
EdgeTDC: On the Security of Time Difference of
Arrival Measurements in CAN Bus Systems

Marc Roeschlin
ETH Zurich

marc.roeschlin@inf.ethz.ch

Giovanni Camurati
ETH Zurich

giovanni.camurati@inf.ethz.ch

Pascal Brunner
ETH Zurich

pascal.brunner@inf.ethz.ch

Mridula Singh
CISPA Helmholtz Center

for Information Security

singh@cispa.de

Srdjan Capkun
ETH Zurich

srdjan.capkun@inf.ethz.ch

Abstract—A Controller Area Network (CAN bus) is a message-
based protocol for intra-vehicle communication designed mainly
with robustness and safety in mind. In real-world deployments,
CAN bus does not offer common security features such as message
authentication. Due to the fact that automotive suppliers need to
guarantee interoperability, most manufacturers rely on a decade-
old standard (ISO 11898) and changing the format by introducing
MACs is impractical. Research has therefore suggested to address
this lack of authentication with CAN bus Intrusion Detection
Systems (IDSs) that augment the bus with separate modules. IDSs
attribute messages to the respective sender by measuring physical-
layer features of the transmitted frame. Those features are based
on timings, voltage levels, transients—and, as of recently, Time
Difference of Arrival (TDoA) measurements. In this work, we
show that TDoA-based approaches presented in prior art are
vulnerable to novel spoofing and poisoning attacks. We describe
how those proposals can be fixed and present our own method
called EdgeTDC. Unlike existing methods, EdgeTDC does not rely
on Analog-to-digital converters (ADCs) with high sampling rate
and high dynamic range to capture the signals at sample level
granularity. Our method uses time-to-digital converters (TDCs)
to detect the edges and measure their timings. Despite being
inexpensive to implement, TDCs offer low latency, high location
precision and the ability to measure every single edge (rising and
falling) in a frame. Measuring each edge makes analog sampling
redundant and allows the calculation of statistics that can even
detect tampering with parts of a message. Through extensive
experimentation, we show that EdgeTDC can successfully thwart
masquerading attacks in the CAN system of modern vehicles.

I. INTRODUCTION

Over the last two decades, cars have become increasingly
connected both in intra-vehicle and external networks. Infor-
mation exchange between sensors through a reliable internal
network is essential in enabling modern safety and advanced
driver assistance features, such as automatic emergency braking.
Most modern cars use a Controller Area Network (CAN bus)
for intra-vehicle communication. As far as external networks
are concerned, many modern vehicles offer Bluetooth (and
WiFi) connectivity to entertainment systems. Due to this inter-
connectivity of vehicles, the attack surface to abuse potential
vulnerabilities has grown likewise. Numerous works have
shown how vulnerabilities in Bluetooth and other (wireless)

technologies [2], [8], [17], [29], [30], [35], [36] can be used to
compromise an Electronic Control Unit (ECU) in a vehicle to
mount a subsequent attack over the CAN bus [6], [9], [25], [49],
sometimes even taking remote control of an entire vehicle [30].

Aside from remote compromise, physical layer attackers
are becoming an increasing concern when studying the security
of intra-vehicle communication [33], [46]. Modern cars often
feature attach points to the internal CAN bus, for example, the
tow-hitch or OBD port. With physical access, the attacker does
not need to leverage a compromised ECU and can even connect
its own device(s) to the bus, enabling more sophisticated attack
strategies.

Irrespective of the attack vector, the main issue with
CAN bus is the lack of authentication that facilitates so-
called masquerade attacks: After having compromised a low-
criticality device or gained physical access to the bus, an
attacker “impersonates” a safety-critical ECU, such as the
engine control unit, by transmitting on the bus using the ECU’s
identifier(s). To prevent such attacks, the most natural choice
would be the introduction of MACs or encryption [7], [21], [47].
However, due to the CAN bus’ fixed standard lacking payload
size, implementing meaningful authentication or encryption
is not feasible for many vehicles. As a result, none of those
proposals have found adoption in the (automotive) industry.
In fact, chip manufacturers have announced “secure” CAN
transceivers without cryptography1, see, for example, [37].

As an alternative, Intrusion Detection Systems (IDSs) have
been proposed. IDSs extract characteristics from the transmitted
messages on the CAN bus [10], [11], [19], [43] and use these
attributes to determine the CAN node which disseminated them.
With an IDS in place, masquerade attacks could be detected
since a CAN message emitted by the compromised node does
not exhibit the physical characteristics of the claimed node.
Although many IDSs have been proposed, it is questionable
if those based on physical features [11], [12], [24], [34] can
operate reliably [4], especially over an extended period of time
without (automatic) re-calibration. Voltage-based features [11],
[12], [16], [23], [24], [26] as well as clock-skew [10] are
volatile under temperature changes, which require constant
re-training of the classification models. As a result, IDSs
are vulnerable to poisoning attacks [39] where an adversary
manages to continuously spoof the characteristics of a target
node using compromised CAN transceivers [4].

1At time of writing documentation for those chips is available only under
NDA.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24271
www.ndss-symposium.org

Recessive

Dominant

Dominant

Driver Logic:

2.5V

3.5V

1.5V

CAN High

CAN Low

RX/TX

0

1

Fig. 1. To transmit a dominant bit 0, the transceiver drives CAN High to
3.5V and CAN Low to 1.5V. In idle state or when sending bit 1, both CAN
low and CAN high are (passively) biased to 2.5V (according to ISO11898).

Recently, Time Difference of Arrival (TDoA) [5], [32], [33]
was proposed as a robust feature for an IDS since, in theory,
it solely depends on the location of the CAN transmitter and
is resilient against the attacker’s manipulation. We show that
TDoA is vulnerable to spoofing and poisoning attacks if not
carefully designed, mainly due to the fact that TDoA needs to
be acquired over an entire message on falling and rising edges—
single measurements are not sufficient. Additionally, if security
of TDoA is analyzed under a stronger, physical layer attacker
(as compared to the remote attacker), the security guarantees
of TDoA do not necessarily persist. Our experimental set-
up shows that EdgeTDC is secure unless the adversary has
physical access and can interface with the bus at two or more
locations.

II. BACKGROUND

A. Controller Area Networks (CANs)

The Controller Area Network (CAN) is a multi-master serial
bus protocol designed to be a robust vehicle bus, allowing
the communication between various micro-controllers without
needing a host computer/controller. CAN bus uses two dedicated
wires for communication. The wires are called CAN High and
CAN Low. The voltage differential of CAN High and CAN Low
is changed to determine the logic state of the bus, see Figure 1.
When the CAN bus is in idle mode or sending bit 1, both lines
carry 2.5V. This state is weakly/passively driven by a resistor
and is called recessive. When data bits 0 are being transmitted,
the CAN high line goes to 3.5V, and the CAN low drops to
1.5V, thereby generating a 2V differential between the lines.
This state is strongly/actively driven by a node connecting the
lines to a voltage source and is called dominant. A rising edge
at the logical level corresponds to a dominant-to-recessive edge,
and a falling edge corresponds to a recessive-to-dominant edge
at the electrical/physical level. As long as one node drives the
CAN bus line to dominant (logic 0), the line is dominant.

Since communication relies on a voltage differential be-
tween the two bus lines, the bus is not sensitive to inductive
spikes, electrical fields, or other noise. This makes CAN bus
a reliable choice for networked communications on mobile
equipment. Bit rates up to 5 Mbit/s are possible in short
CAN networks (≤ 40 m). Longer network distances reduce the
available bit rate (≤ 125 kbit/s at 500 m).

Figure 2 depicts the CAN bus standard message structure,
it contains identifier-, control-, data-, checksum- and ack-bit(s).
The message identifier (ID) describes the data content. CAN
transceivers listen for activity on the bus and only transmit
when the bus is idle. Due to the nodes on the CAN bus normally

S
O

F

A
C

K
A

C
K

 d
e
li
m

it
e
r

Arbitration / ID Control Data CRC EOF

R
T

R

11 bits / 29 bits 6 bits 0 - 64 bits 16 bits C
R

C
 d

e
li
m

it
e
r

7 bits

Fig. 2. Standard CAN frame structure.

CAN node

CAN Low

CAN High

CAN bus

CAN transceiver

Microcontroller

CAN controller

RX TXDriver logic:
Non-standard

attacker node

Remote access /
Compromised node

Physical layer access

Fig. 3. A CAN node consists of a transceiver, a controller, and a micro-
controller. The transceiver translates between logical and physical layer. The
controller encapsulates the data link layer. It is part of the software stack of
the micro-controller.

not being synchronized, there needs to be a mechanism to re-
synchronize them to ensure consistent data transmission. The
CAN protocol resolves this with an arbitration phase where
only the transceiver sending a higher priority ID “wins” and
the others back off.

Commercial CAN Transceivers. As depicted in Figure 3, a
node on the CAN bus is a combination of three different types
of components: transceiver, controller, and microcontroller. The
CAN transceiver is responsible for the physical interaction. The
interaction with the bus is achieved by pulling CAN Low and
CAN High to the desired of the three voltage levels according
to the CAN controller’s clock-dependent input. Commonly used
CAN transceivers operate at slew rates in the single digit range
to tens of V

µs
[20], [44]. As a consequence of these physical

limitations, commercial CAN transceivers have a physical upper
bound at which they can operate. While the exact frequency
depends on the model of the chip, operating frequency peaks
at around 100 MHz.

B. Time Difference of Arrival (TDoA)

TDoA is the difference between the Time of Arrival
(ToA) of a signal at multiple locations. Many positioning
systems that are based on radio-frequency technology use TDoA
measurements to calculate so-called pseudo-ranges that allow
to perform multilateration and determine the exact location
of a radio transmitter. Since the signals travel with a known
velocity–often approximated with the speed of light–the true
range or distance is directly calculated from the ToAs.

On a CAN bus, TDoA measurements can be used to
determine the location of the transmitting node on the bus.
For example, on a linear bus, the arrival time of the same
message can be measured at two (or more) distinct locations,
which reveals the exact position of the CAN node along the
bus (see Figure 4). The exact time of arrival is captured by
measuring the transition from a dominant to a recessive bit, or
vice-versa.

2

TCAN [5] Biangulation [32] TIDAL-CAN [33] EdgeTDC (this work)

Sampling Frequency NS 100MHz ≥ 250MHz 220MHz
Granularity Every recessive-to-dominant edge Capture of entire frame Capture of one edge per frame Every falling and rising edge
Signal conversion NS Analog-to-digital (ADC) Analog-to-digital (ADC) Time-to-digital (TDC)
Detection method Signal edge + echo edge Edge inflection point Thresholding Propagation model for TDoA
Required hardware Monitor (and repeater) PCI-E Digitizer Card USB Oscilloscope FPGA
Bus structure linear linear linear linear
Precision multiple of 15cm ≤ 30cm ≤ 40cm ≤ 10cm
False reject rate NS NS 0.0 0.0 (after calibration)
False accept rate NS NS 0.0 0.0
Cost NS > $3000 $1000 $185
Protected from remote attacker ✗ ✗ ✗ ✓

Protected from physical layer at-
tacker

✗ ✗ ✗ (✓) only if clock drift not present

NS = not specified, NA = not applicable

TABLE I. TDOA-BASED CAN BUS INTRUSION DETECTION SYSTEMS.

