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ABSTRACT

The increasing quantity of multi-omic data, such as
methylomic and transcriptomic profiles collected on
the same specimen or even on the same cell, pro-
vides a unique opportunity to explore the complex in-
teractions that define cell phenotype and govern cel-
lular responses to perturbations. We propose a net-
work approach based on Gaussian Graphical Mod-
els (GGMs) that facilitates the joint analysis of paired
omics data. This method, called DRAGON (Determin-
ing Regulatory Associations using Graphical mod-
els on multi-Omic Networks), calibrates its parame-
ters to achieve an optimal trade-off between the net-
work’s complexity and estimation accuracy, while ex-
plicitly accounting for the characteristics of each of
the assessed omics ‘layers.’ In simulation studies, we
show that DRAGON adapts to edge density and fea-
ture size differences between omics layers, improv-
ing model inference and edge recovery compared to
state-of-the-art methods. We further demonstrate in
an analysis of joint transcriptome - methylome data
from TCGA breast cancer specimens that DRAGON
can identify key molecular mechanisms such as gene
regulation via promoter methylation. In particular, we
identify Transcription Factor AP-2 Beta (TFAP2B) as a
potential multi-omic biomarker for basal-type breast
cancer. DRAGON is available as open-source code in

Python through the Network Zoo package (netZooPy
v0.8; netzoo.github.io).

INTRODUCTION

Many biological systems can be visualized using networks,
where biologically relevant elements are represented as
nodes and relationships between those elements are rep-
resented as edges. Examples include gene regulatory net-
works, which represent the regulation of genes by tran-
scription factors, and protein–protein interaction networks,
which capture physical interactions between proteins (1,2).
Network models can be based on prior knowledge (3), in-
ferred from data (4), or combinations thereof (5). Here,
we focus on data-driven network inference from high-
throughput multi-omic data. In this context, co-expression
networks (6), which are based on a measure of correlation
such as Pearson’s correlation, are often used to capture po-
tential associations between biomolecules that may be co-
ordinately altered in specific biological states. However, a
major drawback of such networks is that they do not dis-
tinguish direct from indirect effects (7). For example, con-
sider a situation where a transcription factor A regulates
the expression of two genes, B and C. In this case, a cor-
relation network will contain an edge between gene B and
gene C because correlation indicates a relation between the
two genes. However, that relationship is only a consequence
of their mutual relationship with the transcription factor A
and thus the observed edge in the correlation network rep-
resents an indirect association. The problem of such erro-
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neous correlations was discussed by Pearson and Yule in
the early twentieth century, where the term ‘spurious cor-
relation’ was introduced to distinguish indirect from direct
relationships; a historical review of this question has been
summarized by Aldrich and colleagues (8).

Several approaches have attempted to address this issue
(9–12), of which Gaussian graphical models (GGMs; also
known as partial correlation networks) (11,12) are among
the most widely used methods. In a GGM, edges represent
partial correlations. Intuitively, the partial correlation be-
tween two variables can be considered as the correlation
that takes into account the effect of all remaining variables
in the data set. Thus, it can distinguish a direct relationship
from one that is mediated by one or more other variables.
GGMs outperform simple correlation networks (13) and
were consistently among the best in comparison to other
methods in finding meaningful associations (14).

A single type of omics data generally only provides part of
the information necessary to distinguish between direct and
incidental relationships. For example, we know that gene
regulation is a process that involves multiple layers of con-
trol, including transcription factor binding, epigenetic reg-
ulation, and chromatin structure. However, many analyses
incorporate only gene expression data and not other regu-
latory data. Incorporating data from multiple omics could
help prevent possibly erroneous conclusions based on the
concept of spurious correlations introduced above.

New technologies are making it possible to generate mul-
tiple layers of omics data from the same samples. For exam-
ple, The Cancer Genome Atlas (TCGA) provides data on
RNA expression, methylation levels, and copy number vari-
ations for many individual tumor samples. More recently,
single cell multi-omic data have become available as it has
become possible to assay different omics data types from in-
dividual cells; for example, Cao et al. measured RNA and
chromatin accessibility in single cells (15). Such multifac-
torial data will allow us to better disentangle interactions
between biological variables and distinguish genuine from
spurious associations.

Most omics data are high dimensional, meaning that
the number of measured variables p typically exceeds the
number of samples n (or both are of the same order of
magnitude), which presents challenges for network infer-
ence (7). Several remedies have been proposed based on
regularization techniques from high-dimensional statistics
(11,12,16,17). Multi-omic network inference is complicated
by a number of factors including the larger numbers of vari-
ables, different numbers of variables for each omics layer,
variable noise levels within and between layers, and differ-
ent edge densities in each data type.

In this work, we propose DRAGON, a machine learn-
ing method to estimate GGMs using two omics layers si-
multaneously. DRAGON calibrates omic-specific hyper-
parameters for each omic layer to achieve an optimal trade-
off between model complexity and estimation accuracy
while explicitly taking into account the unique character-
istics of each omics layer.

We show in simulations that DRAGON adapts to dif-
ferences in edge densities and feature sizes of the included
omics layers. Finally, we use DRAGON to analyze joint
transcriptome–methylome data from TCGA breast cancer

specimens. The latter analysis shows that DRAGON can
identify potential regulatory molecular mechanisms, such
as the association between promoter methylation and gene
expression. We further show that DRAGON can identify
multi-omic biomarkers, as exemplified by the combination
of promoter methylation and gene-expression of TFAP2B
(Transcription Factor AP-2 Beta), which is strongly associ-
ated with the basal-like breast cancer subtype.

MATERIALS AND METHODS

The Gaussian Graphical Model

Let X be a n × p data matrix of n observations (samples) and
p features (such as genes, methylated sites, or proteins). As-
sume that the observations x1, x2, . . . , xn ∈ R

p are indepen-
dent and identically distributed according to a multivariate
normal, N(�, �), where � is a positive definite covariance
matrix. Further, � = (�ij) = �−1 is the inverse covariance
matrix (also called precision matrix) where vanishing entries
θi j = 0 correspond to conditional independencies between
variables i and j. A Gaussian Graphical Model (GGM) is
a conditional dependence graph in which nodes represent
variables and edges connect conditionally dependent pairs
of variables (18,19).

Let Sn = 1
n

∑n
i=1(xi − μ̂)(xi − μ̂)T be the sample covari-

ance matrix, where μ̂ = 1
n

∑n
i=1 xi is the sample mean.

