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Abstract
Reactive synthesis automatically derives a strategy that satisfies a given specification. However,
requiring a strategy to meet the specification in every situation is, in many cases, too hard of a
requirement. Particularly in compositional synthesis of distributed systems, individual winning
strategies for the processes often do not exist. Remorsefree dominance, a weaker notion than winning,
accounts for such situations: dominant strategies are only required to be as good as any alternative
strategy, i.e., they are allowed to violate the specification if no other strategy would have satisfied it
in the same situation. The composition of dominant strategies is only guaranteed to be dominant
for safety properties, though; preventing the use of dominance in compositional synthesis for liveness
specifications. Yet, safety properties are often not expressive enough. In this paper, we thus introduce
a new winning condition for strategies, called delay-dominance, that overcomes this weakness of
remorsefree dominance: we show that it is compositional for both safety and liveness specifications,
enabling a compositional synthesis algorithm based on delay-dominance for general specifications.
Furthermore, we introduce an automaton construction for recognizing delay-dominant strategies and
prove its soundness and completeness. The resulting automaton is of single-exponential size in the
squared length of the specification and can immediately be used for safraless synthesis procedures.
Thus, synthesis of delay-dominant strategies is, as synthesis of winning strategies, in 2EXPTIME.
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1 Introduction

Reactive synthesis is the task of automatically deriving a strategy that satisfies a formal
specification, e.g., given in LTL [31], in every situation. Such strategies are called winning.
In many cases, however, requiring the strategy to satisfy the specification in every situation is
too hard of a requirement. A prominent example is the compositional synthesis of distributed
systems consisting of several processes. Compositional approaches for distributed synthesis [27,
13, 14, 15, 18] break down the synthesis task for the whole system into several smaller ones for
the individual processes. This is necessary due to the general undecidability [33] of distributed
synthesis and the non-elementary complexity [20] for decidable cases: non-compositional
distributed synthesis approaches [22, 21] suffer from a severe state space explosion problem
and are thus not feasible for larger systems. However, winning strategies rarely exist when
considering the processes individually in the smaller subtasks of compositional synthesis since
usually the processes need to collaborate in order to achieve the overall system’s correctness.
For instance, a particular input sequence may prevent the satisfaction of the specification
no matter how a single process reacts, yet, the other processes of the system ensure in the
interplay of the whole system that this input sequence will never be produced.
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15:2 Synthesizing Dominant Strategies for Liveness

Remorsefree dominance [9], a weaker notion than winning, accounts for such situations.
A dominant strategy is allowed to violate the specification as long as no other strategy would
have satisfied it in the same situation. Hence, a dominant strategy is a best-effort strategy as
we do not blame it for violating the specification if the violation is not its fault. Searching for
dominant rather than winning strategies allows us to find strategies that do not necessarily
satisfy the specification in all situations but in all that are realistic in the sense that they
occur in the interplay of the processes if all of them play best-effort strategies.

The parallel composition of dominant strategies, however, is only guaranteed to be domi-
nant for safety properties [10]. For liveness specifications, in contrast, dominance is not a
compositional notion and thus not suitable for compositional synthesis. Consider, for example,
a system with two processes p1 and p2 sending messages to each other, denoted by atomic
propositions m1 and m2, respectively. Both processes are required to send their message
eventually, i.e., φ = m1 ∧ m2. For pi, it is dominant to wait for the other process to send
the message m3−i before sending its own message mi: if p3−i sends its message eventually, pi
does so as well, satisfying φ. If p3−i never sends its message, φ is violated, no matter how pi
reacts, and thus the violation of φ is not pi’s fault. Combining these strategies for p1 and p2,
however, yields a system that never sends any message since both processes wait indefinitely
on each other, while there clearly exist strategies for the whole system that satisfy φ.

Bounded dominance [10] is a variant of remorsefree dominance that ensures composition-
ality of general properties. Intuitively, it reduces every specification φ to a safety property
by introducing a measure of the strategy’s progress with respect to φ, and by bounding
the number of non-progress steps, i.e., steps in which no progress is made. Yet, bounded
dominance has two major disadvantages: (i) it requires a concrete bound on the number of
non-progress steps, and (ii) not every bounded dominant strategy is dominant: if the bound n
is chosen too small, every strategy, also a non-dominant one, is trivially n-dominant.

In this paper, we introduce a new winning condition for strategies, called delay-dominance,
that builds upon the ideas of bounded dominance but circumvents the aforementioned
weaknesses. Similar to bounded dominance, it introduces a progress measure on strategies.
However, it does not require a concrete bound on the number of non-progress steps but
relates such steps in the potentially delay-dominant strategy s to non-progress steps in an
alternative strategy t: intuitively, s delay-dominates t if, whenever s makes a non-progress
step, t makes a non-progress step eventually as well. A strategy s is then delay-dominant if it
delay-dominates all other strategies t. In this way, we ensure that a delay-dominant strategy
satisfies the specification “faster” than all other strategies in all situations in which the
specification can be satisfied. Delay-dominance considers specifications given as alternating
co-Büchi automata. Non-progress steps with respect to the automaton are those that enforce
a visit of a rejecting state in all run trees. We introduce a two-player game, the so-called
delay-dominance game, which is vaguely leaned on the delayed simulation game for alternating
Büchi automata [24], to formally define delay-dominance: the winner of the game determines
whether or not a strategy s delay-dominates a strategy t on a given input sequence.

We show that (i) every delay-dominant strategy is also remorsefree dominant, and (ii) delay-
dominance is compositional for both safety and liveness properties, thus overcoming the
weaknesses of both remorsefree and bounded dominance. Note that since delay-dominance
relies, as bounded dominance, on the automaton structure, there are realizable specifications
for which no delay-dominant strategy exists. Yet, we experienced that this rarely occurs in
practice when constructing the automaton from an LTL formula with standard algorithms.
Moreover, if a delay-dominant strategy exists, it is guaranteed to be winning if the speci-
fication is realizable. Hence, the parallel composition of delay-dominant strategies for all
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processes in a distributed system is winning for the whole system as long as the specification
is realizable. Therefore, delay-dominance is a suitable notion for compositional synthesis.

We thus introduce a synthesis approach for delay-dominant strategies that immediately
enables a compositional synthesis algorithm for distributed systems, namely synthesizing
delay-dominant strategies for the processes separately. We present the construction of a
universal co-Büchi automaton Add

Aφ
from an LTL formula φ that recognizes delay-dominant

strategies. Add
Aφ

can immediately be used for safraless synthesis [28] approaches such as
bounded synthesis [22] to synthesize delay-dominant strategies. We show that the size of Add

Aφ

is single-exponential in the squared length of φ. Thus, synthesis of delay-dominant strategies
is, similar to synthesis of winning or remorsefree dominant strategies, in 2EXPTIME.

Related Work. Remorsefree dominance has first been introduced for reactive synthesis in [9].
Dominant strategies have been utilized for compositional synthesis of safety properties [10].
Building up on this work, a compositional synthesis algorithm, that finds solutions in more
cases by incrementally synthesizing individual dominant strategies, has been developed [16].
Both algorithms suffer from the non-compositionality of dominant strategies for liveness
properties. Bounded dominance [10], a variant of dominance that introduces a bound on the
number of steps in which a strategy does not make progress with respect to the specification,
solves this problem. However, it requires a concrete bound on the number of non-progress
steps. Moreover, a bounded dominant strategy is not necessarily dominant.

