
Get Your Cyber-Physical Tests Done! Data-Driven
Vulnerability Assessment of Robotic Aerial Vehicles

Aolin Ding, Matthew Chan∗, Amin Hass, Nils Ole Tippenhauer†, Shiqing Ma∗, Saman Zonouz‡
Accenture Labs, ∗Rutgers University, †CISPA Helmholtz Center for Information Security, ‡Georgia Tech

Abstract—The rapid growth of robotic aerial vehicles (RAVs)
has attracted extensive interest in numerous public and civilian
applications, from flying drones to quadrotors. Security of
RAV systems is posting greater challenges as RAV controller
software becomes more complex and exposes a growing attack
surface. Memory isolation techniques, which virtually separate
the memory space and conduct hardware-based memory access
control, are believed to prevent the attacker from compromising
the entire system by exploiting one memory vulnerability.

In this paper, we propose ARES, a new variable-level vul-
nerability assessment framework to explore deeper bugs from
a combined cyber-physical perspective. We present a data-
driven method to illustrate that, despite state-of-the-art memory
isolation efforts, RAV systems are still vulnerable to physics-
aware data manipulation attacks. We augment RAV control
states with intermediate state variables by tracing accessible
control parameters and vehicle dynamics within the same isolated
memory region. With this expanded state variable space, we
apply multivariate statistical analysis to investigate inter-variable
quantitative data dependencies and search for vulnerable state
variables. ARES utilizes a reinforcement learning-based method
to show how an attacker can exploit memory bugs and parameter
defects in a legitimate memory view and elaborately craft
adversarial variable values to disrupt a RAV’s safe operations.
We demonstrate the feasibility and capability of ARES on the
widely-used ArduPilot RAV framework. Our extensive empirical
evaluation shows that the attacker can leverage these vulnerable
state variables to achieve various RAV failures during real-time
operation, and even evade existing defense solutions.

Index Terms—Robotic Vehicle Security, System Testing, Cyber-
Physical Systems, Vulnerability Assessment

I. INTRODUCTION

Robotic aerial vehicles (RAVs), such as quadrotors, are

autonomous cyber-physical systems that are currently being

adopted in a wide range of applications, such as package de-

livery [1], urban planning [2] and infrastructure inspection [3].

In the retail industry, Amazon’s service Prime Air [4] proposes

drone-based package deliveries to its customers, decreasing

delivery times to less than 30 minutes with a cost reduction

of 90% when compared to vehicle-based deliveries [5].

With the rapid growth of RAV applications, the security

of these RAV systems has become increasingly important.

RAVs are complex systems utilizing embedded hardware with

real-time operational constraints. Typically, such RAV systems

receive sensing inputs (e.g., accelerometers, gyroscopes) from

the physical world, and calculate real-time vehicle dynamics

(e.g., position and velocity) in controller software, then send

control signals to actuators (e.g., propellers, motors) to accom-

plish tasks autonomously. Due to the growing sophistication

of RAV features and increasingly diverse set of hardware

implementations (e.g., number of motors, weights), the com-

plexity of RAV firmware has trended upwards. For example,

ArduPilot [6], a widely adopted RAV firmware, consists of

six cascading controllers for every physical RAV specification

(e.g., quadrotor, helicopter, etc), while each cascading con-

troller is composed of three primitive sub-controllers for the

position, velocity, and acceleration [7]. Frequent control transi-

tions across the many software modules (e.g., libraries, drivers,

kernels, built-in tools) expose vulnerable attack surfaces in a

RAV’s built-in software and programs [8]–[11]. For instance,

memory corruption attacks in [11] expose the lack of memory

protection in victim processes of real-time RAV controllers.

These software attacks can invoke malicious payloads and trig-

ger unsafe behaviors, putting RAVs at considerable risk [12].

However, assessing RAV security is challenging for many

reasons. One of the main reasons is that the increasing com-

plexity of RAV firmware makes it infeasible to analyze RAV

systems using traditional static program analysis methods,

such as control-flow integrity checking and symbolic execu-

tion [13], [14]. As one example, the firmware for the 3DR

IRIS+ quadrotor has over 25 sensor readings and more than

2,150 parameters [15], with actuators that are updated 50 times

each second. In addition, compounding the issue of software

complexity of RAVs is their physical nature, which sees the

vehicle state and dynamics being affected by a complex and

hard-to-predict physical environment. This further challenges

the coverage of static analyses, which may only cover a subset

of program states in execution.

Dynamic monitoring techniques [16]–[20] can address the

physical environment blind spot of static methods as they

monitor the RAV’s operations in real time. Dynamic moni-

toring typically uses estimation models of RAV control states

to distinguish malicious behaviors from benign ones. How-

ever, they only use a small number of state variables and

relatively simple controller templates to form the estimation

models, which implies a lack of adequate completeness and

soundness. Meanwhile, automation is another challenge for

dynamic solutions, which require manual tuning [16]–[18] in

the variable selection and detector configuration.

In this paper, we present ARES, a vulnerability assess-

ment framework exploring vulnerable state variables within

RAV controller software. ARES uses statistical analysis to

identify concrete safety-critical variables and their numerical

dependencies in an expanded search space which includes the

intermediate variables within controller programs. Then, ARES

67

2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/23/$31.00 ©2023 IEEE
DOI 10.1109/DSN58367.2023.00020

leverages reinforcement learning to automatically assess the

physical impact of manipulating each target variable in the

victim memory region, identifying potential vulnerabilities.

By exploring the state space over a series of time-dependent

states, ARES identifies new types of longer-term vulnerabilities

as compared to fuzzing works [7], [21], which focus on

single-point modifications. This data-driven analysis shifts

from the prior focus on the estimation model setup to a focus

on the physical impact caused by influential-but-neglected

state variables. With ARES, we show that carefully-crafted

data manipulations can produce malicious behaviors and even

evade detection by prior monitors [16]–[18].

Our main contributions in this paper are as follows:

• We propose a data-driven vulnerability assessment frame-

work that leverages multivariate dependency analysis to

identify vulnerable state variables within complex RAV

controller software that previous defenses do not consider.

• We present a learning methodology to efficiently search

for adversarial manipulations, providing concrete exam-

ples of exploiting discovered vulnerabilities.

• We evaluate ARES on the popular ArduPilot RAV suite

and demonstrate its feasibility and effectiveness in search-

ing for vulnerabilities and evaluating their impacts.

The structure of this paper is as follows: Section II provides

background knowledge for ARES. In Section III, we discuss

the limitations of existing works, threat model and challenges

for our approach. Section IV illustrates the design of our target

state variable selection and the learning-based vulnerability

exploits. Section V presents the evaluation and case studies

of our vulnerability assessment framework, and in Section VI,

we discuss cross-platform extensibility and potential limita-

tions and mitigations. We summarize the related works in

Section VII and conclude in Section VIII.

II. BACKGROUND

A. RAV Physical Dynamics and Control Models

RAVs are equipped with autonomous control systems that

take inputs from sensors such as accelerators and gyroscopes,

responding with actuation commands based on controller

calculations. In the quadrotor case, the vehicle dynamics

include physical attributes like mass and shape and the attitude

descriptor as six degrees of freedom (6DoF) including the

three axes (x, y, z) and the three rotation directions (roll: φ,

pitch: θ and yaw: ψ). Figure 1 shows these dynamics, as well

as an abstract view of the ubiquitous Proportional-Integral-

Differential (PID) controller that is usually used to control

such dynamics. It measures the difference between the current

state and the target state, providing feedback for the actuators

(e.g., motor torques) to adjust the quadrotor’s attitude and

position in a cyclical loop. In an autonomous flight task such

as a path following mission, RAV controller and data modules

execute periodically and update RAV attitudes to arrive at

each waypoint. To guarantee stable physical operations, a

set of PID controllers must be customized for each RAV

physical specification. Figure 1 shows that a RAV controls

Fig. 1: Flight control block diagram of drone movement.

physical movements along the 6DoF, involving six cascading

controllers. Each controller is responsible for a single DoF,

such as the y-axis cascading controller [7]. For each DoF,

there are three primitive PID controllers (denoted as ctrl1,
ctrl2, and ctrl3), respectively computing the position, velocity,

acceleration physicals.

B. ARM Cortex-M Processor MPU Features

Most RAVs nowadays run their controllers on ARM pro-

cessors such as ARM Cortex-M4. Memory management tech-

niques has been adopted into resource-constrained systems for

memory protection [11] and performance optimization [22].