Then, the corresponding log likelihood takes the form

l(�) = n
2

(log |�| − Tr (Sn�)) . (1)

Covariance shrinkage

The maximum likelihood estimate (MLE) of Equation (1)
yields �̂ = S−1

n . However, if the number of features p ex-
ceeds the number of independent observations n, then Sn is
singular and cannot be inverted. Even if p is smaller than n
but of the same order of magnitude, �̂ has a high variance.
One way this issue is often addressed is by adding regular-
ization terms to Equation (1), as for example proposed in
(17). Another approach is that of Schäfer et al. (12), who
bias the covariance matrix towards a target matrix that is
typically full-rank. Such ‘covariance shrinkage’ is based on
the biased estimator

�̂ = ((1 − λ)S + λT)−1
, (2)

where S = 1
n−1

∑n
i=1(xi − μ̂)(xi − μ̂)T = n

n−1Sn is the unbi-
ased empirical covariance, � ∈ [0, 1] is a regularization pa-
rameter that can be estimated using the Lemma of Ledoit
and Wolf (20) and T is the target matrix. Here, different
choices for T have been proposed, such as the identity, T
= Ip, and the diagonal of S, T = diag(s11, s22, . . . , spp). The
idea behind Equation (2) is to replace the unbiased empir-
ical covariance S with a linear combination of S and the
target matrix T representing conditional independence. Be-
cause T is full-rank, the singularity of S is mitigated in
this sum. Consequently, a biased precision matrix estima-
tor can be obtained from inverting the shrunken covariance
matrix. Throughout this article, we use the target matrix
T = diag(s11, s22, . . . , spp) following the arguments in (12).
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DRAGON

Generalized covariance shrinkage. In DRAGON, we ex-
tend covariance shrinkage to account for two different
omics layers by introducing layer-specific regularization
terms. Let X(1) be a n × p1 data matrix that represents
the first omics layer and let X(2) be a n × p2 data matrix
for the second layer, where p1 and p2 are the number of
variables from omics layers 1 and 2. We further assume
paired data, meaning that measurements (rows) x(1)

i and
x(2)

i correspond to the same sample i but differ in their fea-
tures. We define the empirical sample covariances S(k,l) =

1
n−1

∑n
i=1(x(k)

i − μ̂(k))(x(l)
i − μ̂(l))T with the empirical mean

vector μ̂(k) = 1
n

∑n
i=1 x(k)

i for k, l ∈ {1, 2}. Now, we can gen-
eralize the shrinkage estimator to

�̂ =
((

(1 − λ1)S(1,1)
√

1 − λ1
√

1 − λ2S(1,2)√
1 − λ1

√
1 − λ2S(2,1) (1 − λ2)S(2,2)

)

+
(

λ1T(1) 0
0 λ2T(2)

) )−1

, (3)

with �k ∈ [0, 1] and T(k) = diag(s(k)
11 , s(k)

22 , . . . , s(k)
pk pk), where

S(k,k) = (s(k)
i j ). For illustration purposes, we first consider the

limit �2 = 1. Here, Equation (3) becomes

�̂ =
((

(1 − λ1)S(1,1) 0
0 0

)
+

(
λ1T(1) 0

0 T(2)

))−1

=
(

�(1,1) 0
0

(
T(2)

)−1

)
, (4)

where �(1, 1) = ((1 − �1)S(1, 1) + �1T(1))−1 is the shrinkage es-
timator of the precision matrix using only the features with
k = 1. Thus, if �2 = 1, technology 1 decouples from tech-
nology 2.

Next, consider the limit �1 = �2 = �. Then Equation (3)
becomes

�̂ =
(

(1 − λ)
(

S(1,1) S(1,2)

S(2,1) S(2,2)

)
+ λ

(
T(1) 0

0 T(2)

))−1

= ((1 − λ)S + λT)−1
. (5)

Thus, we naively treat both omics layers as if they were gen-
erated using the same technology. These examples show that
DRAGON naturally incorporates two limits that bound the
optimal solution: (i) GGMs estimated for the two omics lay-
ers separately and (ii) a GGM treating both layers such as
if they belong to the same layer.

Generalization of the lemma of Ledoit and Wolf. The
penalty parameters �1 and �2 can be estimated using cross-
validation or resampling; however, such approaches are
computationally expensive. Alternatively, one can use an
analytical estimate following the arguments of Ledoit &
Wolf (20). There, the shrinkage parameter � was derived by
minimizing

R = E
[||�̂ − �||2F

]
(6)

with respect to �, where �̂ = (1 − λ)S + λT and � is the
true, underlying covariance. This is possible since bias(S) =
0 makes Equation (6) independent of �.

Here, we extend this approach to the shrinkage formula
(3) and estimate �1 and �2 by minimizing

E
[||�̂ − �||2F

] =
2∑

k,l=1

E
[||�̂(k,l) − �(k,l)||2F

]
(7)

with respect to �1 and �2, where || · ||F is the Frobenius
norm. Following the arguments in (12) (see Suppl. Sec-
tion 1), we obtain

R = E
[||�̂ − �||2F

]
= const. + λ1T(1)

1 + λ2T(2)
1 + λ2

1T(1)
2 + λ2

2T(2)
2

+λ1λ2T3 +
√

1 − λ1

√
1 − λ2T4 (8)

where the constant term is independent of �1 and �2, and

T(k)
1 = −2

⎛
⎝∑

i �= j

var(s(k)
i j ) +

∑
i, j

E((s(1,2)
i j )2)

⎞
⎠ ,

T(k)
2 =

∑
i �= j

E((s(k)
i j )2) ,

T3 = 2
∑
i, j

E((s(1,2)
i j )2) ,

T4 = 4
∑
i, j

(
var(s(1,2)

i j ) − E((s(1,2)
i j )2)

)

Equation (8) can be easily minimized with respect to �1 ∈
[0, 1] and �2 ∈ [0, 1], where the moments can be estimated
following (12).

Hypotheses testing. An estimate for the partial correlation
between variable i and j can be directly obtained from �̂ =
(θ̂i j ) by calculating

ρ̂i j = − θ̂i j√
θ̂i i θ̂ j j

. (9)

As a consequence of covariance shrinkage, the partial cor-
relation matrix P̂ = (ρ̂i j ) is also shrunken (21). Bernal et al.
(2019) developed a null-model probability density that nat-
urally accounts for this shrinkage effect (21):

f λ
0 (ρ) =

(
(1 − λ)2 − ρ2

)(κ−3)/2

Beta( 1
2 , κ−1

2 )(1 − λ)κ−2
, (10)

where the parameter κ is given by n − 1 − (p − 2) for n � p,
or can be fitted by MLE for the ill-posed case p > n or for
p ≈ n (21). For an intuitive derivation of Equation (10) see
(21). Let

�̂ =
(

�̂(1,1) �̂(1,2)

�̂(2,1) �̂(2,2)

)
and P̂ =

(
P̂(1,1) P̂(1,2)

P̂(2,1) P̂(2,2)

)
, (11)
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where �̂(1,1) (P̂(1,1)) has dimension p1 × p1 and �̂(2,2) (P̂(2,2))
dimension p2 × p2. Then, DRAGON assigns significance
levels to partial correlations using the following steps:

(i) Simulate data under the null hypotheses (H0: � = 0) for
given sample size n, and estimate corresponding par-
tial correlations using DRAGON with �1 and �2 given
from the original data.

