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Abstract—Debugging a fault in a program is an error-prone
and resource-intensive process that requires considerable work.
My doctoral research aims at supporting developers during this
process by integrating test generation as a feedback loop into a
novel fault diagnosis to narrow down the causality by validating
or disproving suggested hypotheses. I will combine input, output,
and state to detect relevant relations for an immersive fault
diagnosis. Further, I want to introduce an approach for a targeted
test that leverages statistical fault localization to extract oracles
based on execution features to identify failing tests.

Index Terms—Software/Software Engineering, Software Engi-
neering, Testing and Debugging, Debugging aids, Diagnostics

I. INTRODUCTION

Debugging is one of the most challenging tasks in today’s
software engineering. To repair a fault, developers face the
problem of reproducing, understanding what causes it, and
identifying where it originates. During my doctoral research,
I plan to address these issues by developing techniques that
provide an adequate and precise fault diagnosis refined with
test generation helping developers to repair faulty software
efficiently. These diagnoses aim to assist developers in their
daily task of debugging complex software systems by provid-
ing detailed insides into the fault further improvable by the
developer’s feedback.

II. FAULT DIAGNOSIS

My research focuses on providing adequate diagnoses for
faults, revealing the buggy locations, detecting failure-inducing
inputs, and constructing an entire cause-effect chain that leads
to the fault, including its precise root cause. I will demon-
strate the approaches along the Heartbleed vulnerability [1].
Figure 1a shows the input and output specifications of the
Heartbeat exchange as a grammar and Figure 1b the example
representation of a Heartbeat message in the program code.

A. Input and Output

The plan for diagnosing the input is to leverage a gram-
mar that describes its elements as terminal and non-terminal
symbols and learn conditions needed for a failure-inducing
input. This technique orientates on the existing ISLearn [2]–
[4] approach. ISLearn leverages an extendable pattern catalog
to automatically learn constraints over the input, resulting in
a formal description. The goal is to extend this approach by
considering features based on their significance to trigger the

〈request〉 ::= 0x1 〈length〉 〈payload〉 〈padding〉
〈response〉 ::= 0x2 〈length〉 〈payload〉 〈padding〉
〈length〉 ::= 〈int〉
〈payload〉 ::= ε | 〈byte〉 〈payload〉
〈padding〉 ::= ε | 〈byte〉 〈padding〉

(a) Syntax of TLS Heartbeat exchanges

struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[...];
opaque padding[padding_length];

} HeartbeatMessage;

(b) Struct for TLS Heartbeat messages

Fig. 1: TLS Heartbeat protocol

fault. This approach could infer for the Heartbleed vulner-
ability that the fault occurs when int(〈request〉.〈length〉) >
len(〈request〉.〈payload〉) holds. I also want to apply the de-
veloped techniques to the output. Even though the output does
not directly influence the fault and cannot show its origins,
it can help to identify faulty executions and could contain
hints at the fault’s cause. By combining input and output
specifications, the approach could infer that the fault shows
if 〈request〉.〈payload〉 6= 〈response〉.〈payload〉 holds.

B. State

Diagnosing the input and the output is one part but does not
reveal the fault itself, only its higher-level causes and results.
Hence, I want to develop an approach relying on the one for
input and output that learns the constraints that need to hold
for the state during the program execution of failing runs. For
this approach, I consider the state as the set of local and global
variables that exist at a certain point during the execution and
the current stack trace, making it feasible to extract from a
single log. This approach produces an entire cause-effect chain
by inferring which constraints imply the values or conditions
of a later point in the execution to pinpoint the exact state and
changes for which the fault arises.

I will consider multiple features that may hold during the
execution; for instance, the existence of a specific variable
in the state or the value of a variable is less than a specific
number. The approach infers features that correlate with the
fault by calculating the support of each feature for failing
runs. Then the approach learns the connections between the
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Fig. 2: Extracting cause-effect chains: input (left) int(〈request〉.〈length〉) > len(〈request〉.〈payload〉) and output (right)
〈request〉.〈payload〉 6= 〈response〉.〈payload〉 connect to the origin request.payload_length > len(response.payload)

features that correlate with failing runs to create a cause-effect
chain, e.g., if request.payload_length > len(request.

payload) then request.payload 6= response.payload.
Note that the above approaches consider the grammar, while
this example considers the concrete code at specific times. This
approach can simultaneously start from inputs and outputs
until the derived chains meet.