Good-enough synthesis [1, 29] follows a similar idea as dominance. It is thus not composi-
tional for liveness properties either. In good-enough synthesis, conjuncts of the specification
can be marked as strong. If the specification is unrealizable, a good-enough strategy needs
to satisfy the strong conjuncts while it may violate the other ones. Thus, dominance can
be seen as the special case of good-enough synthesis in which no conjuncts are marked as
strong. Good-enough synthesis can be extended to a multi-valued correctness notion [1].

Synthesis under environment assumptions is a well-studied problem that also aims at
relaxing the requirements on a strategy. There, explicit assumptions on the environment are
added to the specification. These assumptions can be LTL formulas restricting the possible
input sequences (see, e.g., [7, 5]) or environment strategies (see, e.g., [2, 3, 17, 18]). The
assumptions can also be conceptual such as assuming that the environment is rational (see,
e.g., [23, 26, 6, 8]). Synthesis under environment assumptions is orthogonal to the synthesis
of dominant strategies and good-enough synthesis since it requires an explicit assumption on
the environment, while the latter two approaches rely on implicit assumptions.

2 Preliminaries

Notation. Given an infinite word σ = σ0σ1 . . . ∈ (2Σ)ω, we denote the prefix of length t+ 1
of σ with σ|t := σ0 . . . σt. For σ and a set X ⊆ Σ, let σ ∩X := (σ0 ∩X)(σ1 ∩X) . . . ∈ (2X)ω.
For σ ∈ (2Σ)ω, σ′ ∈ (2Σ′)ω with Σ∩Σ′ = ∅, we define σ∪σ′ := (σ0∪σ′

0)(σ1∪σ′
1) . . . ∈ (2Σ∪Σ′)ω.

For a k-tuple a, we denote the j-th component of a with j(a). We represent a Boolean formula∨
i

∧
j ci,j in disjunctive normal form (DNF) also in its set notation

⋃
i{

⋃
j{ci,j}}.

LTL. Linear-time temporal logic (LTL) [31] is a standard specification language for linear-
time properties. Let Σ be a finite set of atomic propositions and let a ∈ Σ. The syntax
of LTL is given by φ,ψ ::= a | ¬φ | φ ∨ ψ | φ ∧ ψ | φ | φU ψ. We define true = a ∨ ¬a,
false = ¬true, φ = true U φ, and φ = ¬ ¬φ as usual. We use the standard semantics.
The language L(φ) of an LTL formula φ is the set of infinite words that satisfy φ.
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15:4 Synthesizing Dominant Strategies for Liveness

Non-Alternating ω-Automata. Given a finite alphabet Σ, a Büchi (resp. co-Büchi) au-
tomaton A = (Q,Q0, δ, F ) over Σ consists of a finite set of states Q, an initial state q0 ∈ Q,
a transition relation δ : Q× 2Σ ×Q, and a set of accepting (resp. rejecting) states F ⊆ Q.
For an infinite word σ = σ0σ1 . . . ∈ (2Σ)ω, a run of A induced by σ is an infinite sequence
q0q1 . . . ∈ Qω of states with (qi, σi, qi+1) ∈ δ for all i ≥ 0. A run is accepting if it contains
infinitely many accepting states (resp. only finitely many rejecting states). A nondeterministic
(resp. universal) automaton A accepts a word σ if some run is accepting (resp. all runs
are accepting). The language L(A) of A is the set of all accepted words. We consider
nondeterministic Büchi automata (NBAs) and universal co-Büchi automata (UCAs).

Alternating ω-Automata. An alternating Büchi (resp. co-Büchi) automaton (ABA resp.
ACA) A = (Q, q0, δ, F ) over a finite alphabet Σ consists of a finite set of states Q, an initial
state q0 ⊆ Q, a transition function δ : Q× 2Σ → B+(Q), where B+(Q) is the set of positive
Boolean formulas over Q, and a set of accepting (resp. rejecting) states F ⊆ Q. We assume
that the elements of B+(Q) are given in DNF. Runs of A are Q-labeled trees: a tree T is a
prefix-closed subset of N∗. The children of a node x ∈ T are c(x) = {x · d ∈ T | d ∈ N}. An
X-labeled tree (T , ℓ) consists of a tree T and a labeling function ℓ : T → X. A branch of
(T , ℓ) is a maximal sequence ℓ(x0)ℓ(x1) . . . with x0 = ε and xi+1 ∈ c(xi) for i ≥ 0. A run
tree of A induced by σ ∈ (2Σ)ω is a Q-labeled tree (T , ℓ) with ℓ(ε) = q0 and, for all x ∈ T ,
{ℓ(x′) | x′ ∈ c(x)} ∈ δ(ℓ(x), σ|x|). A run tree is accepting if every infinite branch contains
infinitely many accepting states (resp. only finitely many rejecting states). A accepts σ if
there is some accepting run tree. The language L(A) of A is the set of all accepted words.

Two-Player Games. An arena is a tuple A = (V, V0, V1, v0, E), where V , V0, V1 are finite
sets of positions with V = V0 ∪ V1 and V0 ∩ V1 = ∅, v0 ∈ V is the initial position, E ⊆ V × V

is a set of edges such that ∀v ∈ V. ∃v′ ∈ V. (v, v′) ∈ E. Player i controls positions in Vi. A
game G = (A,W ) consists of an arena A and a winning condition W ⊆ V ω. A play is an
infinite sequence ρ ∈ V ω such that (ρi, ρi+1) ∈ E for all i ∈ N. The player owning a position
chooses the edge on which the play is continued. A play ρ is initial if ρ0 = v0 holds. It is
winning for Player 0 if ρ ∈ W and winning for Player 1 otherwise. A strategy for Player i is a
function τ : V ∗Vi → V such that (v, v′) ∈ E whenever τ(w, v) = v′ for some w ∈ V ∗, v ∈ Vi.
A play ρ is consistent with a strategy τ if, for all j ∈ N, ρj ∈ Vi implies ρj+1 = τ(ρ|j). A
strategy for Player i is winning if all initial and consistent plays are winning for Player i.

System Architectures. An architecture is a tuple A = (P,Σ, inp, out), where P is a set of
processes consisting of the environment env and a set P− = P \{env} of n system processes, Σ
is a set of Boolean variables, inp = ⟨I1, . . . , In⟩ assigns a set Ij ⊆ Σ of input variables to
each pj ∈ P−, and out = ⟨Oenv, O1, . . . On⟩ assigns a set Oj ⊆ Σ of output variables to each
pj ∈ P . For all pj , pk ∈ P− with j ̸= k, Ij ∩Oj = ∅ and Oj ∩Ok = ∅ hold. The variables Σj
of pj ∈ P− are given by Σj = Ij ∪Oj . The inputs I, outputs O, and variables Σ of the whole
system are defined by X =

⋃
pj∈P−Xj for X ∈ {I,O,Σ}. A is called distributed if |P−| ≥ 2.

In the remainder of this paper, we assume that a distributed architecture is given.