CAN node CAN node CAN node

CAN node CAN node

CAN Low

CAN High

1
2
0
 Ω

1
2
0
 Ω

Vehicular intrusion detection system

(TDoA measurement)

Compromised /
attacker node

Fig. 4. Linear CAN bus with IDS attached to both ends of the bus.

TDoA-enabled IDSs are systems that run on top of the
bus communication protocol [5], [32], [33] (see Table I). Such
a system is fully transparent to the connected CAN devices.
It constitutes an additional layer that should provide security
guarantees. The CAN bus communication protocol does not
have to be altered, and ECUs can receive and transmit normally.
A TDoA system is its own entity in the form of a measurement
unit with computational resources, such as a general-purpose
CPU or MCU. The TDoA system is attached to the CAN bus
through measurement “wires” that forward the CAN message
to the measurement unit Figure 4. Its purpose is to determine
the TDoA of every emitted message and verify the claimed
sender (via the arbitration ID). Existing TDoA-enabled IDSs
are capable of detecting sender location up to the precision of
30 cm. If the measured location and sender ID do not agree,
the system triggers an alarm and possibly instructs the driver
to stop operating the vehicle. Naturally, such a system needs
to minimize false-positive events, i.e., when a false alarm is
triggered. A false positive event is a severe intervention that can
cause inconvenience and loss of time and money. Therefore,
such a system has to effectively detect tampering with the CAN
bus and identify compromised nodes while keeping the false
reject rate at an absolute minimum.

III. THREAT MODEL AND ASSUMPTIONS

We consider an attacker model commonly found in literature
on CAN bus security [4], [9], [10], [23], which we call
remote attacker. This attacker gains control over one or more
ECUs and/or any other CAN-bus connected devices/sensors
in the vehicle, e.g., by exploiting a vulnerability in another
communication technology, such as Bluetooth (see left side
of Figure 3). Given this, we assume that such an attacker can
eavesdrop on existing traffic and emit messages on the CAN
bus, but is limited by the interface and the capabilities of the
commercial CAN bus transceivers. We further assume that this

adversary knows the CAN structure of the target vehicle [15],
[28], [38]. This knowledge could be either obtained through
public sources or by discovering the bus structure through one
or more compromised CAN nodes.

In this work, we further consider a more powerful adversary
that can attach their own proprietary devices to the CAN bus at
different locations, such as the On-Board Diagnostics (OBD)
port of the vehicle that exposes the CAN bus (see right side
of Figure 3). We call this type of adversary physical layer
attacker. Newer vehicles often provide CAN bus connectivity
at multiple accessible locations, such at the tow hitch for trailers,
and at the windshield for optional cameras (or LIDAR) for
autopilot functionality [13]. A physical layer attacker therefore
extends the attack surface from built-in devices and sensors
to CAN bus attachment points. Direct access implies that the
adversary can operate at the physical layer by measuring the
voltages of the bus lines and injecting current.

Irrespective of the described capabilities (remote or physical
layer access) and how many attacker nodes are present, we
exclude attackers that change the physical layout of the CAN
bus, e.g., by attaching or cutting wires. If a vehicle Intrusion
Detection System (IDS) is installed, we assume that the attacker
can not physically tamper with it or compromise it, i.e., the
IDS firmware is not compromised. Furthermore, we do not
consider DoS attacks, but focus on masquerade/impersonation
attacks.

IV. ATTACKS AGAINST TDOA ON THE CAN BUS

We present novel attacks against TDoA measurements on
the CAN bus. These attacks are relevant for IDS systems
that use the TDoA of a node (measured at the extremities
of the CAN bus) as a proof of its identity. For example,
Biangulation [32] uses first edge of the start bit and TCAN and
TIDAL-CAN [5], [33] use a recessive-to-dominant edge for
TDoA estimation. These studies assume a logical layer attacker
that cannot modify the TDoA of any node in the bus, as TDoA
is supposedly an immutable physical-layer characteristic mainly
determined by the node location. The possibility of colluding
nodes is dismissed because synchronization is difficult and
concurrent transmission alters the voltage profile [33]. However,
recent work has shown that a logical-layer/remote attacker can
easily synchronize nodes and bypass voltage fingerprints [4].
Prompted by this advance in attacker capabilities we conduct an
in-depth study of the integrity of TDoA measurements on the

3

CAN bus, and we identify two novel spoofing and poisoning
attacks.

A. Attack Vectors

To succeed at masquerading as a victim node, i.e., to emit
a message using an ID allocated to a victim node without the
IDS raising an alarm, the attacker can attempt to exploit two
main attack vectors:

• TDoA Spoofing: The attacker directly alters the TDoA
of the messages sent by its (compromised) node(s), so
that the attacker’s TDoA matches a desired value.

• TDoA Poisoning: The attacker alters the TDoA of
messages sent by a victim node through interfering
with (any of) the genuine messages on the bus. The
encoded data is unchanged.

With spoofing, the adversary can launch a masquerading
attack and also try to match the TDoA of the victim, forcing the
IDS to resort to additional measures for detection. Poisoning
can facilitate spoofing attacks by altering the TDoA of victim
nodes while the IDS is (re)-calibrating.

As highlighted in [33], several physical layer factors (e.g.,
load) impact the propagation of CAN signals on the line.
IDSs based on physical features generally require an initial
calibration phase followed by continuous retraining to account
for variations, e.g., due to temperature changes. Therefore,
an attacker can influence the input for retraining the model,
which ultimately affects classification. For example, if the
model is poisoned to an extent where the attacker’s own
TDoA is accepted as the victim/targeted node, the attacker
can successfully masquerade the victim node. We analyze how
easily those attack vectors are accessible, considering the two
attacker models described in Section III: a remote attacker, and
a physical attacker. We first present the underlying concept of
message overshadowing which is a building block for spoofing
and poisoning and then we describe concrete attacks.

B. Message Overshadowing

A CAN frame that is transmitted by a single node on
the bus exhibits a distinctive TDoA value that correlates
with the position on the bus. The CAN bus can tolerate
interference/cross-talk and environmental noise due to its
balanced twisted pair design. Therefore, the TDoA value should
be stable under normal operating conditions (we test the case of
excessive noise experimentally). This implies that the adversary
needs to be active on the bus in order to influence TDoA
measurements. More specifically, the adversary can only alter
the TDoA of any node (including any compromised nodes) if
concurrent transmission can be enforced or specifically crafted
interference is injected on the bus while the TDoA is acquired.
We borrow the term message overshadowing for this concept.
Overshadowing describes the action of transmitting on the bus
while another message is underway with the goal of modifying
the contents or any (physical) characteristic of the message, such
as the the TDoA. By design, two or more CAN transceivers
can transmit on the line simultaneously. If at least one of the
transmitters sends a dominant symbol, the bus state is dominant.
A standard CAN transceiver (and thus a remote attacker) can
send a dominant symbol to override any recessive symbol, but

0V

2V

0V

2V

Pulse injection

Pre/late-injection

0V

2V

Voltage splitting

P
o
te

n
ti
a
l
d
if
fe

re
n
c
e
 |
C

A
N

 L
o
w

 -
 C

A
N

 H
ig

h
| Advancing Delaying

Target
rising edge

Target
falling edge

Target
rising edge

Target
falling edge

Fig. 5. When advancing, the edge(s) need to be anticipated. Overriding
recessive state with dominant state (depicted in blue) can be executed with a
standard CAN node. Any other attack, including voltage splitting requires a
non-standard node (shown in red).

not the other way around. The latter can be executed only by
a physical layer attacker with a non-standard transceiver.

Injecting, Anticipating or Delaying Edges. Figure 5 shows
different approaches to alter the arrival time of a symbol
and subsequent edges using overshadowing. Both remote and
physical layer attackers can:

• Delay a dominant-to-recessive (0→1) edge by trans-
mitting a dominant bit longer than the currently
transmitting node.

• Anticipate a recessive-to-dominant (1→0) edge by
transmitting a dominant bit earlier than the currently
transmitting node. The arrival time of the edge is
advanced.

• Inject a dominant (0) pulse when another node is
transmitting a recessive signal2.

Only a physical layer attacker is able to:

• Delay a recessive-to-dominant (1→0) edge by over-
driving the bus to recessive state while another node
is still imposing a dominant state. Over-driving re-
quires sinking/sourcing of current, leading to electrical
states outside the specifications for standard CAN
transceivers.

• Anticipate a dominant-to-recessive (0→1) edge by
overdriving the bus to recessive state while the another
node is still imposing dominant state.

• Inject a recessive (1) pulse by overdriving bus to
recessive state while the another node is imposing
dominant state.

C. TDoA Spoofing Attack

An adversary can use overshadowing to alter the TDoA
of its own (compromised) nodes. To this end, the adversary
needs to be in control of at least two nodes that transmit their
messages at the same time. The degree of synchronization
depends on the attacker. A physical layer attacker can run an
arbitrary synchronization protocol to align the transmissions,
whereas a remote attacker can use the CAN bus itself to
synchronize two compromised nodes. It proceeds as follows:
the first compromised node sends a sequence of immediately
consecutive messages, to which the other nodes synchronize.

2Possible for a remote attacker since it requires setting a non-conforming
configuration at the compromised note, e.g., incorrect baudrate.

4

Measurement
location 1 Attacker 1

Spoofed
Location

Falling edge

Measurement
location 2

D
e

la
y
 t
o

 c
o

n
tr

o
l

 s
p

o
o

fe
d

 l
o

c
a

ti
o

n Attacker 2

Falling edge

(recessive to dominant)

Spoofed
Location

Rising edge

Rising edge

(dominant to recessive)

Fig. 6. Physical layer attacker with two synchronized nodes. The red lines
depict an excerpt of the attacker transmission (2 edges). Both nodes transmit
the same edges, but with a small delay in between. The delay is used to control
the spoofed location(s). In theory, any location between the adversarial nodes
can be realized.

Measurement
location 1 Attacker 1 Attacker 2

Measurement
location 2

Attacker 2 synchronizesto Attacker 1

Filler message

Interframe spacing

Malicious message

Clock jitter

Identifier message

Spoofed
Location

Fig. 7. Remote attacker synchronizes two compromised nodes for TDoA
spoofing.