One important security feature of ARM processors is that they

can set up isolated memory regions via a memory protection

unit (MPU) in internal SRAM and flash memory. The memory

access to regions can be read and write, read-only or inacces-

sible, based on the time of the processor mode, management

mode or user mode, and some additional permissions such

as strategies related to cache and buffer operation. When the

processor requests access to a region of main physical memory,

the MPU will consider access attributes of the region and the

processor mode. If the request meets the access requirement of

the region, the MPU will allow the kernel to read and write into

that memory section; if the request causes a memory access

violation, the MPU will reject it and generate a corresponding

abnormal signal based on the violation category.

III. PROBLEM FORMULATION

In this section, we first discuss the limitations of existing

RAV methods, then describe the threat model and assumptions

behind ARES, in order to highlight the feasibility of an attacker

exploiting the vulnerabilities that ARES finds. Next, we discuss

the challenges of designing ARES.

A. Limitations of Existing Works

The complexity of RAVs and the system design of existing

defense works raise the issues of completeness and soundness.

Firstly, prior state monitoring approaches are incomplete in es-

timating the physical states and control behaviors of the RAVs

due to scalability issues. For instance, the monitoring models

that leverage linear equations [17], non-linear estimation [18]

or machine learning (ML) models [16], [19] only cover a lim-

ited number of physical dynamics and sensor measurements,

leaving the the majority of intermediate controller variables

unexplored within a RAV’s software.

Secondly, in real-time monitoring, prior defense works [16]–

[19] typically measure the deviation (error) between the

68

estimated state and the sensed state, raising an alarm if

the error exceeds a predetermined threshold. The soundness

of such error-threshold-comparison detection depends on the

assumption that the inflicted error (i.e., the error caused by

attacks) must significantly outweigh the transient error from

imprecise estimation and environmental factors. However, this

kind of detection model functions perfectly in the case of naive

attacks (e.g., suddenly changing the roll angle to 30 degrees),

but performance may degrade when dealing with adversarially-

crafted mimicry attacks, as discussed in [16], [19]. Therefore,

ARES aims to exploit these completeness and soundness issues

and investigate the intermediate variables, showing how an

attacker can launch various attacks from them.

B. Threat Model

In this paper, the attacker’s goal is to manipulate vulnerable

control state variables with particularly-crafted adversarial

values and thus exploit these vulnerabilities with the desired

failures (e.g., a path deviation or crash). We assume that the

RAV is equipped with an MPU as described in Section II and

supports memory isolation via hardware-based privilege sep-

aration, a widespread feature in most ARM microcontrollers.

As a result, RAV controller processes and variables are isolated

in multiple protected memory regions.

We assume that the attacker utilizes existing attack surfaces

within the RAV software based on realistic exploits (e.g.,

known bugs, semantic firmware bugs in specific versions,

internal logic access to a certain type of physical quadrotor)

and has successfully exploited one individual isolated memory

region, thus can perform any data modifications and exploit

any processes running in that single compromised memory

region. We assume that the attacker also knows the commu-

nication channels between RAV and ground control station

(GCS), and the attacker can concoct and issue malicious GCS

commands to update the control parameters in the victim RAV.

Our attack model is realistic in comparison with prior

works [7], [9], [16]–[19], [23]–[25] because (1) the attacker is

able to exploit the memory corruption bugs and stack buffer

overflow bugs [8], [11], [26] reported in the RAV firmware and

perform data-oriented manipulation attacks through malicious

code embedding [24] or malicious controller libraries [25];

(2) most RAVs are equipped with a remote control interface

(e.g., MAVLink in ArduPilot [6], [7]) for operators to adjust

or debug control parameters during its flights. Therefore, we

assume the attacker has access to the aforementioned attack

surfaces but cannot compromise other hardware components

and configurations such as RAV’s sensor devices, number of

motors, weight, or make.

C. Challenges

RAV firmware is increasingly complex and varies greatly

across different hardware deployments, making it difficult to

identify the potential vulnerabilities and assess their severity.

As a real-world example, ArduPilot [6] consists of over

2670 configurable parameters [27], 110 library modules and

11 mathematical PID controllers for vehicle state updates.

For the core controller modules, there are still hundreds

of control parameters and intermediate controller variables

that are nested with complicated mutual dependencies as

all software modules (e.g., libraries, drivers) are highly in-

teractive. Thus, it is almost impossible (and certainly com-

putationally infeasible) to automatically analyze or fully

model them. For instance, in PX4 [15], EKFNAVVELGAIN-

SCALER, a intermediate scaler variable in controller function

UPADTE VEL CONTROLLER XY for RAV velocity control in

x and y axis, is not visibly safety-critical as other variables

describing vehicle dynamics (e.g., ROLL TARGET), but it

has an indirect impact on an RAV’s control behaviors since

it scales PID outputs to compensate for the EFK noises.

To identify such state variables, we propose a statistical

dependency analysis (Section IV-B) to search a state space

expanded with intermediate state variables.

Another main challenge is to study the physical impact
on the vehicle caused by adversarial manipulations of the

vulnerable state variables. Our framework identifies the state

variable candidates and investigates the impact of potential

attacks exploiting them with different desired malfunctions.

For instance, an attacker may particularly craft and inject

a set of adversarial values to deviate the RAV from its

mission paths during flight. In other cases, the attacker may

intentionally craft another set of adversarial values to force

the RAV to hit a wall. Therefore, we study the capability of

attackers exploiting our identified vulnerabilities in realistic

physical environments by incorporating the data manipulating

and desired malfunction in our optimization process (Section

IV-C) to produce feasible attacks.

IV. DESIGN

In this section, we describe the design choices we make

to build a vulnerability assessment framework for the RAV

control program by addressing the challenges in Section III.

A. Overview

An overview of the ARES framework is shown in Figure 2.

The initial vulnerability assessment begins with a RAV profil-

ing step. First, ARES establishes a general list of state variables

by automatically collecting data traces of the RAV in operation

with the onboard dataflash memory logger. The state variables

collected include sensor readings, control parameters, interme-

diate controller variables, and vehicle dynamics. Next, ARES

identifies a set of candidate state variables with statistical

methodologies including correlation analysis, clustering and

multivariate regression. Then, ARES employs reinforcement

learning (RL) to generate adversarial values for each selected

state variable, leading to the RAV failures, such as path

deviation or crashes.

To identify the target state variables, ARES needs the follow-

ing information: (1) a list of configurable control parameters,

(2) a list of RAV dynamics and sensor readings, (3) an RAV

firmware and the memory layout of its platform board, and (4)

memory regions configured with an MPU. We note that these

69

Fig. 2: The overall architecture of ARES.

information are accessible to an attacker under realistic set-

tings. Many vendors (e.g., PX4 [15], ArduPilot [6]) provide the

list of configurable control parameters or they can be collected

by the command manual defined in the RAV communication

protocol (e.g., MAVLink). An integrated logger within RAV

software [6], [15], [28] is usually used to record the RAV’s

operation conditions, which includes the vehcile dynamics and

sensor measurements. The memory layout information can be

obtained by identifying the microcontroller unit (MCU) (e.g.,

STM32F427) on the RAV controller board [29]. As defined

in III-B, the attacker is aware of the protected memory regions

and can compromise an individual memory region to gain

access to its intermediate variables.

B. Target State Variable Identification
In this step, ARES identifies the set of state variable candi-

dates to consider in the learning phase for data manipulation,

known as the target state variable list (TSVL). Starting with

a pre-determined known state variable list (KSVL), this state

variable list is first expanded into an expanded state variable

list (ESVL) by incorporating the value traces of the interme-

diate variables within the RAV controller program. Through

statistical analyses of variable dependencies, the ESVL is

then pared down into the final TSVL. The expansion and

identification procedures are described below.

State Variable List Expansion. ARES first identifies a

starting KSVL through easily accessible means such as the

onboard dataflash memory logger, which can be downloaded

after an operational mission for debugging, or through online

RAV specifications and documentation [27]. To obtain the

initial state variables and trace intermediate variables, ARES

leverages static analysis techniques that are similar with [13].

Specifically, through controller function identification tech-

niques in [13], ARES identifies the memory locations of

essential controller programs. ARES adds known controller

variables to the KSVL including RAV dynamics (e.g., roll

angle, velocity), sensor measurements and controller param-

eters (e.g., P parameter in PID controller), based on the

prior knowledge of official documents and integrated logging

information.
Figure 3 shows the combination of vehicle dynamics (DesR,

R, IR, IRErr, tv, DesP, P, DesY, Y) and the IMU sensor

measurements (GyrX, GyrY, GyrZ, AccX, AccY, AccZ) as the

KSVL. Through memory instrumentation techniques and oper-

ational data traces in [13], ARES traces the local variables (v1,
v2, ..., v7) (defined as private) in the memory region where the

PID roll controller runs, as intermediate controller variables

which are added into the ESVL as an expansion of KSVL.