(ii) Fit κ using MLE of Equation (10) for P(1, 1), P(1, 2) and
P(2, 2), separately.

(iii) Use density Equation (10) with κ determined in (ii) to
assign significance levels to P̂(1,1), P̂(1,2), P̂(2,2), respec-
tively.

(iv) Adjust significance levels in layer (1,1), (1,2) and (2,2)
for multiple testing, separately, using the method of
Benjamini and Hochberg (22). Note that if we control
the false discovery rate (FDR) at level � in each layer,
we also control the overall FDR at level � across all
layers. However, to provide good estimates, p1 and p2
must be assumed to be sufficiently large.

For n � p, κ is given by κ = n − 1 − (p − 2) and (i–ii) are
not necessary.

Performance comparisons

To benchmark the performance of DRAGON, we selected
five methods for GGM estimation, each of which has dis-
tinct advantages and disadvantages (7), based on the re-
quirement that they are available through a user-friendly
software, provide estimates for p-values without computa-
tionally expensive resampling, and have been published in
peer-reviewed journals.

• GGM: we implemented an omics-layer agnostic
DRAGON model, which we simply denote as Gaussian
Graphical Model (GGM) in the following. Note, in
contrast to the GeneNet implementation described
below (23), this approach uses the exact null distribution
for shrunken partial correlations as suggested by (21).

• GeneNet: the R-package ‘GeneNet’ (23) uses covariance
shrinkage and provides estimates for adjusted p-values (q-
values) via an empirical Bayes approach (24). We used the
standard settings for all comparisons.

• B-NW-SL: the bivariate nodewise scaled lasso was sug-
gested by (25) and uses a regression approach to obtain
asymptotically efficient estimates of the precision matrix
under a sparseness condition relative to the sample size.
We used the implementation provided in the ‘SILGGM’
R-package with standard settings.

• D-S-NW-SL: the de-sparsified nodewise scaled lasso (26)
uses a modification of the nodewise lasso regression ap-
proach suggested by (16) with a de-sparsified estimator.
We used the ‘SILGGM’ R-package with standard set-
tings.

• D-S-GL: the de-sparsified graphical lasso was proposed
by (27) and is based on a de-sparsified modification of the
graphical lasso proposed by (17). We used the ‘SILGGM’
R-package with standard settings.

Figure 1. Partial correlation versus Pearson’s correlation on artificial data.
The left figure shows from top to bottom: (A) the ground truth (directed),
(B) the inferred correlation network (undirected), and (C) the inferred par-
tial correlation network (undirected). Direct relationships are shown in
black. Pearson’s correlation erroneously infers a relationship between A
and B (figure B, red edge). Partial correlation correctly removes this re-
lationship (figure C). The right figure (figure D) shows the correspond-
ing data as scatterplots (upper half of the matrix) and histograms (diag-
onal). Corresponding Pearson’s correlation, r, and partial correlations, � ,
are given in the lower triangular matrix. Significance levels P < 0.001 are
marked by three asterisks.

For all methods except GeneNet, which provides ad-
justed p-values (q-values), we adjusted p-values using the
procedure of Benjamini and Hochberg (22).

RESULTS AND DISCUSSION

Simulation studies

We begin by briefly reviewing the concept of partial cor-
relations and their relevance for multi-omics data analy-
sis. Subsequently, we use four different simulation studies
to show a comprehensive performance comparison between
DRAGON and competing methods for GGM estimation.

Multiple layers of interacting regulatory processes are in-
volved in determining a cell’s state. By considering molec-
ular variables of a single omic layer, such as the transcrip-
tome, we can miss relevant information which might lead to
erroneous conclusions about causal associations. To illus-
trate this effect, consider a scenario where the transcription
of two genes, A and B, is regulated via the same molecular
(regulator) ‘variable’. The regulator might belong to another
omics layer representing a different biological factor such
as the chromatin state in the DNA region of A and B. We
generated artificial data representing such a process for n =
100 observations (Supplementary Section 2, Figure 1D), as-
suming a linear relationship between the observed level of
the regulator and that of gene A, and between the regulator
and gene B. Figure 1 B shows the corresponding correlation
network and Figure 1D shows the estimated Pearson cor-
relations, r, showing a high correlation between A and B (in
red, r ∼ 0.91 and p < 0.001). This correlation is statistically
significant although gene A and gene B are not directly re-
lated – rather, they are only co-regulated by the regulator.
In contrast, the partial correlation between A and B takes
into account the effect of the regulator, resulting in a non-
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Table 1. Edge densities and edge numbers for simulation studies A, B,
C and D

(k, l) (1,1) (1,2) (2,2)

� Edges � Edges � Edges

A 0.05 248 0.05 2500 0.05 6238
B 0.05 248 0.05 2500 0.005 624
C 0.05 248 0.005 250 0.005 624
D 0.101 500 0.01 500 0.004 500

significant partial correlation of � ∼ 0.02 (Figure 1C, using
standard partial correlation) and a partial correlation net-
work that does not have an edge between A and B (Figure 1
C), better reflecting the ground truth (Figure 1A). Thus, if
the regulator is included in the model, it is statistically pos-
sible to disentangle direct and indirect linear relationships.

In this section, we systematically analyze potential issues
in estimating partial correlations between variables of dif-
ferent omics layers, and compare how different methods,
including DRAGON, are affected by these issues. In our
simulations, we considered both high-dimensional settings
(many molecular variables) as well as models in which there
are different probabilities for direct relationships among
variables within and between different omics layers. Table
1 describes the simulation study design in detail.

We performed four simulation studies, A to D, with fixed
numbers of molecular variables, p1 = 100 and p2 = 500
for omics layers 1 and 2, respectively. Direct relationships
can be simulated by appropriate choice of the entries of the
precision matrices �(k,l) which parameterize the multivari-
ate Gaussian distribution. Different simulation runs corre-
spond to different precision matrices, which were randomly
generated as follows:

1. start with a p-dimensional identity matrix, where p =
p1 + p2,

2. randomly replace a proportion �(k, l) of zeros by values
drawn from a uniform distribution ranging from −1 to
1,

3. replace the diagonal entries θi i by
∑

j |θi j | plus a small
positive value (� = 0.0001),

4. normalize the entries θi j of the precision matrix by√
θi iθ j j .

Each precision matrix was used to sample from a multi-
variate normal with mean vector � = 0 and covariance �−1.
Finally, we added a noise � ∼ N(� = 0, 	 = 0.1) to each en-
try of the data matrix.

DRAGON adapts to the data by dynamically chosen penalty
parameters and improves model inference. DRAGON uses
an analytical estimate of the minimum of R, Equation (6).
Here, we show that this estimate dynamically adapts to sam-
ple and feature size, and to edge densities �(k, l) across a
broad range of simulation settings.