Process Strategies. A strategy for process pi is a function si : (2Ii)∗ → 2Oi mapping a
history of inputs to outputs. We model si as a Moore machine Mi = (T, t0, τ, o) consisting
of a finite set of states T , an initial state t0 ∈ T , a transition function τ : T × 2Ii → T ,
and a labeling function o : T → 2Oi . For a sequence γ = γ0γ1 . . . ∈ (2Ii)ω, Mi produces a
path (t0, γ0 ∪ o(t0))(t1, γ1 ∪ o(t1)) . . . ∈ (T × 2Ii∪Oi)ω, where τ(tj , γj) = tj+1. The projection
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of a path to the variables is called a trace. The trace produced by Mi on γ ∈ (2Ii)ω is
called the computation of si on γ, denoted comp(si, γ). We say that si is winning for an
LTL formula φ, denoted si |= φ, if comp(si, γ) |= φ holds for all input sequences γ ∈ (2Ii)ω.
Overloading notation with two-player games, we call a process strategy simply a strategy
whenever the context is clear. The parallel composition Mi || Mj of two Moore machines
Mi = (Ti, ti0, τi, oi), Mj = (Tj , tj0, τj , oj) for pi, pj ∈ P− is the Moore machine (T, t0, τ, o)
with inputs (Ii ∪ Ij) \ (Oi ∪ Oj) and outputs Oi ∪ Oj as well as T = Ti × Tj , t0 = (ti0, t

j
0),

τ((t, t′), ι) = (τi(t, (ι ∪ oj(t′)) ∩ Ii), τj(t′, (ι ∪ oi(t)) ∩ Ij)), and o((t, t′)) = oi(t) ∪ oj(t′).

Synthesis. Given a specification φ, synthesis derives strategies s1, . . . , sn for the system
processes such that s1 || · · · || sn |= φ, i.e., such that the parallel composition of the strategies
satisfies φ for all input sequences generated by the environment. If such strategies exist, φ is
called realizable. Bounded synthesis [22] additionally bounds the size of the strategies. The
search for strategies is encoded into a constraint system that is satisfiable if, and only if, φ is
realizable for the size bound. There are SMT, SAT, QBF, and DQBF encodings [22, 11, 4].
We consider a compositional synthesis approach that synthesizes strategies for the processes
separately. Thus, outputs produced by the other system processes are treated similar to
the environment outputs, namely as part of the input sequence of the considered process.
Nevertheless, compositional synthesis derives strategies such that s1 || · · · || sn |= φ holds.

3 Dominant Strategies and Liveness Properties

Given a specification φ, the naïve compositional synthesis approach is to synthesize strategies
s1, . . . , sn for the system processes such that si |= φ holds for all pi ∈ P−. Then, it follows
immediately that s1 || · · · || sn |= φ holds as well. However, since winning strategies are
required to satisfy φ for every input sequence, usually no such individual winning strategies
exist due to complex interconnections in the system. Therefore, the naïve approach does
not succeed in many cases. The notion of remorsefree dominance [9], in contrast, has been
successfully used in compositional synthesis [10, 16]. The main idea is to synthesize dominant
strategies for the system processes separately instead of winning ones. Dominant strategies
are, in contrast to winning strategies, allowed to violate the specification for some input
sequence if no other strategy would have satisfied it in the same situation. Thus, remorsefree
dominance is a weaker requirement than winning and therefore individual dominant strategies
exist for more systems. Formally, remorsefree dominant strategies are defined as follows:

▶ Definition 1 (Dominant Strategy [10]). Let φ be an LTL formula. Let s and t be strategies
for process pi. Then, t is dominated by s, denoted t ⪯ s, if for all input sequences γ ∈ (2Ii)ω
either comp(s, γ) |= φ or comp(t, γ) ̸|= φ holds. Strategy s is called dominant for φ if t ⪯ s

holds for all strategies t for process pi.

Intuitively, a strategy s dominates a strategy t if it is at least as good as t. It is dominant
for φ if it is at least as good as every other possible strategy and thus if it is as good as
possible. As an example, reconsider the message sending system. Let si be a strategy for
process pi that outputs mi in the very first step. It satisfies φ = m1 ∧ m2 on all input
sequences containing at least one m3−i. On all other input sequences, it violates φ. Let ti
be some alternative strategy. Since no strategy for pi can influence m3−i, ti satisfies φ only
on input sequences containing at least one m3−i. Yet, si satisfies φ for such sequences as
well. Hence, si dominates ti and since we chose ti arbitrarily, si is dominant for φ.

Synthesizing dominant strategies rather than winning ones allows us to synthesize strate-
gies for the processes of a distributed system compositionally, although no winning strategies
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15:6 Synthesizing Dominant Strategies for Liveness

for the individual processes exist. Dominant strategies for the individual processes can then
be recomposed to obtain a strategy for the whole system. For safety specifications, the
composed strategy is guaranteed to be dominant for the specification as well:

▶ Theorem 2 (Compositionality of Dominance for Safety Properties [10]). Let φ be an LTL
formula. Let s1 and s2 be dominant strategies for processes p1 and p2, respectively, as well
as for φ. If φ is a safety property, then s1 || s2 is dominant for p1 || p2 and φ.

Compositionality is a crucial property for compositional synthesis: it allows for concluding
that the parallel composition of the separately synthesized process strategies is indeed a
useful strategy for the whole system. Thus, Theorem 2 enables compositional synthesis with
dominant strategies for safety properties. For liveness properties, however, the parallel com-
position of two dominant strategies is not necessarily dominant: consider strategy ti for pi
in the message sending system that waits for m3−i before sending its own message. This
strategy is dominant for φ: for input sequences in which m3−i occurs eventually, ti sends mi

in the next step, satisfying φ. For all other input sequences, no strategy for pi can satisfy φ.
Yet, the parallel composition of t1 and t2 does not send any message; violating φ, while there
exist strategies that satisfy φ, e.g., a strategy sending both m1 and m2 in the first step.

Bounded dominance [10] is a variant of dominance that is compositional for both safety
and liveness properties. Intuitively, it reduces the specification φ to a safety property by
introducing a bound on the number of steps in which the strategy does not make progress
with respect to φ. The progress measure is defined on an equivalent UCA A for φ. The
measure mA of a strategy s on an input sequence γ ∈ (2Ii)ω is then the supremum of
the number of rejecting states of the runs of A induced by comp(s, γ). Thus, a strategy s
n-dominates a strategy t for A and n ∈ N if for every γ ∈ (2Ii)ω, either mA(comp(s, γ)) ≤ n

or mA(comp(t, γ)) > n holds. If A is a safety automaton, then remorsefree dominance and
bounded dominance coincide. For liveness specifications, however, they differ.

Yet, bounded dominance does not imply dominance: there are specifications φ with a
minimal measure m, i.e., all strategies have a measure of at least m [10]. When choosing a
bound n < m, every strategy is trivially n-dominant for φ, even non-dominant ones. Hence,
the choice of the bound is crucial for bounded dominance. It is not obvious how to determine
a good bound, though: it needs to be large enough to avoid non-dominant strategies. As the
bound has a huge impact on the synthesis time, however, it cannot be chosen too large as
otherwise synthesis becomes infeasible. Especially for specifications with several complex
dependencies between processes, it is hard to determine a proper bound. Therefore, bounded
dominance is not a suitable notion for compositional synthesis for liveness properties. In
the remainder of this paper, we introduce a different variant of dominance that implies
remorsefree dominance and that ensures compositionality also for liveness properties.

4 Delay-Dominance

In this section, we introduce a new winning condition for strategies, delay-dominance, which
resembles remorsefree dominance but ensures compositionality also for liveness properties. It
builds on the idea of bounded dominance to not only consider the satisfaction of the LTL
formula φ but to measure progress based on an automaton representation of φ. Similar to
bounded dominance, we utilize visits of rejecting states in a co-Büchi automaton. Yet, we
use an alternating automaton instead of a universal one. Note that delay-dominance can
be equivalently formulated on UCAs, yet, using ACAs allows for more efficient synthesis of
delay-dominant strategies (see Section 5). Moreover, we do not require a fixed bound on the
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number of visits to rejecting states; rather, we relate visits of rejecting states induced by the
delay-dominant strategy to visits of rejecting states induced by the alternative strategy.