The first message contains an identifier, the second message is
a filler message, and the third message is the actual (malicious)
message which will exhibit an altered TDoA value. As soon
as the second node receives the message with the identifier, it
loads the same malicious message (the third message in the
sequence of the first node) into the output buffer and tries to
transmit it on the bus. However, the bus is currently occupied
by the filler message. If the filler message has a higher priority
ID than the third message, the node will back off and wait
until the filler message has finished transmitting (see Figure 7).
Immediately afterward, both compromised nodes will send
a malicious message. Since both nodes transmit an identical
message simultaneously, no bus error is caused. The attacker
can choose arbitrary IDs for the malicious and filler messages.
As long as the filler message has higher priority, the attacker
can use bus arbitration to synchronize the emission of the
malicious message. A similar method for synchronization is
described in [4].

After synchronization, the attacker sends the same message
from both nodes, but with a small delay. The delay can be
used to control the spoofed location which can be realized at
any position between the two adversarial nodes. If both nodes
transmit at the same time the spoofed TDoA corresponds to
the location exactly halfway. In Figure 6, we show an example
where the first node (Attacker 1) transmits slightly earlier and
therefore, the spoofed location is shifted closer to the Attacker
1 or 2, depending on edge polarity.

Measurement
location 1 Attacker Target

Measurement
location 2

Attacker synchronizes to target

using preceeding communication

Legitimate transmission

Interframe spacing

Attacker transmission

Clock jitter

P
o

te
n

tia
l d

iffe
re

n
c
e

a
t lo

c
a

tio
n

 20V 2V

D
e

la
y
e

d
 e

d
g

e

E
x
p

e
c
te

d
 e

d
g

e

A
ffe

c
te

d
 T

D
o

A

E
x
p

e
c
te

d
 T

D
o

A

Fig. 8. Delay dominant-to-recessive edge. A compromised node introduces a
falling edge on the line (i.e., rising edge in driver logic) which arrives later at
location 2 than the legitimate edge. If TDoA is measured on this edge, the
result reflects the location of the attacker.

Since the CAN bus acts like a wired OR on the physical
layer, the polarity of the edge plays a role when spoofing
TDoA. Dominant state overrides recessive state and thus a
rising/dominant-to-recessive (0→1) edge does not have any
effect if another node is still in dominant state. For recessive-
to-dominant (1→0) edge, the transmission that arrives first
is used for TDoA calculation. In the case of a dominant-to-
recessive (0→1) edge, the transmission that arrives last is used
in the calculation. As a result, there can be different spoofed
locations for both edge polarities. If the attacker injects a
(short) isolated pulse, a TDoA measurement corresponding to
the location of the transmitting node is the outcome. If the
pulse is not isolated, but falls next to an edge belonging to
the legitimate transmission (see Figure 5), the result depends
on how edges in quick succession are sampled, e.g., the IDS
might only register the first or last edge. We perform various
TDoA spoofing attacks and report attack success rates of our
test set-up in Section VII.

D. TDoA Poisoning Attack

The main difference compared to spoofing is that poisoning
attacks are possible only if the content of the victim’s packet is
predictable for the attacker. The attacker has to overshadow the
victim packet without causing bit errors and without introducing
additional edges. Unfortunately, CAN messages in modern cars
are often entirely predictable, especially periodic safety-critical
messages. Many packets contain static IDs, status bits and
sensor readings that rarely change and result in nearly constant
data bits [4]. Similar to spoofing, the poisoning attack requires
synchronization. To transmit the attack signal in the correct
time window, the adversary again needs to synchronize with
the target node’s transmission.

Analogous to the spoofing attack, the effective TDoA
measured depends on the positions of the victim and attacker
as well as the delay chosen by the attacker. If the attacker
anticipates/delays edges of the victim’s transmission, the effect
on TDoA is determined by the amount of the shift and the
polarity of the edge (falling, rising). An example for a poisoning
attack based on delaying edges is shown in Figure 8, where
an attacker introduces a delayed falling edge at measurement
location 2, which is used in TDoA calculation. The introduced
edge arrives at around the same time at measurement location
1 as the legitimate edge and thus only has a small effect on
measurement location 1, subject to some slight variation due

5

to clock drift/jitter. The resulting TDoA value corresponds to a
location between attacker and target node despite the message
having been sent by the target. We confirm the effectiveness
of poisoning in an ablation study in Section VII.

E. Clock Drift and Jitter

When an adversary overshadows another message, two
transmissions collide on the bus. Since the transmitters have
independently running oscillators, i.e., either faster or slower
than an ideal oscillator with constant frequency, the edges
contained in the combined message experience a clock drift,
even if the contents of both messages match exactly and
transmission started at the exact same time. Clock drift
introduces a small misalignment of the bit timings that increases
over time and shifts the (combined) edges apart. Moreover, the
oscillators are subject to clock jitter that can further increase
the delay between the edges. This phenomenon modifies the
spoofed location represented by the overshadowed message
(see Figure 6). For a physical layer attacker, drift and jitter
are controllable to an extent, i.e., the attacker could use
expensive clocks. A remote attacker, however, has to rely
on the internal oscillators of the compromised CAN nodes
which inevitably skew the edges of an overshadowed message.
Clock drift and jitter constitute the root cause for an increase
in intra-packet variance of TDoA readings and thus form the
basis of the detection mechanism in EdgeTDC. At the same
time, higher variance entails that acquiring just one TDoA
value per packet (e.g., through measuring a single predefined
edge) is not sufficient. In Section VII, we show that even a
remote attacker can alter the TDoA of a node using our novel
spoofing/poisoning techniques when intra-packet variance is
not computed.

V. EDGETDC

EdgeTDC is a TDoA-based IDS that can defend against any
remote adversary, even if it is capable of poisoning or spoofing
TDoA. It can efficiently measure the TDoA of each edge using
a time-to-digital (TDC) converter on the digital output of two
transceivers at the ends of the bus. Measuring each edge allows
calculation of statistics that can detect tampering with (parts of)
a CAN message despite not acquiring analog signal samples.

A. System Design

EdgeTDC needs—as any other IDS—an additional device
that augments the CAN bus. It uses the concept of TDoA as
described in Section II-B. The measurements are acquired at
two points (ideally at both ends) of a linear CAN bus, see
Figure 4. If the ends of the bus do not happen to lie close to
each other, the measurement points can be connected to the
IDS device using additional cables. In Figure 9, we show an
overview of the IDS device which implements the concept of
EdgeTDC. There are six main components: 1 the electrical

translation from CAN to digital, 2 sampling and decoding of

incoming CAN packets, 3 control logic that acquires the ID
and arms the TDoA measurement block before the incoming
edges, 4 the Time-to-Digital Converter (TDC) that measures

the TDoA, 5 a memory buffer and a UART peripheral to

transmit the results to the host, and 6 software that verifies
the authenticity of the CAN packets by comparing the expected

Artix7 Basys3 FPGA

TJA1049

CANH2

CANL2

TJA1049

CANH1

CANL1

ESP32 ESP32

TX2 TX1

RX2
RX1

8

1

TDC
4

TDOA

arm, edge

Control
3

Sample & Decode
2

Bit, ID, error, …

ID, TDOA, ...
RAM Buffer

UART

5

ID, TDOA, ...

Host PC / Microcontroller

• Model(ID) == TDOA ? OK : Masquerading

• Intra-packet variance, ...

Cryptographically secure random

sequence for secure recalibration

7

6

Fig. 9. Overview of EdgeTDC. The TDoA of each edge is measured while

decoding incoming packets 1 – 5 . TDoA consistency with the ID is then

verified to detect masquerading attacks 6 . To calibrate securely, EdgeTDC
transmits a sequence of packets whose content is created by a cryptographically

secure pseudo-random generator 7 – 8 .

TDoA for the claimed ID and the real measured TDoA. In
order to calibrate the model for the expected TDoA, EdgeTDC
transmits a series of packets from a known location using
the same transceivers as for reception 1 and two additional

controllers 8 . The content of these packets is generated

by a cryptographically secure pseudo-random generator 7 .
Since the content is unpredictable to an attacker, the TDoA
of the calibration packets cannot be poisoned or spoofed. We
implement blocks 2 to 5 on an inexpensive ($150) Basys3
development board by Digilent, which is equipped with a Xilinx
Artix7 FPGA running at 100 MHz base frequency. Component
1 can use any CAN transceiver with 3.3 V output (e.g.,

NXP TJA1049). Similarly, component 8 can use any micro-
controller with a CAN controller peripheral (e.g., ESP32-based
Atom CAN). Verification and calibration software 6 - 7 can
run on any micro-controller or host computer (e.g., Raspberry
Pi). If the two ends of the CAN bus are close they can be
attached directly to EdgeTDC. Otherwise, EdgeTDC could be
connected to the far side using an active CAN relay made of a
long cable and two transceivers (see Figure 23 in Appendix).

B. Implementation

Electrical translation. EdgeTDC uses the NXP TJA1049 high-
speed CAN transceiver (available on the Arduino MKR CAN
Shield [40] for <$30), which turns the incoming CAN signal
into a 3.3 V digital line for the FPGA. Two NXP TJA1049 are
used, one for each end of the CAN bus—so that EdgeTDC
can take TDoA measurements. These transceivers, driven by
two ESP32-based controllers (M5Stack ATOM CAN [27]), are
also used to transmit calibration packets on the CAN bus.

Sampling, decoding, control. The sample logic continuously
detects and synchronises with each edge on the incoming
RX signal, in order to schedule the best moment to sample
the value of each bit. The decoding logic parses each bit,
and then identifies each field of the frame. We borrow these
components from an open-source Verilog implementation of
a CAN controller available on OpenCores [31], with some
modifications. Our custom control logic collects the ID of each
CAN packet and triggers the measurement of the TDoA of its

6

0 0 0 0 0 0 0 01 1 1 1 0 0 0 0

Known delay

START

STOP

Digital value = f(tSTOP – tSTART)

Total delay less than

tSTOP – tSTART

tSTOP – tSTART

Fig. 10. Working principle of a TDC based on a delay line. Each flip-flop is
fed with an increasingly delayed version of the START signal. When STOP
arrives at the clock of the flip-flops, those flip-flops whose input delay is
smaller than the TDoA between START and STOP will sample a ’1’, whereas
the following ones with sample a ’0’.

edges. The sampling and decoding logic informs the control
logic about the expected polarity and time of the edges, which
is used to arm the TDoA block.

TDoA Measurement. To acquire high-resolution TDoA mea-
surements, EdgeTDC uses a TDC circuit on the FPGA. A TDC
is a partially asynchronous digital circuit that converts the TDoA
between a START and STOP signal into a digital number using
a delay line, illustrated in Figure 10. The STOP signal samples
several delayed copies of the START signal in a flip-flop chain.
The number of flip-flops at ’1’ is then proportional to the delay
between START and STOP. The resolution of the measurement
is given by the resolution of the elements in the delay line,
which can be controlled accurately by using digital logic as a
delay element. The total delay of the line is chosen to match
the duration of a clock cycle (220 MHz). This method allows
measuring TDoA with sub-clock accuracy, without requiring
to increase the clock frequency. If the TDoA value exceeds the
duration of the delay line, then an additional standard digital
counter takes care of measuring the extra delay. We borrow the
implementation of the TDC from an open-source project [3],
modifying the code in order to measure both positive and
negative values of the TDoA, to introduce a signal that arms
the circuit before each measurement, and to acquire both rising
and falling edges. Following the recommendations in [3], we
optimize the physical placement of EdgeTDC components on
the FPGA fabric (see Figure 22 in Appendix). The entire design
is placed in the same clock region. The elements of the delay
lines are placed close together and form a column that shares
the same clock lines. Finally, we use dedicated blocks designed
for clock distribution to route START and STOP signals in our
design. The TDoA between START and STOP is measured at
the same location within the same clock region. We interface
to the EdgeTDC peripheral via a 2 MHz serial link that can
be connected to any micro-controller or host computer.