Note that we annotate these intermediate controller variables

here only for readability since ARES does not require semantic

disassembling of controller programs [13], [30], which reduces

the assumptions for the vulnerability assessment of ARES. In

other words, for the controller variable identification, the main

difference is that existing works [13], [30] recover the variable

semantics based on additional prior knowledge of standardized

control templates (e.g., type of control algorithm, controller

abstract syntax trees (ASTs)), while ARES, as a data-driven

approach, does not relies on semantic disassembling of con-

troller programs and does therefore not require these additional

information to establish and instrument the ESVL.

In contrast to previous defense works which monitor either

control invariants [17], [18] or specifically-selected control pa-

rameters [7], [16], [19], ARES explores a larger state variable

space by expanding the KSVL to cover not only plain control

parameters but also intermediate controller variables within the

compromised memory region, which contains partial control

functions (e.g., state error used for updating PID outputs,

P = kp ∗ error). This latter group of variables is usually not

considered in prior works due to accessibility issues and the

assumption that their effects are encompassed by other more

important variables. By using statistical tests to determine the

magnitudes of these effects, ARES removes the need for this

assumption, which may not be true in all cases.

State Variable Dependency Analysis. In this step, ARES

investigates the aggregated ESVL using correlation analysis to

shortlist the candidate state variables for further assessment.

Only a small amount of data in real missions is needed

to derive the mutual dependencies (i.e., correlation analysis)

within our ESVL, which is practical to gather by employing

Valgrind [16], [17] and tracing the memory readings and

writings of the identified intermediate state variables. As

shown in Algorithm 1, ARES determines the state variable

selection strategy to prune the ESVL, refining it into the TSVL

70

DesR

R

IR

IRErr

tv

DesP
P

DesY
Y

GyrX

GyrY
GyrZ

AccX

AccY

AccZ

v1.KP

v2.KI

v3.KD

v4.DT

v5.INTEG

v6.INPUT

v7.DERIV

Fig. 3: ESVL example including the PID roll controller and the

results of correlation-based dependency analysis. The green

line and red line respectively, represent the positive and neg-

ative correlation, while the line width reflects the significance

(i.e., strength) of the correlation.

to represent a potentially vulnerable surface, which is not

sufficiently studied in previous works [16]–[19].

As an example, Figure 3 shows the correlation-based depen-

dency results for ESVL examples including the PID roll con-

troller. Our goal is to look for intermediate controller variables

indirectly associated with essential vehicle dynamics (e.g., roll

angle) but do have a significant impact on the completion of

the RAV’s safe operation, which are the candidates for our

learning protocol to exploit through particularly crafting the

adversarial values. Given the fact that the operation profile

data and the value changes of the ESVL are represented in

time series, correlation analysis is employed here to explore

the state-by-state ESVL updates in the sequential cycles of

the RAV. In our case, each state is a multivariate form.

ARES quantifies the significance of the pairwise correlation

of all continuing state variables (Line 14-15) in the ESVL

using the Pearson correlation coefficient [31], which can be

mathematically described as follows:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(1)

where n is the number of recorded iterative cycles for the

RAV control, xi and yi are the individual state variable indexed

with i, x̄ and ȳ are the mean values for each state variable.

Generally, the Pearson correlation coefficient ranges from -1

to 1 (i.e., -1 means the perfect negative linear correlation and

1 means the perfect positive linear correlation). For instance,

the intermediate controller variable v5 (i.e., PID input error)

in Figure 3 shows a significant correlation with variable R

(i.e., roll angle) because the input error changes will impact

the PID outputs and further propagate to the roll control.

By calculating the pairwise correlation coefficients for

ESVL, we have a quick and simple summary of the direction

and strength of the linear relationship between every two state

variables. However, it is insufficient to apply the correlation

Algorithm 1 Target State Variable List Generation

Input: Expanded state variable list ESV L
Output: Target state variable list TSV L

1: function PRUNESTATEVARLIST(ESVL)
2: for sv ∈ ESV L do � Check each state variable (sv)
3: if sv is not iid OR sv is not NormDist then � Statistical assumptions
4: remove sv from ESV L � Prune ESVL list
5: return ESVL
6: function CHECKSIGNIFICANCELEVEL(optimalModel)
7: Initialize StateV ariableList;
8: for stateV ariable ∈ optimalModel.features do
9: if stateV ariable.p value < 0.05 then � Statistical significant

10: Add stateV ariable into StateV ariableList
11: return stateV ariableList
12: function GENERATETARGETSTATEVARLIST(ESV L) � Main function
13: Initialize TSV L;
14: for SVi, SVj ∈ ESV L do � Check every pair of state variables
15: CorrMatrix[i, j]← CALCULATECORRELATION(SVi, SVj)

16: prunedESV L← PRUNESTATEVARLIST(ESV L) � Assumption Check
17: identifiedSubsets← HIE-CLUSTER(prunedESV L,CorrMatrix)
18: for subset ∈ identifiedSubsets do
19: optimalModel← STEPWISEAIC(subset) � Model selection
20: StateV ariableList← CHECKSIGNIFICANCELEVEL(optimalModel)
21: TSV L← TSV L ∪ StateV ariableList � Add identified variables
22: return TSV L

analysis alone since it assumes that both variables in each

pair play the same role. Basically, we are more interested in

how control parameter updates influence vehicle dynamics,

rather than the opposite. Therefore, we utilize linear regres-

sion analysis to further explore the numerical relationships

(i.e., more detailed than correlation alone) between the state

variables and how they can be modelled. Before that, there

are few statistical assumptions needed to be initially checked

regarding the dataset, in order to use the regression model.

Specifically, we prune the ESVL list (Line 1-4) with two ad-

ditional prerequisites: (1) the state variables must be normally

distributed, and (2) the state variables must be independent and

identically distributed (IID) to each other (Line 3). Therefore,

the intermediate state variable with constant values such as

v1(KP), v2(KI),v3(KD) in Figure 3 will not be considered

in the correlation analysis.

Target State Variable Selection. After obtaining the ESVL,

ARES automatically selects the target state variables in follow-

ing procedures: (1) To accelerate the state variable selection,

ARES applies the hierarchical clustering technique [32] to

create subsets of the ESVL (Line 17) based on the correlation

coefficients matrix (Line 15). Compared to other clustering

techniques like K-means, it does not require a pre-specified

number of clusters [33]; (2) For each subset, ARES performs

a stepwise feature selection (Line 19) using the Akaike infor-

mation criterion (AIC) [34], a widely-used statistical method

for model comparison. AIC method produces the optimal set

of state variables by examining the model’s significance level

after adding or removing different state variables. In the exam-

ple of Figure 3, ARES searches the optimal regression model

for the response variable R (the roll angle) and explanatory

variable set (P, DesP, INPUT, DesR, tv, INTEG, IR); (3) For

the optimal regression model, ARES further examines the p-
value (i.e., a common statistical number ranging from 0 to

1 for null hypothesis test) of its contained state variables

(Line 8-9). ARES adds the state variables whose is smaller

71

than 0.05 into TSVL (Line 9-10), which indicates there is

a statistically significant relationship between this response

variable and the predictor variable. Note that we do not

consider more complicated scenarios such as multicollinearity

tests, and therefore conservatively keep the identified target

state variables. In summary, we employ the correlation analysis

and regression analysis to automatically and efficiently select

target state variables, where we create adversarial values using

a learning protocol presented in the following section.

C. Generation of Adversarial Values

After determining a set of target state variables, we generate

adversarial patterns of values that can result in unstable or

exploitable RAV behaviors. Even after selecting a small set

of target parameters, several challenges remain in identifying

a state variable manipulation vulnerability that could disrupt

RAV operations. Despite having pruned many variables, the

search space remains intractable when considering: (1) which

concrete state variables need to be manipulated; (2) the adver-

sarial sequences to be injected and their timing; (3) the overall

impact on the RAV’s control state.

Because of the reasons enumerated above, it is still infea-

sible at this point to exhaustively search the state space of

the selected variables. Instead, we formulate the generation of

adversarial state variable values as a reinforcement learning

(RL) problem to efficiently explore the state space, exploiting

learned information to discover potential vulnerabilities.