Parameter recovery in Simulation A. In simulation study
A, the two omics layers have equal edge densities �(1, 1) =
�(1, 2) = �(2, 2) = 0.05. Figure 2A and C shows R in de-
pendency of �1 and �2 for the analytical estimate and the
ground truth, respectively, for a fixed sample size of n =

Figure 2. Parameter landscapes for DRAGON. Estimated and true R (up-
per and lower row) in dependency of �1 and �2 in simulation studies A
(left column) and B (right column). Figures A and B show the estimated
R for study A and B, respectively. Figure C and D show the corresponding
ground truth. The red circles indicate the minima for each plot in the �1–
�2 plane, and the green triangles give the minima on the diagonal R values
shown in red, corresponding to the standard GGM.

5000. We observed that estimate and ground truth agree re-
markably well, and that they provide almost identical es-
timates for the position of the minimum of the selected
penalty parameters, (λ̂1, λ̂2). The GGM estimated accord-
ing to Equation (2) using the appended data X = [X(1), X(2)]
corresponds to the diagonal red lines, such that the two data
layers are treated as they would belong to one layer and
a single regularization parameter λ̂1 = λ̂2 = λ̂ is estimated.
We observed that DRAGON correctly estimated (λ̂1, λ̂2) to
be near to the diagonal for this simulation study. Supple-
mentary Figures S1 and S2 confirm this finding for lower
sample sizes, n = 500 and n = 1000, respectively.

Parameter recovery in simulation B. In Simulation B, we
investigated the influence of the edge densities �(k, l) on R.
For this, we reduced the edge density �(2, 2) to �(2, 2) = 0.005.
Again, we observed a remarkable agreement between esti-
mated and true R, shown in Figure 2B and D, respectively,
which is also the case for the estimated minima (λ̂1, λ̂2).
Note, λ̂1 now strongly differs from λ̂2. Since λ2 > λ1, the
second omics data layer is stronger penalized than the first.

Parameter recovery in simulations C and D. We repeated
this analysis for two further simulation studies, C and D,
both of which have unbalanced edge densities with results
shown in Supplementary Figures S3, S4, and S5 for n = 500,
n = 1000, and n = 5000, respectively. Here, we also found
that DRAGON correctly estimates R and that �1 and �2 are
chosen by the algorithm accordingly to minimize R.
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Model inference in simulations A–D. We next analyzed
how the DRAGON regularization scheme, which augments
covariance shrinkage by omics layer-specific regularization
parameters, affects model inference. We repeated simula-
tion studies A to D 20 times for different sample sizes n and
evaluated the log-likelihood on n = 1000 test samples (Sup-
plementary Figure S6). While we recognize that few omics
studies have 1000 or more samples, single-cell experiments
generally assay thousands of cells and large cohort studies
are beginning to develop omics databases that include pop-
ulations of this size or larger.

We found similar results on an absolute scale (Supple-
mentary Figures S6a–d). However, results were clearly in
favor of DRAGON when we evaluated the log-likelihood
difference (Supplementary Figures S6e–h). This measure
has the advantage that it removes variability due to differ-
ent simulation runs. The green line corresponds to the me-
dian log-likelihood difference and the error bands to the
25% and 75% percentiles. Results were slightly in favor of
the GGM for the balanced study A, but in simuations B,
C, and D, DRAGON outperformed the standard GGM as
indicated by positive values for the difference. The great-
est improvements were seen for the unbalanced simulation
B. We can also see that as the sample size n increases with
the number of predictors p remaining fixed, DRAGON and
GGM estimates coincide, as demonstrated by a vanishing
log-likelihood difference.

DRAGON outperforms the state of the art with respect to
edge recovery. Adjusted p-values (q-values) were assigned
as described in the Materials and Methods section and were
used to assess the edge-recovery performance in simula-
tions A to D using receiver operating characteristic (ROC)
curves for DRAGON, GGM, GeneNet, B-NW-SL, D-S-
NW-SL and D-S-GL. Variables were standardized for per-
formance comparisons.

We first compared the results of DRAGON and GGM
inference methods. Figure 3A shows how the area under
the ROC curve (AUC) depends on the number of training
samples n for simulation study A. We saw almost identi-
cal performance for DRAGON (blue) and GGM (red) for
all sample sizes in our simulation, a result consistent with
our previous findings. For simulation studies B, C and D,
the corresponding results are shown in Figure 3B–D and il-
lustrate substantial improvements for DRAGON compared
to GGM. For example, in simulation study B, DRAGON
achieved an AUC for n ≈ 250 samples that is compatible to
that of the GGM for n ≈ 1000 samples. This improved per-
formance of DRAGON is further illustrated by Figure 4 A
to D that shows the respective AUC differences; we found
AUC improvements up to ∼0.13 (study B), ∼0.05 (study
C) and ∼0.11 (study D). In the balanced simulation sce-
nario A where we expect the GGM and DRAGON to have
similar performance, the GGM negligibly outperformed
DRAGON, as shown by small negative values in Figure 4A.
As an alternative performance assessment, we used the av-
erage area under the precision-recall curve (AUC-PR) (Sup-
plementary Figure S7). These results also show the perfor-
mance advantages of DRAGON compared to GGM with
AUC-PR differences up to ∼0.07, ∼0.03, ∼0.08, for studies
B to D, respectively.

Figure 3. Area under the ROC curve (AUC) for edge-recovery perfor-
mance versus sample size n of simulation studies A to D (columns). Each
row compares DRAGON (blue) with GGM (red, A–D), GeneNet (ma-
genta, E–H), B-NW-SL (purple, I–L), D-S-NW-SL (cyan, M–P) and D-S-
GL (orange, Q–T), respectively. The lines correspond to the median AUC
and the bands to the 25% and 75% percentiles of the distribution.

Analogous AUC analyses were performed comparing
DRAGON with GeneNet, B-NW-SL, D-S-NW-SL and D-
S-GL with results shown in Figures 3E–T and 4E–T. Cor-
responding AUC-PR curves and AUC-PR differences are
shown in Supplementary Figures S7 and S8, respectively.
For both AUC and AUC-PR, we found in simulated data
sets A, B and D that DRAGON’s improved estimates are
of the same size (for GeneNet and B-NW-SL) or sub-
stantially larger (for D-S-NW-SL and D-S-GL) than we
found in comparing DRAGON to GGM. In simulation
study C, we found comparable performance of GeneNet
and DRAGON across a large range of sample sizes (Fig-
ures 3G and 4G) but that GeneNet produced an inflated
FDR (Supplementary Figure S9g). FDRs and FDR dif-
ferences for all methods are summarized in Supplementary
Figures S9 and S10. Table 2 summarizes the minimum num-
ber of samples n (as well as upper bounds on p/n) for each of
the simulation studies required to reach network confidence
levels AUC >0.8. As can be seen, DRAGON reached confi-
dence for substantially smaller n and larger p/n ratios than
the other methods.