C. Model, Secure (Re-)Calibration, and Detection

Problem statement. Given a CAN message with a certain
TDoA (tdoameasured) that claims to originate from a certain
ID (idclaimed), we want to find the ID (idbest) which is most
likely attributed to the measured TDoA. If the ID claimed by
the packet and the ID we expect from the TDoA are the same,
the message is authentic, otherwise, a masquerade attack is
detected. The overall todameasured of a message is the average
over all the TDoAs of each edge of the message.

Topology. While knowing the topology of the CAN bus (i.e.,

Position(ID)

Position(ID)

TDOA

TDOA

Training

Check

Training samples
Linear Model

Linear Model
Ok (really 0xB)

Impersonation

(0xB impersonating

0xA)

OxA OxB

Expected 0xA

Measured 0xAExpected 0xB,

Fig. 11. Working principle of the linear model. EdgeTDC compares the
expected TDoA with the measured one for each ID. The ID with the smallest
error is the most likely. If it matches with the ID decoded in the message, then
the message is authentic, otherwise it has been masqueraded by another node.

the nominal position of all the node that transmit using a
certain ID) is not strictly necessary for classification, it is very
useful to constrain the possible positions of the nodes, making
the system more robust to poisoning attacks. The topology of
the bus is known by design or it can be measured directly.
If this is not known by design, we can utilize EdgeTDC to
collect messages and estimate the position for each ID from
the average TDoA for a given ID and the propagation speed:

position(id) = speed · tdoaid ∀id ∈ IDs (1)

This step must be performed once during manufacturing/main-
tenance and in absence of any attack.

Initial calibration. We need a model that, given an ID, can
predict the expected TDoA. We know that the TDoA is linear
with the position of the node (travel time is proportional to
distance divided by speed). Therefore, we use a linear model
as follows:

m̂odel(id) = α+ β · position(id) ∀id ∈ IDs (2)

To estimate α and β, we use linear regression over a set of
calibration measurements collected in absence of any attack.
This has to be done once, for example during manufacturing.

Secure re-calibration. A re-calibration is necessary every
time the CAN bus is turned on again after a period of
inactivity, as changes in the environment might have slightly
altered the model. Once the CAN bus is deployed, we cannot
rerun the initial calibration procedure (an attacker might have
compromised some of the nodes). To solve this, we leverage the
two trusted transceivers 1 / 8 part of EdgeTDC. Every time
the bus is turned on, EdgeTDC emits a sequence of calibration
packets from its transceivers at the extremities of the bus.
EdgeTDC then uses linear regression to estimate α̂ and β̂,
similar to the initial estimation of α and β, but without relying
on other nodes. By re-calibrating the model each time the bus is
turned on, EdgeTDC compensates for possible variations that
occurred during the off time. EdgeTDC can also compensate for
a systematic deviation between initial and secure re-calibration.3

3EdgeTDC runs the secure re-calibration for the first time right after initial
calibration and computes the correction terms ∆ = α− α̂ and Ω = β/β̂. In
all subsequent re-calibrations the systematic deviations are re-applied to the
estimates of α̂ and β̂ by computing α̂′ = α̂+∆ and β̂′ = Ωβ̂.

7

To prevent poisoning/spoofing attacks, EdgeTDC must gen-
erate the calibration sequence using a cryptographically secure
pseudo-random generator. We propose the same generator
used by the IEEE804.15.4z standard [1] to protect Ultra Wide
Band (UWB) distance measurements from manipulation and
overshadowing attacks. It is based on AES-128 in counter mode.
The length of the sequence can be chosen to provide both, a
good calibration estimate and a high security-level.

Online update/detection. During normal operation of the CAN
bus, whenever the IDS receives a message with ID = idclaimed

and TDOA = tdoameasured, it has to determine if the ID is
genuine or not. We compute the following discriminant for
each possible ID of the CAN bus:

êrror(id) =
∣

∣

∣
m̂odel(id)− tdoameasured

∣

∣

∣
∀id ∈ IDs (3)

We can find the id that has most likely generated tdoameasured

as the one with minimum error êrror:

idbest = argmin
id

(êrror(id)) ∀id ∈ IDs (4)

We check if the message is authentic by comparing idclaimed

decoded from the message and idbest predicted by the model:

authentic = (node(idclaimed) == node(idbest)) (5)

To account for nodes that transmit more than one ID, we
check that idclaimed and idbest belong to the same node, i.e.,
EdgeTDC uses a predefined mapping. Finally, if the message

is authentic, we can use the tdoameasured to update the m̂odel
online (in order to deal with small legitimate fluctuations of
the model due to temperature, for example):

m̂odel = update
(

m̂odel, tdoameasured, idclaimed

)

if authentic

(6)

We extend linear regression to perform an efficient online
update.4 The reactivity of the model update is controlled by
the forgetting factor λ ∈ [0, 1].

Rising and falling edges. EdgeTDC knows whether to expect
a rising or falling edge, based on the current value of the bit.
For falling edges, EdgeTDC simply inverts the start and stop
lines. After having decoded the next bit, EdgeTDC detects
if the (rising or falling) edge really occurred, or if there was
no transition. Two separate linear models are kept for rising
and falling edges, to account for possible differences on the
intercept due to the inversion and possible differences on the
slope due to attacks that target only one of the edge polarities.
EdgeTDC can detect inconsistencies between the number of
TDoA measurements and the number of bit transitions.

Edge selection. EdgeTDC needs to carefully select the bits
it considers for TDoA measurement: it needs to exclude the
arbitration part and the ACK bit which could have been sent by
a different node. Those bits distort the measurement otherwise.

Intra-message variance check. EdgeTDC measures the TDoA
of one message as the average of the TDoAs of all edges
(selected as explained above). During calibration EdgeTDC

also estimates the (pooled) variance of TDoA within a message.
During normal operation, EdgeTDC checks that the variance
of each received message does not exceed the expected values

4 https://scaron.info/blog/simple-linear-regression-with-online-updates.html

by orders of magnitude, which occurs due to clock drift when
two attacker nodes transmit at the same time as explained in
Section VI.

Physical interpretation. The linear model has a physical
interpretation. It is an estimate of the relation between time
and position. We expect α to be close to zero and β to be
approximately the inverse of the propagation speed of CAN
messages over the bus, i.e., 1

β
≈ c · vf , where c is the speed of

light and vf is the velocity factor of the cable, often around 0.7
for automotive standards J2284 and J1939. Despite additional
variables such as delays in receiver circuitry and driver, we can
use this interpretation to check if the parameter we estimate
falls in the expected range for this physical quantity, and rule
out values that are physically impossible and might be caused
by an attack. Figure 11 depicts the principle behind the previous
equations in an intuitive way.

VI. SECURITY ANALYSIS OF EDGETDC

Message integrity and overshadowing detection. EdgeTDC
measures the time of arrival of all rising and falling edges
excluding ID and ACK (in contrast to previous work that
measures only one edge). Launching a single attack by delaying
or anticipating an edge is not sufficient and is detected.
EdgeTDC measures intra-message average and variance of
the TDoA values occurring in each message. Affecting only
a small subset of the edges in a frame does not modify the
average TDoA significantly.

Intra-message variance and clock drift. If an adversary inter-
feres with several edges, the intra-message variance increases
and the variance check described in Section V triggers. This
is due to the fact that, during overshadowing, two nodes A
and B transmit at the same time and the combined message
is subject to two (different) clocks with drift and imprecise
synchronization, leading to an unavoidable increase in variance.
This is especially true for remote attackers—a physical layer
attacker with two colluding nodes and perfect clock stability,
on the other hand, might pass the variance check if the delay
for every single edge in a frame is modified successfully.

We model the variance based on the inaccuracies of the two
clocks of nodes A and B and determine the required clock
stability to pass the test. We use the following clock model
and define the offset between A and B at time t as

δ(t) = δ0 + foffs · t (7)

where δ0 is the inital offset and foffs is the worst-case frequency
offset between the nodes (we do not model frequency drift as the
transmissions are on the order of a few hundred nano-seconds).
We then define the TDoA (for rising and falling edges) over
an overshadowed packet as follows, assuming d = dist(A,B).
Additionally, δ(t) < 0 if A sends before B.

TDoAR(t) =











TDoAB δ(t) ≤ −d/(c · vf)

TDoAA δ(t) ≥ d/(c · vf)

TDoAA + δ(t) + d
c·vf

else

(8)

and

TDoAF (t) =











TDoAA δ(t) ≤ −d/(c · vf)

TDoAB δ(t) ≥ d/(c · vf)

TDoAB − δ(t) + d
c·vf

else

(9)

8

https://scaron.info/blog/simple-linear-regression-with-online-updates.html

In order to create an outcome different from the existing TDoA
values of A and B, i.e., TDoAA and TDoAB , the adversary
has to make sure that

−
d

c · vf
< δ(t) <

d

c · vf
(10)

In addition, edge consistency requires TDoAF (t) = TDoAR(t)
which is only the case if δ(t) = 1

2
(TDoAB − TDoAA)−

d
c·vf

.
However, this difficult to achieve since the delay needs to
be changed throughout the packet and clock drift needs to
be compensated which is only possible for a physical layer
attacker, but requires tight synchronization on the order of
nano-seconds. A remote attacker does certainly not have the
ability to selectively delay edges between compromised nodes
with fine-grained precision because a remote attacker can not
modify or tune the oscillators.

