
From Input to Failure: Explaining Program
Behavior via Cause-Effect Chains

Marius Smytzek
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
marius.smytzek@cispa.de

Abstract—Debugging a fault in a program is an error-prone
and resource-intensive process that requires considerable work.
My doctoral research aims at supporting developers during this
process by integrating test generation as a feedback loop into a
novel fault diagnosis to narrow down the causality by validating
or disproving suggested hypotheses. I will combine input, output,
and state to detect relevant relations for an immersive fault
diagnosis. Further, I want to introduce an approach for a targeted
test that leverages statistical fault localization to extract oracles
based on execution features to identify failing tests.

Index Terms—Software/Software Engineering, Software Engi-
neering, Testing and Debugging, Debugging aids, Diagnostics

I. INTRODUCTION

Debugging is one of the most challenging tasks in today’s
software engineering. To repair a fault, developers face the
problem of reproducing, understanding what causes it, and
identifying where it originates. During my doctoral research,
I plan to address these issues by developing techniques that
provide an adequate and precise fault diagnosis refined with
test generation helping developers to repair faulty software
efficiently. These diagnoses aim to assist developers in their
daily task of debugging complex software systems by provid-
ing detailed insides into the fault further improvable by the
developer’s feedback.

II. FAULT DIAGNOSIS

My research focuses on providing adequate diagnoses for
faults, revealing the buggy locations, detecting failure-inducing
inputs, and constructing an entire cause-effect chain that leads
to the fault, including its precise root cause. I will demon-
strate the approaches along the Heartbleed vulnerability [1].
Figure 1a shows the input and output specifications of the
Heartbeat exchange as a grammar and Figure 1b the example
representation of a Heartbeat message in the program code.

A. Input and Output

The plan for diagnosing the input is to leverage a gram-
mar that describes its elements as terminal and non-terminal
symbols and learn conditions needed for a failure-inducing
input. This technique orientates on the existing ISLearn [2]–
[4] approach. ISLearn leverages an extendable pattern catalog
to automatically learn constraints over the input, resulting in
a formal description. The goal is to extend this approach by
considering features based on their significance to trigger the

〈request〉 ::= 0x1 〈length〉 〈payload〉 〈padding〉
〈response〉 ::= 0x2 〈length〉 〈payload〉 〈padding〉
〈length〉 ::= 〈int〉
〈payload〉 ::= ε | 〈byte〉 〈payload〉
〈padding〉 ::= ε | 〈byte〉 〈padding〉

(a) Syntax of TLS Heartbeat exchanges

struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[...];
opaque padding[padding_length];

} HeartbeatMessage;

(b) Struct for TLS Heartbeat messages

Fig. 1: TLS Heartbeat protocol

fault. This approach could infer for the Heartbleed vulner-
ability that the fault occurs when int(〈request〉.〈length〉) >
len(〈request〉.〈payload〉) holds. I also want to apply the de-
veloped techniques to the output. Even though the output does
not directly influence the fault and cannot show its origins,
it can help to identify faulty executions and could contain
hints at the fault’s cause. By combining input and output
specifications, the approach could infer that the fault shows
if 〈request〉.〈payload〉 6= 〈response〉.〈payload〉 holds.

B. State

Diagnosing the input and the output is one part but does not
reveal the fault itself, only its higher-level causes and results.
Hence, I want to develop an approach relying on the one for
input and output that learns the constraints that need to hold
for the state during the program execution of failing runs. For
this approach, I consider the state as the set of local and global
variables that exist at a certain point during the execution and
the current stack trace, making it feasible to extract from a
single log. This approach produces an entire cause-effect chain
by inferring which constraints imply the values or conditions
of a later point in the execution to pinpoint the exact state and
changes for which the fault arises.

I will consider multiple features that may hold during the
execution; for instance, the existence of a specific variable
in the state or the value of a variable is less than a specific
number. The approach infers features that correlate with the
fault by calculating the support of each feature for failing
runs. Then the approach learns the connections between the



request.payload_length >  
len(request.payload)

Input State State Output…

Input Grammar Output Grammar

Input Debugging

int(〈request〉.〈length〉) >  
len(〈request〉.〈payload〉)

int(〈request〉.〈length〉) =  
request.payload_length

request.payload ≠  
response.payload

〈request〉.〈payload〉 ≠  
〈response〉.〈payload〉

Relevant Features Test Generation Test Generation Relevant Features
Relevant Features Relevant Features

Test Generation

State Debugging Output Debugging

Fig. 2: Extracting cause-effect chains: input (left) int(〈request〉.〈length〉) > len(〈request〉.〈payload〉) and output (right)
〈request〉.〈payload〉 6= 〈response〉.〈payload〉 connect to the origin request.payload_length > len(response.payload)

features that correlate with failing runs to create a cause-effect
chain, e.g., if request.payload_length > len(request.

payload) then request.payload 6= response.payload.
Note that the above approaches consider the grammar, while
this example considers the concrete code at specific times. This
approach can simultaneously start from inputs and outputs
until the derived chains meet.

