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Abstract—Recent advances in Machine Learning (ML) show
that Neural Machine Translation (NMT) models can mock the
program behavior when trained on input-output pairs. Such
models can mock the functionality of existing programs and serve
as quick-to-deploy reverse engineering tools. Still, the problem
of automatically learning such predictive and reversible models
from programs needs to be solved. This work introduces a
generic approach for automated and reversible program behavior
modeling. It achieves 94% of overall accuracy in the conversion
of Markdown-to-HTML and HTML-to-Markdown markups.

Index Terms—software testing, security testing, reverse engi-
neering, deep learning

I. INTRODUCTION

New applications of ML have shown that they can char-
acterize the behavior of complex programs and reverse the
computation results without the need to understand the internal
logic [1]. Traditionally, model learning relied on big generic
datasets that were hard to maintain and unsuitable for program
behavior learning. Today we can pair learners with grammars
and generic test generators to produce domain-specific training
datasets containing sufficiently diverse inputs.

Program behavior models will have a variety of applications
in software engineering, such as:

• behavior mocking [2] - replicate the functionality of in-
dividual functions, modules, or even complete programs.

• test generation [3] - predict input specifications or pro-
gram failing conditions given a program coverage or a
call-graph; predict UI transitions given UI metadata.

• behavior differentiation [4] - detect implementation devi-
ation among multiple revisions of the same app or across
different apps that implement the same protocol.

If we learn program models not from input-output pairs but
from output-input pairs, we will learn the behavior of the
inverse program. Thus behavior models can serve as low-cost
reverse engineering tools.

In this paper, we present Modelizer (Fig. 1) – a model
extraction framework that uses grammars to automatically
produce and verify inputs, as well as to model and decompose
outputs from programs. The first experiments with Markdown-
to-HTML and HTML-to-Markdown conversions are promising
and show high accuracy.

II. APPROACH

We start behavior learning from the input generation. Our
models train on artificially generated data, which solves the

Fig. 1: The Modelizer Framework uses generated inputs to
extract .input/output models from programs.

training data quality and quantity problems simultaneously.
However, artificial data synthesis requires the availability of
the corresponding generators that presumes all data specifica-
tions to produce valid inputs. To avoid the implementation of
program-specific generators, we use grammars as producers
[5]. Given the specification, such producers can generate an
infinite amount of syntactically valid data. Such specifications
can be predefined, encoded manually, or mined automatically
[6] from the program under test.

Then, we collect input-output pairs by processing the gen-
erated input with the program under test. Each data pair is
later added to the training dataset, which is further passed to
the Model Learner. Our Learner implements both Transformer
[7] and Long Short-Term Memory (LSTM) [8] NMT architec-
tures. After a predefined number of iterations, it produces the
model, which can translate arbitrary input or output sequences.
Soon, our models will learn and predict abstract input features
like input grammar rules and constraints given a program
coverage, a call-graph, or side-channel metadata.

III. CASE STUDY

We have evaluated our approach by training a markup-
conversion model of the Pandoc library [9] for the Markdown
to HTML conversion task. Our study starts from the dataset
generation task, where we manually define a grammar for
Markdown strings. The Markdown Grammar is passed to
Producer, which generates 10,000, 50,000, and 100,000 unique
markdown structures. Each structure contains up to 12 top-
level elements. Then the Pandoc library converts synthesized
Markdown structures to HTML equivalents. Corresponding



Listing 1: Training Pairs. We train Modelizer with pairs of
inputs and outputs as produced by the program

Markdown-HTML structure pairs are added to the training
dataset. Listing 1 contains an example of such structure pairs.

Since our Learner cannot process the whole document
structure at once, we need to convert Markdown and HTML
structures into sequences of smaller elements. The model’s
accuracy benefits from partitioning granularity. We have im-
plemented two datatype-specific tokenizers that take each top-
level element from a structure, split it into a sequence of
tokens, which is further passed to the Learner. For each
generated dataset, the Learner trains a model for five iterations.

We have also collected 10,000 previously unseen
markdown-html document pairs for the model testing
phase. The model precision was measured according to
elementwise and document-wise prediction accuracy. If a
document contains a single syntactically invalid top-level
element, we mark the whole document as invalid. As you
see in Table I, the best-performing model was trained on
100,000 markdown-html document pairs. While such NMT
models show better performance by enlarging the training
set size, in the current example, we demonstrate that such
a “lightweight” model already achieves 94.03% overall
accuracy on the testing set. Listing 2 demonstrates an
example of reverse HTML to Markdown translation.

Listing 2: Reverse Computation. The learned model can also
map outputs to inputs with high accuracy

We still think that model accuracy will degrade when
trained on more complex data types. However, we see two
ways of improving model accuracy in such cases. First, our
framework allows the infinite generation of more complex
training samples on demand. Learners can benefit from it
by continuously training until tolerable accuracy numbers are
achieved. Alternatively, we can correct the invalid predictions
by generating the smallest patches with the help of the Pro-
ducer and evaluating the fixed prediction on a target program.

Table I: Model Accuracy

Precision Training Set Size
10k 50k 100k

Elements 94.46% 97.64% 98.29%
Documents 80.62% 91.72% 94.03%

IV. DISCUSSION

Once learned, such generic models are helpful in the
software testing due to their reusability and simplicity of
implementation. They can be used for the understanding of
program or system behavior. The model querying does not
depend on specific requirements and can be parallelized.
Models can quickly adapt to the continuous changes of target
programs by finetuning on newly generated samples. Such
models are not intended to capture the behavior of complex
systems at once. Instead, the chain of models can be used for
emulating the data flow between subsystems.

Behavior modeling could serve as a replacement for pro-
gram sandboxing. Program execution may be unsafe or require
the availability of external resources and privileged access.
In contrast, querying the program model does not depend on
these additional factors. We can even learn such models when
direct interaction with a program under test is impossible if
enough input-output pairs were previously collected.

While we currently rely on manually-defined tokenizers, we
look forward to automate this step by generating tokenizers
from grammars or inferring tokenizers from counting vector-
izers that incorporate neural semantic parsing. Also, existing
natural language tokenizers still can be used with our Leaner.

V. RELATED WORK

Katz et al. [1] first train a neural code decompiler from
generated data. This approach is closest to ours. However, our
framework allows behavior modeling of arbitrary programs,
learns both direct and inverse models from programs, and
generalizes the learning process from mapping input-output
pairs to extracting common input properties and constraints.

”Learning to execute” [14] is one of the first attempts in
neural behavior modeling, where a Python interpreter model
was learned. The results were not promising because neural
networks are inefficient in performing arithmetic operations.
Similarly, the Transcoder model [15] suggests the usage of
NMT models for translations of program source code from
one programming language to another. Meanwhile, we support
cross-protocol translations, like SVG images to Python code.

Several models, like CodeBERT [16] or CodeT5 [17],
explore code understanding and generation problems. Such
models are trained from code-to-text description pairs col-
lected from publicly available datasets and repositories, which
may contain malicious or faulty code snippets [18]. Instead,
we are able to generate and test data on demand.
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