Since explicit delay modifications are infeasible, the adver-
sary can hope that, due to the variability in δ(t), the average
TDoA of the packet falls into the interval in Equation 10. If
we assume a normally distributed error term N (0, σ2

ϵ) for the
(remaining) time/phase jitter and the measurement uncertainty
that are not captured in the clock model, we can write

T̂DoA(t) = TDoA(t) +N (0, σ2
ϵ) and estimate Mean(T̂DoA)

and Var(T̂DoA). If the TDoA values are sampled at every
edge in the packet, we can compute sample mean and variance
over a packet. Assuming equally spaced bits and excluding the
edges that do not lie in the window in Equation 10, sample
mean and variance are5:

Var(T̂DoA) ≈ Var({δ(i · r)}N−1

i=0) (11)

Mean(T̂DoA) ≈ TDoAF +
d

c · vf
+Mean({δ(i · r)}N−1

i=0) (12)

with N being the number of edges in the window and r the
bit time, e.g, 8 µs for a bus speed of 125 kbit/s. Plugging the
definition of δ(t) into Equation 11 and Equation 12, respectively,
we arrive at

Var(T̂DoA) ≈ f2

offs r2
N2 − 1

12
+N2σ2

ϵ (13)

Mean(T̂DoA) ≈ TDoAF +
d

c · vf
+ δ0 + foffs r

(N − 1)N

2
(14)

The N edges within the window form a linear sequence and
thus the larger N , the higher the advantage for the attacker
to steer the mean towards a TDoA/position that is consistent
for both edges. However, the larger N , the higher the variance.
Moreover, the larger the window and distance d = dist(A,B)
between the nodes, the larger N and thus higher variance in
the measured TDoA values. We show in Section VII typical
variance figures for both benign and overshadowed messages.

Edge count. Furthermore, EdgeTDC counts the number of
edges and compares the result with the expected number of
edges by using bit-level information. Attacker can not inject
more edges than there are supposed to be in the received
frame, let alone edges with the wrong polarity. Therefore, any
attack that injects edges/pulses is detected, independent of the
polarity. In EdgeTDC, the delay lines have to match a clock
cycle, i.e., 4.55ns = 1

220MHz
. Therefore, only one edge can

be captured during that period and adversarial pulses shorter

5Analysis done for falling edges. Rising edges are analoguous.

than 4.55ns can not be detected. However, since commercial
CAN transceivers (such as TJA1049) have bus-to-logic delay
times on the order of 30 − 70ns, short pulses are filtered by
the transceiver chip and neither reach the FPGA, nor affect the
received data.

Propagation Channel Integrity. EdgeTDC leverages the
topology of the bus. The variance of the measurements and
position of nodes are used to compute confidence that TDoA of
a message indeed matches the claimed ID. EdgeTDC models
the system with specific propagation speed and a static offset
between both extremities of the bus (parameters α and β). Since
those parameters are continuously verified, a state where α or
β are shifted outside their physical bounds or the propagation
speed is not constant across the entire bus length is immediately
detected. The propagation speed does require a certain margin
as the cables and transceivers are subject to environmental
changes in a vehicle. Section VII shows how propagation speed
changes when the measurement device (FPGA) is heated up
and how continuous training adjusts the model. Despite those
environmental changes, the model of EdgeTDC can detect
(selective) attacker-induced changes in propagation speed since
the physical range for the propagation speed can be determined
through measurements prior to system deployment.

Excluding perturbations. In addition to forcing the TDoA
measurements into a linear model, EdgeTDC does not update
the model in case a TDoA measurement falls outside the
expected distribution of a node. This provides further resilience
against (local) perturbations introduced by an attacker.

Re-calibration. An attacker can attempt to interfere with the re-
calibration phase using compromised bus nodes by transmitting
fake calibration packets or poisoning legitimate calibration
packets. For a remote attacker, this is not possible if the packets
contain unpredictable bits since, for successful poisoning, the
attacker needs to know the packet’s content. Anticipating and
guessing the bits without knowledge of the key and the IV
(which should be embedded securely in EdgeTDC) results in
detectable bit errors. Injecting pulses (dominant or recessive)
can be detected by counting the edges. In theory, a physical
layer attacker can delay all the edges part of the calibration
packets, but this requires over-driving the bus to a recessive
state whenever a recessive-to-dominant edge is encountered and
leads to states outside the CAN specifications (see Section IV).

Compared to regular EdgeTDC operation, re-calibration
does require the CRC part to be removed from the TDoA
calculation (in addition to the ID and ACK). The CRC can
be computed based on the preceding bits, invalidating the
assumption that the edges are unpredictable. In Section VII,
we show the robustness of secure re-calibration under different
temperature conditions.

VII. EXPERIMENTAL EVALUATION

A. Automated Experimental Setup

Figure 12 shows an overview of our experimental setup.
We connect EdgeTDC to a CAN bus with 10 nodes using
MKR CAN Shields [40] based on the NXP TJA1049 CAN
transceiver. Nodes D, E, H, I, L control the shield using an
Arduino MKR, while nodes A, B, C, F, G use an ESP32-based
controller from the M5Stack Atom [27]. Each node runs an

9

Measurement

points at CAN

bus edges

EdgeTDC

Node L

Node H

Node I

Nodes A-G

USB to

host

120 Ohm CAN bus line

uController

Fig. 12. Overview of the experimental setup.

Node dist(Node, Prev.) position(Node) TDoA(Node)

RX1 0 cm 454 cm -
A 50 cm 354 cm (19 896 ± 78) ps
B 14 cm 326 cm (18 374 ± 63) ps
C 30 cm 266 cm (15 207 ± 81) ps
D 100 cm 66 cm (4295 ± 63) ps
E 20 cm 26 cm (1993 ± 58) ps
F 50 cm -74 cm -(2917 ± 76) ps
G 20 cm -114 cm -(5023 ± 88) ps
H 50 cm -214 cm -(10 743 ± 66) ps
I 50 cm -314 cm -(16 114 ± 63) ps
L 20 cm -354 cm -(18 428 ± 57) ps

RX2 50 cm -454 cm -

position(Node) = dist(Node,RX2) - dist(Node,RX1)

TABLE II. POSITION AND TDOA OF THE NODES.

implementation of slcan (i.e., CAN over serial) and is seen as
a network interface from our Linux host, making systematic
control of transmission and reception from Python possible. We
have extended the basic slcan interface to also include control
for our attacks. We can then transmit (normal or extended)
frames (ID and some data) from each node, while EdgeTDC
analyzes the messages. The bus lines are made of CAN cables
taken from a real bus salvaged from a vehicle. The two ends
of the bus have the nominal 120Ω terminations. We performed
transmission line engineering and verified that our bus line is
indeed balanced. We selected a bus speed of 125 kHz.

Table II reports the positions of each node. RX1 and RX2
are the two ends of the bus. The first column lists the distance
of each node from the previous node. The second column
shows the difference of distance that each node has from RX2
and RX1. This is the position that we use in the linear model
described in Section V, and it exhibits a linear dependence
with the TDoA.

B. EdgeTDC In Absence Of Attacks

Initial Calibration and Measurement Accuracy: We collect
the TDoA from a calibration set of 10000 messages from all
nodes, to build an initial model of the relationship between
position and TDoA. This initial calibration is performed once in
a secure setting, with knowledge of the bus topology. Figure 13
shows the corresponding linear model, which is clearly a good
fit of the TDoA measurements. The last column of Table II
reports the values of the TDoA and their uncertainty. Under
the reasonable assumption of Gaussian measurement noise,
the uncertainty is computed as plus/minus three times the
standard deviation (99.8 % confidence interval). In a practical

−2 0 2

Position (m)

−10000

−5000

0

5000

10000

15000

T
D

O
A

(p
s
)

Model Rising

L ID 0000004c

I ID 00000049

H ID 00000048

G ID 00000047

F ID 00000046

E ID 00000045

D ID 00000044

C ID 00000043

B ID 00000042

A ID 00000041

Fig. 13. Linear model between position and TDoA.

−10000 −5000 0 5000 10000 15000

TDOA (ps)

0.000

0.005

0.010

0.015

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

F
u
n
c
ti
o
n

A ID 00000041

B ID 00000042

C ID 00000043

D ID 00000044

E ID 00000045

F ID 00000046

G ID 00000047

H ID 00000048

I ID 00000049

L ID 0000004c

Fig. 14. Probability density functions for the TDoA of each ID. Every node
can be clearly distinguished from the others.

deployment, it is important to check that the nodes intervals do
not overlap given the bus topology and external conditions. For
example, in our case the confidence interval is always below
90 ps, which corresponds to a distance of less than 2.7 cm
(assuming that signals propagate at the speed-of-light or less).
Figure 14 shows the probability density functions of the TDoA
for each ID, measured over 10000 messages. The distributions
are clearly separate, and each node can be distinguished from
the others.

Secure Re-calibration and Online Update: We use 200 64-bit
CAN messages for secure re-calibration, for a total of 12′800
bits generated from AES-128 in counter mode. Transmission
at a 125 kHz bus speed takes around 0.3 s.

We run EdgeTDC at three different times under three
different temperature conditions and show the results in
Figure 15. We first run EdgeTDC at a constant low temperature
(Step 1). Then we turn it off, heat it to a higher temperature,
turn it on again and keep increasing the temperature (Step 2).
Finally, we turn it off, let it partially cool, and turn it on again
while it is still cooling down (Step 3). The upper plot shows
the slope of the model for rising edges as time passes. The
lower plot shows the false rejection rate (over a sliding window
of 100 messages). With secure re-calibration (every time the
bus is turned on again) and online model update (red) the false
rejection rate is 0 %. If the model is not re-calibrated when the
bus is turned on in different conditions (orange) a few packets
might be wrongly rejected before the online update converges
on the new value. Without online update (blue, green) the
model cannot follow the temperature changes and the false
rejection rate climbs to 50 % (with re-calibration) or even 100 %
(without re-calibration).

On the effect of noise: The CAN bus is specifically designed
to be resistant to noise injected in CAN High and Low.

10

0 1000 2000 3000 4000

Message

3300

3400

3500

S
lo

p
e

(p
s
/m

)

norecalib noupdate

norecalib update

recalib noupdate

recalib update

0 1000 2000 3000 4000

Message

0

50

100

R
R

(%
)

norecalib noupdate

norecalib update

recalib noupdate

recalib update

Step 1 Step2 Step 3

Fig. 15. Usage of EdgeTDC at three different times for varying temperature
conditions within/between each run (Steps 1-3). Model slope for the rising
edges (top) and false rejection rate (bottom). The false rejection rate is 0 %
when secure re-calibration and online model update are performed (red), and
climbs up to 100 % otherwise (orange, green, blue).

CAN_L 1

CAN_L 2

RX1

RX2

AL

Fig. 16. Signal analysis at the two inputs of EdgeTDC. The oscilloscope is
set to persistent display to visualize noise (grey shadows are the past values
of the signal). Even if the CAN line is noisy, the digital RX signals (the ones
used by EdgeTDC) at the output of the transceivers are clean and a unique
value of TDoA can be clearly distinguished for each node.

In a differential bus, noise consists of two components: (i)
differential (i.e., noise on the voltage difference between lines)
and (ii) common mode (i.e., noise on the offset of both
lines). Differential noise is minimized by using a twisted pair.
Common mode noise is minimized by using split terminations
(terminations providing a path to ground from common-mode
noise) or other filtering techniques. CAN transceivers can
operate with a common-mode voltage offset in the range of
several volts, which can be nevertheless minimized with an
appropriate power supply network. Finally, line matching with
120Ω terminations minimizes reflections in the lines. As a
result, the transceiver turns the noisy differential signal on the
CAN lines into a clean digital RX signal that is then fed to
the digital CAN controller and, in our case, to EdgeTDC. As
shown in Figure 16, each node has a distinctive TDoA value
between RX1 and RX2. The large margin between nodes is
also visible in Figure 14 and Table II.

