin.

A.3. Construction and Deconstruction

The rules MD allow for many alternative deductions of specific K-facts. Consider for example the decryption
dec(enc(x, k), k) = x. The attacker can, given a term K(t), construct K(enc(t, t)) and then, using K(t) again,
K(dec(enc(t, t), t), which is the same as K(t) from the start. This is not a problem of the model but can become a
problem for efficiency and termination of the search algorithm. To avoid this, we split the attacker into a deconstruction
and then construction phase. Deconstruction concerns retrieving subterms from more complex terms such as a t out
of an enc(t, key). Once all deconstruction is finished, the attacker continues with constructing terms by combining
the resulting minimal terms from the deconstruction. With this strategy, it is not possible to alternatingly construct
and destruct.

The formalization of this uses K↓ facts for deconstruction and K↑ for construction instead of the generic attacker
knowledge K. For simplicity, we omit the exponentiation rules Kexp and refer to [34]. To work with this separation
between K↓ and K↑, we need the rule Coerce, which transforms K↓ to K↑ (but not the other way!). All in all, the
normal deconstruction rules ND look as follows:

ND = {Fresh : ∅−[]→Fr(x : fresh),
Output : Out(x)−[]→K↓(x),
Input : K↑(x)−[K(x)]→In(x),
FreshK : Fr(x : fresh)−[]→K↑(x : fresh),
Public : ∅−[]→K↑(x : pub),
Coerce : K↓(x)−[]→K↑(x),
Decrypt : K↓(enc(x, k)),K↑(k)−[]→K↓(x)}

∪ {Constructf : K↑(x1), . . . ,K↑(xn)−[]→
K↑(f(x1, . . . , xn) | f ∈ Σbase with arity n}

Of course, these rules are not complete. Each equation can add - possibly multiple - deconstruction rules. For example,
the rule Decrypt was synthesized from the equation dec(enc(x, k), k) = x. The process of synthesizing rules from
equations is explained in [34]. Note that the Decrypt has the key as a K↑ fact, which was constructed. At least one
(usually the first) premise of a deconstruction rule, though, must always be a K↓ fact to prevent looping between
deconstruction rules, coerce and construction rules.

18

A.4. Dependency Graphs

A dependency graph modulo E is a compact representation of an execution of a protocol P . It is a tuple (I,D)
with I ∈ groundiE(P ∪MD)∗ a sequence of rules and D ∈ N2 → N2 representing edges between facts of these rules,
e.g., the edge (i, u)� (j, v) ∈ D denotes a dependency from the u-th conclusion of rule Ii to the v-th premise of the
rule Ij . The following axioms must always hold:

DG1 For (i, u)� (j, v) ∈ D it holds that i < j and conclusion (i, u) is syntactically equal to premise (j, v).
DG2 Every premise has exactly one incoming edge.
DG3 Every linear conclusion has at most one outgoing edge.
DG4 The Fresh instances are unique.

For a protocol P we write dgraphsE(P) as the set of all possible dependency graphs.
The trace of a dependency graph dg = (I,D) with I = [l1−[a1]→r1, . . . , lk−[ak]→rk] is the sequence [a1, . . . , an].

The traces of a set of dependency graphs DG is denoted traces(DG) In the following lemma, we will see that this
definition coincides with the original definition of traces.
Lemma 3. For all protocols P , we have tracesE(P) = traces(dgraphsE(P)).
We now integrate the concept of construction and deconstruction to dependency graphs and call them normal
dependency graphs. To do so, we replace MD by ND to get I ∈ groundiE(P ∪ND)∗. Additionally, we need a set of
thirteen normal form conditions N1-N13, joining the old conditions D1-D4. We will explain them in Section B.2.
These normal form conditions are used in the algorithm to cut down branches that are equivalent to already explored
branches. This greatly improves efficiency. Additionally, they can ease termination, though, never guarantee it as the
problem itself is undecidable.

A.5. Security Properties

As the security properties refer to the actions on the traces, they are called trace properties. When talking about
an action fact f , we always connect it to a time point i by writing f@i. This enables us to relate the time points of
two facts f@i, g@j with a relation ≺. i ≺ j states that the timepoint i was before j, i.e., f is in the trace before g.
As domain for time points, we choose Q (and not N). This has the advantage that we can always squeeze a time
point in between two (distinct) others. Taking Q, we build an assignment function θ, which maps time points to Q
and all other variables in a sort-decreasing way to ground terms TGbase. With this assignment function, we can
define the satisfaction relation (tr, θ) |=E φ stating that for the equational theory E, the trace tr satisfies the trace
property φ with the valuation θ.

(tr, θ) |=E i ≺ j if θ(i) < θ(j)
(tr, θ) |=E i ≈ j if θ(i) = θ(j)
(tr, θ) |=E t ≈ t′ if tθ =E jθ

(tr, θ) |=E f@i if f ∈ tr[θ(i)]
(tr, θ) |=E ¬φ if (tr, θ) |=E φ does not hold
(tr, θ) |=E φ ∧ φ′ if (tr, θ) |=E φ ∧ (tr, θ) |=E φ′

(tr, θ) |=E φ ∨ φ′ if (tr, θ) |=E φ ∨ (tr, θ) |=E φ′

(tr, θ) |=E ∃x : s. φ if there is a term u of sort s
such that (tr, θ[x 7→ u]) |=E φ

In Tamarin, we can use properties either in a universal or an existential context. In the universal context (validity),
we require for all traces tr ∈ traces(P) that ∀θ. (tr, θ) |=E φ while in the existential context (satisfiability), we
require for at least one trace in traces(P) that ∃θ. (tr, θ) |=E φ. Note that, in the satisfiability context, the existential
quantification of θ implies an existential quantification for free variables, should they appear in φ.

A.6. Constraint Solving

The ultimate aim of Tamarin is to check these validity and satisfiability properties with respect to a protocol. As
usual, we reduce validity to satisfiability by negating the formula. Therefore, we only have to answer satisfiability
queries of the form ”is there a trace, such that the property holds?”. With Lemma 3, we can transform this to
”is there a normal dependency graph on which the property holds?” This dependency graph can be constructed
incrementally by the so-called constraint solving.

19

The idea of constraint solving is to have a set of constraints, which we transform with constraint solving rules.
Constraints are ground rules (nodes of a dependency graph), edges or formulas. We start with the set containing
only the formula to prove. Subsequently, we transfer the formula parts into information about a dependency graph,
creating nodes and edges. After having processed all formula parts, we have a dependency graph left. During all
these steps, we take care that a dependency graph, satisfying the formulas and containing the nodes and edges in the
multiset, still does so after one step of the constraint solving relation, i.e., we do not loose or add solutions. More
specifically, we require soundness and completeness.