Further, I will leverage this derived cause-effect chain not
only to understand the fault’s origin but also to pinpoint the
exact location when the execution gets affected by the fault.

C. A Unified Approach
My fault diagnosis approach will consider the input, output,

and state diagnosis strategies. Figure 2 demonstrates their
interleaving and the derived cause-effect chain for the Heart-
bleed example. This joint approach will leverage each of the
approaches to refine the diagnoses of one another iteratively.
Understanding what parts of the input are failure-inducing
improves inferring the execution features that correspond to
the bugs and vice-versa. The same holds for the output.
The result of this approach would then include a detailed
description of reproducing the failure, where it originates, and
how it propagates.

III. TEST GENERATION

The approaches in Section II consider an immense search
space of possible solutions that I plan to reduce by introducing
a feedback loop that leverages a guided test generation to refine
diagnoses by supporting or disproving inferred hypotheses
iteratively. I will correlate execution features from statistical
fault localization (SFL) [5]–[8] with input features learned
with the approach in Section II-B to generate tests that satisfy
certain features. I also require an oracle that distinguishes
between passing and failing runs, meaning I can ignore the
expected result. My approach here is to collect features with
SFL that describe the runs, which describe an N -dimensional
space. When classifying a test, the approach measures the
distance between its surrounding tests in this space and then
calculates how likely a test will fail. This approach is further
improvable by integrating a human decider to narrow down the
space corresponding to failing test cases. If a generated test
is interesting, e.g., if it is not nearby any previous test, the
approach could ask a human to classify it. I plan to leverage
my SFLKit [9], [10] to extract the features to correlate these
with the input or derive oracles.

IV. PLANNED EVALUATION

To evaluate the approaches presented in Section II and Sec-
tion III, I plan to extend the BugsInPy [11], [12] benchmark
with the possibility of generating system and unit tests and
oracles to verify tests. I will leverage the generation to evaluate
the statistical oracles approach and the specification of the bug
to evaluate the other approaches. To the best of my knowledge,
there exists no sufficient baseline. Hence, I will consider the
precision, recall, and accuracy of correctly generating tests and
identifying a fault’s root cause. Besides, I want to conduct user
studies to evaluate the developer’s benefits; even though this
is challenging, it could provide further inside into their needs.
Yet, my research will be independent of user studies’ results.

V. RELATED WORK

a) Learning Contraints: DAIKON [13] and other recent
research like Yao et al. [14] are conceptualized for analyzing
a program rather than inferring diagnoses or generating tests.
The work by Malik et al. [15] and Garg et al. [16] present
approaches that learn invariants of complex data and linear
data structures that theoretically apply to test generation but
do not include a needed specification for the generation. The
same holds for Usman et al. [17], who studied models for
extracting invariants over selected data structure types.

b) Oracle Problem: Ernst et al. [18] presented an ap-
proach based on Daikon [13] that verifies test cases against
learned invariants of the program that does not consider the
correct output. An approach by Böhme et al. [19] learns a
model from generated tests and lets humans label tests that
could refine the model. However, this approach works only
on a small scale for uncomplicated oracles.

c) Fault Diagnosis: ALHAZEN [20] is an approach that
learns the causes of faults in the input and iteratively refines
inferred hypotheses by generating new tests. DDSET [21]
extracts a pattern that matches a failure-inducing input. Both
approaches only consider the input and can help identify the
fault at a higher level but keep the underlying cause unknown.
DeltaDebugging [22] is designed for the input but can apply
to the program, which would fail when considering highly
dependent faults. Earlier work by Zeller [23] derives cause-
effect chains from a program by modifying the state during
execution which could lead to false diagnoses.
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