Intuitively, delay-dominance requires that every visit to a rejecting state in the ACA A
caused by the delay-dominant strategy is matched by a visit to a rejecting state caused by
the alternative strategy eventually. The rejecting states of the ACA A are closely related
to the satisfaction of the LTL specification φ: if infinitely many rejecting states are visited,
then φ is not satisfied. Thus, delay-dominance allows a strategy to violate the specification if
all alternative strategies violate it as well. Defining delay-dominance on the rejecting states
of A instead of the satisfaction of φ allows for measuring the progress on satisfying the
specification. Thus, we can distinguish strategies that wait indefinitely for another process
from those that do not: intuitively, a strategy s that waits will visit a rejecting state later
than a strategy t that does not. This visit to a rejecting state is then not matched eventually
by a visit to a rejecting state in t, preventing delay-dominance of s.

Formally, we present a game-based definition for delay-dominance: we introduce a two-
player game, the so-called delay-dominance game, which is inspired by the delayed simulation
game for alternating Büchi automata [24]. Given an ACA A = (Q, q0, δ, F ), two strategies s
and t for some process pi, and an input sequence γ ∈ (2Ii)ω, the delay-dominance game
determines whether s delay-dominates t for A on input γ. Intuitively, the game proceeds
in rounds. At the beginning of each round, a pair (p, q) of states p, q ∈ Q and the number
of the iteration j ∈ N is given, where p represents a state that is visited by a run of A
induced by comp(t, γ), while q represents a state that is visited by a run of A induced by
comp(s, γ). We call p the alternative state and q the dominant state. Let σs := comp(s, γ)
and σt := comp(t, γ). The players Duplicator and Spoiler, where Duplicator takes on the
role of Player 0, play as follows: 1. Spoiler chooses a set c ∈ δ(p, σtj). 2. Duplicator chooses
a set c′ ∈ δ(q, σsj ). 3. Spoiler chooses a state q′ ∈ c′. 4. Duplicator chooses a state p′ ∈ c.
The starting pair of the next round is then ((p′, q′), j + 1). Starting from ((q0, q0), 0), the
players construct an infinite play which determines the winner. Duplicator wins for a play if
every rejecting dominant state is matched by a rejecting alternative state eventually.

Both the delay-dominant strategy s and the alternative strategy t may control the nonde-
terministic transitions of A, while the universal ones are uncontrollable. Since, intuitively,
strategy t is controlled by an opponent when proving that s delay-dominates t, we thus
have a change in control for t: for s, Duplicator controls the existential transitions of A and
Spoiler controls the universal ones. For t, Duplicator controls the universal transitions and
Spoiler controls the existential ones. Note that the order in which Spoiler and Duplicator
make their moves is crucial to ensure that Duplicator wins the game when considering the
very same process strategies. By letting Spoiler move first, Duplicator is able to mimic – or
duplicate – Spoiler’s moves. Formally, the delay-dominance game is defined as follows:

▶ Definition 3 (Delay-Dominance game). Let A=(Q, q0, δ, F ) be an ACA. Based on A, we
define the sets S∃ = (Q×Q) × N, D∃ = (Q×Q× 2Q) × N, S∀ = (Q×Q× 2Q × 2Q) × N,
and D∀ = (Q×Q×Q× 2Q) × N. Let σ, σ′ ∈ (2Σi)ω be infinite sequences. Then, the delay-
dominance game (A, σ, σ′) is the game G = (A,W ) defined by A = (V, V0, V1, v0, E) with
V = Se ∪De ∪ Su ∪Du, V0 = De ∪Du, and V1 = Se ∪ Su as well as

E = {(((p, q), j), ((p, q, c), j) | c ∈ δ(p, σj)} ∪ {(((p, q, c), j), ((p, q, c, c′), j) | c′ ∈ δ(q, σ′
j)}

∪ {(((p, q, c, c′), j), ((p, q, c, q′), j) | q′ ∈ c′} ∪ {(((p, q, c, q′), j), ((p′, q′), j + 1) | p′ ∈ c},

and the winning condition W = {ρ ∈ V ω | ∀j ∈ N. fdom(ρj) ∈ F → ∃j′ ≥ j. falt(ρj′) ∈ F},
where falt(v) := 1(1(v)) and fdom(v) := 2(1(v)), i.e., falt(v) and fdom(v) map a position v

to the alternative state and the dominant state of v, respectively.
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q0

q1

q2

q3

¬m1 ∧ ¬m2

m1 ∧ ¬m2

¬m1 ∧m2

m1 ∧m2

m
2

¬m2

m1

¬m1

⊤

(a) ACA Aφ for φ = m1 ∧ m2.

q0 q1 q2 q3

q4 q5

o

⊤

o ¬o

o

⊤

i

¬i
⊤

¬o

¬o

(b) ACA Aψ for ψ = o ∨ i.

Figure 1 Alternating co-Büchi automata Aφ and Aψ. Universal choices are depicted by connecting
the transitions with a gray arc. Rejecting states are marked with double circles.

We now define the notion of delay-dominance based on the delay-dominance game.
Intuitively, the winner of the game for the computations of two strategies s and t determines
whether or not s delay-dominates t on a given input sequence. Similar to remorsefree
dominance, we then lift this definition to delay-dominant strategies. Formally:

▶ Definition 4 (Delay-Dominant Strategy). Let A be an ACA. Let s and t be strategies for
process pi. Then, s delay-dominates t on input sequence γ ∈ (2Ii)ω for A, denoted t ⊴A

γ s,
if Duplicator wins the delay-dominance game (A, comp(t, γ), comp(s, γ)). Strategy s delay-
dominates t for A, denoted t ⊴A s, if t ⊴A

γ s holds for all input sequences γ ∈ (2Ii)ω.
Strategy s is delay-dominant for A if, for every alternative strategy t for pi, t ⊴A s holds.

As an example for delay-dominance, consider the message sending system again. Let si
be a strategy for process pi that outputs mi in the very first step and let ti be a strategy
that waits for m3−i before sendings its own message. An ACA Aφ with L(Aφ) = L(φ) is
depicted in Figure 1a. Note that Aφ is deterministic and thus every sequence induces a
single run tree with a single branch. Hence, for every input sequence γ ∈ (2Ii)ω, the moves
of both Spoiler and Duplicator are uniquely defined by the computations of t1 and s1 on γ,
respectively. Therefore, we only provide the state pairs (p, q) of the delay-dominance game,
not the intermediate tuples. First, consider an input sequence γ ∈ (2I1)ω that contains the
very first m2 at point in time ℓ. Then, the run of Aφ on comp(s1, γ) starts in q0, moves to q1
immediately if ℓ > 0, stays there up to the occurrence of m2 and then moves to q3, where it
stays forever. If ℓ = 0, then the run moves immediately from q0 to q3. The run of comp(t1, γ),
in contrast, stays in q0 until m2 occurs, then moves to q2 and then immediately to q3, where
it stays forever. Thus, we obtain the unique sequence (q0, q0)(q0, q1)ℓ−1(q2, q3)(q3, q3)ω of
state pairs in the delay-dominance game (Aφ, comp(t1, γ), comp(s1, γ)). The last rejecting
alternative state, i.e., a rejecting state induced by comp(t1, γ) occurs at point in time ℓ+ 1,
namely q2, while the last rejecting dominant state i.e., a rejecting state induced by comp(s1, γ),
occurs at point in time ℓ, namely q1. Thus, t1 ⊴Aφ