Going into more detail, constraints can also be a “provides” i . f , which denotes that a node i provides the fact f
and deconstruction chain i� (j, v), which is discussed extensively in [34] in addition to the already mentioned nodes
i : ri, edges (i, u)� (j, v) and formulas φ. With this notation, we can define the satisfaction relation (dg, θ)
 C.
A normal dependency graph dg = (I,D) satisfies a set of constraints Γ if there is a valuation function θ such that
(dg, θ)
 C for all C ∈ Γ.

(dg, θ)
E i : ri if θ(i) ∈ indices(I)
and riθ =AC Iθ(i)

(dg, θ)
E (i, u)� (j, v) if (θ(i), u)� (θ(j), v) ∈ D
(dg, θ)
E φ if (trace(dg), θ) |=AC φ

(dg, θ)
E i . f if θ(i) ∈ indices(I)
and (concs(Iθ(i))1 =AC fθ

(dg, θ)
E i� (j, v) if θ(i)� (θ(j), v)

A constraint rewriting rule is a rule from a constraint set to a finite set of constraint sets Γ P {Γ1, . . . ,Γk}. This is
to allow for case distinctions. We can abuse notation and define the reflexive, transitive closure Γ ∗P {Γ1, . . . ,Γk}.
An application of a rule Γi P {Γi,1, . . . ,Γi,k} to a set ∆ = {Γ1, . . . ,Γk} then intuitively removes Γi and inserts
Γi,1, . . . ,Γi,k into ∆.

To ease the definition of rules we divide them into two types: modification and insertion rules. While the latter
are only allowed to add new constraints, modification rules can also change existing constraints where it is necessary.

c1, . . . , cl

∆1 | . . . |∆k
I

Γ
Γ′1 | . . . | Γ′k

M

Insertion rules marked with I denote that Γ P {Γ ∪∆1, . . . ,Γ ∪∆k} if {c1, . . . , cl} ⊆AC Γ. And modification
rules marked with M denote that Γ P {Γ′1, . . . ,Γ′k}. With this notation, we define the most important rules of
Tamarin in Fig. 5. The first rule S@ considers a fact f , which needs to be solved, and makes a case distinction on
the rules that can solve it. Solving means adding a rule whose actions contain a fact g where g ≈ f can be unified.
The second rule S≈ solves an equality constraint s ≈ t by considering all unifiers σi. For each of them, we do a
case distinction and apply it to all constraints we have so far, using a modification rule. As the free variables are
considered existential, it is easy to solve an existential constraint with S∃. For universal quantification, we use the
fact that Tamarin restricts itself to guarded trace formulas (see [34] for more information). Intuitively, this means
that in negation normal form, each universal quantification has a “guard”, which is a negative atomic formula, i.e.,
either ¬(f@i) or ¬(s ≈ t), in a disjunction with the rest of the formula φ. If we find a substitution σ such that this
guard is wrong, we know that φσ must hold. This is exactly the way how S∀,@ and S∀,≈ work. In a straightforward
way, S∨ does a case distinction and S∧ adds both subformulas as individual formulas. Finally, the two rules S 6≈ and
S¬@ add the unsatisfiable ⊥ to the constraints if they are not satisfiable. This ⊥ then leads via S⊥ to the empty set
∅, which implies unsatisfiability (given the other case distinctions are unsatisfiable, too). For the sake of brevity, we
skip the other rules from [34]. They cover aspects like adding edges, deducing messages and ensuring normality of
the resulting dependency graph.
Theorem 1. The relation P is sound and complete for any P . This means that if Γ P {Γ1, . . . ,Γk}, then the set
of models (dg, θ) of Γ is the same as the union of the models of all Γi.

With this relation, we search for either {φ} P ∅ or {φ} P ∆ where there is a Γ ∈ ∆ for which we can easily
construct a dg that satisfies Γ. In the first case, we know that there cannot be any normal dependency graphs
satisfying a Γ ∈ ∅. Because of soundness and completeness, we know that the same holds for {φ}, i.e., there is no
normal dependency graph satisfying φ. In the second case, however, we can construct a dg satisfying a Γ ∈ ∆ and
thus we know that a trace(dg) satisfies φ. To easily define when this construction of a dependency graph is possible,
we define the notion of a solved constraint system.

20

S@ :
f@i

i : ru1, g1 ≈ f | . . . | i : rul, gl ≈ f
I

if {(ru1, g1), . . . , (rul, gl)} =
{(ru, g) | ru ∈ dP ∪NDeRDHe,AC ∧ g ∈ acts(ru)}

S≈ :
s ≈ t,Γ

Γσ1 | . . . | Γσl
M if {σ1, . . . , σl} = CSUAC(s = t)

S∃ :
∃~x. φ
φ{~y/~x}

I if ~y freshly chosen variables such that S(xi) = S(yi)

S∀,@ :
∀~x. ¬(f@i) ∨ φ

φσ
I if g@j ∈ as(Γ), σ ∈ CSUAC(g@j, f@i)

S∀,≈ :
∀~x. ¬(s ≈ t) ∨ φ

φσ
I if σ ∈ CSUAC(s = t) and dom(σ) ⊆ ~x

S∨ :
φ1 ∨ φ2

φ1 | φ2
I

S∧ :
φ1 ∧ φ2

φ1 , φ2
I

S6≈ :
¬(t ≈ t)
⊥

I
S⊥ : ⊥,Γ M (no solutions)

S¬@ :
¬(f@i),Γ
⊥

I if f@i ∈AC as(Γ)

SPrem :
i : ri

j : ru1, (j, v1)� (i, u) | . . . I if prems(ri)u is no K↑/↓/Fr-fact and {(ru1, v1), . . . } =
{(ru, v) | ru ∈ dP ∪NDeRDHe,AC ∧ v is index in concs(ru)}
and j is freshly chosen

S� :
i : ri, j : ru, (i, u)� (j, v)
concs(ri)u ≈ prems(ru)v

I

Figure 5: Most important rules of Tamarin. For the complete set of rules, see [34].

