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Abstract—We present an automated approach to extract code
signatures that serve as the forensic fingerprint of a given
malware program. Our high-level idea is to compare the memory
contents of a sandbox before and after infection by a malware.
To pinpoint the actual memory changes caused by the malware,
and ignore all others, we use a novel concept called Cross OS
Execution. That is, we execute a malware program on multiple
different but compatible operating systems (OSes) to identify its
memory commonalities, while neglecting OS-specific noise. The
commonalities of the dumps therefore contain patterns whose
presence is the consequence of executing the malware, i.e., the
forensic fingerprint of the malware. We show that we can use two
different versions Windows to accurately extract fingerprints of
all 17 popular Windows malware families in our test set. These
signatures serve to re-identify malware infections in memory
dumps with a TPR of 93% and an FPR of 0.15%.

I. INTRODUCTION

Due to packing, polymorphism and malware updates, the
security industry faces hundreds of thousands of new malware
samples daily. Luckily, this huge number of samples can
usually be broken down into a small number of malware
families, i.e., programs stemming from the same code base.
To classify malware samples, analysts rely on signatures that
map yet unknown programs to the underlying malware family.
Such signatures are characteristic byte patterns that express
code and/or data that is specific to a certain malware family.

Malware signatures are at the core of the daily operation of
malware analysts and serve multiple fundamental activities.
First, signatures are heavily used by the AV industry to
recognize and mitigate malware. While AV engines augment
signatures with behavioral analytics, signatures remain one
of the core vehicles to detect known threats. Second, threat
analysts want to “hunt” files according to a given signature in
large malware corpora. For example, an analyst can find all
malicious programs of a certain APT campaign by searching
for samples that match a signature. Third, leveraging an ex-
haustive list of signatures of known malware families, analysts
can easily spot unknown threats that show anomalous behavior
yet do not trigger signatures. Thus, malware signatures are an
inherently important asset in the security industry, even beyond
AV vendors.

An inherent challenge of malware signatures is that threat
actors aim to evade them by using obfusucation techniques
such as packing for example. This significantly raises the
complexity and amount of manual work required to create
signatures. The core challenge is that packed malware exposes
its full code only during runtime, and hence, any prior offline

analysis on packed malware is doomed to fail. Furthermore,
even when unpacked, it remains unclear which parts of the
exposed patterns are actually characteristic for a malware
family. Consequently, to create malware signatures, analysts
have to (i) manually unpack malware, and (ii) use expert
knowledge to search for family-specific byte patterns in the
disassembled program.

In this paper, we propose XOSSIG, an automated method-
ology to extract code signatures for a malware family. Auto-
mated signature generation has already proven useful in other
contexts, such as in detecting DKOM attacks [1], JavaScript-
based exploit kits [2] or rootkits [3]—our focus is malware re-
identification, a particularly demanding domain due to packing
and polymorphism. We use memory forensics to extract a
malware fingerprint that can re-identify a malware family. This
comes with several challenges, ranging from the large quantity
of unstructured memory content in memory dumps, to malware
that tries to hide its presence via obfuscation [4]. To tackle
these problems, we execute the malware in a sandbox and
compare the memory contents prior to and after infection.
Naively, this difference would reveal memory footprints of
any process running on the infected system, including benign
background processes, whereas we are only interested in the
malware footprint. We therefore propose Cross OS Execution
(XOS) to eliminate such noise from signatures. That is, we
execute the same malware in two sandboxes running different
OSes and intersect both memory footprints to generate signa-
tures.

The derived signatures can then be used to classify malware
in a memory-forensic setting. In particular, we can use the
derived patterns to find out—just using memory dumps—
which malware has infected a system. This replaces the tedious
manual investigations of forensic teams trying to identify the
malware that compromised a system. That is, analysts do
no longer need to (i) inspect running system processes, (ii)
identify potentially malicious processes, and (iii) investigate
the type of malware by reverse engineering. In addition, our
code signatures can classify malware samples in general,
simply by executing them in sandboxes and inspecting the
memory snapshot after infection. Consequently, although we
operate on memory dumps, our approach is fairly generic in
terms of malware classification.

Our evaluation with 17 prominent malware families shows
the effectiveness of our approach. Given a set of malware
samples for each family, we can identify infections caused
by other samples of the same family with a true-positive



rate of 93% and a small false-positive rate of 0.15%. We
have implemented XOSSIG as an open-source prototype and
will release its Python source code, the generated signatures,
and the underlying data sets (samples, memory dumps) upon
publication of this work.