RL problems share a common basic structure, as presented

in Figure 4a, consisting of an agent taking actions within an

environment under specific policies. After each action, the

agent observes state changes in the environment and receives a

reward for that action. Over multiple episodes, the agent learns

a policy of optimal actions to maximize the total reward. The

RL agent is trained offline in simulation, manipulating the

target state variables over repeated mission runs. Its goal is to

learn a sequence of state variable manipulations resulting in

unsafe RAV behavior. In learning adversarial state variable

sequences, ARES demonstrates how these variables can be

explored to probe for vulnerabilities.

Defining RL Components. In our scenario, we consider a

RAV flying a mission to achieve an objective. As we only

manipulate specific internal variables of the RAV, the RAV

itself as well as the mission it follows are a part of the environ-

ment. The agent takes the role of an external adversary, which

at each time step can choose whether or not to modify one of

the target state variables by a certain amount. At each state

st ∈ S, the agent chooses what it believes to be the best action

at ∈ A according to a policy π(at|st). The agent receives a

reward rt(st, at) and observes the next state st+1. For each

training episode, the return R is equal to the sum of total

discounted future rewards: R =
∑∞

t=0 γ
trt , 0 < γ < 1.

This process can be seen in Figure 4b. In the case of ARES,

the state and action spaces are defined as follows. The state

space is represented by a collection of data variables (position,

velocity, rotation, etc.) and control variables (controller states,

configuration parameters, etc.), representing the RAV state.

(a) A typical RL workflow (b) RV exploit example with RL

Fig. 4: Reinforcement Learning (RL) setup for RAV Exploits.

The action space is limited to variables within the TSVL, and

parameterized by the amount that the variable is changed.

Considerations for Data Manipulation. In a realistic RAV

controller implementation, a RAV’s position and attitudes are

commonly stored in vectors and matrices, leading to heavy

use of pointer operations in their calculation. Leveraging

this fact, ARES can probe for both syntactic bugs [7] and

traditional memory corruption bugs (e.g. buffer overflows),

while accounting for MPU protections. The first step of data

manipulation is variable choice. We can initially determine

this using the TSVL, then modify the selected state variables

by analyzing changes from previous parameter states. For

example, if the RAV is in a region of high dependency between

two variables, then it is sufficient to only select one. For

simplicity, we limit our evaluation to a single variable. The

next step is manipulation amount. Manipulations can be either

random or bounded (gradual changes relative to the current

value), and this choice is partially dependent on the type of the

variable. For example, physical data is usually bounded, while

other parameters can change either way. Finally, we can further

incentivize impactful variable choices through the definition of

RL reward functions.

Reward Function Formulations. The reward function itself

can reflect a variety of attacker goals, such as crashing the

RAV, deviating it from its intended mission path, or even

adversarial control. Over many episodes, the agent will learn

an adversarial policy satisfying the constraints of the attack

as defined by the reward function. In general, we define

two categories of vulnerabilities based on the definition of

their attack goals in the RL reward function: controlled and

uncontrolled failure vulnerabilities. For uncontrolled failures,

the only necessary result is RAV failure, while controlled

failures lead to specific failure modes. This distinction defines

how we approach the RL formulation of the problem for each

category. More importantly, this categorization also simplifies

our reward function design.

An Uncontrolled Failure Formulation. In the case of an

uncontrolled failure, we consider a RAV following a prede-

fined mission path. The agent attempts to steer the RAV away

from the mission path, resulting in mission delays and failures.

72

However, there is no specific failure outcome (e.g., attitude

angle, velocity or directions during the deviation).

The reward function for an uncontrolled failure is as fol-

lows:

rt(s, a) =

{
+C1 deviating from the path,

−C2 not deviating from the path.
(2)

In each time step, we reward the agent based on whether

or not it has increased its overall distance from the mission

path. The agent will keep accumulating rewards the further it

can get from the path.

A Controlled Failure Formulation. In this scenario, we

consider a RAV moving through a space containing forbidden

navigation zones. These could range from simple obstacles like

a wall to restricted airspace in the case of a drone. Therefore,

its path planning needs to avoid these zones. In the controlled

failure case, the RAV is specifically steered toward these

obstacles, resulting in negative consequences. In the simplest

formulation, we define our reward function as follows, where

the goal is within the forbidden zone:

rt(s, a) =

⎧⎪⎨
⎪⎩
+C1 moving toward the goal,

−C2 moving away from the goal,

+∞ having reached the goal.

(3)

In each time step, we reward the agent some positive or

negative reward C depending on whether it has moved closer

or further from the obstacle, with exceptions for when a crash

has occurred (case 3 in Equation 3). In the controlled failure

case, the RL agent has a goal that signifies success (e.g., a

collision with an obstacle) when reached. A controlled failure

can represent several adversary goals such as a crash (i.e., the

goal is the wall) or even adversarial control (moving the RAV

to a specific point). Each goal requires further specification of

reward function terms to guide the agent effectively.

V. EVALUATION

In this section, we present the experimental setup of evaluat-

ing ARES. We present the search results of ARES in identifying

target state variables. We also present the effectiveness of the

learning strategies that exploit the vulnerabilities, which might

even bypass the detectors.

A. Experimental Setup

System Setup. For our evaluation, we use two virtual vehicles,

IRIS+ (a quadrotor) and Pixhawk4 (PX4), equipped with the

ArduCopter firmware of ArduPilot 3.6 for our RAV control

software due to its popularity and open-source nature. We

execute the vehicle model dynamics, runtime behaviors, and

real-world environment using the ArduPilot suite and with

the 3D robotics framework Gazebo [35]. This allows for

the production of state variable data in response to control

actuation, as well as the inclusion of mission planning and

external environmental factors in our experiments.

To handle the continuous action space of the RAV, we opt

for a policy gradient method [36] over the conventional Q-

learning algorithm [37] using OpenAI Gym [38] for the train-

ing of our agents. We initialize the Gym environment

and set up the drone’s initial position. In the episodic task, the

agent takes a single action in each step function every 0.3

seconds and injects a variable manipulation of the target state

variable through MAVProxy commands. We set the maximum

number of episodes to 5000 with each episode having a

maximum length of 300 steps. Rewards are calculated based

on the observations of the new state. After the completion of

each episode, the Gym environment will reset the IRIS+

model by landing, disarming the vehicle, and resetting it back

into its initial position. For the next episode, the vehicle will

again be armed and take off to the desired mission starting

point to begin the observation-action training for the new task.

Research Questions. We evaluate ARES in order to answer

the following research questions:

• Q1: How practical is ARES for data-driven exploration

of state variable vulnerabilities?

• Q2: Can ARES find exploits that bypass existing defenses

deployed on RAVs?

• Q3: How effective is learning-based data manipulation

for finding vulnerabilities leading to uncontrolled and

controlled RAV failures?

B. Data-Driven Search of Target State Variables

For the ArduCopter, we start with the KSVL as shown

in Table I; the detailed description is available at [27]. We

describe the three steps to identify state variable candidates:

(1) data tracing to expand the state variable search space,

including intermediate controller variables within the various

controller algorithms; (2) statistical clustering based on the

correlation coefficients derived from the collected dataset; (3)

and selecting the target state variables to efficiently search the

vulnerable ones in the learning framework. We present the

results for each step in Table II.

TABLE I: The available variable list (total of 342) in Ar-

duCopter built-in dataflash logger as the known state variable

list (KSVL). ALV: available log variables

Name
of
ALV

Name
of
ALV

Name
of
ALV

Name
of
ALV

Name
of
ALV

Name
of
ALV

AHR2 7 ATT 12 BARO 5 CMD 6 CTUN 6 CURR 7
DU32 3 EKF1 14 EKF2 12 EKF3 11 EKF4 14 EV 2
FMT 6 GPA 5 GPS 14 IMU 12 IMU2 12 MAG 11

MAG2 11 MAV 2 MODE 3 MOTB 5 MSG 1 NKF1 14
NKF2 13 NKF3 12 NKF4 13 NTUN 11 PARM 3 PIDA 7
PIDR 7 PIDY 7 PIDP 7 PM 7 POS 5 RATE 13
RCIN 15 RCOU 13 SIM 7 VIBE 7

State Variable List Expansion. ARES extracts and classifies

the KSVL from the dataflash logger in ArduCopter with core

controller algorithms. Specifically, we focus on the PID con-

troller, the square root controller (e.g., for position estimation)

and the strapdown inertial navigation system (SNIS) (e.g., for

velocity and position correction). For a RAV system equipped

with protected memory regions, PID controllers executed by

the stabilizer process usually run in the same memory region.

73

TABLE II: The number of potential state variables as attack

surface for essential controller software examples using data-

driven searching strategy at each step. Sqrt: square root

controller, SINS: Strapdown inertial navigation system.