Definition 6 (Redundancy). An application of a constraint solving rule is considered redundant if it does not add
any new constraints except for trivial equalities s ≈ t where s =AC t or one of the following holds:
• The rule is S@ and f@i ∈AC as(Γ).
• The rule is S∃ and there are terms ~t such that φ{~t/~x} ∈AC Γ
• The rule is S∨ and φ1 ∈AC Γ or φ2 ∈AC Γ

For some further rules in [34], there are individual conditions like the above.
We say that a constraint system is solved if all rule applications are redundant. Additionally to this redundancy,
we define some well-formedness conditions, which clearly hold for all constraint systems we encounter during the
construction. These well-formedness conditions are:
WF1 All node constraints are AC-instances of rules from dP eRDHe,AC or ND except for multiplication rules.
WF2 For all node constraints of the form i : ps−[]→K↑(m), there is a constraint i . K↑(m′) with m =AC m′.
WF3 All provides constraints are of the form i . K↑(m).
WF4 For all edge constraints (i, u) � (j, v), there are node constraints i : ri and j : ru such that u and v are

valid conclusion and premise indices, respectively.
WF5 For all chain constraints i � (j, v), there are node constraints i : ri and j : ru such that concs(ri)1 and

prems(ru)v are of the form K↓(t) for some t.
WF6 There are no fresh names in Γ.

Theorem 2. Every non-empty, well-formed constraint system Γ for P that is solved with respect to P has at least
one dependency graph that satisfies it.

The proof in [34] basically picks the nodes and edges from the constraint system and proves that they fulfill the
properties of a normal dependency graph. With this construction, we have a (not necessarily) terminating algorithm
to determine satisfiability or unsatisfiability of a formula with respect to a protocol. That concludes this section.

21

Appendix B.
Adding Natural Numbers

In this appendix, we will formally define the natural number of Tamarin and prove correctness. In contrast to
the other extensions, we do not only add new rules and constraints but touch the very essentials of the equational
theory. Thus, many constraint rewriting rules are changed and we have to prove that the wellformedness conditions
still hold. All in all, this is a rather lengthy proof in which nothing exciting happens.

First, we enumerate the changes to the original Tamarin, which we will often refer to as “our changes”:
1) Add a new sort nat ≤S msg with a constant name Nnat = {1}, which is treated public like the sort pub (but

still has nat ∩ pub = ∅).
This means also that the rule Public can now also deduce terms of sort nat. The choice of publicness reflects the
purpose of nat. They are supposed to be small counters which are guessable and thus considered public knowledge.

2) Add a function + : nat × nat → nat, which is associative and commutative.
This function is the addition on nat. It explicitly disallows any other sort than nat in the signature. That means
that no non-public knowledge can be in it and thus, no deconstruction rule is needed. This is the important
difference to the multiset-encoding of counters as it has been done without our extension.

3) Do not add construction rules for + and 1.
Not having a construction rule for public values makes sense as they can be directly deduced by the Public rule.
Note that all public inputs can be directly deduced, even if there are variables inside.

Actually, these changes are quite specific and we want to capture more general changes to Tamarin such that easily
new sorts and sorted functions can be added without the need for new proofs.

4) Allow new sorts with arbitrary hierarchy ≤S .
5) Allow functions to have arbitrary signatures instead of only msg × . . .×msg → msg if the output is not atomic

(pub, fresh).
We also disallow functions to have sort nat as output except for +. Ther reason is that functions having potentially
non-public inputs, but result in something public are unnatural and cause complications in the attacker deduction,
especially in N4. The reason is that we use this assumption in the proof for the subterm rules concerning natural
numbers.

6) Allow equational theories to refer to different sorts than msg if they are sort-decreasing.
The sort-decreasingness is important to prove properties regarding the equational theory. Also it makes sense
intuitively: If we reduce a term to another one, we do not expect it to change the sort. Though, it can specialize,
e.g., dec(enc(x : nat)) = x : nat changes the sort from msg to nat which is fine as nat ≤S msg.

To justify these changes, we have to do the following:
1) Show how to adapt the equational theory to cope with the changes.
2) Prove that the normal form conditions still hold.
3) Prove that completeness & soundness of the constraint solving rules still hold.
4) Prove that the well-formedness conditions still hold.
5) Prove that we can still construct a normal dependency graph from a solved constraint system.

B.1. Equational Theory

Adapting the equational theory is fairly easy as the underlying tool Maude [37], which is used for variant
generation, already supports sorts with arbitrary hierarchies and even function signatures. I.e., it is not hard-wired
to support only exactly three sorts (msg, fresh, pub). Thus, the unification process, which changes with this sort
hierarchy is easily adapted. The slight problem is that for function signatures, it creates so-called error-supersorts
which are applied if the original signature is violated.
Example 6. Consider a function f : nat → nat. As the input of the function is a number, it cannot be of sort msg
or even fresh. Only terms of sort nat (or subsorts of nat) create a signature-respecting term when inserted into f . If
something else is inserted, the signature f : [msg]→ [msg] with error-supersorts is used in Maude.

Luckily, we can prove that we never encounter these error-supersorts during variant generation if we restrict ourselves
to sort-decreasing rewriting rules.
Example 7. To understand the trouble involving non-sort-decreasing rewriting rules remember the function f : nat →
nat. Additionally, consider the equation f(x : nat) = ”string” : pub. If we apply this non-sort-decreasing rewrite rule
to the inner term of f(f(x : nat)), we get f(”string” : pub) which clearly violates the signature of f .

22

Thus, we have to restrict the rewriting rules R, i.e., the equational theory to be sort-decreasing, i.e., for each rule
l→ r it has to hold that S(r) ≤S S(l). This rules out the equation stated before. Note that this does not rule out a
strict S(r) <S S(l), which makes sense as it cannot violate a functions signature, e.g., inputting a number into a
hash function h : msg → msg is totally fine as the signature also accepts numbers nat ≤S msg as input.

The same argument applies to substitutions and valuations, which are, fortunately, already sort-decreasing in
Maude. For associative and commutative equations, we even need sort-preservingness, which makes sense as they do
not have a canonical direction. With these restrictions, we can prove the following new well-formedness condition in
Section B.4:
WF7 The terms in all node constraints and formulas are signature-respecting.

B.2. Normal Form Conditions

Here, we will look at all normal form conditions, explain them, and prove that they still hold with our changes.
We use the numbering from [34] as far as possible and group them by topic. First, we consider the conditions that
are not targeted towards a specific theory. These are the ones that have the potential to be violated by our changes,
which become especially present with the public values and in the unification process.

N1 All rules in I are ↓RDHe-normal.
This ensures that only reduced terms are used in the dependency graph. Intuitively, this rule allows to prune
constraint systems with terms that could be reduced. RDHe is the set of rewriting rules used by [34]. Clearly,
our changes do not impact this condition.

N3 If there are two conclusions c and c′ with conclusion facts Kx(m) and Kx′(m′) such that m =AC m′ and
either x = x′ = ↑ or x = x′ = ↓ then c = c′.
[weakened to N3’ and N3” in obs. eq.] This rule ensures that no attacker knowledge is constructed twice.
Clearly, our changes do not impact this condition.