We also verified that DRAGON correctly estimates P-
values and false discovery rates (FDRs). First, we per-
formed simulations under the null hypothesis of no partial
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Figure 4. Area under the ROC curve (AUC) differences versus sample
size n of simulation studies A to D (columns). Each row corresponds to
the AUC difference DRAGON minus GGM (A–D), DRAGON minus
GeneNet (Figure E–H), DRAGON minus B-NW-SL (I–L), DRAGON
minus D-S-NW-SL (M–P), and DRAGON minus D-S-GL (Q–T), respec-
tively. The green lines correspond to the median AUC and the bands to the
25% and 75% percentiles of the distribution.

correlation (� = 0) and verified that the P-value distribu-
tions are flat for different sets of the regularization param-
eters �1 and �2 (Supplementary Figures S12 and S13). The
simulated data sets were motivated as follows: we recorded
the �1 and �2 values for each simulation run in study A to
D, which yielded the results shown in Supplementary Fig-
ure S12. We extracted the corresponding parameter sets at
n = 256, n = 1024 and n = 4096 samples, which correspond
respectively to a highly regularized estimate, a moderately
regularized one, and one with low regularization. This re-
sulted, in total, in 12 pairs (�1, �2) with the associated P-
value distributions under the null hypothesis that are shown
in Supplementary Figure S13; as desired, these distributions
are flat. Further, we recorded the FDRs corresponding to
studies A to D (Supplementary Figures S9a to d and S11)
for the empirical estimate of 
 and the theoretical value 

= n − 1 − (p − 2), respectively. As expected, the observed
FDR for DRAGON approaches 0.05 as the sample size in-
creases. Analogous plots for the comparison methods can
be found in Supplementary Figure S9e–t. DRAGON gener-
ally outperforms the other methods, some of which show in-
flated FDRs indicating an overly liberal method (GeneNet)

or deflated FDRs indicating an overly conservative method
(D-S-NW-SL and D-S-GL).

Integrative DRAGON analysis of transcriptome and methy-
lome in TCGA breast cancer specimens

Epigenetic aberrations such as DNA methylation are as-
sociated with altered patterns of gene regulation dur-
ing the development and progression of complex diseases
such as cancer (28). Given the performance advantages of
DRAGON over other partial correlation methods, here we
present an illustrative application of DRAGON to inte-
grate promoter methylation and gene expression data in 765
breast cancer specimens from The Cancer Genome Atlas
(TCGA) (29). We began with a list of 1639 human transcrip-
tion factors (TFs) (30), of which 1557 had annotated pro-
moter methylation data meeting quality control measures in
TCGA, 1311 had gene expression data, and 1280 had both.
Below, we outline the analysis of these data; further de-
tails regarding the sample population, data preprocessing,
model inference, community detection and Reactome path-
way enrichment analysis are summarized in Supplementary
Sections 4–8, where a summary of baseline characteristics
is given in Suppl. Table S1, the distribution of promoter
methylation is shown in Supplementary Figure S14, and
the distribution of methylation in relation to CpG islands
is shown in Supplementary Figure S15.

Data acquisition, processing and estimated DRAGON
model. The GenomicDataCommons (31) R package,
version 1.20.1, was used to download TCGA breast cancer
data (Project ID TCGA-BRCA; dbGaP Study Accession
phs000178) from the Genomic Data Commons. Methyla-
tion levels from the Illumina 450k array were processed
from raw data into beta values with the TCGA Methylation
Array Harmonization Workflow (https://docs.gdc.cancer.
gov/Data/Bioinformatics Pipelines/Methylation Pipeline/,
Accessed: 2022-05-25), which uses SeSAMe (32) for signal
detection and quality control. Methylation was summa-
rized at the gene level by averaging beta values for probes
in the promoter region of each gene of interest and methy-
lation data were transformed to approximate normality
with the nonparanormal transformation (33). RNA-seq
data were processed according to the TCGA RNA-Seq
Alignment Workflow (https://docs.gdc.cancer.gov/Data/
Bioinformatics Pipelines/Expression mRNA Pipeline/,
Accessed: 2022-05-25) to produce gene expression levels;
this pipeline uses the Spliced Transcripts Alignment to
a Reference (STAR) (34) algorithm to align reads and
generate counts which were reported as transcripts per
million (TPM), among other measures.

Methylation and expression data for the transcription
factors for this breast cancer data set were loaded into
DRAGON and a partial correlation network was calcu-
lated. A thresholded version of the DRAGON-estimated
network consisting of all edges with FDR <0.005 and all
nodes with degree >0 is shown in Figure 5. The network
contains 3631 edges on 2106 nodes. 1168 of the nodes rep-
resent methylation (75% of the methylation variables) and
938 represent gene expression (72% of the gene expression
variables).
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Table 2. Lower bounds on n and upper bounds on p/n necessary to achieve confidence in edge recovery defined via a median AUC>0.8 in simulation
studies A, B, C and D. Best performance is indicated in boldface letters. The evaluated sample sizes were n ∈ {26, 	26.5
, 27, . . . , 	213.5
, 214}

Simulation A B C D

n p/n n p/n n p/n n p/n

DRAGON 4096 0.15 362 1.66 128 4.69 181 3.31
GGM 4096 0.15 1448 0.41 181 3.31 512 1.17
GeneNet 4096 0.15 1448 0.41 181 3.31 512 1.17
B-NW-SL 4096 0.15 1448 0.41 181 3.31 512 1.17
D-S-NW-SL 4096 0.15 1448 0.41 512 1.17 1024 0.59
D-S-GL 4096 0.15 2048 0.29 724 0.83 1448 0.41

Figure 5. DRAGON multiomic network on TCGA methylation and gene
expression data from 765 women with breast cancer.

DRAGON discovers meaningful promoter methylation-gene
expression relationships. DNA methylation can regulate
gene expression by blocking TF binding or by altering the
binding of other regulatory proteins (35). In cancer, hy-
permethylation of tumor suppressor gene promoters can
lead to their inactivation by blocking transcription factors
and inhibiting the recruitment of the transcriptional ma-
chinery (36). On the other hand, DNA methylation results
from the actions of proteins (methylases and demethylases)
whose levels in turn result from changes in the expression
of genes encoding these proteins. DRAGON provides a
means to study both changes in gene expression resulting
from methylation and the activation of methylation through
changes in gene expression.