Controller
Function

of
KSVL

of
Added SVs

of
ESVL

of
TSVL

Ratio of SV
Selection

PID 28 36 64 6 9.4%
Sqrt 9 12 21 3 14.3%
SINS 14 19 33 3 9.1%

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
cc
Y

P
N

V
D

dP
D

G
X

G
Y

IN
P
U
T

D
E
R
IV

P
D

V
N

A
cc
X

P
E

G
Z

IR
E
rr

IN
T
E
G

D
es
R

R
ol
l

IR tv G
yr
X

G
yr
Y

G
yr
Z

A
cc
Z

V
E

AccY
PN
VD
dPD
GX
GY

INPUT
DERIV

PD
VN

AccX
PE
GZ

IRErr
INTEG
DesR
Roll
IR
tv

GyrX
GyrY
GyrZ
AccZ
VE

Fig. 5: Correlation coefficients heat map with hierarchical

clustering for the ESVL of RAV’s roll control.

Table II combines the results of all PID controllers including

their sub-controllers (e.g., PIDR, PIDY, PIDP controller) and

variants (e.g., P, PI, PIDFF controller). We trace the updates

of the attitude state variables (e.g., roll, pitch angle) in the 28

available log variables and identify the memory locations to

profile 9 intermediate variables (e.g., P, I, D gains) for each

of their PID controllers. For this ESVL containing 64 state

variables, we categorize them as different subsets associated

with specific vehicle dynamics we are interested in. After

pruning the ESVL and removing unchanged state variables

(e.g., having a constant value), we determine the total of 24

state variables shown in Figure 5 as the ESVL specifically for

the roll angle and its associated controller variables.

Dependency Analysis and Target State Variable Selection. To

identify those state variables highly associated with the RAV

operations (e.g., vehicle dynamics), ARES utilizes the pairwise

correlation analysis. We log the dataset at a frequency of 16HZ

for the ESVL in 5 benign missions and each of them takes

about 40 to 70 seconds to complete, as a result collecting over

3000 value vectors for candidate state variable in time series.

We calculate the pairwise correlation coefficients for all state

variables in the ESVL, obtaining the correlation matrix shown

in Figure 5. This heat map of correlation coefficients clusters

the vehicle roll angle and other variables in the ESVL, includ-

ing sensor measurements (e.g., accelerator and gyroscope),

vehicle dynamics and intermediate controller variables (e.g.,

the PID input error). With the results of the correlation-based

dependency analysis, ARES ranks the state variables by their

significance level in regression analysis of subsets and selects 4

candidates (i.e., INTEG, DesR, IR, tv) as target state variables

in Figure 5. They specifically correspond to the roll angle

by using correlation-based dependency analysis and regression

significance check for state variable sets (see Section IV-B).

C. Vulnerability Assessment with Existing Defenses

Control invariants [17], ML-based monitoring [16], and

sensor estimation [18] have been identified as the most com-

mon forms of RAV monitors these days. These techniques

inspect the integrity of control invariants, actuator outputs

and sensor measurements by comparing the error between the

expected and perceived values with the deduced threshold. By

exploiting their limitations, as we pointed out in Section III-A,

we demonstrate that ARES can exploit the vulnerable state

variables and even evade these defenses.

To allow the RL agent to learn vulnerabilities and edge cases

in existing defenses, we first include a control invariants [17]

monitor within the simulation, which is then incorporated into

the reward function. This incentivizes the RL agent to explore

areas of the state space which do not trigger an alarm, but still

lead the RAV toward the desired attacker goal. To validate the

effectiveness and stealthiness of adversarial vectors generated

by ARES, we compare with a naive attack strategy as the

baseline which generates rapid changes in the RAV’s vehicle

dynamics (e.g., roll angle).

Effectiveness. In our observations, a mild manipulation of

yaw and pitch control (e.g., left/right, forward/backward) over

time will have less impact on the drone, since the drone

has active control of these degrees of freedom compared

to the roll axis in a path following mission consisting of

a couple of straight lines (e.g., the drone turns direction

towards the next waypoint after reaching a waypoint and

thus always moves forward without tilting much in the roll

axis). In order to achieve the mission deviation, ARES takes

the actions of individually manipulating the values of each

state variable in ESVL to learn the optimal attack surfaces

identified in Section V-B within the PIDR controller (i.e., the

PID controlling the roll angle rate).

Through manipulating the input error values in PIDR con-

troller, we successfully increase the roll angles for 2.5 degrees

every second (i.e., on average 0.00625 degrees at each step

when accounting for noise) amidst the mission until it reaches

45 degrees. This attack slowly deviates the drone from its

mission paths and the RAV gets drifting away and fails

to complete the mission (eventually crashes after draining

the battery). Our adversarial data manipulations prove to be

undetected by control invariants during the mission. Figure 6a

shows the roll angle changes, and we also comparatively

implement a simple attack strategy which naively sets the roll

angle to 30 degrees, quickly crashing the drone but also getting

detected by the control invariants immediately.

Stealthiness. After successfully compromising the drone, we

analyze the stealthiness of our adversarial manipulations by

74

0

10

20

30

40

0 20 40 60
Time (seconds)

R
ol

l a
ng

le
 (

de
g)

ARES Naive Attack Normal

(a) Roll angle

0

25000

50000

75000

100000

0 20 40 60
Time (seconds)

C
um

ul
at

iv
e

E
rr

or

ARES Naive Attack Normal

(b) Cumulative error

Fig. 6: The control invariants detection results for the ARES’s

adversarial manipulations and a naive attack example, with the

attack beginning at the vertical line of the naive attack.

(a) Roll angle (b) Control output distance

Fig. 7: The ML detection results of ARES’s adversarial attack.

assuming that the control invariants model is accessible for us

to take a closer and transparent look at the difference between

our manipulations and naive attack under the monitoring of the

control invariants detector. The control invariants protocol in

our setup has a checking frequency of 400Hz, a predetermined

threshold of 400,000 and a monitoring window of 1024 time

steps (i.e., about 2.5 seconds). Figure 6b shows the control

invariants model’s cumulative estimation error during a benign

mission, the same mission with a naive attack, and with our

manipulations. When our manipulation starts, the cumulative

error generally increases but still fluctuates within the “safe”

ranges of the detection boundary, which will be classified

as the attack-free condition and not trigger an alarm.

For the naive attack, the cumulative error sharply increases

to and stays over 1,000,000, which is significantly greater

than the predetermined threshold, and immediately triggers an

alarm. Therefore, the learning protocol of ARES produces a

more sophisticated attack strategy, demonstrating much greater

stealthiness in comparison to the naive attack on RAV systems

in the presence of a control invariants detector.

Assessment of Machine Learning-based Monitors. For real-

time RAVs, malicious modifications of control parameters can

cause inconsistency issues of controller outputs and eventually

disrupt the safe operation. Compare to control invariant, ML-

based monitors [16], [19] estimate the numerical calculations

within mathematical controllers and detect the malicious con-

trol output deviations. In our experiments, we assume an IRIS+

drone whose PID controller outputs are monitored by [16],

−3000

−2000

−1000

0

0 10 20 30
Time (seconds)

P
ID

 o
ut

pu
t

RollRate_P RollRate_I RollRate_D

(a) PID output

−5

0

5

10

0 10 20 30
Time (seconds)

R
ol

l a
ng

le
 (

de
g)

ATT.R EKF1.Roll

(b) EKF estimation

Fig. 8: The detection results of ARES’s adversarial attack by

sensor estimation techniques such as EKF.

is hovering at 5 feet above a fixed point on the ground. As

shown in Figure 7a, we launch the attack at time instance 12.0s

by gradually manipulating the PID scaler ratio of the RAV’s

roll controller and also compare with the naive attack. The

manipulations of ARES disturb the stabilizing of the RAV’s

roll angle and cause the RAV drift away from the original

location, while the naive attack forcibly sets the roll angle to

30 degrees. Figure 7b shows that the control output distance

of the naive attack sharply increases and exceeds the upper

bound of the benign error range (i.e., threshold) 0.01, while

the fluctuations of control output distance for ARES remains

in the benign error range, and thus ARES can evade the ML-

based detection.

Assessment of Sensor Estimation Detectors. In addition,

ARES can also evade sensor-based state estimation detectors

like SAVIOR [18], since ARES manipulates controller vari-

ables instead of compromising the sensor measurements. For

instance, we identify the PID controller outputs as the attack

surface and manipulate its value by adding a gradual pertur-

bation; the manipulation of the controller output is directly

fed to the motor controllers, leading to modified actuation.