γ s1 holds. In fact, t′1 ⊴Aφ
γ s1 holds for all

alternative strategies t′1 for such an input sequence γ since every strategy t′1 for p1 induces at
least ℓ visits to rejecting states due to the structure of γ. Second, consider an input sequence
γ′ ∈ (2Ii)ω that does not contain any m2. Then, the run of Aφ on a computation of any
strategy t′1 on γ′ never reaches q3 and thus only visits rejecting states. Hence, in particular,
every visit to a rejecting state induced by comp(s1, γ

′) is matched by a visit to a rejecting
state induced by comp(t′1, γ′) for all strategies t′1. Thus, t′1 ⊴Aφ

γ′ s1 holds for all alternative
strategies t′1 as well. We can thus conclude that s1 is delay-dominant for Aφ, meeting our
intuition that s1 should be allowed to violate φ on input sequences that do not contain any
m2. Strategy t1, in contrast, is remorsefree dominant for φ but not delay-dominant for Aφ:
consider again an input sequence γ ∈ (2I1)ω that contains the very first m2 at point in
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time ℓ. For the delay-dominance game (Aφ, comp(s1, γ), comp(t1, γ)), we obtain the following
sequence of state pairs: (q0, q0)(q1, q0)ℓ−1(q3, q2)(q3, q3)ω. It contains a rejecting dominant
state, i.e., a rejecting state induced by comp(t1, γ), at point in time ℓ + 1, while the last
rejecting alternative state occurs at point in time ℓ. Hence, t1 does not delay-dominate s1,
preventing that it is delay-dominant to wait for the other process indefinitely.

Next, consider the LTL formula ψ = o ∨ i, where i is an input variable and o is
an output variable. An ACA Aψ with L(Aψ) = L(ψ) is depicted in Figure 1b. Note that
it has both existential and universal transitions. Consider a strategy s that outputs o in
every step. Let t be some alternative strategy and let γ be some input sequence. Then,
Duplicator encounters an existential choice in state q0 for s in the very first round of the
delay-dominance game (Aψ, comp(t, γ), comp(s, γ)): it can choose to move to q1 or to q4.
If Duplicator chooses to move to q1, then the only possible successor state in every run
of Aψ induced by comp(s, γ) is q1. Thus, irrespective of Spoiler’s moves, the sequence
of dominant states in all consistent initial plays is given by q0q

ω
1 . Since neither q0 nor

q1 is rejecting, Duplicator wins the game. Therefore, there exists a winning strategy for
Duplicator for the game (Aψ, comp(t, γ), comp(s, γ)) for all t and γ, namely choosing to
move to q1 from q0, and thus s is delay-dominant. Second, consider a strategy t that does
not output o in the first step but outputs o in every step afterwards. Let γ be an input
sequence that does not contain i at the second point in time. Then, Duplicator encounters
an existential choice in state q0 for t in the very first round of the delay-dominance game
(Aψ, comp(s, γ), comp(t, γ)). Yet, if Duplicator chooses the transition from q0 to q4, then
every consistent play will contain infinitely many rejecting dominant states since the structure
of γ enforces that every consistent play enters q5 in its dominant state in the next round of
the game. Otherwise, i.e., if Duplicator chooses the universal transition to both q1 and q2,
then Spoiler decides which of the states is entered. If Spoiler chooses q2, then every consistent
play visits a rejecting dominant state, namely q2, in the second round of the game. If Spoiler
further chooses to move from q0 to q1 for the alternative strategy s, then, as shown above, no
rejecting dominant states are visited in a consistent play at all. Thus, there exists a winning
strategy for Spoiler and therefore t is not delay-dominant for Aψ.

Recall that one of the main weaknesses of bounded dominance is that every strategy,
even a non-dominant one, is trivially n-dominant if the bound n is chosen too small. Every
delay-dominant strategy, in contrast, is also remorsefree dominant. The main idea is that
a winning strategy τ of Duplicator in the delay-dominance game defines a run tree of the
automaton induced by the delay-dominant strategy s such that all branches either visit only
finitely many rejecting states or such that all rejecting states are matched eventually with
a rejecting state in some branch, which is also defined by τ , of all run trees induced by an
alternative strategy. Thus, s either satisfies the specification, or an alternative strategy does
not satisfy it either. For the formal proof, we refer the reader to [19].

▶ Theorem 5. Let φ be an LTL formula. Let Aφ be an ACA with L(Aφ) = L(φ). Let s be a
strategy for process pi. If s is delay-dominant for Aφ, then s is remorsefree dominant for φ.

Clearly, the converse does not hold: for instance, a strategy in the message sending system
that waits for the other process to send its message first is remorsefree dominant for φ but
not delay-dominant for the ACA depicted in Figure 1a as pointed out above.

Given an LTL formula φ, for remorsefree dominance it holds that if φ is realizable, then
every strategy that is dominant for φ is also winning for φ [10]. This is due to the fact that
the winning strategy needs to be taken into account as an alternative strategy for every
dominant one, and that remorsefree dominance is solely defined on the satisfaction of the
specification. With Theorem 5 the same property follows for delay-dominance.
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▶ Lemma 6. Let φ be an LTL formula. Let Aφ be an ACA with L(Aφ) = L(φ). If φ is
realizable, then every delay-dominant strategy for Aφ is winning for φ as well.

A critical shortcoming of remorsefree dominance is its non-compositionality for liveness
properties. This restricts the usage of dominance-based compositional synthesis algorithms
to safety specifications, which are in many cases not expressive enough. Delay-dominance, in
contrast, is specifically designed to be compositional for both safety and liveness properties.
Intuitively, this is the case since there is a smallest bad prefix of the computation of a
strategy for the delay-dominance requirement. This heavily relies on the fact that delay-
dominance is defined using a two-player game and thus we require the existence of a strategy
for Duplicator, i.e., determining which decisions to make for the existential choices of the
delay-dominant strategy and the universal ones for the alternative strategy has to be possible
without knowledge about the future input as well as the future decisions for the other
choices. If the parallel composition of two delay-dominant strategies is not delay-dominant,
then the behavior of both processes at the last position of this prefix reveals which one of
them is responsible for the violation of φ. Note that also both processes can be responsible
simultaneously. Since there is an alternative strategy t for the composed system for which
Duplicator wins the game, as otherwise the parallel composition would be delay-dominant,
the strategy of the process pi which is responsible for Duplicator losing the game cannot be
delay-dominant since there is an alternative strategy, namely t restricted to the outputs of pi,
that allows Duplicator to win the game. For the formal proof, we refer to [19].

▶ Theorem 7 (Compositionality of Delay-Dominance). Let A be an ACA. Let s1 and s2 be
delay-dominant strategies for A and processes p1 and p2, respectively. Then, their parallel
composition s1 || s2 is delay-dominant for A and p1 || p2.

From both Theorem 5 and Theorem 7 it then follows immediately that the parallel
composition of two delay-dominant strategies is also remorsefree dominant:

▶ Corollary 8. Let φ be an LTL formula and let Aφ be an ACA with L(Aφ) = L(φ). Let s1
and s2 be delay-dominant strategies for Aφ and processes p1 and p2, respectively. Then,
s1 || s2 is remorsefree dominant for φ and p1 || p2.