To further evaluate the effect of noise we build a noise
injector, that we connect to the ground pin of the CAN
connector of Node I using a 4.7 nF capacitor. We use a USRP

Fig. 17. Example of cross talk spikes on CANH and CANL caused by a
100 kHz square wave.

B210 Software Defined Radio (SDR) to inject random radio-
frequency noise at 800 MHz. We also use a micro-controller to
create a 100 kHz 5 V square-wave which, after the capacitive-
coupling stage, forms short positive and negative common-
mode spikes on the CANH and CANL lines. These two noise
sources represent radio-frequency interference and cross-talk,
respectively. Figure 17 shows an example. Running EdgeTDC

in these conditions (one or both noise sources) for 10000
messages does not yield any false rejection. Indeed, though
the variance of each node increases up to 137 ps, there is still
a large margin between nodes. In Section VII we will further
analyse the effect of malicious pulses injected by an attacker
synchronously to the data bits.

CAN Relay: We re-test EdgeTDC with an additional 3 m relay
from one of the side of the CAN bus to RX2 (see Figure 23 in
Appendix). The relay does not alter the original bus and it only
adds the same fixed offset to every TDoA. Therefore, EdgeTDC
works as well as without relay, achieving zero rejection rate
over 10000 messages.

C. Simple Masquerading Attacks

During a simple masquerading attack, the remote adversary
tries to send a message from a compromised node claiming
a victim node’s ID without any further measures, i.e., the
message is transmitted analogous to a legitimate CAN frame.
The chances for such a simple attack to succeed are very low as
our results show; irregardless of whether the system is subjected
to temperature variations or not, the false acceptance rate (FAR)
is 0.0 in both cases. We tested a set-up analogous to the previous
where 10 nodes transmit a total of 100000 messages. 9

10
of

those messages constituted masquerading attacks, i.e., we had
every node send regular frames as well as masquerade attempts.
We tested all possible combinations of (attacker, victim) pairs.
All of the masquerade attacks were detected while at the same
time no legitimate transmission was rejected.

D. Remote TDoA Spoofing

As explained in Section IV, a remote adversary can launch
a TDoA spoofing attack by compromising two adjacent nodes,
one of which with higher priority than the victim. An example
of attack is shown in Figure 18. The victim is node F with
ID 0xF4. The attacker uses node D with ID 0x44 and node H
with IDs 0x0F and 0xF4 (which have higher priority than the
victim). First, node H sends three messages back to back: (i)
a message with its own ID 0x04, (ii) a message with its own
ID 0x0F, and (iii) an message with ID of the victim (0xF4)
and malicious payload. As soon as it receives message (i), the

11

(a)

(b)

Fig. 18. Example of remote TDoA spoofing, where the remote adversary
has compromised D and H. If D and H transmit at the same time, they can
spoof the TDoA for node F for both rising (a) and falling (edges). D can
easily synchronize with H by receiving a first message from H and transmitting
during a subsequent one. However, the increased variance of the edges within
the spoofed message can be easily detected by EdgeTDC.

second attacker node (D) initiates the transmission of message
(iii) as well. Because the bus is still busy with a higher priority
message (ii), transmission really begins only afterwards, on
top of (iii). Because both H and D transmit the same message
(iii) with minimal time difference due to different location, no
bit error occurs. Due to clock jitter, the resulting TDoA values
show a greater dispersion than a legitimate transmission, but are
very likely to fall into the region halfway between the attacker
node, as explained in Section IV. Message (iii) will then have
the ID of the victim (0xF4) and also the TDoA of the victim
(because of the combined effect of H and D as explained in
Section IV. In Figure 18 the combined TDoA of H and D (HD,
ID 0xF4, green) clearly overlaps with that of node F (0xF4,
red) for both rising and falling edges.

In general, not all pairs will result in an an exploitable attack
as D, H, F. We have analyzed all possible pairs of attackers
with nodes D, E, H, I, L and we report additional results in
Figure 24 in the Appendix. We focus on D, H, F because it is
one of the most favorable ones from the attacker’s point of view
(both rising and falling edges occurring close to the victim in
a balanced way). Despite this fact, EdgeTDC can still detect
the attack by observing the higher intra-packet variance caused
by concurrent transmission, as explained in Section V. In other
cases, for example, using E and L the spoofing is possible
on rising edges but not on falling edges, and will be easily
detected by EdgeTDC because the TDoA of falling edges will
reveal that the real sender is not the victim F. Finally, in other
cases none of the edges will match the TDoA of a suitable
victim.

We conduct an ablation study by running the remote TDoA
spoofing attack while enabling/disabling some of EdgeTDC
checks. Results are shown in Table III. In each case, we
transmit 1000 legitimate messages from the victim and 1000
messages from the two attackers attempting to spoof TDoA.

Intra-packet
variance

Both
edges

Update A1 A2 Victim FAR FRR

1 yes yes yes D H F 0 % 0 %
2 yes no yes D H F 0 % 0 %
3 no yes yes D H F 100 % 0 %
4 no no yes D H F 100 % 0 %
5 yes yes yes L E F 0 % 0 %
6 yes no yes L E F 17 % 60 %
7 yes no no L E F 41 % 0 %
8 no no no L E F 91 % 0 %
9 no yes no L E F 0 % 0 %

TABLE III. ABLATION STUDY FOR TDOA SPOOFING.

0 20

Edge in packet

−10000

0

T
D

O
A

(p
s
)

nodes = D, I

0 20

Edge in packet

−10000

−5000

0

T
D

O
A

(p
s
)

nodes = E, H

Fig. 19. Clock drift when remote attacker performs spoofing with two
compromised nodes. Each line represents a packet (1000 in total). Yellow and
red lines represent packets where TDoA value is between the nodes. Blue
lines show messages that had no spoofing effect. The combined drift of E,H
is higher than D, I .

When performing the check on the variance of TDoA within
each message, EdgeTDC detects all attacks achieving 0 % FAR
and 0 % FRR (cases 1-2). An attack is detected if the variance
of the edges within a message is 400 times bigger than the
normal one computed during calibration. Without this check,
the attack succeeds with 100 % (case 3-4).

The case of L, E, F reveals many interesting observations.
When both edges and the variance check are enabled, the
attack is always detected, and there is no false reject (case 5).
However, when only the rising edges are used, some attacks
succeed (FAR 17 %). Since the TDoA for rising edges does not
exactly matches that of the victim, this likely causes poisoning
and increases the FRR to 60 % with the message from legitimate
node L mis-classified as a masquerading attack from G (this
means that poisoning has created an opportunity to spoof G
from F). We further confirm the role of poisoning in case 6
by disabling the model update and observing that the FRR
goes back to 0 % because model poisoning has been stopped
(case 7). In case 7 the FAR goes up to 41 %. This means that,
while poisoning created room for spoofing G from F, it has
also decreased the success rate of spoofing F from L and E.
If we now disable the check on variance, the FAR climbs to
91 % (case 8), as expected since the TDoA for rising edges is
close to that of the victim (but not as much as in case of H D).
However, if we now enable both edges again, the FAR goes
down to 0 % (case 9), as expected because for the case L E
the TDoA of falling edges falls well far from the victim F.

Intra-message variance and clock drift: In Figure 19, we
show how (combined) clock drift can effect the TDoA values
throughout an overshadowed frame (red and yellow lines)
and we observe how infeasible it is for a remote attacker
to consistently spoof a location in-between the nodes with low
variance. The drift “carries” the TDoA away towards one of

12

MPC2515

(Driver)

CANH

CANL

RX

Arduino MKR CAN Shield

TJA1049

(Controller)

TX

MPC2515

(Driver)

RX

Arduino MKR CAN Shield

TJA1049

(Controller)

TX’

MPC2515

(Driver)

CANH

CANL

RX

Arduino MKR CAN Shield

TJA1049

(Controller)

TX'

TX

Micro-controller

(180MHz Clock)

While True:

Wait(TX, 0);

Delay();

Write(TX', 0);

Delay();

Write(TX', 1);

Dominant bit

Dominant Pulse

(At desired position)

Fig. 20. Physical-layer attackers. Two transmitters driven by the same
controller (left) and pulse injection (right).

the two values corresponding to the actual locations of the
transmitting nodes (blue lines).

E. Physical Attacks

We present two additional physical layer attacks requiring
physical access and additional hardware. The first physical
layer extension, shown in Figure 20 (left) simply consists
in synchronizing the two attacker nodes by connecting two
transceivers at different locations to the same controller using a
few tens of centimeter of jumper wire. We then vary the length
of the cable to adjust the delay between the two transmitters
attempting to match the TDoA of another node for both rising
and falling edges. We succeed when attacking node H from
nodes F and L. In this case, using the same controller minimizes
the variance on the negative edges. However, positive edges
still fail the variance check and EdgeTDC detects the attack.
We could not find other better combinations.

The second physical layer extension, shown in Figure 20
(right) consists in inserting a fast micro-controller between
CAN controller and CAN transceiver on the transmission
side. The micro-controller can essentially delay or (if bits
are known) anticipate edges by injecting short pulses right after
rising (dominant-to-recessive) edges or right before falling
(recessive-to-dominant) edges sent by a node at a different
location. The advantage over the remote spoofing attack is
the additional control on the pulse duration and position, that
is however limited by the clock frequency (180 MHz in our
implementation) and latency of the micro-controller. This makes
it easier to balance the effect on rising and falling edges
through accurate tuning. As long as the pulse is small and
it falls at the beginning or end of the bit, it will not cause
bit errors. EdgeTDC can however detect if the attacker has
injected additional edges where they should not occur (e.g., one
short dominant pulse between two recessive bits) because it
knows the data bits and the expected number of edges. We have
implemented this attack on node L. Figure 21 shows various
examples of pulses at different positions in the bits.

VIII. DISCUSSION AND LIMITATIONS

The main limitation of any TDoA-based IDS is that TDoA
is a physical feature that can, under specific threat models, be
altered by an attacker. However, unlike other features such as
voltage, TDoA correlates with physical properties that strongly
constrain what an attacker can achieve. TDoA is a feature tightly
coupled with the location of a node on the bus and compared to
voltage-based features, and a single node can not alter its own

0.00259 0.00260 0.00261 0.00262 0.00263 0.00264 0.00265

2

3

A1

0.00259 0.00260 0.00261 0.00262 0.00263 0.00264 0.00265

Time [s]

2

3

V
o
lt
a
g
e

[V
]

A3

Fig. 21. Bit-level closeup of physical layer attacks. Delay 0→1 (A1) and
inject dominant pulses (A3). Both attacks do not introduce CAN errors or
affect decoding of the data.