II. MOTIVATION

Overall Goal We aim to generate code signatures that,
once derived, can identify which malware family has infiltrated
a system M . Whereas individual malware executables of
a family can be short-lived due to hard-coded data such
as C2 server addresses or updated anti-virus signatures, the
malware family continuously operates for many years. This
limits the number of active malware families (hundreds) to
be significantly smaller than the number of malware samples
(hundreds of thousands per day).

Forensic Setting Our approach operates in a purely
memory-forensic setting where we assume a memory dump
DM of an infected system M . We then detect if DM contains
patterns that reveal the presence of a known malware family.
Prior academic malware classification attempts have relied on
either perfect static analysis or on rich runtime information
such as system call traces to classify malware [5], [6], [7], [8].
However, while such rich information is available in malware
sandboxes, live systems cannot use fine-grained monitoring
of processes for performance reasons. Once a live system
is infected, we thus lack methodologies for classifying the
malware behind the infiltration.

Challenges Identifying characteristic artifacts of malware
families is one of the daily routines of malware analysts. An
analyst would manually analyze malware to locate portions
of code and/or data which seem characteristic enough and
create a signature based on this analysis. There are, however,
two problems with this approach compared our methodology.
First, it requires time-consuming manual effort and domain-
specific knowledge, which is in stark contrast to our goal of
automation. Second, which malware patterns are sufficiently
characteristic depends on the perception of the analyst. Any
such subjective rule extraction conflicts our goal to rigorously
define and systematically determine characteristic memory
patterns.

Straw-Man Proposal Extracting forensic malware finger-
prints is non-trivial, as the following first idea draft demon-
strates. To expose the characteristic patterns of some malware
sample s, we can infect a sandbox M with s, wait for some
time, and take and analyze the memory dump DM . This com-
plete memory snapshot includes non-malware related artifacts
of benign processes, libraries, services and so on, whereas we
are purely interested in extracting malware-specific patterns
alone. For example, a memory dump taken of a machine
running a modern version of Windows can be multiple GiB
large, whereas the interesting portion is an almost negligibly
small subset with a size in the order of KiB.

The core challenge is extracting the characteristic mal-
ware patterns from the memory dump in an automated way.
An immediate first idea that comes to mind compares the

memory content of the sandbox before and after infection.
By inspecting which memory contents have changed during
infection, we can extract the malware footprint. However, we
will show that this naïve idea does not perform well for
multiple reasons. First, not all memory changes are caused
by the malware, as benign background processes continue
execution and change memory in parallel to the malware.
Second, even when inspecting malware-related changes only,
the contents may stem from libraries or boilerplate code used
by the malware.

Cross-OS Execution We tackle these aforementioned chal-
lenges and extract malware fingerprints with a novel concept
which we call Cross-OS Execution. On a very high level, the
idea of Cross-OS Execution is to execute a malware sample s
on two systems M1 and M2 running different but compatible
OSes, and then to compute the fingerprint of s by identifying
the forensic commonalities of DM1 and DM2 . The fingerprint
serves to identify an infection with the same family in an
arbitrary memory dump, following the intuition that samples
of the same family share the same forensic characteristics.
The term “different but compatible” OSes here means that
the malware will execute on both systems, but the OSes
are different in the sense that DM1 and DM2 do not share
most memory content other than the portions belonging to
s. Consequently, we implicitly abstract from any memory
changes caused by background activities in the OSes. In this
work, we will focus on the Windows OS due to its backwards-
compatible nature and the fact that many different versions of
Windows are in use [9].

III. METHODOLOGY

Figure 1 depicts our overall process to extract the forensic
fingerprint for a sample s including all the intermediate steps.
First, we execute s on two sandbox systems M1 and M2

to obtain their post-infection memory snapshots. Second, to
abstract from boilerplate memory contents, we search for
memory portions that are unique within a memory dump.
Third, we identify memory contents that are common between
the two cross-OS executions. Fourth, we use pre-infection
information to remove memory contents that were already
present before infection, or would have happened also without
infection. Fifth, as we aim for code signatures, we extract
all code pages from the remaining unique common memory
contents, and discard non-code fragments. Finally, we use this
code to extract the forensic fingerprint—a set of n-grams Ns—
for s. In the following, we will describe these steps in detail.