Because of the complex, correlated nature of methyla-
tion and gene expression, a multi-omic correlation net-
work based on these data may be too noisy to identify
meaningful methylation-expression relationships. To illus-

trate this, we created a Pearson correlation network on
the methylation-gene expression data with 824,599 signif-
icant methylation-gene expression edges based on the cri-
teria FDR <0.05. Notably, of these edges, only 861 (0.1%)
were edges between the expression of a gene and the methy-
lation of its promoter – the associations we expect function-
ally to be the most significant (175 (20%) positive and 686
(80%) negative edges). In contrast, when using DRAGON
to estimate the partial correlation network on the same
data, the result was a much sparser network consisting of
769 significant methylation-gene expression edges (FDR
<0.05). Of these edges, 333 (43%) were associations be-
tween expression of a gene and methylation of its pro-
moter (26 (8%) positive and 307 (92%) negative partial cor-
relations). The high proportion of negative partial corre-
lations is an important ‘sanity check’ on the performance
of DRAGON, as promoter methylation suppresses tran-
scription for most genes (36). To further illustrate the dis-
criminatory power of partial correlations relative to sim-
ple correlations, we examined the 769 most significant Pear-
son correlation edges between gene expression and methyla-
tion sites (corresponding to the number of gene expression-
methylation edges in the DRAGON network) and found
only 33 (4%) to be associations between expression of a gene
and methylation of its promoter. Note that neither the Pear-
son correlation-based analysis nor the DRAGON analy-
sis use any prior knowledge about methylation site - gene
correspondence.

Returning to the DRAGON network, we ranked gene ex-
pression nodes according to the number of significant edges
to methylation nodes they possessed (Table 3). The top-
ranking gene, with 12 edges to methylation nodes (7 posi-
tive and 5 negative partial correlations), was ZFP57 (Fig-
ure 6) which is a zinc finger transcription factor containing
a KRAB domain and which may play a negative regulatory
role (37). The strongest gene expression - promoter methy-
lation edge was observed between ZFP57 and methylation
of its own promoter (FDR < 10−100, � = −0.25), followed
by methylation of the SKOR2 promoter (FDR < 10−3, �
= −0.06), and methylation of the ZNF121 promoter (FDR
< 10−3, � = 0.06). A comprehensive list of edges is shown
in Table 3. ZFP57 is known to contribute in maintaining
the methylation memory of parental origin (38). It con-
trols DNA methylation during the earliest multicellular de-
velopmental stages at multiple imprinting control regions
(39,40), which is in line with its multiple related methylation
sites suggested by DRAGON. Most importantly, ZFP57
has been shown to suppress proliferation of breast can-
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Table 3. Summary of the 4 gene-expression variables with most edges to methylation variables ordered by rank. Methylation variables (last column) are
ordered by partial correlations (from high to low absolute values), where the +/− signs in brackets give the signs of the estimated partial correlations

rank TF RNA # GE-methyl. edges Methylation variables

1 ZFP57 12 ZFP57(−), SKOR2(−), ZNF121(+), IRF6(+), RHOXF1(+), MNX1(−), VAX2(−),
ZNF821(+), ZNF181(+), ZNF559(−), ZNF521(+), ZNF853(+)

2 ZNF334 11 ZNF334(−), ZNF266(−), KLF2(−), ZKSCAN4(−), HOXC8(+), ZNF746(−),
HOXC9(−), ZFP1(+), ZNF728(+), ZSCAN25(−), NPAS1(+)

3 NR6A1 10 FOXO6(+), IKZF3(+), JRK(−), NR5A1(+), NFIC(+), ZNF654(−), FOXR1(−),
ETV2(+), ELK3(+), FOXP1(−)

4 MYRFL 10 MYRFL(−), ZFP69B(−), AHR(−), HOXB7(+), ZNF467(−), THAP12(+),
ZNF251(−), MTF1(+), ARID5A(+), RORB(+)

cer cells through down-regulation of the MEST-mediated
Wnt/�-catenin signalling pathway (41).

The second TF was ZNF334, another zinc finger pro-
tein transcription factor, which had 11 edges to methyla-
tion variables (4 positive, 7 negative; Figure 6). Again, the
strongest edge was observed to its own methylation site
(FDR <10−34, � = −0.175), followed by ZNF266 (FDR
=3.6 × 10−4, � = −0.058) and KLF2 (FDR =7.6 × 10−4,
� = −0.056). ZNF334 was recently identified as tumor sup-
pressor of triple-negative breast cancer and higher ZNF334
expression was shown to be associated with better survival
outcomes (42). DRAGON suggests that this suppression
may be due to hypermethylation of its promoter region. A
similar pattern has been observed in some other cancers, in-
cluding hepatocellular carcinoma (43).

The third and fourth top hits were the transcription fac-
tors NR6A1 (also known as GCNF) and MYRFL, both
showing 10 edges to methylation variables (Supplementary
Figure S16). Unlike the other transcription factors we iden-
tified, NR6A1 was not related to its own methylation site
(FDR ∼1, � ∼ 0). Its strongest methylation-gene expres-
sion edges were observed to methylation sites attributed
to the genes FOXO6 (FDR <1 × 10−4, � = 0.061) and
IKZF3 (FDR <1 × 10−4, � = 0.061). FOXO6 is a tran-
scription factor known to play multiple roles in breast can-
cer. Its downregulation is implicated in promotion of the
epithelial–mesenchymal transition, in migration and prolif-
eration of breast cancer cells, and in reduced cell resistance
to the anti-cancer drug paclitaxel through the PI3K/Akt
signaling pathway (44,45). IKZF3 is a member of the Ikaros
family of zinc-finger proteins that has been shown to work
with other transcription factors to regulate immune re-
sponse in breast cancer (46) and its knockdown has been
shown to dramatically increase breast cancer response to
chimeric antigen receptor T-cell (CAR-T) therapy (47).

In mus musculus, NR6A1 has been shown to interact
with DNMT3B (DNA (cytosine-5)-methyltransferase 3B)
to induce promoter methylation of the genes Oct-3/4 (48).
DNMT3B together with DNMT3A is essential for the de
novo methylation in early development (49). In addition to
its role as a transcription factor, NRA61 is an orphan nu-
clear receptor normally expressed in germ cells of gonads
and highly expressed in triple-negative and ER+ HER2–
breast cancer and so has been suggested as an ideal drug tar-
get (50). MYRFL follows the more typical pattern, having
its strongest methylation-gene expression edge to its own
methylation site (FDR <1 × 10−7, � = −0.073). MYRFL
encodes a transcription factor that is required for central
nervous system myelination and it has been identified as a

Figure 6. Neighborhoods of ZFP57 and ZNF334, two of the transcription
factor gene expression nodes that serve as hubs in the DRAGON breast
cancer network. Turquoise nodes represent gene expression and orange
nodes represent promoter methylation. Red edges indicate positive partial
correlations; blue, negative. Edge width is proportional to the strength of
partial correlation. Larger nodes indicate higher node degrees. Edges with
FDR <0.05 are shown.
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member of a regulatory cluster of genes on chromosome 12
that has been associated with elevated risk of breast cancer
(51).