This causes the PID to attempt to compensate in response

to the perturbed control as shown in Figure 8, eventually

failing to do so and crashing the drone. This manipulation

is successful since the PID controller output (the sum of P, I

and D) has an oversized safety range of ±5000, exposing it

to the range validation bugs reported in [7]. When the attack

starts at t = 30s, the roll angle of the RAV enters into an

unstable and aggressive stabilization as shown in Figure 8a.

However, the residual between sensor measurements ATT.R
and EKF estimated state EKF1.Roll remains close to 0

in Figure 8b because the drone’s motion is affected by the

variable manipulation, and as a result will not raise an alarm.

Robustness to Various Detection Thresholds. ARES exploits

the circumstance that the detector is already set up, but the

monitoring configuration (e.g., threshold and window size) can

be adjusted by re-configuring the RAV model. In this section,

we look at the control invariants work as an example that

this vehicle-specific protection can not prevent the exploits

generated by ARES through simply reducing the threshold or

adjusting the detection window size, which are commonly used

75

(a) Maximum invariant cumulative error

10%
0% 0% 0%

50%

0%

90%

50%

90%
100%

(b) False Positive and True Positive rate

Fig. 9: Control invariants detection on two ARES attacks.

to increase the detection precision and sensitivity.

For the control invariants detector, decreasing the size of

the sliding window is less applicable and may easily cause

a high false positive rate [17]. Therefore, we evaluate two

additional attacks to show that an improved control invariants

model with a varying threshold is still insufficient to ARES.

The only difference is that Attack 1 increases the roll angle on

average by 0.0125 degrees at each step when accounting for

noise, while Attack 2 increases the roll angle on average by

0.000625 degrees. We launch the two attacks and also collect

the benign data for 10 trials on various missions. Figure 9a

presents the maximum cumulative error observed during flight

for each mission. We assume that the control invariants model

will sound an alarm once the cumulative error exceeds the

predetermined threshold. We observe that the larger scale of

Attack 1 results in a larger cumulative error, while Attack

2 is difficult to distinguish from the benign runs since their

maximum cumulative errors are very close, meaning that the

control invariants detector can not easily identify our attack

even by setting a more sensitive threshold value. Figure 9b

presents the false positive and true positive rates in these

experiments by adjusting the threshold. Although decreasing

threshold values from 50,000 to 30,000 improves the true

positive rate, it also results in higher false positive rates, which

significantly weakens the detection capability of the control

invariants model (e.g., 90% false positive rate is unacceptable

in realistic applications).

D. Learning-based Vulnerability Assessment Strategies

Here we present the two exploit categories, uncontrolled and

controlled failures, in ArduPilot using reinforcement learn-

ing algorithms (Section IV-C). We experimentally train and

validate ARES to generate adversarial manipulations that can

lead to uncontrolled and controlled failures while successfully

evading the detectors. We also evaluate the effectiveness of

ARES in finding state variable vulnerabilities, as well as its

efficiency in learning such vulnerabilities.

1) Case Study I: Uncontrolled Failure: In this case, we

consider an uncontrolled failure for the path following mission

for the IRIS+ quadrotor equipped with ArduCopter control

firmware. The goal of our agent is to learn how to deviate

the drone from its predetermined path by manipulating a

vulnerable state variable. However, we do not have the precise

definition of the desired malicious behaviors (e.g., angle,

(a) Uncontrolled failures of the roll controller deviating an
RAV from the mission path and prevent it reaching the next
waypoint B

(b) Distance of deviation from next
waypoint B under different exploit sce-
narios

(c) Accumulated distance of deviation
from next waypoint B under different
exploit scenarios

Fig. 10: RL-based uncontrolled failure as path deviation.

velocity of the deviation) but only an intuitive adversarial

plan (e.g., deviate the drone as far as possible) reflected by

the reward function. Therefore, we do not consider or require

the actual direction the RAV will deviate towards during the

failure. We explore the RL learning process and show how

ARES can evade detectors.

To deviate the RAV from its mission path, we define our

observations as the minimum distance between the current

position PRV and the paths Pth. As shown in Figure 10,

we start the exploit between waypoint A and waypoint B,

sending adversarial state variable values of PIDR.INTEG
(i.e., the internal integrator in the PID roll controller)

through MAV Proxy commands to the ArduCopter controller.

When the exploit starts, the agent uses the current position

(xrv, yrv, zrv) to calculate the minimum Euclidean distance

to mission paths as the observation

d = min(
√
(xrv − x)2 + (yrv − y)2 + (zrv − z)2)

in which x, y, and z are points defined on the original paths.

For instance, the path from waypoint A to waypoint B can be

defined as a line segment in the 3D space

Pth(A,B) : z = α1 ∗ x+ α2 ∗ y + β

where x ∈ [xA, xB], y ∈ [yA, yB] and z ∈ [zA, zB] and

α1, α2, and β are parameters of the line equation. Having

calculated the distance, and for a small ε = 0.01 representing

the radius of the drone, we define the reward function at time

step t as follows:

rt(s, a) =

⎧⎪⎨
⎪⎩
+Δd dt > dt−1 and dt > ε

−Δd dt < dt−1 or dt < ε

−∞ if an anomaly is detected.

(4)

76

(a) Controlled failures crashing RAV to targeted point caused
by the low roll rate parameter in roll velocity controller

(b) Distance of path deviation for dif-
ferent attack scenarios via RL

(c) Distance of path deviation for differ-
ent attack scenarios via RL

Fig. 11: RL-based targeted attack strategy for hitting obstacles.

In this case, the agent will gain relatively small rewards

unless it can create a larger deviation (Δd = ||dt− dt−1||) by

adversarially manipulating the targeted state variable values.

In Figure 10 we demonstrate a less successful exploit, path

4, where the RAV deviates from the path but the reward

function does not constantly increase on the presented attack

routes passing through positions A and B. In Figure 10

path 4, the distance observations of the routes are strictly

increasing between the two steps from position A to position

B. Therefore, the agent moving along more successful routes

will learn from these observations and continue to manipulate

the state variable and deviate the RAV even further from its

mission paths with the aim of maximizing the cumulative

reward, which turns to be a more successful attack strategy

compared to path 1.

2) Case Study II: Controlled Failure: In the controlled

failure case, the goal of the agent is to learn parameter

manipulations that lead the drone toward a forbidden area or

obstacle. We use the same drone model and control software

as in the uncontrolled failure, and similarly, explore one target

state variable at a time.

We again define our observations as the minimum distance

between the current RAV position PRV and the closest point of

the forbidden area Pf . We define the forbidden area as a set of

geometric surfaces in a similar manner to the path segments of

the untargeted attack. Once again, using the calculated distance

and ε, we define the targeted attack reward function at time

step t as follows:

rt(s, a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
+Δd dt < dt−1 and dt > ε

−Δd dt > dt−1
+∞ dt ≤ ε

−∞ if an anomaly is detected.

(5)

As presented in Figure 11 path 3, as the distance of the

drone from the obstacle increases from d1 at waypoint B to

d2 at waypoint C, the rewards will be negative. Likewise,

in Figure 11 path 2, as the drone approaches the obstacle,

the rewards are positive and increase with increasing velocity.

Unlike the uncontrolled failure mode, the episode ends if the

agent is able to steer the drone sufficiently close to the goal

(i.e., make contact with the obstacle and crash).

VI. DISCUSSION

Generalizability and Scalability. We evaluate ARES on the

ArduPilot platform, which is a well-renowned robotic vehicle

platform with over 15 years history. The ArduPilot code

base consists of more than 700k lines of code, whose scale

is comparable with many other commercial RAV firmware

(e.g., MantisQ [39], Crazyflie [28]) and also much larger than

many small embedded IoT device firmware. ARES assesses the

vulnerabilities in an expanded state variable space including

the configurable control parameters, sensor measurements,

vehicle dynamics, and intermediate controller variables, which

are widely spread and implemented in many RAV applications

(e.g., drone, fixed-wing plane, helicopter). The static analysis

techniques [13] that ARES leverages is agnostic to the RAV’s

firmware since [13] is demonstrated on both open-source

firmware ArduPilot and closed-source (stripped) firmware

MantisQ [39]. The methodologies we involved, such as tar-

get state variable selection based on multivariate correlation

analysis and reinforcement learning-based data manipulations,

are agnostic to the RAV’s controller software, which can

be generalized to more realistic RAVs (e.g., Crazyflie [28],

MantisQ [39]). Despite the different implementation details

and physical configurations, RAV firmware implementations

generally follow a similar pattern such as universal controller

software (e.g., PID, Extended Kalman Filter) in a cycle-based

paradigm which can be assessed by our learning framework. In

addition, most RAVs nowadays run their controllers on ARM

processors, which our evaluations are also based on.