We obtain with Lemma 6 and Theorem 7 that, given a specification φ, the parallel compo-
sition of delay-dominant strategies for all processes of a distributed system is winning if φ is
realizable. Hence, delay-dominance can be soundly used for dominance-based compositional
synthesis approaches. In the next section, we thus introduce an automaton construction for
synthesizing delay-dominant strategies.

5 Synthesizing Delay-Dominant Strategies

In this section, we introduce how delay-dominant strategies can be synthesized using existing
tools for synthesizing winning strategies. We focus on utilizing bounded synthesis tools such
as BoSy [12]. Mostly, we use bounded synthesis as a black box procedure throughout this
section. Therefore, we do not go into detail here and refer the interested reader to [22, 11]. A
crucial observation regarding bounded synthesis that we utilize, however, is that it translates
the given specification φ into an equivalent universal co-Büchi automaton Aφ and then derives
a strategy such that, for every input sequence, the runs of Aφ induced by the computation
of the strategy on the input sequence visits only finitely many rejecting states.

To synthesize delay-dominant strategies instead of winning ones, we can thus use existing
bounded synthesis algorithms by replacing the universal co-Büchi automaton Aφ with one
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φ

¬φ

Def. 9ACA 2Σi

Aφ

ACA 2Σi

A¬φ ACA 2Σi∪O′
i

BA
Aφ

UCA 2Σi∪O′
i
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Aφ

UCA 2Σi

Add
AφMiyano-

Hayashi
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Figure 2 Overview of the construction of a universal co-Büchi automaton Add
Aφ

recognizing
delay-dominant strategies for the alternating co-Büchi automaton Aφ with L(Aφ) = L(φ). The
lower parts of the boxes list the automaton type (alternating or universal) and the alphabet.

encoding delay-dominance, i.e., with an automaton Add
Aφ

such that its runs induced by the
computations of a delay-dominant strategy on all input sequences visits only finitely many
rejecting states. This idea is similar to the approach for synthesizing remorsefree dominant
strategies [10, 16]. The automaton for recognizing delay-dominant strategies, however, differs
inherently from the one for recognizing remorsefree dominant strategies.

The automaton construction consists of several steps. An overview is given in Figure 2.
Since delay-dominance is not defined on the LTL specification φ itself but on an equivalent
alternating co-Büchi automaton, we first translate φ into an alternating co-Büchi automa-
ton Aφ with L(Aφ) = L(φ). For this, we utilize well-known algorithms for translating LTL
formulas into equivalent alternating Büchi automata as well as the duality of the Büchi and
co-Büchi acceptance condition and of nondeterministic and universal branching. More details
on the translation of LTL formulas into alternating co-Büchi automata are provided in [19].
Similarly, we construct an alternating co-Büchi automaton A¬φ with L(A¬φ) = L(¬φ)
from ¬φ. The centerpiece of the construction is an alternating co-Büchi automaton BA

Aφ

constructed from Aφ and A¬φ that recognizes whether t ⊴Aφ
γ s holds for Aφ, input sequence

γ ∈ (2Ii)ω and strategies s and t for process pi. The alternating automaton BA
Aφ

is then
translated into an equivalent universal co-Büchi automaton BU

Aφ
, e.g., with the Miyano-

Hayashi algorithm [30]. Lastly, we translate BU
Aφ

into a universal co-Büchi automaton that
accounts for requiring a strategy s to delay-dominate all other strategies t and not only a
particular one utilizing universal projection. In the remainder of this section, we describe all
steps of the construction in detail and prove their correctness.

5.1 Construction of the ACA BA
Aφ

From the two ACAs Aφ and A¬φ, we construct an alternating co-Büchi automaton BA
Aφ

that recognizes whether t ⊴Aφ
γ s holds for Aφ, input sequence γ ∈ (2Ii)ω and strategies

s and t for process pi. The construction relies on the observation that t ⊴Aφ
γ s holds if,

and only if, either (i) comp(t, γ) ̸|= φ holds or (ii) we have t ⊴Aφ
γ s and every initial play

of the delay-dominance game that is consistent with the winning strategy of Duplicator
visits only finitely many rejecting dominant states. The proof of this observation is provided
in [19]. Therefore, the automaton BA

Aφ
consists of two parts, one accounting for (i) and

one accounting for (ii), and guesses nondeterministically in the initial state which part is
entered. The ACA A¬φ with L(A¬φ) = L(¬φ) accounts for (i). For (ii), we intuitively
build the product of two copies of the ACA Aφ with L(Aφ) = L(φ), one for each of the
considered process strategies s and t. Note that similar to the change of control for t in
the delay-dominance game, we consider the dual transition function of Aφ, i.e., the one
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where conjunctions and disjunctions are swapped, for the copy of Aφ for t. We keep track of
whether we encountered a situation in which a rejecting state was visited for s while it was
not for t. This allows for defining the set of rejecting states.

Note that we need to allow for differentiating valuations of output variables computed
by s and t on the same input sequence. Therefore, we extend the alphabet of BA

Aφ
: in

addition to the set Σi of variables of process pi, which contains input variables Ii and output
variables Oi, we consider the set O′

i := {o′ | o ∈ Oi} of primed output variables of pi, where
every output variable is marked with a prime to obtain a fresh symbol. The set Σ′

i of primed
variables of pi is then given by Σ′

i := Ii ∪ O′
i. Intuitively, the output variables Oi depict

the behavior of the delay-dominant strategy s, while the primed output variables O′
i depict

the behavior of the alternative t. The alphabet of BA
Aφ

is then given by 2Σi∪O′
i . This is

equivalent to 2Σi∪Σ′
i since the input variables are never primed to ensure that we consider the

same input sequence for both strategies. In the following, we use the functions pr : Σi → Σ′
i

and unpr : Σ′
i → Σi to switch between primed variables and normal ones: given a valuation

a ∈ Σi of variables, pr(a) replaces every output variable o ∈ Oi occurring in a with its
primed version o′. For a valuation a ∈ Σ′

i, unpr(a) replaces every primed output variable
o′ ∈ O′

i occurring in a with its normal unprimed version o. We extend pr and unpr to finite
and infinite sequences as usual. The ACA BA

Aφ
is then constructed as follows:

▶ Definition 9. Let φ be an LTL formula over alphabet 2Σi . Let Aφ = (Q, q0, δ, F ) be an
ACA with L(φ) = L(Aφ). Let A¬φ = (Qc, qc0, δc, F c) be an ACA with L(¬φ) = L(A¬φ). We
construct the ACA BA

Aφ
= (QA, QA

0 , δ
A, FA) with alphabet 2Σi∪O′

i as follows.
QA := (Q×Q× {⊤,⊥}) ∪Qc

QA
0 := (q0, q0,⊤)

FA := (Q×Q× {⊥}) ∪ F c

δA : ((Q×Q× {⊤,⊥}) ∪Qc) × 2Σi∪O′
i → (Q×Q× {⊤,⊥}) ∪Qc with

δA(qc, ι̃) := δc(qc, ι′) for qc ∈ Qc

δA((q0, q0,⊤), ι̃) := δc(q0, ι
′) ∨

∧
c∈δ(q0,ι′)

∨
c′∈δ(q0,ι)

∧
q′∈c′

∨
p′∈c

ϑ(p′, q′,⊤)

δA((p, q,m), ι̃) :=
∧

c∈δ(p,ι′)

∨
c′∈δ(q,ι)