A. Memory Dump Representation

In the first step, we execute s on the two machines M1

and M2 for a predefined amount of time after which we take
the memory dumps DM1

and DM2
of both machines. Our

assumption is that the malware executes on both systems,
while the OSes offer code and data diversity to reduce the
amount of memory artifacts they share. In our experiments
we have chosen Windows XP and Windows 7. Comparing
memory dumps in their entirety is not productive, so we
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Fig. 1. A high-level simplified overview of our approach. We start with a sample  that gets executed in two machines running different but compatible
versions of Windows. This yields two memory dumps consisting of a sequence of memory pages. We then compute the unique common pages of both memory
dumps, apply a noise reduction and a code heuristic after which we compute the n-grams of the final pages to compute the forensic fingerprint N. Pages
with the x subscript are executable.

break them down into smaller units that follow common OS
semantics. That is, we view a memory dump D as a set of
equally sized pages, i.e., D = {P1, . . . , Pk}, which reflects the
concept of virtual memory of modern OSes. Our intuition is
that if malware exposes itself on a system, it will do so using
dedicated memory pages that store malware code or data.

B. Unique Common Page Extraction

Our main objective is to find pages that are shared between
the dumps DM1

and DM2
. A simple solution to this problem

would be to intersect the pages of both dumps. However,
the memory pages of the malware might not necessarily be
exactly byte-wise equal in both memory dumps. For instance,
if the malware uses relocations, it will change offsets in the
code pages and thus will be slightly different in both memory
dumps. It is also not uncommon for malware to use data and
code on the same memory page, and data is more likely to
be modified in a non-deterministic fashion. To address this
problem, we will instead search for common chunks, i.e., non-
overlapping equally-sized segments ⟨Ci,1, . . . , Ci,m of a page
Pi⟩. We will compute the common chunks of both dumps and
use them later to get the pages containing them.

To compute the common chunks we could compute and
intersect the chunks of both dumps. However, this is again
too simplistic for one main reason. In order to cope with the
previously mentioned problems, the chunk size needs to be
substantially smaller than the page size. Due to this fact, a
common chunk might contain non-characteristic patterns such
as byte paddings emitted by compilers or boilerplate code
snippets. Given that we want to get the pages containing the
common chunks, we would get all pages of the dump that
contain these non-characteristic boilerplate patterns, which is
undesirable. Instead, we restrict ourselves to unique chunks—
chunks that appear only once in a memory dump—to ensure
that we will only consider characteristic forensic artifacts.

However, we cannot require such strict uniqueness. Because
code pages are usually mapped as Copy-on-Write pages, a
modification of such a page will make a copy of the page
in physical memory, apply the modifications to the modified
page, and remap the virtual page to this copy of the page. If the
page gets modified (e.g., by a relocation), chunks of modified

pages which are not in the modified area are not strictly unique
anymore—they will be present both in the modified page and
the original page. We thus relax the definition and not only call
a chunk unique if it occurs only once in the memory dump, but
also if it occurs at the same page offset in multiple “similar”
pages according to a distance metric δ and a threshold ϵ.

Coming back to our original objective, i.e., finding common
pages of both memory dumps, we need to go back from
chunks to pages. To this end, we first find the unique common
chunks C = C1 ∩ C2 of both dumps. What is left to do is
abstracting from C to similar unique pages, complicated by
the fact that a unique common chunk may be part of multiple
pages. To compute the set of similar unique pages Pi for i
in {1, 2}, we therefore randomly choose exactly one page of
DMi

containing a chunk C ∈ C and add this page to Pi. This
whole algorithm has linear complexity, as we only need to
go through all the pages once, compute the chunks and keep
track of the relationship between pages and chunks and the
positions at which the chunks occur.

To ensure that the fingerprint is based only on true common-
alities, i.e., similar unique pages that occur in both memory
dumps, we need to consider only pages that are sufficiently
similar. We know that pages in P1 share at least one char-
acteristic chunk with pages in P2. We thus compute the
intersection I , i.e., the set of unique common pages that are
sufficiently similar between P1 and P2. The compute I , take
every Pi ∈ P1 and greedily look for a closest candidate
Pj ∈ P2 with respect to the Hamming distance δ such that
δ(Pi, Pj) ≤ ϵ is minimal. The Hamming distance δ captures
the modifications that we aim to abstract from, i.e., drop-in
replacement of bytes as opposed to complex modifications
that shift and re-align bytes. We ignore chunks present at
multiple different page offsets, as this indicate that the chunk
is too generic. Although this naive algorithm has quadratic
complexity, as we will show, the sets of characteristic pages are
so small that this does not have a noticeable negative impact
on performance.