Although this analysis does not fully account for either
the complexities of breast cancer and its subtypes or for the
interplay of regulatory mechanisms active in cells and lim-
ited exploration to the transcription factors themselves, it
already paints a compelling picture of the interplay between
epigenetic regulation through altered patterns of methyla-
tion in breast cancer and activation or repression of key reg-
ulatory proteins that control breast cancer risk, cell prolif-
eration and response to various therapeutic interventions.

Community detection and enrichment analysis. To fur-
ther analyze the complex structure of the estimated net-
work, we clustered nodes using community detection on
the DRAGON-estimated network thresholded at FDR
<0.005. This threshold was based on inspection of the dis-
tribution of FDR-corrected p-values; Supplementary Fig-
ure S17. Community detection was performed using the
cluster fast greedy algorithm as implemented in the
igraphR package (52,53) (see Supplement). Using this al-
gorithm, 169 communities were detected, 59 of which had
at least 5 nodes.

To assess the enrichment of methylation-gene expression
communities for functions potentially related to breast can-
cer, we performed an over-representation analysis (ORA)
for Reactome gene sets (54) within each of the 59 commu-
nities with at least 5 nodes (for details of the ORA, see Sup-
plement). The fora function of the fgsea R package was
used to conduct the ORA (55). Reactome gene sets with
at least 3 genes were considered (minSize = 3). For the
analysis presented here, it should be noted that each tran-
scription factor gene may appear twice, once based on its
expression and once based on its methylation. Therefore,
the universe of possible genes considered for the ORA (and
used to set background expectations) is twice the size of the
number of TFs included in the DRAGON model. We also
performed an ORA assessing enrichment for methylation
only and one assessing enrichment for expression only. A
Reactome pathway was identified as over-represented in a
community if its FDR was <0.05 in at least one of these
three ORAs (Benjamini-Hochberg FDR as implemented in
fgsea). Ten of the 59 communities of size ≥5 genes were
enriched for at least one REACTOME pathway at FDR
<0.05; complete results of the enrichment analysis are avail-
able in Supplementary Data 1. Here, we highlight two com-
munities that illustrate DRAGON’s ability to provide unex-
pected insight into disease processes.

Community 5 consists of 39 TF nodes, 14 based on TF
gene expression and 25 based on TF promoter methyla-
tion (Figure 7). The TF set in community 5 is enriched for
several Reactome pathways related to the TFAP2 family
of transcription factors (Supplementary Data 1). TFAP2C
has been implicated in estrogen response signaling in breast
cancer, which plays a major role in breast cancer develop-
ment, progression, and therapeutic response (56); estrogen
response signaling is also a key determinant of breast cancer
molecular subtype (57).

To explore the role of the TFAP2 family in our
DRAGON network, we obtained mRNA-based subtype

Figure 7. Example communities of interest in the DRAGON breast cancer
gene expression-methylation network. Community 5 contains the TFAP2
family of transcription factors. Community 38 contains several hallmark
cancer genes that are highly connected.

classifications (basal, HER2, luminal A, luminal B and
normal) for the tumor samples using the PanCancer-
Atlas subtypes function from the TCGAbiolinks R
package (58). We then evaluated subtype-specific methyla-
tion and expression among the TFAP2 genes represented
in Community 5 (TFAP2A methylation and expression,
TFAP2B methylation and expression, TFAP2C expression;
Supplementary Figure S18).

TFAP2A and TFAP2B methylation both differed signif-
icantly based on subtype (Kruskal–Wallis test, TFAP2A
p = 3.3 × 10−4; TFAP2B p < 2.2 × 10−16) as did
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TFAP2A, TFAP2B and TFAP2C expression (TFAP2A p =
1.9 × 10−12, TFAP2B p < 2.2 × 10−16, TFAP2C p < 1.9
× 10−10). However, TFAP2C methylation, which was no-
tably excluded from this community, did not differ signifi-
cantly between subtypes (p = 0.17). To illustrate the multi-
omic phenotyping possible with DRAGON communities,
we investigated TFAP2B further. The median TFAP2B pro-
moter methylation beta level was 0.55 in basal samples ver-
sus 0.17 in non-basal samples; the median TFAP2B expres-
sion among basal samples was 0.49 TPM versus a median
of 36.46 TPM in non-basal samples. This multi-omic phe-
notype of increased methylation and decreased expression
in basal samples follows the canonical paradigm that pro-
moter methylation results in gene silencing. To explore the
predictive power of this joint information, we constructed
a logistic regression model for multi-omic subtype clas-
sification, regressing basal vs. non-basal subtype against
TFAP2B methylation, expression, and an interaction term
between the two. In the resulting model, TFAP2B methy-
lation and the interaction term between TFAP2B methyla-
tion and expression were both significant (methylation: OR
= 147.76, 95 % CI: [44.21, 493.82]; methylation*expression:
OR = 0.873, 95 % CI: [0.797, 0.957]) while TFAP2B expres-
sion was not (OR = 1.004, 95 % CI: [0.989, 1.018]). The AU-
ROC of this model was 0.85; in contrast, the AUROC of a
similar model using TFAP2B methylation alone as a pre-
dictor was 0.82 and using TFAP2B expression alone, 0.79,
demonstrating the synergistic power of multi-omic features
for class discrimination. Although this classification model
does not outperform the expression-based subtype classifi-
cation used by the TCGA, these results are nonetheless im-
pressive given that they are based on two measurements of
the omic state of a single gene.

Community 38 consists of 40 nodes, six of which rep-
resent promoter methylation and 34 of which represent
gene expression (Figure 7). This community is enriched for
25 Reactome pathways, including signaling by receptor ty-
rosine kinases (FDR = 6.4 × 10−9), estrogen-dependent
gene expression (FDR = 1.5 × 10−3), PTEN regulation
(FDR = 0.02), and MAPK family signaling cascades (FDR
= 0.02). The nodes primarily driving these enrichments
include EGR1, EGR2, EGR3, FOS, FOSB, JUNB and
JUND. These seven nodes comprise a tightly co-expressed
subgraph of Community 38 and are well-known players in
cancer signaling (59,60).

NR4A2 methylation and KLF6 methylation are both
degree-one nodes in Community 38; their only edges in-
dicate negative partial correlation with their own expres-
sion. It may be that differential methylation of NR4A2 and
KLF6 drives subtype-specific activity in the pathways of
this community by modulating the expression of NR4A2
and KLF6, which are connected via FOS and JUN expres-
sion to the eight-node cluster of coexpressed TFs. In com-
paring these nodes between subtypes, we found that both
KLF6 and NR4A2 are significantly differentially methy-
lated (KLF6: Kruskal–Wallis chi-squared = 93.04, df =
4, P < 2.2 × 10−16; NR4A2: Kruskal–Wallis chi-squared
= 17.98, df = 4, p = 0.001; Supplementary Figure S19).
To provide a benchmark for differential methylation be-
tween subtypes, we performed the same statistical test for a
‘housekeeping’ transcription factor (ATF1), which showed

no significant difference in methylation (Kruskal–Wallis
chi-squared = 6.62, df = 4, p = 0.158; Supplementary
Figure S19), indicating that the differential methylation of
these key transcription factors may play a substantial role
in breast cancer beyond those already discussed, particu-
larly given their association with the EGR/FOS/JUN ex-
pression cluster and the importance of these transcription
factors in a wide range of cancer processes.