TDoA. Applying checks such as those in EdgeTDC, TDoA is
secure against remote attackers and mitigates many physical
layer attacks.

The practical implementation of EdgeTDC has a limitation
related to the measurement capability. Only one edge can be
captured during one clock period, i.e., every 4.55 ns. Higher
acquisition rates could be achieved with more capable hardware,
but at an increased price.

Possible Extensions. Our proposal for secure TDoA acquisition
is focused on the CAN legacy standard (ISO 11898). One future
direction of work is to implement EdgeTDC with support for
CAN-FD (Controller Area Network Flexible Data-Rate). CAN-
FD is an extension to CAN used in modern high performance
vehicles, which provides flexible data rate and thus features
more data capacity than legacy CAN. Since the electrical
layer is the same for CAN-FD, EdgeTDC could be extended
by adding a CAN-FD capable decoder in FPGA-fabric and
adjusting the arming signals for the delay lines.

Other possible directions for future work are: (1) including
other physical layer features for each bit of the CAN message
(e.g., bit duration, voltage) and environmental factors (e.g.,
temperature), (2) exploring different models for analysis and
detection, (3) leveraging an echo node as proposed in [5]
to measure TDoA only from one side of the bus, and (4)
integrating EdgeTDC into a custom ASIC for deployment.

IX. RELATED WORK

Network segmentation separates CAN nodes into multiple
independent CAN buses based on their vulnerability to external
attack, their necessity to operate a vehicle, and their interaction
with other nodes. The works in [19] and [22] are two proposals
of this category, providing protection mechanisms at the cost
of increased design and maintenance costs and only partially
mitigating the problem.

Encryption prevents the spoofing of messages and increases
confidentiality. By encrypting data with a key dependent on
the CAN message ID, such an approach prevents unauthorized
nodes from generating valid messages, see, e.g., [14], [42].
However, often additional cryptographic hardware is needed
and the bus load is increased due to the need of multiple
messages for one encrypted payload. Another challenge is the
complexity of handling and updating keys, which we briefly

13

discuss below when describing approaches aiming to achieve
sender authentication.

Message or sender authentication attempts to verify whether
a node on the bus is authorized to send messages with certain
IDs. Similar to encrypting the payload, the content of a message
is signed using a key specific to the message ID. This leads
to an increased bus load and the need to manage keys among
nodes over time (up to the lifetime of a car). Depending on the
security-level, such systems could be broken if an adversary has
decades to crack the keys. Sender authentication is proposed
in, e.g., [18] and [48]. The latter includes potential real world
applications, but the automotive industry has yet to adopt a
solution for secure CAN bus based on cryptography. New
designs for “secure” CAN appear to focus on protocol and
physical-layer features [37].

IDSs. Intrusion Detection Systems (IDSs) are the most re-
searched area of CAN security. Through various network
and physical layer parameters or collections thereof, IDSs try
to differentiate between legitimate and malicious messages.
More recent ideas such as [41] use machine learning and
artificial intelligence techniques to assemble a large variety
of parameters extracted from the transmitted messages for
detection. Others, such as [45] and [12], focus on physical
characteristics. Voltage-based and message-based IDSs have
been shown to be vulnerable to spoofing [4], [6].

X. CONCLUSION

We have studied the security implications of CAN bus
IDSs that identify masquerading attacks based on TDoA
measurements. We have identified novel remote spoofing and
poisoning attacks. We have proposed EdgeTDC, a novel
resilient approach that can successfully detect masquerading
attacks launched by compromised CAN nodes, even when
the attacker attempts to alter the TDoA measurements by
spoofing and poisoning. We have implemented EdgeTDC

with inexpensive off-the-shelf hardware and demonstrated its
effectiveness with a thorough theoretical and experimental
analysis.

ACKNOWLEDGMENT

This research has received funding from the Swiss National
Science Foundation under NCCR Automation, grant agreement
51NF40 180545.

REFERENCES

[1] I. S. Association, “IEEE Standard for Low-Rate Wireless Networks–
Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers
(PHYs) and Associated Ranging Techniques,” IEEE Std 802.15.4z-2020

(Amendment to IEEE Std 802.15.4-2020), pp. 1–174, 2020.

[2] R. Baker and I. Martinovic, “Losing the car keys: Wireless {PHY-Layer}
insecurity in {EV} charging,” in 28th USENIX Security Symposium

(USENIX Security 19), 2019, pp. 407–424.

[3] Benjamin Blase, “tdc-fpga: Time to digital converter for use on a Xilinx
7-series FPGA.” https://github.com/benbr8/tdc-fpga, accessed 2022-05-
07.

[4] R. Bhatia, V. Kumar, K. Serag, Z. B. Celik, M. Payer, and D. Xu,
“Evading voltage-based intrusion detection on automotive CAN,” in
28th Annual Network and Distributed System Security Symposium,

NDSS 2021, virtually, February 21-25, 2021. The Internet Society,
2021. [Online]. Available: https://www.ndss-symposium.org/ndss-
paper/evading-voltage-based-intrusion-detection-on-automotive-can/

[5] E. Biham, S. Bitan, and E. Gavril, “Tcan: Authentication without
cryptography on a CAN bus based on nodes location on the bus,” in
2018 Embedded Security in Cars, November 2018, 2018. [Online].
Available: https://www.cs.technion.ac.il/∼biham/Workshops/Cyberday/
2019/Slides/cyberday-2019-6-biham-tcan presentation.pdf

[6] G. Bloom, “WeepingCAN: A Stealthy CAN Bus-off Attack,” in
Workshop on Automotive and Autonomous Vehicle Security (AutoSec),
vol. 2021, 2021, p. 25.

[7] G. Bloom, G. Cena, I. C. Bertolotti, T. Hu, and A. Valenzano,
“Supporting security protocols on CAN-based networks,” in 2017 IEEE

International Conference on Industrial Technology (ICIT). IEEE, 2017,
pp. 1334–1339.

[8] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Proceedings of

the 20th USENIX Conference on Security, ser. SEC’11. USA: USENIX
Association, 2011, p. 6.

[9] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” in Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, 2016, pp. 1044–1055.

[10] ——, “Fingerprinting electronic control units for vehicle intrusion
detection,” in 25th USENIX Security Symposium (USENIX Security

16), 2016, pp. 911–927.

[11] ——, “Viden: Attacker identification on in-vehicle networks,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, 2017, pp. 1109–1123.

[12] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “VoltageIDS: Low-
level communication characteristics for automotive intrusion detection
system,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 8, pp. 2114–2129, 2018.

[13] Comma.ai, “openpilot on the comma three,” https://github.com/com
maai/openpilot, accessed 2022-05-28.

[14] T. P. Doan and S. Ganesan, “CAN crypto FPGA chip to secure data
transmitted through CAN FD bus using AES-128 and SHA-1 algorithms
with a symmetric key,” SAE Technical Paper, Tech. Rep., 2017.

[15] U. Ezeobi, H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “Re-
verse engineering controller area network messages using unsupervised
machine learning,” IEEE Consumer Electronics Magazine, vol. 11, no. 1,
pp. 50–56, 2022.

[16] M. Foruhandeh, Y. Man, R. Gerdes, M. Li, and T. Chantem, “SIMPLE:
Single-frame based physical layer identification for intrusion detection
and prevention on in-vehicle networks,” in Proceedings of the 35th

Annual Computer Security Applications Conference, 2019, pp. 229–244.

[17] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and
vulnerable: A story of telematic failures,” in 9th USENIX Workshop

on Offensive Technologies (WOOT 15). Washington, D.C.: USENIX
Association, Aug. 2015. [Online]. Available: https://www.usenix.org/
conference/woot15/workshop-program/presentation/foster

[18] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede, “LiBrA-
CAN: a lightweight broadcast authentication protocol for controller area
networks,” in International Conference on Cryptology and Network

Security. Springer, 2012, pp. 185–200.

[19] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN
networks—Practical examples and selected short-term countermeasures,”
Reliability Engineering & System Safety, vol. 96, no. 1, pp. 11–25, 2011.

[20] T. Instruments, “SN65HVD233-HT 3.3V CAN Transceiver,” https:
//www.ti.com/lit/ds/symlink/sn65hvd233-ht.pdf, accessed 2022-06-08.

[21] H. J. Jo, J. H. Kim, H.-Y. Choi, W. Choi, D. H. Lee, and I. Lee, “Mauth-
can: Masquerade-attack-proof authentication for in-vehicle networks,”
IEEE transactions on vehicular technology, vol. 69, no. 2, pp. 2204–2218,
2019.

[22] R. Kammerer, B. Frömel, and A. Wasicek, “Enhancing security in
CAN systems using a star coupling router,” in 7th IEEE International

Symposium on Industrial Embedded Systems (SIES’12). IEEE, 2012,
pp. 237–246.

[23] M. Kneib and C. Huth, “Scission: Signal characteristic-based sender
identification and intrusion detection in automotive networks,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, 2018, pp. 787–800.

14

https://github.com/benbr8/tdc-fpga
https://www.ndss-symposium.org/ndss-paper/evading-voltage-based-intrusion-detection-on-automotive-can/
https://www.ndss-symposium.org/ndss-paper/evading-voltage-based-intrusion-detection-on-automotive-can/
https://www.cs.technion.ac.il/~biham/Workshops/Cyberday/2019/Slides/cyberday-2019-6-biham-tcan_presentation.pdf
https://www.cs.technion.ac.il/~biham/Workshops/Cyberday/2019/Slides/cyberday-2019-6-biham-tcan_presentation.pdf
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot
https://www.usenix.org/conference/woot15/workshop-program/presentation/foster
https://www.usenix.org/conference/woot15/workshop-program/presentation/foster
https://www.ti.com/lit/ds/symlink/sn65hvd233-ht.pdf
https://www.ti.com/lit/ds/symlink/sn65hvd233-ht.pdf

[24] M. Kneib, O. Schell, and C. Huth, “EASI: Edge-Based Sender Identifi-
cation on Resource-Constrained Platforms for Automotive Networks.”
in NDSS, 2020.

[25] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in 2010 IEEE symposium

on security and privacy. IEEE, 2010, pp. 447–462.

[26] D. Li, M. Tian, R. Jiang, and K. Yang, Exploiting Temperature-Varied

Voltage Fingerprints for In-Vehicle CAN Intrusion Detection. New
York, NY, USA: Association for Computing Machinery, 2021, p.
116–120. [Online]. Available: https://doi.org/10.1145/3472634.3472662

[27] M5STACK, “M5Stack Atom CAN,” https://docs.m5stack.com/en/atom
/atom can, accessed 2022-06-06.

[28] M. Marchetti and D. Stabili, “READ: Reverse Engineering of Automotive
Data Frames,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 4, pp. 1083–1097, 2019.

[29] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” Def Con, vol. 21, no. 260-264, pp. 15–31, 2013.

[30] ——, “Remote exploitation of an unaltered passenger vehicle,” Black

Hat USA, vol. 2015, no. S 91, 2015.