C. Removing Execution-Unrelated Memory Content

The unique common pages could still contain pages which
were emitted by the OSes and any background processes. Even



if the two OSes are mostly different with respect to their
forensic footprint, some components may survive various OS
generations. To reduce such noise, we use a training phase in
which we run both OSes without any malware executing for
the same amount of time that we will execute malware. We
then compute the unique chunks of the resulting idle memory
dumps as described previously. Those unique chunks are then
intersected and added to a set B, which we will call the
blacklist. We repeat this process until the blacklist saturates.
In our experiments, after just two idle executions, no new
unique chunks were found in follow-up runs, indicating that
B converged towards the noise of both OSes. The blacklist
consists of 27, 721 chunks—98.26% of which were the result
of the first execution. To remove pages containing noise, we
discard any page from P1 and P2 which contains a blacklisted
chunk C ∈ B. We call the sets of pages surviving this step the
characteristic pages, as they are characteristic for a malware
sample s, and refer to them as P̂1 and P̂2.

D. Identifying Code Pages

Given the intersection I , we perform a filtering step that
aims to identify pages which are likely to consist of code
(machine instructions). While malware signatures used in
practice usually target data such as characteristic strings, we
aim at code-based fingerprints instead. Data-based signatures
suffer from the fact that an attacker can easily hide them
from a forensic point of view with on-demand encryption
and decryption. In contrast, code-based signatures are more
resistant since they would require an attacker to substantially
modify their malware at the code level to ensure that the
forensic fingerprint is completely different.

We could identify code pages by examining the page tables
and the internal OS data structures to find out if a page
is marked as executable. However, our approach should be
completely independent of any OS-specific idiosyncrasies.
Also, attackers can manipulate those data structures to make
it seem that the pages are not executable by making them
executable on demand. Furthermore, it is not guaranteed that
VMI can access the page tables of terminated processes
(e.g., of short-lived malware droppers) to determine these
permissions. Instead, to identify x86 code pages, we use a
heuristic that disassembles a page using the Capstone disas-
sembler [10] and looks for x86-specific instruction sequences
which are likely to be found in code (e.g., push/push/call
or call/test/je). To account for alignment issues, we
disassemble each page at 15 consecutive offsets, since that is
the maximum length of an x86 instruction. We consider a page
P ∈ I a code page if it contains 10 or more such patterns. All
such code pages become the final intersection of characteristic
code pages IX that captures malware-specific code pages.

E. Signature Generation

With the intersection of characteristic code pages IX , we
can compute the fingerprint of Ns, which ca be used as signa-
ture to identify other samples of s’s family in memory dumps.
Simply looking for the whole pages of IX in other memory

dumps is unlikely to be successful. Instead, we compute the
n-grams of the pages of IX . This step follows the intuition
that even if the malware author applies many modifications to
the code of the malware, it is likely that at least some byte
sequences remain unchanged to successfully re-identify the
family. We calculate the n-grams of the malware sample s,
denoted by Ns, by moving a sliding window over each page
P ∈ IX . We only add an n-gram if its covered chunks are all
uniuque in the memory dump that the page originated from
to ensure the quality of the signature. Additionally, we ignore
an n-gram if it is part of the blacklist B.

The output of this final step is a fingerprint Ns, i.e., the set
of n-grams of the intersection of characteristic code pages. Our
intuition is that Ns can be used to identify different samples
belonging to the same family as s by searching for n-grams of
Ns in an arbitrary other dump. We determine that a memory
dump matches Ns if the number of n-grams shared between
the dump and Ns is sufficiently large, which we will assign
concrete meaning to in the next section.

IV. EVALUATION

We now evaluate our methodology, which includes a brief
overview of our setup, the choice of malware families, the
execution of samples and the extraction of characteristic n-
grams. After that, we outline our parameter selection process
to find suitable values for the chunk size, the page similarity
threshold ϵ and the size of the n-grams. This is followed by
an analysis of the intersecting behavior of the extracted n-
grams between and among families. Additionally, we measures
true positives and false positives by checking if we can detect
malware families in memory dumps to assess the overall
effectiveness. Finally, we give insights into the performance
of our methodology.

A. Setup and Implementation

In our prototype implementation, we execute and monitor-
ing malware samples using VirtualBox. Our methodology is
completely agnostic of the choice of hypervisor, and therefore
a stealthier hypervisor such as Ether [11] or a bare-metal
sandbox [12] can be used as a drop-in replacement.