N4 All conclusion facts K↑(f(t1, . . . , tn)) where f is an invertible function are conclusions of the construction
rule for f .
An invertible function is a function that has deconstruction rules to extract its argument terms. These are, for
example, pairs or multisets. N4 intuitively enforces that the terms of invertible functions are first deconstructed
before the rule Coerce is used. Note that + is not invertible. Moreover, for this rule it is important that it does
not apply to functions resulting in a public value as they do not have a construction rule. This is a problem
which arises with our changes as the public sort nat can be non-atomic.

N5 If a node i has a conclusion K↓(m) and a node j has a conclusion K↑(m′) with m =AC m′, then i < j and
either root(m) is invertible or the node j is an instance of Coerce or Public.
Together with N3, this rule ensures uniqueness of knowledge, i.e., that it is not deconstructed and then
constructed again (except for invertible functions). However, this rule did not take into account public values,
which is why we had to add the “or Public” at the end. This change is not specific to our changes and should
have been there before. We consider it a mistake in the theory of [34]. Note that this rule is disabled if Tamarin
is used in diff-mode to prove observational equivalence properties [12]

The next two rules are specifically targeted to the Diffie-Hellman constructions. Thus, our changes do not impact
these conditions.

N2 There is no multiplication rule that has a premise fact of the form K↑(s ∗ t) and all conclusion facts of the
form K↑(s ∗ t) or K↓(s ∗ t) are conclusions of a multiplication rule.
This condition forces the attacker to construct products by multiplying their components. If Tamarin is used in
diff-mode, this property is weakened by removing the second part (after the and). Our changes do not impact
this condition as it is only connected to multiplication rules.

N6 There is no node [K↓d(a),K↑(b)]−[]→K↓e(cd) where c does not contain any fresh names and
nifactors(d) ⊆ACC nifactors(b).
In this rule, we see the attacker knowledge facts K↓d and K↓e which are an even more fine-grained subclasses
of K↓ responsible for Diffie-hellman exponentiation [34]. With nifactors(), which extracts the (non-inverse)
factors from a multiplication term, we can ensure that no exponentiation rule is used if we can alternatively
directly construct the term cd. Our changes do not impact this condition as it is only connected to exponentiation
rules.

The rules N7 and N8 cope with the multiset operator and are, thus, independent of our changes. One might think
that we need such rules for + as well, because it is associative and commutative as the multiset operator. However,
this is not necessary as + neither has construction nor deconstruction rules.

N7 There is no construction rule for ++ that has a premise of the form K↑(s++ t) and all conclusion facts of the
form K↑(s++ t) are conclusions of a construction rule for ++.

23

The operation ++ is used for the multiset-extension of Tamarin. N7 ensures that the construction rules for
multisets are not chained but instead, directly a n-ary ++ is constructed. Our changes do not impact this
condition as it is only connected to multisets.

N8 The conclusion of a deconstruction rule for ++ is never of the form K↓d(s++ t).
Connected to N7, this rule ensures that no multisets are extracted from a multiset. Our changes do not impact
this condition as it is only connected to multisets.

The next three rules are specific to bilinear pairing.
N9 There is no node [K↓d(a),K↑(b)]−[]→K↓e([d]c) such that c does not contain any fresh names and

nifactors(d) ⊆ACC nifactors(b).
This rule is similar to N6. Our changes do not impact this condition as it is only connected to bilinear pairings.

N10 There is no node i labeled with [K↓d([t1]p),K↓d([t2]q)]−[]→K↓d(ê(p, q)c) such that there is a node j labeled
with [K↓d(ê(p, q)c),K↑(d)]−[]→K↓d(ê(p, q)e), an edge (i, 1)� (j, 1), nifactors(ti) ⊆ACC nifactors(d) for i = 1
or i = 2, and ê(p, q) does not contain any fresh names.
Our changes do not impact this condition as it is only connected to bilinear pairings.

N11 There is no node [K↓d([a]p),K↓d([b]q)]−[]→K↓d(ê(p, q)a∗b) such that the send-nodes of the first and second
premises are labeled with ru1 and ru2 and fsyms(ru2) <fs fsyms(ru1) where <fs is a total order on sequences
of fact symbols.
Our changes do not impact this condition as it is only connected to bilinear pairings.

In later extensions, the papers [9] and [7] add two more conditions which are targeted to solve problems of non-
subterm-convergent theories and exclusive or:

N12 There is no chain of nodes repeatedly instantiating a rule of the form [K↓(l|p),K↑(t1), . . . ,K↑(ti)]−[]→K↓(r)
of length at least equal to the number of subterms of l|p, if l|p and r are unifiable.
This condition is necessary for adding non-subterm-convergent equational theories. It prevents infinite chains
of deconstruction rules for these theories. Our changes do not impact this condition as they do not introduce
new deconstruction rules.

N13 There is no chain of repeated instantiations of the deconstruction rules for XOR.
This condition is necessary for adding the equational theory of XOR. It prevents infinite chains of deconstruction
rules for this theory. Our changes do not impact this condition as they are not connected to the XOR rule.

B.3. Soundness & Completeness

Here, we will prove that we can maintain completeness and soundness of the constraint solving rules with our
changes. Moreover, we will add a constraint solving rule S.,pub which was forgotten in the previous papers describing
Tamarin and adapt the rules S.,K↑ and S.,inv.

As our changes are very non-invasive, only very few rules change while most of them address completely different
topics. As a first step, we consider the rules concerning unification and variant generation, as our changes introduce
a slight change there. The relevant rules are S@ and SPrem for variant generation as well as S≈, S∀≈ and S∀@ for
AC-unification and -matching.

First, we consider soundness. For this, we only need to consider the modification-rules, not the insertion-rules as
the latter only add constraints and thus never increase the set of models. The only modification-rule relevant for us
is S≈. Here, the ≈ constraint is removed and the unification σ is applied to the constraint system. Assuming we
have a P-solution (dg, θ) of Γ, then (dg, θ ◦ σ) is a P-solution of Γσ as in Γσ the equality constraint is automatically
resolved and σ is also applied to θ. This proof does not change with the special function signature of the AC-operator
+. This concludes the proof of soundness.

For completeness, we will look at the relevant rules individually, too. For each rule we assume that for dg = (I,D),
the tuple (dg, θ) is a P -model of a constraint system Γ. Then, we show that there are l and θ′ such that (dg, θ′) is a
model for one of the resulting Γl after applying the rule.
S@: From the precondition f@i, we know that f ∈AC trace(dg)[θ(i)]. This means that there is a rule ru ∈
dP ∪NDeRDHe,AC which is in dg at position Iθ(i) with σ as a grounding substitution: Iθ(i) = σ(ru). And which
has an action fact g with σ(g) ∈ acts(ru) with σ(g) =AC f . This means that the constraints i : ru and g ≈ f are
fulfilled by (dg, θσ). These are exactly the constraints from a Γl. Therefore, there is a Γl such that (dg, θσ)
 Γl.
In this proof, we assume that the variants dP ∪NDeRDHe,AC are signature respecting. With our changes, we
can assume this because of WF7. Moreover, note that all substitutions and valuations are sort-decreasing, i.e.,
yield only signature-respecting terms. With those two observations, the proof remains correct.