[31] Mohor, Igor, “CAN Protocol Controller,” https://opencores.org/proje
cts/can, accessed 2022-05-07.

[32] C. Moreno and S. Fischmeister, “Sender Authentication for Automotive
In-Vehicle Networks through Dual Analog Measurements to Determine
the Location of the Transmitter,” in Proceedings of the 5th International

Conference on Information Systems Security and Privacy, ICISSP 2019,

Prague, Czech Republic, February 23-25, 2019, P. Mori, S. Furnell, and
O. Camp, Eds. SciTePress, 2019, pp. 596–605. [Online]. Available:
https://doi.org/10.5220/0007580105960605

[33] P. Murvay and B. Groza, “TIDAL-CAN: Differential Timing Based
Intrusion Detection and Localization for Controller Area Network,”
IEEE Access, vol. 8, pp. 68 895–68 912, 2020. [Online]. Available:
https://doi.org/10.1109/ACCESS.2020.2985326

[34] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to
anomaly detection for in-vehicle networks,” in 2010 Sixth International

Conference on Information Assurance and Security. IEEE, 2010, pp.
92–98.

[35] S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking tesla from wireless to
can bus,” Briefing, Black Hat USA, vol. 25, pp. 1–16, 2017.

[36] S. Nie, L. Liu, Y. Du, and W. Zhang, “Over-the-air: How we remotely
compromised the gateway, BCM, and autopilot ECUs of Tesla cars,”
Briefing, Black Hat USA, 2018.

[37] NXP, “Secure HS-CAN Transceiver with Standby Mode,”
https://www.nxp.com/products/interfaces/can-transceivers/secure-can-
transceivers/secure-hs-can-transceiver-with-standby-mode:TJA1152,
accessed 2022-06-05.

[38] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and
K. G. Shin, “LibreCAN: Automated CAN Message Translator,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2283–2300. [Online].
Available: https://doi.org/10.1145/3319535.3363190

[39] J. Petit and S. E. Shladover, “Potential cyberattacks on automated
vehicles,” IEEE Transactions on Intelligent transportation systems,
vol. 16, no. 2, pp. 546–556, 2014.

[40] A. SARL, “Arduino CAN Shield,” https://store.arduino.cc/products/ar
duino-mkr-can-shield, accessed 2022-05-07.

[41] E. Seo, H. M. Song, and H. K. Kim, “GIDS: Gan based intrusion detec-
tion system for in-vehicle network,” in 2018 16th Annual Conference

on Privacy, Security and Trust (PST). IEEE, 2018, pp. 1–6.

[42] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, “Secure commu-
nication over CANBus,” in 2017 IEEE 60th International Midwest

Symposium on Circuits and Systems (MWSCAS). IEEE, 2017, pp.
1264–1267.

[43] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system
based on the analysis of time intervals of CAN messages for in-vehicle
network,” in 2016 international conference on information networking

(ICOIN). IEEE, 2016, pp. 63–68.

[44] STMicroelectronics, “L9616 - Automotive high speed CAN bus

transceiver,” https://www.st.com/en/automotive-analog-and-power/
l9616.html, accessed 2022-06-08.

[45] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly
detection for the automotive CAN bus,” in 2015 World Congress on

Industrial Control Systems Security (WCICSS). IEEE, 2015, pp. 45–49.

[46] S. Thakur, C. Moreno, and S. Fischmeister, “CANOA: CAN Origin
Authentication Through Power Side-Channel Monitoring,” arXiv preprint

arXiv:2006.06993, 2020.

[47] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “CANauth-a simple,
backward compatible broadcast authentication protocol for can bus,” in
ECRYPT workshop on Lightweight Cryptography, vol. 2011. ECRYPT,
2011, p. 20.

[48] Q. Wang and S. Sawhney, “VeCure: A practical security framework to
protect the CAN bus of vehicles,” in 2014 International Conference on

the Internet of Things (IOT). IEEE, 2014, pp. 13–18.

[49] S. Woo, H. J. Jo, and D. H. Lee, “A practical wireless attack on
the connected car and security protocol for in-vehicle CAN,” IEEE

Transactions on intelligent transportation systems, vol. 16, no. 2, pp.
993–1006, 2014.

APPENDIX

In this appendix we provide additional data on our system-
atic evaluation of attacks and defenses.

Figure 22 shows the physical layer desing of EdgeTDC.
All components fall in the same clock region, and all the delay
line elements (orange) are close together and share the same
clock lines. Figure 23 shows how we can actively relay the

Fig. 22. Physical-layer design of EdgeTDC. Logic elements highlighted in
orange form the TDCs / delay lines.

CAN connection from one side of the CAN bus to EdgeTDC.

TX1

TJA1049

CANH1

CANL1

ESP32

CANL2

TX

TJA1049

CANH2

ESP32

TX2

TJA1049

RX

TJA1049
RX1

TJA1049

RX2

Active CAN Relay

Main CAN Line

Fig. 23. Active CAN relay.

15

https://doi.org/10.1145/3472634.3472662
https://docs.m5stack.com/en/atom/atom_can
https://docs.m5stack.com/en/atom/atom_can
https://opencores.org/projects/can
https://opencores.org/projects/can
https://doi.org/10.5220/0007580105960605
https://doi.org/10.5220/0007580105960605
https://doi.org/10.1109/ACCESS.2020.2985326
https://doi.org/10.1109/ACCESS.2020.2985326
https://www.nxp.com/products/interfaces/can-transceivers/secure-can-transceivers/secure-hs-can-transceiver-with-standby-mode:TJA1152
https://www.nxp.com/products/interfaces/can-transceivers/secure-can-transceivers/secure-hs-can-transceiver-with-standby-mode:TJA1152
https://www.nxp.com/products/interfaces/can-transceivers/secure-can-transceivers/secure-hs-can-transceiver-with-standby-mode:TJA1152
https://doi.org/10.1145/3319535.3363190
https://store.arduino.cc/products/arduino-mkr-can-shield
https://store.arduino.cc/products/arduino-mkr-can-shield
https://www.st.com/en/automotive-analog-and-power/l9616.html
https://www.st.com/en/automotive-analog-and-power/l9616.html

−10000 −5000 0 5000 10000 15000

TDOA (ps)

0.000

0.005

0.010

0.015

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

F
u
n
c
ti
o
n

D ID 00000044

A ID 00000041

B ID 00000042

C ID 00000043

F ID 00000046

G ID 00000047

H ID 00000048

I ID 00000049

L ID 0000004c

E ID 000000f4

E ID 0000000f

E ID 00000004

(a) D E Rising

−20000 −10000 0 10000 20000

TDOA (ps)

0.000

0.005

0.010

0.015

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

F
u
n
c
ti
o
n

D ID 00000044

A ID 00000041

B ID 00000042

C ID 00000043

F ID 00000046

G ID 00000047

H ID 00000048

I ID 00000049

L ID 0000004c

E ID 000000f4

E ID 0000000f

E ID 00000004

(b) D E Falling

−10000 −5000 0 5000 10000 15000

TDOA (ps)

0.000

0.005

0.010

0.015

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

F
u
n
c
ti
o
n

D ID 00000044

A ID 00000041

B ID 00000042

C ID 00000043

E ID 00000045

F ID 00000046

G ID 00000047

I ID 00000049

L ID 0000004c

H ID 000000f4

H ID 0000000f

H ID 00000004

(c) D H Rising

−20000 −10000 0 10000 20000

TDOA (ps)

0.000

0.005

0.010

0.015

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

F
u
n
c
ti
o
n

D ID 00000044

A ID 00000041

B ID 00000042

C ID 00000043

E ID 00000045

F ID 00000046

G ID 00000047

I ID 00000049

L ID 0000004c

H ID 000000f4

H ID 0000000f

H ID 00000004

(d) D H Falling

−10000 −5000 0 5000 10000 15000

TDOA (ps)

0.000

0.005

0.010

0.015

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

F
u
n
c
ti
o
n

D ID 00000044

A ID 00000041

B ID 00000042

C ID 00000043

E ID 00000045

F ID 00000046

G ID 00000047

H ID 00000048

L ID 0000004c

I ID 000000f4

I ID 0000000f

I ID 00000004

(e) D I Rising

−20000 −10000 0 10000 20000

TDOA (ps)

0.000

0.005

0.010

0.015

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

F
u
n
c
ti
o
n

D ID 00000044

A ID 00000041

B ID 00000042

C ID 00000043

E ID 00000045

F ID 00000046

G ID 00000047

H ID 00000048

L ID 0000004c

I ID 000000f4

I ID 0000000f

I ID 00000004

(f) D I Falling

−10000 −5000 0 5000 10000 15000

TDOA (ps)

0.000

0.005

0.010

0.015

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

F
u
n
c
ti
o
n

D ID 00000044

A ID 00000041

B ID 00000042

C ID 00000043

E ID 00000045

F ID 00000046

G ID 00000047

H ID 00000048

I ID 00000049

L ID 000000f4

L ID 0000000f

L ID 00000004

(g) D L Rising

−20000 −10000 0 10000 20000

TDOA (ps)

0.000

0.005

0.010

0.015

P
ro

b
a
b
ili

ty
D

e
n
s
it
y

F
u
n
c
ti
o
n

D ID 00000044

A ID 00000041

B ID 00000042

C ID 00000043

E ID 00000045

F ID 00000046

G ID 00000047

H ID 00000048

I ID 00000049

L ID 000000f4

L ID 0000000f

L ID 00000004

(h) D L Falling

Fig. 24. Systematic analysis of node D transmitting on top of nodes E, H, I, L.

Figure 24 shows a systematic analysis of spoofing at the
logical layer. We show what happens to the TDOA when node
D transmits on top of nodes E, H, I, L. Other combinations
have similar results and are omitted for brevity. In general, the
resulting TDOA (green) falls in between the TDOA of the two
attackers (e.g., D, H). In the case of the D H pair, the resulting

TDOA matches the one of node F, opening an opportunity for
successful masquerading attacks that also spoof the correct
value of the TDOA. However, the variance of TDOA measured
over each edge of the packets is much higher in this case,
allowing for effective detection.

16

	Introduction
	Background
	Controller Area Networks
	Time Difference of Arrival (TDoA)

	Threat Model and Assumptions
	Attacks against TDoA on the CAN Bus
	Attack Vectors
	Message Overshadowing
	TDoA Spoofing Attack
	TDoA Poisoning Attack
	Clock Drift and Jitter

	EdgeTDC
	System Design
	Implementation
	Model, Secure (Re-)Calibration, and Detection

	Security Analysis of EdgeTDC
	Experimental Evaluation
	Automated Experimental Setup
	EdgeTDC In Absence Of Attacks
	Simple Masquerading Attacks
	Remote TDoA Spoofing
	Physical Attacks

	Discussion and Limitations
	Related Work
	Conclusion
	References
	Appendix