We leverage the diversity of the Windows ecosystem by
running a malware sample in multiple VMs with different
versions of Windows. In particular, we use Windows XP with
512 MiB RAM and Windows 7 with 2 GiB RAM. We run each
sample in both VMs for two minutes and record its network
traffic and collect a full memory dump.

Creating a ground truth dataset for our evaluation is chal-
lenging, as it involves several manual steps. First, we have to
manually label samples according to their family, as AV labels
are known to be noisy, even if cleaned appropriately [13].
Second, we have to ensure that the malware samples become
active in our evaluation, i.e., they expose their actual behavior
and memory footprint during execution. Instead of using a
large low-quality dataset, we create a vetted and reasonably-
sized high-quality dataset. To be representative, we include
families that belong to all prevalent threat types, such as



m

0
100

101
102
103
104
105
106

U
(F
,m

)

Carbanak

Dridex

Fareit

Foreign

Ghost

Kelihos

Kronos

Kuluoz

Nitol

Nymaim

Palevo

Pushdo

SpyEye

Tedroo

Tinba

Virut

ZeusP2P

Fig. 2. The uniformity score U(F,m).

banking trojans, APTs/RATs, spam bots and downloaders. Our
malware dataset consists of 197 samples from 17 popular
malware families1. For each of these families, we use (approx-
imately) equally-sized groups to avoid biases of otherwise-
overpopulated families. After executing each sample, we man-
ually verified that the sample became active by inspecting the
network traffic of both VMs and by ensuring we found the
family-specific C2 activity.

B. Parameter Selection

Our methodology uses three parameters that we need to
find suitable values for. Those are the chunk size, the page
similarity threshold ϵ and the size of the n-grams. To asses
the quality of the chosen parameters, we need to give a metric
for the quality of an n-gram set Ns. To do so, we compute
for each sample how well the n-grams intersect with the n-
grams of its own family and how they intersect with other
families. Formally, let Fs be the malware family of a sample
s ∈ Fs. We define Ns to be the set of n-grams computed for
s as described in Section III and let NF =

⋃
s∈F Ns be the

n-grams of a family F . For each sample s, we now compute
the sanity score S(s), which is the fraction of n-grams that
intersect with the family of s but not with any other family,
i.e., S(s) = |(Ns ∩

⋃
s′∈Fs

s′ ̸=s

Ns′) \
⋃

F ̸=Fs
NF |/|Ns|. Note

that we remove all n-grams of other families for calculating
S(s). This is important because samples of different families
might share n-grams due to the usage of shared libraries or
well-known packers, for example. Similarly, we compute the
complementary sanity score Ŝ(s), which describes the fraction
of n-grams that do intersect with families other than Fs, i.e.,
Ŝ(s) = |(Ns∩

⋃
F ̸=Fs

NF |/|Ns|. To find the best parameters,

we calculate an F-score-like measure f(s) = 2S(s)·(1−Ŝ(s))

S(s)+(1−Ŝ(s))
for

each sample and different configurations of chunk size, ϵ and
n and choose the configuration which yields the largest value
for f on average. We let possible candidates for the chunk size
range over 4, 8, 16, . . . , 4096 and possible candidates for ϵ over

1Carbanak, Dridex, Fareit, Foreign, Ghost, Kelihos, Kronos, Kuluoz, Nitol,
Nymaim, Palevo, Pushdo, SpyEye, Tedroo, Tinba, Virut, and ZeusP2P

16, 32, 64, . . . , 512. We determine that n should be equal to
the chunk size as we consider both the characteristic length of
a string of bytes that uniquely identifies a malware. This gives
us a total of 66 configurations to test. Our findings indicate
that the best configuration is 32 for the chunk size and n, and
128 for the page similarity threshold ϵ.

C. Intra- and Inter-Family Analysis

For the remainder of this evaluation, to avoid imbalances
caused by more prevalent families, we will work on a subset
of (up to) 10 samples per family. We chose these ten samples
such that they are evenly distributed over time (their age).
It is important to understand how similar the sets of n-
grams of a family are among themselves. The previously
computed sanity score S can be very high for a sample s
if there is just one sample s′ ∈ Fs of the same family
such that they both share a significant number of n-grams.
This means that S ignores how many samples share how
many n-grams, which means that S is not a good measure
for understanding the uniformity of the n-grams. Instead,
we calculate the uniformity score of a family F , given by:
U(F,m) = max F ′⊆F

|F ′|=|F |−m

{∣∣⋂
s∈F ′ Ns \

⋃
F ′′!=F NF ′′

∣∣} .