SPrem: From the precondition i : ri, we know that riθ =AC Iθ(i). From DG1,DG2, we know that there is an edge
(k, v)� (iθ, u) with a rule k : ru′ ∈ ginsts(dP ∪NDeRDHe,AC) for the premise prems(ri)u. As stated, ru′ is a
ground instance from a rule ru ∈ dP ∪NDeRDHe,AC , i.e., there is a σ with ru′ = σ(ru). We now construct the

24

substitution θ′ = θσ[j → k]. Clearly, (dg, θ′) fulfills the constraints j : ru and (j, v)� (i, u) as well as the old Γ.
This is exactly one of the Γl. As in the last proof, it is important that the variants are signature-respecting
terms which is given by WF7. Moreover, note that all substitutions and valuations are sort-decreasing, i.e.,
yield only signature-respecting terms. With those two observations, the proof remains correct.

S≈: From the precondition t1 ≈ t2, we know that t1θ =AC t2θ. Thus, there is a unifier σ with a sort-decreasing
valuation θ′, which leaves variables x ∈ vars(Γ)\dom(σ) while for x ∈ dom(σ) it holds that θ(x) =AC θ′(σ(x)).
And for which holds (dg, θ′) |= Γσ which is one of the resulting Γl from the rule application. Note that this
works because θ and σ are sort-decreasing.

S∀@: From the precondition ∀~x. ¬(f@i) ∨ φ, we know that for all substitutions σ which only range over the
quantified variables (dom(σ) ⊆ ~x) the following holds: (dg, θ) |= (f@i)σ ⇒ φσ. As we furthermore know that
for (g@j) ∈ as(Γ) it holds that g@j =AC (f@i)σ, the conclusion φσ must hold as well, i.e., (dg, θ) |= φσ. What
might be affected in this proof is the AC-matching. However upon closer inspection, the AC-property of + does
not change anything, we rely on. Thus, there is no difference in the proof and as σ is already sort-decreasing,
only signature-respecting terms can arise.

S∀≈: This proof is analogous to the one for S∀@.
This proves soundness and completeness of the constraint solving rules concerning unification and variant generation.
The second big change, we introduce, is that public values (of sort nat) can be non-atomic. That implies that we
have to change the constraint rewriting rules S.,K↑ and S.,inv. More specifically, we add the condition ”and S(m) is
not public”. This was not necessary before as public values m were atomic and could never satisfy m = f(t1, . . . , tk).
Note that this implies that nothing changes if Tamarin is used without the features we add.

S.,K↑ :
i . K↑(m)

i : [K↑(t1), . . . ,K↑(tk)]−[]→K↑(m) | i : K↓y(m)−[]→K↑(m)
I

if m = f(t1, . . . , tk)
and f is not invertible and f 6= ∗
and S(m) is not public

S.,inv :
i . K↑(m)

i : [K↑(t1), . . . ,K↑(tk)]−[]→K↑(m)
I

if m = f(t1, . . . , tk)
and f is invertible
and S(m) is not public

Additionally, we have to add a constraint rewriting rule which should be present in [34]. We call this rule S.,pub
because it processes public values. The rule is similar to S.,fresh and looks as follows:

S.,pub :
i . K↑(m)

i : ∅−[]→K↑(m)
I

if S(m) is public

We need this rule to resolve premises of the form K↑(m) where m is a public value. Clearly, this rule is sound as it
is an insertion rule. Moreover, completeness holds as well: Assume, there is a (dg, θ) which is a model for Γ and
S.,pub is applicable. Then we know from the premise that there is a rule at Iθ(i) and for its first conclusion c holds
that c =AC K↑(m). As there are no construction rules for public values (including nat) except for the rule Public, it
has to be precisely this rule. Fortunately, this fits exactly the pattern ∅−[]→K↑(m) which we require. Thus, (dg, θ)
also satisfies Γ1 = {i : ∅−[]→K↑(m)} ∪ Γ which concludes the proof of completeness.

Adding S.,pub fixes the handling of public values which is not documented in the theory part of [34]. It could
have been fixed in another way as follows: Not adding S.,pub but instead defining a constraint system as already
solved even if i . K↑(m : pub) constraints are not satisfied. Then, the Public rule instances must be added in the
process of building the dependency graph. It would be similar to the handling of fresh variables. However, fresh
variables have the additional constraint that they must be unique, which justifies doing it separately. For the Public
values, it can be included in the constraint rewriting relation which is cleaner.

B.4. Well-Formedness

Having a closer look at the proofs of the well-formedness conditions in [5], we see that they are completely
independent of our changes. Given their correctness, we will prove the new well-formedness condition WF7 discussed
earlier in this chapter.
WF7 The terms in all node constraints and formulas are signature-respecting.

25

Proof. For the node constraints, we know by WF1 that they are instances of dP ∪ NDeRDHe,AC . Therefore, it
suffices to show that an instance of a variant is signature-respecting. We know that the initial term t, which the user
inputs, is signature-respecting. From this, the transformation to an instance of a variant is applying a substitution,
applying some rewriting rules, and a final substitution application. As the substitutions and rewriting rules are
all sort-decreasing, the subterms t that get replaced by t′ via the application of one of them have the property
S(t′) ≤ S(T). Thus, no function signature can be violated. Also, the modifying constraint solving rule S≈ only
applies sort-decreasing substitutions which automatically respect function signatures. This proves the first part of
WF7.

For checking whether formulas are signature-respecting, we consider the rules S∃,S∀@,S∀≈,S� as they are the only
rules which add non-trivial formulas to Γ. The proof for the rules S∃,S∀@,S∀≈ follows from the fact that a subterm
of a signature-respecting formula is signature-respecting as well. The ∀-rules just apply a sort-decreasing substitution
to the subformula and the ∃-rule replaces variables while preserving the sort. The last rule to consider is S� which
adds conclusions and premises of rules. From the first part of WF7, we know that these rules only contain signature-
respecting formulas. Additionally, we know from the premise (i, u)� (j, v) that concs(ri)u =AC prems(ru)v, i.e.,
S(concs(ri)u) = S(prems(ru)v) as =AC is sort-preserving. With this, we conclude the proof of WF7.