CONCLUSION AND SUMMARY

Regulation of transcriptional processes in the cell involve
multiple interacting partners that include transcription fac-
tors and their expression, regulation of their targets, and
epigenetic factors such as DNA methylation that may en-
hance or disrupt regulatory interactions. Simple measures
such as correlation fail to capture meaningful regulatory as-
sociations and can be dominated by spurious correlations
between genes that are expressed at relatively low levels or
that exhibit similar patterns of expression due to factors un-
related to the biological state of the system. Partial corre-
lation analysis allows better discrimination between poten-
tially causal associations between regulators and their regu-
latory targets and may lead to greater insight into the under-
lying biology of the systems we choose to study. The prob-
lem in conducting such an analysis is that different types of
omics data often present with different scales, biases, and
error distributions.

DRAGON is a partial correlation framework optimized
for the integration of multiple ‘layers’ of omics data into
a unified association network that allows us to understand
both associations between biological variables such as gene
expression and the potential drivers of the observed corre-
lations. DRAGON is based on Gaussian Graphical Mod-
els (GGMs) and uses a regularization scheme to optimize
the trade-off between the network’s complexity and its es-
timation accuracy while explicitly taking into account the
distinct data characteristics of the various omics data types
used in the model. DRAGON accounts for differences in
edge densities and feature sizes, enabling improved esti-
mation of partial correlations compared to layer-agnostic
GGMs. The advantages of DRAGON are particularly ev-
ident in simulations when the number of variables p is the
same order of magnitude or exceeds the sample size n, as is
the case in nearly all omics experiments.

We recognize that DRAGON has some limitations.
DRAGON’s GGM framework assumes multivariate nor-
mally distributed data which, for biological data, generally
does not hold. For continuous distributions, data transfor-
mations such as the nonparanormal transformation (33)
can be used to adjust input data to be approximately nor-
mally distributed; this approach, for example, allowed us to
use DRAGON with methylation and gene expression data.
However, other omics data types such as single-nucleotide
polymorphism (SNP) data are categorical or ordinal, and
alternative methods are needed to build these important
regulatory elements into the DRAGON framework. Ex-
tending DRAGON to Mixed Graphical Models (61,62),
which incorporate both continuous and discrete variables,
could allow us to overcome this limitation of the current
implementation.
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It is also worth noting that DRAGON does not incor-
porate pre-defined network structures. Structured proba-
bilistic graphical models have been studied fairly extensively
(63–66) as they allow users to bias networks towards a given
structure consistent with biological prior knowledge. Work
by our group and others has demonstrated the power of in-
troducing soft, knowledge-based constraints into optimiza-
tion problems such as gene regulatory network inference
(5,67). In the case of DRAGON, this could be achieved by a
priori removing edges from the model based on known reg-
ulatory relationships by, for example, estimating the inverse
biased covariance matrix with a priori specified zero entries
(68). Alternatively, one could construct a model in which
‘established’ associations between elements are more likely
to be included into the network by shifting their weights at
initiation (64) or through the use of modified target matrices
T(k) in Equation (3). Both approaches, alone or in combina-
tion, would need to be carefully tested taking into account
the effect that a bias on the network structure has on esti-
mates of significance levels.

Although DRAGON represents an important step for-
ward given our ability to collect increasingly large, multi-
omic data sets, it is important to recognize that many prob-
lems in network inference are not addressed by DRAGON.
Partial correlation relies on the data we have available, and
many regulatory data types simply cannot be collected si-
multaneously and so remain hidden. Such hidden variables
can lead to spurious associations and hamper the interpre-
tation of networks in general. New technologies may pro-
vide additional omics layers, but integration of these will
require additional methodological advances and the devel-
opment of robust and scalable computational models.

Second, conditional independence is only one way to
model associations in biological data. Conditional indepen-
dence relationships encode the factorization properties of
probability distributions and while appealing as a model,
it is difficult to state definitively how this concept maps to
the complexity of regulatory processes in biological systems.
However, the same limitation holds for all measures of ‘re-
latedness’, comprising mutual exclusivity (9) and multivari-
ate information measures (69). Elucidation of which type of
similarity measure is most appropriate for inference of net-
works from biological data remains an open challenge (70),
but probabilistic graphical models have been shown to per-
form well relative to other approaches (see the lasso regres-
sion methods in (70) as an example). To give a clear answer,
experimental data together with the corresponding ground
truth is optimally needed, but our use of inference methods
underlies our present inability to determine the true regu-
latory processes that drive biological states. Consequently,
method comparison of probabilistic graphical models that
allows us to specify appropriate benchmarks with respect
to edge recovery, maximum likelihood, and false discov-
ery rate are the best available methods for testing the ba-
sic process of network inference and modeling, and assess-
ment of biological insight gained trough model analysis re-
mains a key element of validating new methods. On both
accounts, DRAGON performs well giving limited data sets
that reflect those typically available in omics studies of hu-
man health and disease. We also note that our analysis fo-

cused on observational data only, and the inferred networks
are undirected. Statements on causality from observational
data are difficult given correlation-based models, although
it is possible to provide lower bounds on causal effects (71).
However, our biological understanding of cause and effect
can guide us, at least in part. Nevertheless, additional work
needs to be done to address causality in the context of multi-
omics and the use of structured approaches that incorpo-
rate prior causal knowledge may be an important next step.
A simple adherence to the ‘central dogma of molecular bi-
ology,’ that DNA makes RNA, and RNA makes protein,
could assist in defining causal relationships. Importantly,
specifying a prior belief should not prohibit the inference of
more complex regulatory mechanisms contradicting these
beliefs: otherwise, we stand to discover only what we already
know.

DRAGON represents a significant contribution to net-
work inference by presenting a framework for modeling of
partial correlations across multiple layers of omics data.
DRAGON-estimated networks provide new insights into
regulatory processes that may be overlooked by other meth-
ods as they are capable of identifying direct multi-omic
relationships via a Gaussian graphical model framework.
DRAGON is easy to use and freely available as open source
software in the Network Zoo package (netZooPy v0.8; net-
zoo.github.io).

DATA AVAILABILITY

DRAGON is available through the Network Zoo pack-
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supplementary material. Code to reproduce the TCGA
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Büyüközkan,M., Schultheiß,U.T., Kotsis,F., Köttgen,A., Spang,R.,
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