To put it simply, U(F,m) is the largest number of n-grams
that are shared among a subset of F and no other family
after removing m samples from the family. In other words,
the larger U(F,m) is for small m, the more uniform the n-
grams of F are, which gives us an idea of the effectiveness
of our approach. In Figure 2 we can see the uniformity scores
for all families and all possible values of m. For 10 out of
17 families the uniformity score is above zero for m = 0,
indicating that several n-grams are shared among all samples
for those families. For the remaining 7 families (Dridex, Fareit,
Foreign, Ghost, Nitol, Pushdo and Virut), the uniformity score
is equal to 0 for m = 0 and increases for larger m. However,
in all cases it is shown that having enough samples of a family
yields a characteristic set of n-grams for a family.

To investigate the reasons for the cases with low uniformity,
we manually analyzed the corresponding memory dumps. In
the cases of Dridex, Fareit, Foreign, Pushdo and one sample of
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Nitol, the problem was related to the Cross OS Execution. We
discovered that the intersection of characteristic code pages
IX did not contain the entire actual code of the malware for
some samples. This is because the memory dumps contained
the code of the malware multiple times at differently aligned
locations. Because of that, we failed to identify the unique
chunks, since we require that unique chunks always appear at
the same offsets. We will further discuss this phenomenon in
Section V. For Ghost and for 1 Nitol sample, we discovered
that the corresponding processes indeed did not share n-grams
with other processes of malware samples of the same family.
We did not perform this experiment in the case of Virut, as it
injected itself into other processes and analyzing the malware
executable was therefore not easily possible.

These results indicate that some families are more uniform
with respect to their code. Families like Tinba, Palevo or
ZeusP2P have uniformity scores that are high for small m and
remain relatively stable for larger m. In contrast, other families
like the 7 listed above have scores as low as 0 for small m.
Other families like Carbanak start out with a uniformity score
of 444 for m = 0 but are less constant, with its uniformity
score increasing by two orders of magnitude for m = 2. While
a uniformity score of 444 might sound small at first glance
compared to other scores of more uniform families, it is worth
noting that this represents 444 n-grams, which only occur in
the intersection of all Carbanak samples and no intersection
of any other family.

To assess how suitable the n-grams are for classification, we
use the overlap coefficient to compare families: Ĵ(F1, F2) =

|NF1
∩NF2

|
min(|NF1

|,|NF2
|) . The heatmap in Figure 3 plots the overlap

coefficient for all families. Although the overall number of
shared n-grams is rather small (note the log scale), we can
see an overlap for some families. For example, Kuluoz and
Ghost share 6, 429 n-grams. Such cases can be explained by
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the usage of similar third party libraries such as a third party
cryptography library or a packer for example.

D. TP/FP Analysis on Memory Dumps

We now evaluate how our approach can be used to detect
a malware family in infected memory dumps. To do this, we
partition each set of samples for each family Fi in two equally-
sized and disjoint subsets Fi1 and Fi2 . The partition is done
such that the samples in Fi2 are newer than the samples in Fi1 .
The rationale behind this is that we want to test whether we
can detect newer samples in Fi2 by learning the fingerprint of
the older samples in Fi1 . For each family Fi we compute the
n-grams of the samples of Fi1 , i.e., NFi1

. Then, we intersect
the n-grams of all memory dumps of the samples of Fi2 with
those n-grams.

The detailed results of this experiment are depicted in
Table I. Each cell displays the average fraction of the n-
gram set contained in a memory dump as well as the average
Shannon entropy of those n-grams per family. To improve
readability, we omit cell numbers if the average fraction of
matching n-grams is smaller than 0.01%. We observed that the
n-grams for each family have the largest intersection with their
own family, which also yields the largest entropy on average.
In the cases where there was at least some intersection between
the n-grams and the memory dumps of distinct families, we
can observe that the intersection is smaller and also that the
entropy is low. For example, 29.33% of the n-grams of SpyEye
match on average with the SpyEye memory dumps with an
average entropy of 4.28. If we compare this with the ZeusP2P
memory dumps, only 0.01% of the n-grams of SpyEye match
on average with a lower average entropy of 1.45.