B.5. Construction of a Dependency Graph

The last part to prove is that we can construct a P-model for every solved constraint system. The only relevant
part is where we instantiate variables with constants. Variables of sort msg and fresh are instantiated with distinct
fresh constants and variables of sort pub are instantiated with distinct public constants. For nat, we instantiate all
variables with 1. After that, the proof in [5] has two steps:

1) Defining a set of constraint properties CS1-6 which are invariant under P . These properties do not interfere
with our changes except for CS6: All trace formulas φ are guarded trace formulas. This holds with our changes
because we ensure with WF7 that our terms are well-sorted.

2) Assuming CS1-6, a P-model is constructed. This is rather technical and does not involve the equational theory,
publicness or anything else which could be affected by our changes.

This concludes the proof that adding natural numbers does not invalidate the previous theory of Tamarin.

Appendix C.
Adding Subterms

For adding subterms, we introduce the predicate @. We give it the semantics

(tr, θ) |= s @ t if sθ @R,AC tθ

and add the following constraint rewriting rules in the notation from [34]

RECURSE:
t @ f(t1, . . . , tn)

t = t1 | t @ t1 | · · · | t = tn | t @ tn
I

if f is neither AC nor a reducible operator

AC-RECURSE:
t @ t1 ++ · · ·++ tn

∃x. t++ x = t1 ++ · · ·++ tn | t @ t1 | · · · | t @ tn
I

• where x is a new variable
• if ++ is an ac-operator and neither reducible

nor the addition from natural numbers
• if ti don’t have ++as top operator (flatness)

CHAIN:
t0 @ x0 · · · tn @ xn

⊥
I

• if xi are variables of sort msg
• if xi is syntactically in t(i+1)%(n+1)

and not below a reducible operator

NEG-RECURSE:
¬t @ f(t1, . . . , tn)

(t 6= t1 ∧ ¬t @ t1) . . . (t 6= tn ∧ ¬t @ tn) I

if f is neither AC nor a reducible operator

26

NEG-AC-RECURSE:
¬t @ t1 ++ · · ·++ tn

∀x. t++ x 6= t1 ++ · · ·++ tn ¬t @ t1 · · · ¬t @ tn
I

• where x is a new variable
• if ++ is an ac-operator and neither reducible

nor the addition from natural numbers
• if ti don’t have ++as top operator (flatness)

NEG:
¬s @ r t @ r

¬s @ t s 6= t
I

NEG-NAT:
¬s @ t
t @ s+ 1 I

if s and t have sort nat

NAT:
s @ t Γ

∃x. s : nat + x = t Γ[s 7→ s : nat] M

• where x is a new variable
• if s is a term of sort nat or a var of sort msg
• if t has sort nat

INVALID:
s @ t

⊥
I

if the sorts of (s, t) are one of
• (fresh,nat)
• (pub,nat)
• (any, pub) where any is an arbitrary sort
• (any, fresh) where any is an arbitrary sort

UTVPI:
s0 @ t0 · · · sn @ tn
a1 = b1 · · · am = bm

I

• where the equations ai = bi are the result of the
UTVPI-algorithm for the constraints si @ ti
• if si and ti are terms of sort nat

Lemma 4. The rules for subterms are sound and complete.
Proof. Soundness is trivial for all rules except for NAT as they are insertion rules, so we only show completeness for
the remaining rules by assuming that for dg = (I,D), the tuple (dg, θ) is a P-Model of a constraint system Γ. Then,
we will show that there is a θ′ such that (dg, θ′) is a model for the resulting Γ′ after applying the rule.

RECURSE: We choose θ′ = θ and assume tθ @R,AC f(t1, . . . , tn)θ which is f(t1θ, . . . , tnθ). It remains to prove
that one of tθ =R,AC t1θ | tθ @R,AC t1θ | · · · | tθ =R,AC tnθ | tθ @R,AC tnθ holds. As f is neither AC nor reducible,
this holds because it resembles the definition of @synt.

AC-RECURSE: We choose θ′ = θ and assume tθ @R,AC (t1 ++ · · ·++ tn)θ which is t1θ ++ · · ·++ tnθ. It remains to
prove that ∃x. tθ ++ x =R,AC t1θ ++ · · · ++ tnθ | tθ @R,AC t1θ | · · · | tθ @R,AC tnθ. We make a case distinction on
the validity of the first term. Assuming, the existential equation holds, the disjunction holds because of the first
disjunct. Otherwise, we know that tθ cannot be on the uppermost AC-level of the bigger term and thus has to hold
somewhere in lower parts, exploiting the transitive closure of @synt.

CHAIN: We choose θ′ = θ and assume that t0θ @R,AC x0θ up to tnθ @ xnθ hold and show a contradiction. We
will show that the term size of tiθ ↓ is strictly smaller than the one of tjθ ↓ for j = (i + 1) % (n + 1) which is a
direct contradiction. As xiθ is syntactically in tjθ and not below a reducible operator, we have that xiθ ↓@synt tjθ ↓
and thus also xiθ ↓@AC tjθ ↓. And because of the premise constraint, we have tiθ ↓@AC xiθ ↓ which transitively
concludes tiθ ↓@AC tjθ ↓. As with AC, the term sizes remain stable, we finally prove that tiθ ↓ is smaller than tjθ ↓.

NEG-RECURSE: This holds analogously to RECURSE. It is the negated form and has thus a conjunction instead
of a disjunction in the conclusion of the rule.

NEG-AC-RECURSE: This holds analogously to AC-RECURSE. It is the negated form and has thus a conjunction
instead of a disjunction in the conclusion of the rule.

NEG: We choose θ′ = θ and assume ¬sθ @R,AC rθ and tθ @R,AC rθ. We show the two conclusions by contradiction.
1) Assume sθ @R,AC tθ. Applying transitivity with the second premise, we get sθ @R,AC rθ which contradicts the

first premise.
2) Assume sθ =R,AC tθ, then because of the second premise, we have sθ @R,AC rθ which contradicts the first

premise.
NEG-NAT: We choose θ′ = θ and assume ¬sθ @R,AC tθ. As s and t are of sort nat, we have that sθ and tθ are just

additions of 1 : nat uniquely determined by their respective term sizes ls and lt. As we have a equivalence between

27

the less-than comparison of the lengths and @R,AC , we have ¬ls < lt. From that follows lt ≤ ls which is equivalent
to lt < ls + 1 because of discreteness of N. This is equivalent to tθ @R,AC (s+ 1)θ which concludes the proof.

NAT: For soundness, the observation suffices that sθ has to have sort nat because t has sort nat, so θ can be
equally applied to s : nat. Thus, tθ = t[s 7→ s : nat]θ for any term t, i.e., the validity of all constraints stay the same.