Further, I will leverage this derived cause-effect chain not
only to understand the fault’s origin but also to pinpoint the
exact location when the execution gets affected by the fault.

C. A Unified Approach
My fault diagnosis approach will consider the input, output,

and state diagnosis strategies. Figure 2 demonstrates their
interleaving and the derived cause-effect chain for the Heart-
bleed example. This joint approach will leverage each of the
approaches to refine the diagnoses of one another iteratively.
Understanding what parts of the input are failure-inducing
improves inferring the execution features that correspond to
the bugs and vice-versa. The same holds for the output.
The result of this approach would then include a detailed
description of reproducing the failure, where it originates, and
how it propagates.

III. TEST GENERATION

The approaches in Section II consider an immense search
space of possible solutions that I plan to reduce by introducing
a feedback loop that leverages a guided test generation to refine
diagnoses by supporting or disproving inferred hypotheses
iteratively. I will correlate execution features from statistical
fault localization (SFL) [5]–[8] with input features learned
with the approach in Section II-B to generate tests that satisfy
certain features. I also require an oracle that distinguishes
between passing and failing runs, meaning I can ignore the
expected result. My approach here is to collect features with
SFL that describe the runs, which describe an N -dimensional
space. When classifying a test, the approach measures the
distance between its surrounding tests in this space and then
calculates how likely a test will fail. This approach is further
improvable by integrating a human decider to narrow down the
space corresponding to failing test cases. If a generated test
is interesting, e.g., if it is not nearby any previous test, the
approach could ask a human to classify it. I plan to leverage
my SFLKit [9], [10] to extract the features to correlate these
with the input or derive oracles.

IV. PLANNED EVALUATION

To evaluate the approaches presented in Section II and Sec-
tion III, I plan to extend the BugsInPy [11], [12] benchmark
with the possibility of generating system and unit tests and
oracles to verify tests. I will leverage the generation to evaluate
the statistical oracles approach and the specification of the bug
to evaluate the other approaches. To the best of my knowledge,
there exists no sufficient baseline. Hence, I will consider the
precision, recall, and accuracy of correctly generating tests and
identifying a fault’s root cause. Besides, I want to conduct user
studies to evaluate the developer’s benefits; even though this
is challenging, it could provide further inside into their needs.
Yet, my research will be independent of user studies’ results.

V. RELATED WORK

a) Learning Contraints: DAIKON [13] and other recent
research like Yao et al. [14] are conceptualized for analyzing
a program rather than inferring diagnoses or generating tests.
The work by Malik et al. [15] and Garg et al. [16] present
approaches that learn invariants of complex data and linear
data structures that theoretically apply to test generation but
do not include a needed specification for the generation. The
same holds for Usman et al. [17], who studied models for
extracting invariants over selected data structure types.

b) Oracle Problem: Ernst et al. [18] presented an ap-
proach based on Daikon [13] that verifies test cases against
learned invariants of the program that does not consider the
correct output. An approach by Böhme et al. [19] learns a
model from generated tests and lets humans label tests that
could refine the model. However, this approach works only
on a small scale for uncomplicated oracles.

c) Fault Diagnosis: ALHAZEN [20] is an approach that
learns the causes of faults in the input and iteratively refines
inferred hypotheses by generating new tests. DDSET [21]
extracts a pattern that matches a failure-inducing input. Both
approaches only consider the input and can help identify the
fault at a higher level but keep the underlying cause unknown.
DeltaDebugging [22] is designed for the input but can apply
to the program, which would fail when considering highly
dependent faults. Earlier work by Zeller [23] derives cause-
effect chains from a program by modifying the state during
execution which could lead to false diagnoses.

VI. ACKNOWLEDGEMENTS

Prof. Dr. Andreas Zeller advises the author of this paper.



REFERENCES

[1] Synopsys, Inc., “The heartbleed bug,” https://heartbleed.com/, 2020.
[2] D. Steinhöfel and A. Zeller, “Input invariants,” in Proceedings of the 30th

ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
583–594. [Online]. Available: https://doi.org/10.1145/3540250.3549139

[3] D. Steinhöfel, “Isla: Input specification language,” https://github.com/
rindPHI/isla, 2022.

[4] ——, “Islearn,” https://github.com/rindPHI/islearn, 2022.
[5] J. Jones, M. Harrold, and J. Stasko, “Visualization of test information

to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002, 2002, pp. 467–477.