∧
q′∈c′

∨
p′∈c

ϑ(p′, q′,m)

where ι := ι̃ ∩ Σi, ι′ := unpr(ι̃ ∩ Σ′
i), and ϑ : (Q×Q× {⊤,⊥}) → Q×Q× {⊤,⊥} with

ϑ(p, q,m) :=


(p, q,⊥) if p ̸∈ F , q ∈ F , and m = ⊤
(p, q,⊥) if p ̸∈ F and m = ⊥
(p, q,⊤) otherwise

Note that BA
Aφ

indeed consists of two parts: the one defined by states of the form (p, q,m),
and the one defined by the states of A¬φ. By definition of δA, these parts are only connected
in the initial state of BA

Aφ
, where a nondeterministic transition to the respective successors

in both parts ensures that choosing nondeterministically whether (i) or (ii) will be satisfied
is possible. For states of the form (p, q,m), the mark m ∈ {⊤,⊥} determines whether there
are pending visits to rejecting states in the copy of Aφ for the dominant strategy, i.e., the
second component q of (p, q,m). A pending visit to a rejecting state is one that is not yet
matched by a visit to a rejecting state in the copy of Aφ for the alternative strategy. Thus, ϑ
defines that if a visit to a rejecting dominant state, that is not immediately matched with
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a rejecting alternative state, is encountered, the mark is set to ⊥. As long as no rejecting
alternative state is visited, the mark stays set to ⊥. If a matching rejecting alternative state
occurs, however, the mark is reset to ⊤. States of BA

Aφ
marked with ⊥ are then defined to

be rejecting states, ensuring that a visit to a rejecting dominant state is not pending forever.
The ACA BA

Aφ
constructed from ACAs Aφ and A¬φ according to Definition 9 is sound

and complete in the sense that it recognizes whether or not a strategy s delay-dominates
another strategy t on an input sequence γ ∈ (2Ii)ω. That is, BA

Aφ
accepts the infinite word

comp(s, γ)∪pr(comp(t, γ)∩Oi) if, and only if, t ⊴Aφ
γ s holds for Aφ. The main idea is that a

run tree of BA
Aφ

can be translated into a strategy for Duplicator in the delay-dominance game
and vice versa since, by construction, both define the existential choices in Aφ for s and the
universal choices in Aφ for t. Thus, for a run tree of BA

Aφ
whose branches all visit only finitely

many rejecting states, there exists a strategy for Duplicator in the delay-dominance game
that ensures that for all consistent plays either comp(t, γ) ̸|= φ holds or, by construction of ϑ
and δA, every rejecting dominant state is matched by a rejecting alternative state eventually.
Similarly, a winning strategy for Duplicator can be translated into a run tree r of BA

Aφ
. If

comp(t, γ) |= φ holds, then r visits only finitely many rejecting states since only finitely many
rejecting dominant states are visited. If comp(t, γ) ̸|= φ, then there exists a run tree, namely
one entering the part of BA

Aφ
that coincides with A¬φ, whose branches all visit only finitely

many rejecting states. The proof is given in [19].

▶ Lemma 10. Let φ be an LTL formula. Let Aφ and A¬φ be ACAs with L(φ) = L(Aφ)
and L(¬φ) = L(A¬φ). Let BA

Aφ
be the ACA constructed from Aφ and A¬φ according to

Definition 9. Let s and t be strategies for process pi. Let γ ∈ (2Ii)ω. Let σ ∈ (2Σi∪O′
i)ω with

σ := comp(s, γ) ∪ pr(comp(t, γ) ∩Oi). Then, BA
Aφ

accepts σ if, and only if, t ⊴Aφ
γ s holds.

Thus, BA
Aφ

determines whether or not a strategy s delay-dominates a strategy t. How-
ever, BA

Aφ
cannot directly be used for synthesizing delay-dominant strategies since (i) BA

Aφ
is

an alternating automaton, while we require a universal automaton for bounded synthesis,
and (ii) BA

Aφ
considers one particular alternative strategy t. For recognizing delay-dominance,

we need to consider all alternative strategies, though. Thus, we describe in the remainder of
this section how BA

Aφ
can be translated into a UCA for bounded synthesis.

5.2 Construction of the UCA Add
Aφ

Next, we translate the ACA BA
Aφ

constructed in the previous subsection to a UCA Add
Aφ

that can be used for synthesizing delay-dominant strategies. As outlined before, we need
to (i) translate BA

Aφ
into a UCA, and (ii) ensure that the automaton considers all alternative

strategies instead of a particular one. Thus, we proceed in two steps. First, we translate BA
Aφ

into an equivalent UCA BU
Aφ

. We utilize the Miyano-Hayashi algorithm [30] for translating
ABAs into NBAs. Since we are considering co-Büchi automata instead of Büchi automata,
we further make use of the duality of nondeterministic and universal branching and the Büchi
and co-Büchi acceptance conditions. The translation introduces an exponential blow-up in
the number of states. For the full construction, we refer to [19].

▶ Lemma 11. Let A be an alternating co-Büchi automaton with m states. There exists a
universal co-Büchi automaton B with O(2m) states such that L(A) = L(B) holds.

Next, we construct the desired universal co-Büchi automaton Add
Aφ

that recognizes delay-
dominant strategies for Aφ. For this sake, we need to adapt BU

Aφ
to consider all alternative
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strategies instead of a particular one. Similar to the automaton construction for synthesizing
remorsefree dominant strategies [10, 16], we utilize universal projection:

▶ Definition 12 (Universal Projection). Let A = (Q,Q0, δ, F ) be a UCA over alphabet 2Σ and
let X ⊂ Σ. The universal projection of A to X is the UCA πX(A) = (Q,Q0, πX(δ), F ) over
alphabet 2X , where πX(δ) = {(q, a, q′) ∈ Q× 2X ×Q | ∃b ∈ 2Σ\X. (q, a ∪ b, q′) ∈ δ}.

The projected automaton πX(A) for a UCA A over 2Σ and a set X ⊂ Σ contains the
transitions of A for all possible valuations of the variables in Σ \X. Hence, for a sequence
σ ∈ (2X)ω, all runs of A on sequences extending σ with some valuation of the variables
in Σ \X are also runs of πX(A). Since both A and πX(A) are universal automata, πX(A)
thus accepts a sequence σ ∈ (2X)ω if, and only if, A accepts all sequences extending σ with
some valuation of the variables in Σ \X. The proof is given in [19].

▶ Lemma 13. Let A be a UCA over alphabet 2Σ and let X ⊂ Σ. Let σ ∈ (2X)ω. Then, πX(A)
accepts σ if, and only if A accepts all σ′ ∈ (2Σ)ω with σ′ ∩X = σ.

We utilize this property to obtain a universal co-Büchi automaton Add
Aφ

from BU
Aφ

that
considers all possible alternative strategies instead of only a particular one: we project to
the unprimed variables of pi, i.e., to Σi, thereby quantifying universally over the alternative
strategies. We thus obtain a UCA that recognizes delay-dominant strategies as follows:

▶ Definition 14 (Delay-Dominance Automaton). Let φ be an LTL formula. Let Aφ, A¬φ
be ACAs with L(Aφ) = L(φ), L(A¬φ) = L(¬φ). Let BA

Aφ
be the ACA constructed from Aφ

and A¬φ according to Definition 9. Let BU
Aφ

be a UCA with L(BA
Aφ

) = L(BU
Aφ

). The delay-
dominance universal co-Büchi automaton Add

Aφ
for Aφ is then given by Add

Aφ
:= πΣi(BU

Aφ
).