For completeness, we choose θ′ = θ and assume sθ @R,AC tθ. Applying the length-construction from the NEG-NAT,
we have ls < lt and thus, ∃lx. ls + lx = lt. We now construct x = +lx

i=1(1 : nat) as lx ones summed up. This x has
the property sθ + xθ = tθ which fulfills the existential conclusion.

INVALID: We choose θ′ = θ and assume sθ @R,AC tθ. If t has sort nat, then tθ solely consists of 1 : nat, i.e., sθ
has to have sort nat as well. However, nat is disjoint from both fresh and pub which yields a contradiction in this
case. A contradiction also follows if t has sorts pub or fresh as nothing can be a strict subterm of an atomic value.

UTVPI: We choose θ′ = θ. Basically the UTVPI-algorithm guarantees that the equations follow from the subterms
because the subterms translate to the less-than relation as si and ti have sort nat.

Lemma 5. If the constraint system is solved, there is a dependency graph satisfying all constraints (especially the
subterms).
Proof. We first take the construction of (dg, θ) from the proof without subterms and adapt θ while taking care that
we do not invalidate the other constraints. We then look at all subterm constraints s @ t and filter out the following
ones:

1) If t contains reducible operators, we abort the attempt to construct a valid P-model and tell the user that we
cannot deal with reducible operators in subterm constraints. We do so as well if we find a reducible operator in
a negative subterm constraint.

2) If t is not a variable, we ignore the corresponding subterm as it has been dealt with by the rules [AC-]RECURSE
already

3) Now we have two possibilities for the sorts of s and t which are (nat,nat) or (any,msg) because of INVALID. In
the first case, the rule NAT already ensured that we fulfill the subterm predicate and we thus filter those ones
out.

For the remaining s @ t we thus have that t is a variable of sort msg. Moreover, these constraints form a directed
acyclic graph because of CHAIN. Thus, we can satisfy all subterm constraints by the following construction. For each
variable t with the subterm constraints s1 @ t, . . . , sn @ t, we modify θ to substitute t 7→ fun(s1, . . . , sn) where fun
is a fresh non-reducible function of arity n not used in the protocol. This is possible because of the acyclicity of the
constraints. Now, by construction, all subterms si @ t are satisfied. It remains to prove that this construction did
not invalidate other constraints:
• equalities s = t are not affected as θ is applied on both sides.
• inequalities s 6= t cannot be invalidated as we only introduce fresh, unused function symbols and the other

variables are mapped to distinct constants
• for equality guarded formulas ∀x. s = t⇒ f , we have the same as for inequalities
• for negative subterms ¬s @ t, we do the following sort distinction for (s, t):

– (nat,nat) are ensured correct via NEG-NAT → NAT
– (nonat,nat), (any, pub), and (any, pub) where nonat is any sort except for nat hold true anyways because of

sort incompatibilities and atomicity.
– for (any,msg) where t is not a variable, we already applied NEG-[AC-]RECURSE as the topmost operator of t

is not reducible. With that rule applied, the correctness is assured via the recursive cases.
– for (any,msg) where t is a variable, we have two cases. First: If there is no s′ @ t, then t is just instantiated

with a fresh constant which makes ¬s @ t true. Second: If there are si @ t, then NEG assures that ¬s @ si
and s 6= si are constraints as well. We can assume that these constraints are satisfied because of induction
over the DAG-structure of the s @ t. Therefore, with θ substituting t 7→ fun(s1, . . . , sn), we know that
¬s @ fun(s1, . . . , sn).

This concludes the proof.

Appendix D.
Adding Fresh Orderings

Lemma 6. FRESH-ORDER from Fig. 6 is sound and complete
Proof. Soundness: This rule only inserts constraints and is thus sound. Completeness: We assume that for dg = (I,D),
the tuple (dg, θ) is a P-Model of a constraint system Γ. Now, we show that there is a θ′ such that (dg, θ′) is a model

28

FRESH-ORDER:
i0 : f0 j : g t1 @ s1 . . . tn−1 @ sn−1

i0 6= j . . . im 6= j

im < j
I

if ∃u, v, Fact, s0, tn with
• prems(f0)u = Fr(s0)
• prems(g)v = Fact(tn)
• j : g /∈ route(i0 : f0, s0)
• si is syntactically in ti+1 and not below a reducible

operator
where route(i0 : f0, s0) is the maximal list [i0 : f0, . . . , im :
fm] where for two consecutive elements ia : fa, ib : fb
holds:
• fa has only one conclusion which is a linear fact

(especially not !KU or !KD)
• ∃w with concs(fa)1 = prems(fb)w
• there is an edge (ia, 1) 7→ (ib, w)

Figure 6: The full fresh order rule with all improvements in the notation style from [34]

for the resulting Γ′ after applying the rule. In this case, we choose θ′ = θ. It remains to prove that θ(im) < θ(j) or
i0 = j ∨ · · · ∨ im = j. We know that tiθ and siθ are ground instances without variables and reducible operators on
the path to the root, i.e., tiθ @ siθ is tiθ @AC siθ which means that there are t′i =AC tiθ and s′i =AC siθ such that
t′i @synt s

′
i holds. Because of the transitivity of @synt, we get that s′0 @synt t′n and we moreover know that there are

no reducible operators on the path from s′0 to the root of t′n. Concluding, we know that s0θ @synt tnθ.
We now prove that there is a chain of rules from gθ to fmθ, i.e., θ(im) < θ(j) if gθ : jθ is not in [i0 : f0, . . . , im : fm]θ

(route) by induction with the following lemma: For any rule lθ : rθ with a premise prems(rθ)v = Fact(tθ)) with
s0θ @synt tθ, either lθ : rθ is in route or there is a rule l′θ : r′θ /∈ [i0 : f0, . . . , im−1 : fm−1]θ (routeDropped) with an
edge (l′θ, u)� (lθ, v) ∈ D and prems(r′θ)v′ = Fact(t′θ)) with s0θ @synt t′θ.

Proof of the lemma: As Γ is solved, we have an edge (l′, u)� (lθ, v) ∈ D and a rule l′ : r′θ with prems(rθ)v =AC

concs(r′θ)u = Fact(t′′θ) and θ(l′) < θ(l). If r′θ is the Fresh rule, then Fact(tθ) = Fr(s0θ). Because of uniqueness
of Fr, l : rθ = i0θ : f0θ which is in routeDropped. Otherwise, variables in a conclusion have to occur in a premise,
i.e., because s0θ @synt t′′θ, there has to be a premise prems(r′θ)v′ = Fact(t′θ) with s0θ @synt t′θ. If l′ : r′θ is not in
routeDropped, the proof is done. Else, l : rθ has to be in route as there is only one conclusion of a non-persistent fact
of l′ : r′θ which has to be connected to l : rθ in route.