We can now try to find a good compromise between false
positives and false negatives by setting appropriate thresholds
that determine if a memory dump matches a family. In our
context, a false positive arises if we falsely flag a memory
dump as belonging to a certain family. Similarly, a false
negative occurs if a memory dump contains a malware process
of a known family, but we fail to flag the memory dump as
such. To determine where an n-gram set matches a memory
dump, we set a threshold for the fraction of n-grams of the n-
gram set which are contained in the memory dump as well as a
threshold for the average entropy of those matching n-grams.



CarbanakDridex Fareit Foreign Ghost Kelihos Kronos Kuluoz TPR FPR
Carbanak 5.51%

4.26 - - - - - - - 5/5 0/77

Dridex - 8.96%
4.07 - - - - - - 5/5 0/77

Fareit - - 7.34%
4.01 - 0.02%

1.60 - - - 5/5 0/77

Foreign - - - 16.48%
4.12 - - - - 4/4 1/78

Ghost - - - - 6.54%
4.02 - - 0.68%

4.19 5/5 0/77

Kelihos - - 0.02%
2.47

0.12%
4.10 - 20.07%

4.11
0.06%
3.77 - 5/5 0/77

Kronos - - - 0.35%
4.03 - 0.03%

3.08
18.35%

4.12 - 5/5 0/77

Kuluoz - - - - - - - 20.14%
4.02 5/5 0/77

Nitol Nymaim Palevo Pushdo SpyEye Tedroo Tinba Virut ZeusP2P TPR FPR
Nitol 2.29%

3.86 - - - 0.01%
2.81 - - - 0.03%

1.54 5/5 0/77

Nymaim - 14.04%
4.19 - - - - - - - 2/5 0/77

Palevo - - 48.93%
3.92 - - - - - - 5/5 0/77

Pushdo 0.06%
3.29

0.04%
4.22 - 26.02%

3.94
0.04%
3.82

0.04%
3.67 - - 0.04%

1.52 5/5 0/77

SpyEye - - - - 29.33%
4.28 - - - 0.01%

2.59 5/5 0/77

Tedroo - - - 0.27%
0.86 - 46.69%

4.17
0.47%
0.85 - 0.01%

1.45 5/5 1/77

Tinba - - - - - - 5.17%
4.03 - - 5/5 0/77

Virut - - - - - - - 0.48%
4.18

0.04%
1.54 0/3 0/79

ZeusP2P - - - 0.08%
2.14

0.26%
2.48 - - - 22.60%

4.17 5/5 0/77

TABLE I
TP AND FP ANALYSIS. EACH CELL DISPLAYS THE AVERAGE FRACTION OF THE n-GRAM SET CONTAINED IN A MEMORY DUMP AS WELL AS THE

AVERAGE SHANNON ENTROPY OF THOSE n-GRAMS PER FAMILY. LOW AVERAGE MATCHING FRACTIONS (< 0.01%) ARE OMITTED FOR READABILITY.

To understand the compromise of different thresholds for those
two criteria, consider Figure 4, which depicts the ROC curves
for our classifier. We plot 6 different ROC-curves for each
entropy threshold in {0, . . . , 5} and increase the threshold for
matching n-grams with a step size of 0.001. The fact that
the classifier with an entropy threshold of 0 has an AUC of
0.992 indicates that the matching number of n-grams alone is
already a good matching criterion. An entropy threshold of 5 is
unsurprisingly too restrictive, but our results also show that 4 is
not optimal. To identify the optimal thresholds, we optimized
the F-score given by Fβ = (1+β2)·TPR

(1+β2)·TPR+β2·FNR+FPR for
β = 0.25 to penalize false positives. This yields 3 for the
entropy threshold and 0.18 as a threshold for the fraction of
matching n-grams, i.e. 1.8% of n-grams have to match. This
results in a true positive rate (TPR) of 93% and in a false
positive rate (FPR) of 0.15%, which is also reflected in the
TPR and FPR column of Table I. As expected due to the
uniformity experiments in Section IV-C, the two families Virut
and Nymaim have FNs—a fact that was already visible during
training. Hence, the uniformity analysis allows XOSSIG users
to decide if the resulting signatures are sufficiently descriptive
for them, notably before before risking FNs.

Qualitative FP Analysis There are two families with each
a single FP. In the case of Foreign the n-grams match with a
Pushdo memory dump. We discovered that this is because of a
portion of code that is shared between the samples. The code
uses certain magic numbers such as 0x6C6C642E (“.dll”
in ASCII) and uses the fs register to access the Process
Environment Block. This is a strong indication that this is
low-level code which does stealth API calls. We presume that
this code is part of a third-party module, such as a packer

that is used by both families. In the case of Tedroo, the n-
grams match a Tinba memory dump. Using manual forensic
analysis similar to the previous case, we found out that the
code containing the matching n-grams belongs to the Visual
C++ runtime library of Microsoft. This problem of sharing
libraries will be discussed in Section V.