Platform Applicability for Real RAVs. Regarding ARES ’s

applicability for real RAV models, ARES aims to explore

the non-obvious vulnerabilities within the intermediate state

variables of RAV controller software. We evaluate ARES on

ArduPilot, whose controller software is running on many

real-world commercial RAVs such as 3DR Solo, AeroDrone

MR4 and Xunwing X4. We leverage its simulation toolkit to

simulate the RAV physics and test the effectiveness of ARES.

The training process of RL-based control methods [40]–[43]

is usually limited to software simulation instead of real drones

or vehicles because of the difficulties in various environment

settings, high financial and time cost of many potential crashes.

Further research on more consumer-grade RAVs with closed

source firmware will be our future work.

Limitations of ARES. The components that ARES relies

on have two limitations in finding target state variables and

crafting manipulations. One limitation is inherited from static

analysis [13] that ARES may mistakenly identify different

77

controller variables as identical aliases (i.e., false positives)

or miss the alias of state variables (i.e., false negatives) when

identifying the state variables. This is a common limitation

of points-to analysis [44] in alias tracking, which impacts the

accuracy and coverage of state variables we find. To address

this limitation, further research of advanced static analysis and

dynamic analysis is required, as pointed out by [29].

The other limitation of ARES is that the RL-based search for

potential exploitable vulnerabilities is sometimes incomplete.

Apart from scalability issues, checking for RAV vulnerabilities

using data manipulations is subject to firmware protection

restrictions, as mentioned in our threat model, and the design

robustness of the RAV: (1) the controller program can reject

obviously illegitimate parameter values; (2) mild variable

manipulations can be discarded by the RAV controllers as an

environmental disturbance. Moreover, RL process may take

longer time to search a large size of ESVL or TSVL, although

we rarely see this condition in our experiments. These restric-

tions further limit the evaluation comprehensiveness for the

RL search space, especially when considering that malicious

behaviors may occur over time. Therefore, ARES focuses on

demonstrating that an attacker with limited capabilities of

accessing only several state variables in a single compromised

memory region can still craft various attacks to bypass existing

defense mechanisms [16]–[18].

Countermeasures. The root cause of state variable vulnera-

bilities in our work is the lack of completeness and soundness

in the system design of RAV monitors. We foresee that there

are two directions to improve them. Firstly, RAVs need better

memory management (e.g., hybrid design [45]) and fine-

grained monitors in the variable level [13] rather than the sys-

tem level. Secondly, RAV monitors can enlarge monitoring ob-

jectives by combining control invariants or control parameters

with essential state variables we identified within controller

functions. This requires enhancing the reverse engineering

techniques and the runtime support of RAV’s software.

VII. RELATED WORK

RAV Attacks. Physical attacks targeting on RAV sensors

including accelerators [46], [47], optical sensor flow [46], GPS

signals [48] and gyroscope [23] has been proposed. Compared

to sensor spoofing attacks, ARES focuses on state variables

and control parameters within the RAV controller software.

RAV is also facing the challenges of various parameter-

wise attacks such as memory corruption [8], [11], vulnerable

control parameters [7], [26], logic bugs [49] and control

logic manipulation [25]. By leveraging these cyber-physical

attack surfaces, the attackers may exploit the vulnerabilities

found by ARES with particularly-crafted adversarial values.

However, ARES investigates a different input space including

those intermediate state variables within the RAV controller

software, allowing it to find new types of vulnerabilities.

RAV Monitoring. Learning-based approaches [16], [50]–[52]

detect malicious behaviors by training a predictive model with

RAV operational data collected from benign and malicious

runs. However, obtaining large enough training data and

encompassing all possible control states are expensive and

laborious. State estimation defenses [17], [24], [53], [54] aim

to extract and represent the safety-critical RAV state updates

and sensor measurements using a state estimator. However,

these works mainly focus on addressing the threats of physical

channels (i.e., sensors). ARES provides a data-driven search to

identify and assess the vulnerable state variables, exposing a

wider range of vulnerabilities and sophisticated attack strate-

gies within RAV controller software. Other reference monitor

work [55] leverages the relatively stable access patterns of

memory-mapped I/O in control algorithms to establish base-

lines for normal operation and detect anomalies. However,

ARES does not modify controller semantics or spoof sensors,

which make up the majority of attacks studied in this work.

We also find that [56] uses short-term variable correlations

for anomaly detection in automated driving contexts. ARES

has a different purpose of correlation analysis that we inves-

tigate longer-term correlations to identify important variable

relationships for further vulnerability analysis in simulation.

RAV Testing via Fuzzing and Fault Injection. Fuzzing-based

approaches for control algorithms probe for vulnerabilities by

testing a wide variety of inputs. To control for the vast input

space, the process is guided with feedback [7] or predefined

policies [21]. Unlike these approaches, which focus on single-

point modifications, ARES examines longer-term vulnerabili-

ties which may occur over a series of time-dependent states.

This results in coverage of different parts of the overall input

space, allowing it to find new vulnerabilities. Other approaches

leverage intelligent fault injection [57]–[59] to discover vul-

nerabilities. While similar in methodology, ARES differs at

the source of the fault injection. These works typically inject

faults directly, manipulating sensors and actuators to disrupt

controller operation. In contrast, ARES looks at manipulations

further upstream (within controller state variables) which may

not be as easy to detect using defense mechanisms.

VIII. CONCLUSION

In this work, we present a novel RAV vulnerability as-

sessment framework ARES, which identifies the vulnerable

state variables and assesses their impact on the safe operation

of the RAV system. We use statistical methods to explore

an expanded parameter space. By applying the reinforcement

learning-based search approach, we explore the physical im-

pact caused by these vulnerability exploitations in a data-

driven way, and show that current memory isolation and

control state estimation defenses may struggle against an

adaptive adversary with the knowledge that such a system is

in use.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation (NSF) Cyber-Physical (CPS) and Secure

and Trustworthy Computing (SaTC) programs, as well as the

Department of Energy under Award Number DE-OE0000780,

Cyber Resilient Energy Delivery Consortium (CREDC).

78

REFERENCES

[1] DHL parcelcopter launches initial operations for research purposes,
Retrieved July 1, 2021, https://www.dhl.com/en/press/releases/releases
2014/group/dhl parcelcopter launches initial operations for research
purposes.html.

[2] J. Green, Drones Will Elevate Urban Design, Retrieved July 15,
2021, https://www.smartcitiesdive.com/ex/sustainablecitiescollective/
drones-will-elevate-urban-design/1053491/.

[3] T. G. 2016, First passenger drone makes its debut at CES, Re-
trieved July 1, 2021, https://www.theguardian.com/technology/2016/jan/
07/first-passenger-drone-makes-world-debut.

[4] Amazon, First Prime Air Delievery, Retrieved July 1, 2021, https://www.
amazon.com/Amazon-Prime-Air/b?node=8037720011.

[5] Forbes, Drone Delivery Is Live Today, and It’s 90%
cheaper than Car-based services, August 18, 2021,
https://www.forbes.com/sites/johnkoetsier/2021/08/18/
drone-delivery-is-live-today-and-its-90-cheaper-than-car-based-services/
?sh=42e7a5204d02.

[6] ArduPilot: versatile, Trusted, Open Autopilot software for drones and
other autonomous systems, Retrieved July, 2021, https://ardupilot.org/
about.

[7] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “Rvfuzzer: finding input validation bugs in robotic
vehicles through control-guided testing,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 425–442.

[8] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[9] T. Kim, C. H. Kim, A. Ozen, F. Fei, Z. Tu, X. Zhang, X. Deng, D. J.
Tian, and D. Xu, “From control model to program: Investigating robotic
aerial vehicle accidents with {MAYDAY},” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020, pp. 913–930.

[10] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. Mohammed,
and S. A. Zonouz, “Hey, my malware knows physics! attacking plcs
with physical model aware rootkit,” in Proceedings of the Network &
Distributed System Security Symposium, San Diego, CA, USA, 2017,
pp. 26–28.

[11] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Se-
curing real-time microcontroller systems through customized memory
view switching.” in NDSS, 2018.

[12] B. Nassi, R. Bitton, R. Masuoka, A. Shabtai, and Y. Elovici, “Sok:
Security and privacy in the age of commercial drones,” in 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1434–1451.