Inductively applying this lemma to jθ : gθ gives us a path of edges to imθ : fmθ if jθ : gθ is not in route(i0 : f0, s0)θ.
Thus, we have θ(im) < θ(j) and otherwise i0 = j ∨ · · · ∨ im = j which concludes the proof.

Appendix E.
Adding Monotonic Injective Facts

Lemma 7. A fact F detected as injective is actually injective, i.e., there is no execution of the transition system
reaching a multiset Sn containing two instances of F with the same first term.

Proof. We prove a small helper lemma: For an instance of F with id as first term in Si, there is a Fr(id) fact
consumed in a previous step. Proof by induction over the trace of Si.

Induction start: Trivial as S0 = ∅
Induction step: If F (id, . . .) is in Si, then two cases can happen for linear facts. First: The exact same fact was

in Si−1 as well and we apply the induction hypothesis. Second: A rule was applied with F (id, . . .) as conclusion.
Then, we have a) there is a Fr(id) consumed from Si−1 (done) or b) there is a F (id, . . .) in Si−1 and we can apply
the induction hypothesis.

Now we can prove the full lemma by induction over the trace of Si.
Induction start: Trivial as S0 = ∅
Induction step by contradiction: We assume that there are two instances of F (id, . . .) is in Si. Then at most one

of them (f) can be introduced in Si. The other one (f ′) has to be in Si−1 as well. The introduction comes from an

29

applied rule with f as a conclusion. Thus, we have either b) there is a F (id, . . .) distinct from f ′ (as it is consumed)
in Si−1 and we can apply the induction hypothesis (done) or a) there is a Fr(id) in consumed from Si−1. In the
latter case, we apply the helper lemma and get a second consumption of Fr(id) from a set Sj before Si−1. As Fr(id)
has been consumed two times, it has to be created two times as well. This is a contradiction because of FRESH
which concludes the proof.

MONOTONIC:
F (id, . . . , s, . . .)@i F (id, . . . , t, . . .)@j Γ

constraints below I

where s and t are at the same position p in the injective fact F .
If p is a constant position:

1) insert s = t

If p is a strictly increasing position:
2) if s = t ∈ Γ then insert i = j
3) if s @ t ∈ Γ then insert i < j
4) if i < j ∈ Γ or j < i ∈ Γ then insert s 6= t
5) if ¬s @ t ∈ Γ and s 6= t ∈ Γ then insert j < i

If p is an increasing position:
3’) if s @ t ∈ Γ then insert i < j
5’) if ¬s @ t ∈ Γ and s 6= t ∈ Γ then insert j < i

For decreasing and strictly decreasing, do the inverse of the increasing cases.
Lemma 8. The rule MONOTONIC is sound and complete.
Proof. Soundness: This rule only inserts constraints and is thus sound. Completeness: We assume that for dg = (I,D),
the tuple (dg, θ) is a P-Model of a constraint system Γ. Now, we show that there is a θ′ such that (dg, θ′) is a model
for the resulting Γ′ after applying the rule. For this rule, we choose θ′ = θ and consider all cases from the rule:

1) As F is injective, there is a first occurrence of F (id, . . . , x, . . .)@k. We prove that for all instances
F (id, . . . , y, . . .)@l that xθ = yθ. Induction start: It’s the same instance (kθ = lθ) and thus xθ = yθ. Induction
step: Assume that xθ = yθ holds. Then it also holds for the next instance F (id, . . . , y′, . . .)@l′ because in each
rule, y is not changed as it is a constant position. With this lemma, we have sθ =R,AC xθ and tθ =R,AC xθ
which yields sθ =R,AC tθ.

2) For the following four cases, we prove a small helper lemma, targeting a potential six’th case for the monotonic
rule SIX: if i < j ∈ Γ then insert (s @ t ∨ s = t) We do not use this case because it introduces subterms which
can introduce case splits and other complications in the model. Nevertheless, here is the proof: Because iθ < jθ
and injectiveness of F , we have a path of rules in I connected with edges in D from iθ to jθ. We show for each
instance F (id, . . . , x, . . .)@k on that path (excluding i and including j) that sθ @R,AC xθ holds by induction.
Induction start: The rule F (id, . . . , x, . . .)@k directly after i has sθ @R,AC xθ because there is an edge between
iθ and kθ in D, i.e., the premise of kθ and conclusion of iθ are the same while for the premise and conclusion
within k holds that the term in the premise is syntactically in the term from the conclusion and not below a
reducible operator. The induction step follows the exact same scheme as the induction start. As j is included in
the path, we have sθ @R,AC tθ from this lemma.
Now we can prove 2) by contradiction: We assume iθ 6= jθ, i.e., iθ < jθ or jθ < iθ because of totality of <.
From the proof of SIX we get sθ @R,AC tθ or tθ @R,AC sθ. These two possibilities both exclude sθ = tθ which
concludes the proof by contradiction.

3) Proof by contradiction: We assume ¬iθ < jθ, i.e., iθ = jθ or jθ < iθ because of totality of <. In the first case,
we directly have sθ = tθ which contradicts sθ @R,AC tθ. In the second case, we apply the proof of SIX to yield
tθ @R,AC sθ which also contradicts sθ @R,AC tθ.

4) This is exactly the second part of the proof for 2)
5) Proof by contradiction: We assume ¬jθ < iθ, i.e., iθ = jθ or iθ < jθ because of totality of <. In the first case,

we directly have sθ = tθ which contradicts sθ 6= tθ. In the second case, we apply the proof of SIX to yield
sθ @R,AC tθ which contradicts ¬sθ @R,AC tθ.

The cases 3’) and 5’) are proven analogous to 3) and 5) as well as the decreasing cases.

30

	Introduction
	Background: The Tamarin Prover
	Subterm-based proof techniques
	Subterms
	Refinements for Natural Numbers
	Fresh Ordering
	Monotonicity

	Case Studies
	Overview
	Speed-ups of Existing Models
	TreeKEM
	S/Key
	TESLA Scheme 2

	Conclusions
	References
	Appendix A: Detailed Preliminaries
	Terms and Equations
	Protocols
	Construction and Deconstruction
	Dependency Graphs
	Security Properties
	Constraint Solving

	Appendix B: Adding Natural Numbers
	Equational Theory
	Normal Form Conditions
	Soundness & Completeness
	Well-Formedness
	Construction of a Dependency Graph

	Appendix C: Adding Subterms
	Appendix D: Adding Fresh Orderings
	Appendix E: Adding Monotonic Injective Facts