[6] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 273–282. [Online]. Available:
https://doi.org/10.1145/1101908.1101949

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 15–26. [Online]. Available:
https://doi.org/10.1145/1065010.1065014

[8] Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated program repair
for evaluating the effectiveness of fault localization techniques,” in
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ser. ISSTA 2013. New York, NY, USA: Association
for Computing Machinery, 2013, pp. 191–201. [Online]. Available:
https://doi.org/10.1145/2483760.2483785

[9] M. Smytzek and A. Zeller, “Sflkit: A workbench for statistical
fault localization,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1701–1705. [Online].
Available: https://doi.org/10.1145/3540250.3558915

[10] M. Smytzek, “Sflkit: A workbench for statistical fault localization,”
https://github.com/uds-se/sflkit, 2022.

[11] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan,
F. Wee, J. E. Tan, Y. Yieh, B. Goh, F. Thung, H. J. Kang, T. Hoang,
D. Lo, and E. L. Ouh, “Bugsinpy: a database of existing bugs in
python programs to enable controlled testing and debugging studies,”
in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, Nov 2020, pp. 1556–1560. [Online]. Available:
https://dl.acm.org/doi/10.1145/3368089.3417943

[12] ——, “Bugsinpy,” https://github.com/soarsmu/BugsInPy, 2020.
[13] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically

discovering likely program invariants to support program evolution,”
in Proceedings of the 21st International Conference on Software
Engineering, ser. ICSE ’99. New York, NY, USA: Association
for Computing Machinery, 1999, p. 213–224. [Online]. Available:
https://doi.org/10.1145/302405.302467

[14] J. Yao, G. Ryan, J. Wong, S. Jana, and R. Gu, “Learning nonlinear
loop invariants with gated continuous logic networks,” in Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 106–120. [Online].
Available: https://doi.org/10.1145/3385412.3385986

[15] M. Z. Malik, A. Pervaiz, E. Uzuncaova, and S. Khurshid, “Deryaft:
A tool for generating representation invariants of structurally complex
data,” in Proceedings of the 30th International Conference on Software
Engineering, ser. ICSE ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 859–862. [Online]. Available:
https://doi.org/10.1145/1368088.1368223

[16] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Learning
universally quantified invariants of linear data structures,” CoRR, vol.
abs/1302.2273, 2013. [Online]. Available: http://arxiv.org/abs/1302.2273

[17] M. Usman, W. Wang, K. Wang, C. Yelen, N. Dini, and S. Khurshid,
“A study of learning data structure invariants using off-the-shelf
tools,” in Model Checking Software: 26th International Symposium,
SPIN 2019, Beijing, China, July 15–16, 2019, Proceedings. Berlin,

Heidelberg: Springer-Verlag, 2019, p. 226–243. [Online]. Available:
https://doi.org/10.1007/978-3-030-30923-7 13

[18] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123,
2001.

[19] M. Böhme, C. Geethal, and V.-T. Pham, “Human-in-the-loop automatic
program repair,” in 2020 IEEE 13th International Conference on Soft-
ware Testing, Validation and Verification (ICST), 2020, pp. 274–285.

[20] A. Kampmann, N. Havrikov, E. O. Soremekun, and A. Zeller,
“When does my program do this? learning circumstances of software
behavior,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1228–1239. [Online].
Available: https://doi.org/10.1145/3368089.3409687

[21] R. Gopinath, A. Kampmann, N. Havrikov, E. O. Soremekun, and
A. Zeller, “Abstracting failure-inducing inputs,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 237–248. [Online]. Available:
https://doi.org/10.1145/3395363.3397349

[22] A. Zeller, “Yesterday, my program worked. today, it does not. why?”
in Proceedings of the 7th European Software Engineering Conference
Held Jointly with the 7th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. ESEC/FSE-7. Berlin,
Heidelberg: Springer-Verlag, 1999, p. 253–267.

[23] ——, “Isolating cause-effect chains from computer programs,” in
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations
of Software Engineering, ser. SIGSOFT ’02/FSE-10. New York, NY,
USA: Association for Computing Machinery, 2002, p. 1–10. [Online].
Available: https://doi.org/10.1145/587051.587053

https://heartbleed.com/
https://doi.org/10.1145/3540250.3549139
https://github.com/rindPHI/isla
https://github.com/rindPHI/isla
https://github.com/rindPHI/islearn
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1145/2483760.2483785
https://doi.org/10.1145/3540250.3558915
https://github.com/uds-se/sflkit
https://dl.acm.org/doi/10.1145/3368089.3417943
https://github.com/soarsmu/BugsInPy
https://doi.org/10.1145/302405.302467
https://doi.org/10.1145/3385412.3385986
https://doi.org/10.1145/1368088.1368223
http://arxiv.org/abs/1302.2273
https://doi.org/10.1007/978-3-030-30923-7_13
https://doi.org/10.1145/3368089.3409687
https://doi.org/10.1145/3395363.3397349
https://doi.org/10.1145/587051.587053

	Introduction
	Fault Diagnosis
	Input and Output
	State
	A Unified Approach

	Test Generation
	Planned Evaluation
	Related Work
	Acknowledgements
	References