[13] T. Kim, A. Ding, S. Etigowni, P. Sun, J. Chen, L. Garcia, S. Zonouz,
D. Xu, and D. Tian, “Reverse engineering and retrofitting robotic aerial
vehicle control firmware using dispatch,” in Proceedings of the 20th
Annual International Conference on Mobile Systems, Applications and
Services (MobiSys), 2022, pp. 69–83.

[14] S. Etigowni, S. Hossain-McKenzie, M. Kazerooni, K. Davis, and
S. Zonouz, “Crystal (ball) i look at physics and predict control flow! just-
ahead-of-time controller recovery,” in Proceedings of the 34th Annual
Computer Security Applications Conference, 2018, pp. 553–565.

[15] PX4 Open Source Autopilot - User Guide, 2021, https://docs.px4.io/
master/en/getting started/sensor selection.html.

[16] A. Ding, P. Murthy, L. Garcia, P. Sun, M. Chan, and S. Zonouz,
“Mini-me, you complete me! data-driven drone security via dnn-based
approximate computing,” in 24th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), 2021, pp. 428–441.

[17] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting attacks against robotic vehicles: A control invariant
approach,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 801–816.
[Online]. Available: https://doi.org/10.1145/3243734.3243752

[18] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and Z. Lin,
“{SAVIOR}: Securing autonomous vehicles with robust physical invari-
ants,” in 29th {USENIX} Security Symposium ({USENIX} Security
20), 2020, pp. 895–912.

[19] P. Dash, G. Li, Z. Chen, M. Karimibiuki, and K. Pattabiraman, “Pid-
piper: Recovering robotic vehicles from physical attacks,” in 2021 51st
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2021, pp. 26–38.

[20] X. Zhou, B. Ahmed, J. H. Aylor, P. Asare, and H. Alemzadeh, “Hy-
brid knowledge and data driven synthesis of runtime monitors for
cyber-physical systems,” IEEE Transactions on Dependable and Secure
Computing, 2023.

[21] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “Pgfuzz:
Policy-guided fuzzing for robotic vehicles,” in Network and Distributed
System Security Symposium, 2021.

[22] F. Wen, M. Qin, P. V. Gratz, and A. N. Reddy, “Hardware memory man-
agement for future mobile hybrid memory systems,” IEEE Transactions
on computer-aided design of integrated circuits and systems, vol. 39,
no. 11, pp. 3627–3637, 2020.

[23] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,” in
24th {USENIX} Security Symposium ({USENIX} Security 15), 2015,
pp. 881–896.

[24] F. Fei, Z. Tu, R. Yu, T. Kim, X. Zhang, D. Xu, and X. Deng, “Cross-
layer retrofitting of uavs against cyber-physical attacks,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 550–557.

[25] P. Dash, M. Karimibiuki, and K. Pattabiraman, “Out of control: stealthy
attacks against robotic vehicles protected by control-based techniques,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, 2019, pp. 660–672.

[26] Y. Xia, Y. Liu, H. Chen, and B. Zang, “Cfimon: Detecting violation
of control flow integrity using performance counters,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012). IEEE, 2012, pp. 1–12.

[27] ArduPilot, Complete parameter list of ArduCopter, 2021, https://
ardupilot.org/copter/docs/parameters.html.

[28] Bitcraze, Crazyflie 2.1, 2021, https://www.bitcraze.io/products/
crazyflie-2-1.

[29] T. Kim, V. Kumar, J. Rhee, J. Chen, K. Kim, C. H. Kim, D. Xu, and
D. J. Tian, “Pasan: Detecting peripheral access concurrency bugs within
bare-metal embedded applications.” in USENIX Security Symposium,
2021, pp. 249–266.

[30] P. Sun, L. Garcia, and S. Zonouz, “Tell me more than just assembly!
reversing cyber-physical execution semantics of embedded iot con-
troller software binaries,” in 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2019,
pp. 349–361.

[31] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 37–40.

[32] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241–254, 1967.

[33] D. Pelleg, A. W. Moore et al., “X-means: Extending k-means with
efficient estimation of the number of clusters.” in Icml, vol. 1, 2000,
pp. 727–734.

[34] H. Akaike, “A new look at the statistical model identification,” IEEE
transactions on automatic control, vol. 19, no. 6, pp. 716–723, 1974.

[35] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending
the openai gym for robotics: a toolkit for reinforcement learning using
ros and gazebo,” arXiv preprint arXiv:1608.05742, 2016.

[36] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[37] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[38] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[39] Mantis Q, 2022, https://us.yuneec.com/
mantis-q-robust-travel-drone-with-voice-control.

[40] R. Ourari, K. Cui, A. Elshamanhory, and H. Koeppl, “Nearest-neighbor-
based collision avoidance for quadrotors via reinforcement learning,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 293–300.

[41] L. He, N. Aouf, J. F. Whidborne, and B. Song, “Integrated moment-
based lgmd and deep reinforcement learning for uav obstacle avoidance,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 7491–7497.

[42] D. Wang, T. Fan, T. Han, and J. Pan, “A two-stage reinforcement learning
approach for multi-uav collision avoidance under imperfect sensing,”

79

IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3098–3105,
2020.

[43] S. He, Y. Wang, S. Han, S. Zou, and F. Miao, “A robust and constrained
multi-agent reinforcement learning framework for electric vehicle amod
systems,” arXiv preprint arXiv:2209.08230, 2022.

[44] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “Dr. checker: A soundy analysis for linux kernel drivers.”
in USENIX Security Symposium, 2017, pp. 1007–1024.

[45] F. Wen, M. Qin, P. Gratz, and N. Reddy, “Openmem: Hardware/software
cooperative management for mobile memory system,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp.
109–114.

[46] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Control-
ling uavs with sensor input spoofing attacks.” in WOOT, 2016.

[47] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Waging
doubt on the integrity of mems accelerometers with acoustic injection
attacks,” in 2017 IEEE European symposium on security and privacy
(EuroS&P). IEEE, 2017, pp. 3–18.

[48] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of
the 18th ACM conference on Computer and communications security,
2011, pp. 75–86.

[49] H. Kim, M. O. Ozmen, Z. B. Celik, A. Bianchi, and D. Xu, “Pgpatch:
Policy-guided logic bug patching for robotic vehicles,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 1826–1844.

[50] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from mutants: Using code
mutation to learn and monitor invariants of a cyber-physical system,” in
2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp.
648–660.

[51] F. Fei, Z. Tu, D. Xu, and X. Deng, “Learn-to-recover: Retrofitting
uavs with reinforcement learning-assisted flight control under cyber-
physical attacks,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 7358–7364.

[52] K. N. Junejo and J. Goh, “Behaviour-based attack detection and classifi-
cation in cyber physical systems using machine learning,” in Proceedings
of the 2nd ACM International Workshop on Cyber-Physical System
Security, 2016, pp. 34–43.

[53] P.-J. Bristeau, E. Dorveaux, D. Vissière, and N. Petit, “Hardware and
software architecture for state estimation on an experimental low-cost
small-scaled helicopter,” Control Engineering Practice, vol. 18, no. 7,
pp. 733–746, 2010.

[54] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “Securecore: A
multicore-based intrusion detection architecture for real-time embedded
systems,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2013, pp. 21–32.

[55] A. Khan, H. Kim, B. Lee, D. Xu, A. Bianchi, and D. J. Tian, “M2mon:
Building an mmio-based security reference monitor for unmanned
vehicles.” in USENIX Security Symposium, 2021, pp. 285–302.

[56] Z. Zhang, S. S. V. Singapuram, Q. Zhang, D. K. Hong, B. Nguyen, Z. M.
Mao, S. Mahlke, and Q. A. Chen, “Avmaestro: A centralized policy
enforcement framework for safe autonomous-driving environments,” in
2022 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2022, pp.
1333–1339.

[57] S. Jha, S. Banerjee, T. Tsai, S. K. Hari, M. B. Sullivan, Z. T. Kalbarczyk,
S. W. Keckler, and R. K. Iyer, “Ml-based fault injection for autonomous
vehicles: A case for bayesian fault injection,” in 2019 49th annual
IEEE/IFIP international conference on dependable systems and networks
(DSN). IEEE, 2019, pp. 112–124.

[58] M. Moradi, B. J. Oakes, M. Saraoglu, A. Morozov, K. Janschek,
and J. Denil, “Exploring fault parameter space using reinforce-
ment learning-based fault injection,” in 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
Workshops (DSN-W). IEEE, 2020, pp. 102–109.

[59] X. Zhou, A. Schmedding, H. Ren, L. Yang, P. Schowitz, E. Smirni,
and H. Alemzadeh, “Strategic safety-critical attacks against an advanced
driver assistance system,” in 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2022,
pp. 79–87.

80