Utilizing the previous results, we can now show soundness and completeness of the
delay-dominance universal co-Büchi automaton Add

Aφ
: from Lemma 10, we know that BA

Aφ

recognizes whether or not a strategy s for a process pi delay-dominates another strategy t
for pi for Aφ on an input sequence γ ∈ (2Ii)ω. By Lemma 11, we have L(BU

Aφ
) = L(BA

Aφ
).

With the definition of the delay-dominance UCA, namely Add
Aφ

:= πΣi
(BU

Aφ
), as well as with

Lemma 13, it then follows that Add
Aφ

accepts comp(s, γ) for all input sequences γ ∈ (2Ii)ω if,
and only if, s is delay-dominant for Aφ. For the formal proof, we refer to [19].

▶ Theorem 15 (Soundness and Completeness). Let φ be an LTL formula and let Aφ be an
ACA with L(φ) = L(Aφ). Let Add

Aφ
be the delay-dominance UCA for Aφ as constructed

in Definition 14. Let s be a strategy for process pi. Then Add
Aφ

accepts comp(s, γ) for all
γ ∈ (2Ii)ω, if, and only if s is delay-dominant for Aφ.

Furthermore, Add
Aφ

is of convenient size: for an LTL formula φ, there is an ACA Aφ with
L(Aφ) = L(φ) such that Add

Aφ
constructed from Aφ is of exponential size in the squared

length of the formula φ. This follows from Lemma 11 and from the facts that (i) Aφ and A¬φ
both are of linear size in the length of the formula, and (ii) universal projection preserves
the automaton size. The proof is given in [19].

▶ Lemma 16. Let φ be an LTL formula and let s be a strategy for process pi. There is an
ACA Aφ of size O(|φ|) with L(Aφ) = L(φ) and a UCA Add

Aφ
of size O(2|φ|2) such that Add

Aφ

accepts comp(s, γ) for all γ ∈ (2Ii)ω, if, and only if, s is delay-dominant for Aφ.

Since the automaton construction described in this section is sound and complete, the
UCA Add

Aφ
can be used for synthesizing delay-dominant strategies. In fact, it immediately
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enables utilizing existing bounded synthesis tools for the synthesis of delay-dominant strategies
by replacing the UCA recognizing winning strategies with Add

Aφ
.

Note that, similar as for the UCA recognizing remorsefree dominance [10], Add
Aφ

can
be translated into a nondeterministic parity tree automaton with an exponential number
of colors and a doubly-exponential number of states in the squared length of the formula.
Synthesizing delay-dominant strategies thus reduces to checking tree automata emptiness
and, if the automaton is non-empty, to extracting a Moore machine representing a process
strategy from an accepted tree. This can be done in exponential time in the number of colors
and in polynomial time in the number of states [25]. With Lemma 16, a doubly-exponential
complexity for synthesizing delay-dominant strategies thus follows:

▶ Theorem 17. Let φ be an LTL formula and let Aφ be an ACA with L(Aφ) = L(φ). If
there exists a delay-dominant strategy for Aφ, then it can be computed in 2EXPTIME.

It is well-known that synthesizing winning strategies is 2EXPTIME-complete [32]. Since
there exists a UCA of exponential size in the length of the formula which recognizes remorsefree
dominant strategies, dominant strategies can also be synthesized in 2EXPTIME [10]. Synthe-
sizing delay-dominant strategies rather than winning or remorsefree dominant ones thus does
not introduce any overhead, while it allows for a simple compositional synthesis approach for
distributed systems for both safety and liveness specifications.

6 Compositional Synthesis with Delay-Dominant Strategies

In this section, we describe a compositional synthesis approach that utilizes delay-dominant
strategies. We extend the algorithm described in [10] from safety specifications to general
properties by synthesizing delay-dominant instead of remorsefree dominant ones. Hence, given
a distributed architecture and an LTL specification φ, the compositional synthesis algorithm
proceeds in four steps. First, φ is translated into an equivalent ACA Aφ using standard
algorithms. Second, for each system process pi, we construct the UCA Add

Aφ
that recognizes

delay-dominant strategies for φ and pi as described in Section 5. Note that although the
initial automaton Aφ is the same for every process pi, the UCAs recognizing delay-dominant
strategies differ: since the processes have different sets of output variables, already the
alphabets of the intermediate ACA BA

Aφ
differ for different processes. Third, a delay-

dominant strategy si is synthesized for each process pi from the respective UCA Add
Aφ

with
bounded synthesis. Lastly, the strategies s1, . . . , sn are composed according to the definition
of the parallel composition of Moore machines (see Section 2) into a single strategy s for the
whole distributed system. By Theorem 7, the composed strategy s is delay-dominant for Aφ.
If φ is realizable, then, by Lemma 6, s is guaranteed to be winning for φ.

Note that even for realizable LTL formulas φ, there does not necessarily exist a delay-
dominant strategy since delay-dominance is not solely defined on the satisfaction of φ but on
the structure of an equivalent ACA Aφ. In certain cases, Aφ can thus “punish” the delay-
dominant strategy by introducing rejecting states at clever positions that do not influence
acceptance but delay-dominance, preventing the existence of a delay-dominant strategy.
However, we experienced that ACAs constructed with standard algorithms from LTL formulas
do not punish delay-dominant strategies since such ACAs thoroughly follow the structure of
the LTL formula and thus oftentimes do not contain unnecessary rejecting states. Simple
optimizations such as removing states from the ACA that do not lie in a cycle from the set
of rejecting states allow for delay-dominant strategies in even further cases while not altering
the language of the automaton. Thus, we experienced that if an LTL formula φ allows for a

FSTTCS 2022
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remorsefree dominant strategy, then the ACA constructed from φ with standard algorithms
allows for an delay-dominant strategy in many cases as well. Therefore, the compositional
synthesis algorithm presented in this section is indeed applicable for many LTL formulas.

7 Conclusion

We have presented a new winning condition for process strategies, delay-dominance, that
allows a strategy to violate a given specification in certain situations. In contrast to the
classical notion of winning, delay-dominance can thus be used for individually synthesizing
strategies for the processes in a distributed system in many cases, therefore enabling a simple
compositional synthesis approach. Delay-dominance builds upon remorsefree dominance,
where a strategy is allowed to violate the specification as long as no other strategy would have
satisfied it in the same situation. However, remorsefree dominance is only compositional for
safety properties. For liveness properties, the parallel composition of dominant strategies is
not necessarily dominant. This restricts the use of dominance-based compositional synthesis
algorithms to safety specifications, which are often not expressive enough. Delay-dominance,
in contrast, is specifically designed to be compositional for liveness properties as well. We have
introduced a game-based definition of delay-dominance and have proven compositionality
for both safety and liveness specifications. Moreover, every delay-dominant strategy is also
remorsefree dominant, and, for realizable system specifications, the parallel composition
of delay-dominant strategies for all system processes is guaranteed to be winning for the
whole system. Hence, delay-dominance is a suitable notion for compositional synthesis
algorithms. We have introduced an automaton construction for recognizing delay-dominant
strategies. The resulting universal co-Büchi automaton can immediately be used to synthesize
delay-dominant strategies utilizing existing bounded synthesis approaches. It is of single-
exponential size in the squared length of the specification. Thus, synthesizing delay-dominant
strategies is, as for winning and remorsefree ones, in 2EXPTIME.
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