Optimizing Detection Rate In a real-world deployment of
our methodology, one could optimize the detection capabil-
ities on a per-family basis. That is, one could set different
thresholds for different families. For example, while 5.17%
of the n-grams of Tinba match on average with the Tinba
memory dumps, this number differs largely for other families
as for example in the case of Tedroo, where 46.69% match
on average. Similarly, one could construct the n-gram sets
with different configurations for different families. While one
family might work well with a chunk size of 32 and an epsilon
of 128, this does not have to be the case for other families. Our
parameter selection showed that this is the best configuration
on average for all families we considered, but we found that
the optimal configurations are different among the families.
For example, the scores of Nitol are optimal when using a
chunk size of 32, but in the case of Tedroo setting the chunk
size to 256 yields better results than 32. Although this is a
more fine-tuned approach, it would still be a one-time effort
as this is only required once per family in the learning phase.

E. Performance Evaluation

We use a non-optimized and single-threaded prototype writ-
ten in Python to evaluate the performance of our methodology.
In the following, we distinguish between the one-time effort



to extract fingerprints for a sample, and a repeating effort of
matching a new memory dump against given fingerprints.

Fingerprint Generation We first measured how long the
fingerprint extraction took, that is from starting the VMs with
each sample s until the generation of the fingerprint Ns.
However, we subtracted the two minute execution time of the
malware from these measurements as this is an uninteresting
factor for our performance evaluation. This process took 4.21
min on average (median 3.78 min, standard deviation 1.28
min). The bottleneck here is the comparing step described
in Section III-B, since it uses an algorithm with quadratic
complexity, which could become a problem if we have too
many pages in the intersection IX . If we considered this
bottleneck a problem, we could optimize this step by only
comparing pages that share a unique chunk.

Memory Dump Scanning On average, it took 1.98 min
to scan a 512 MiB memory dump for all the 34 n-gram sets
(median 1.97 min, stddev 0.06 min). The influencing factor is
the size and entropy of the memory dump and performance
scales linearly with the number of unique pages in the dump.
To evaluate the scalability of our approach, we simulate the
presence of more families. We started with the 17 n-gram
sets and iteratively doubled the number of sets by randomly
creating new sets of the same size as the original ones. We
then scan a random memory dump using those sets and tested
up to 136 malware families. We could not observe significant
deviations apart from common measurement deviations, thanks
to the amortized O(1) complexity of our n-gram matching pro-
cedure. Our approach, both signature generation and scanning,
thus easily scales to larger number of families.

V. DISCUSSION

We will now discuss our assumptions, the limitations of
our approach and how future research could tackle these
challenges. Furthermore, we provide an in-depth discussion
on further real-world use cases of our methodology.

A. Limitations

Our evaluation showed that our methodology copes well
with most of the chosen malware families. However, there are
a few cases that might require changes to our assumptions.

Split Behavior on Different Operating Systems We
exploit the fact that malware samples typically expose the
same behavior and code on different OSes. While this was
true for all samples in our dataset, in principle, malware could
use OS-specific payloads. We believe that this problem would
primarily not occur for the malware itself, but could be caused
by an OS-aware dropper that implants OS-specific malware
samples. To some extent, this challenge could be tackled by
multipath execution [14] to enforce that both implants are
executed, with the clear limitation that malware must not use
OS version-specific features. Furthermore, to reduce the risk
of OS-specific behavior, one could choose more similar OSes.
We conducted an experiment using XOSSIG for Tinba, but
this time in two Windows XP VMs with different patch levels,
SP 2 and SP 3, respectively. Although the construction of the

blacklist B as described in Section III required more runs to
converge, the resulting n-gram set was almost identical to the
one we used for our evaluation.

At the same time, our key idea to execute malware on two
different OSes is vital. To illustrate this, we conducted the
same experiment on a single OS and patch level (Windows XP
SP3). This time, although the blacklist converged again after
more runs, but the extracted set of characteristic and executable
pages of the Tinba sample was an order of magnitude larger
than before. This stark increase of supposedly-characteristic
code indicates the presence of noise which would render
the extraction useless for classification. That is, for same-OS
executions, the blacklist B only abstract from noise of the
idle state. However, there is deterministic noise upon malware
execution that is not captured by the blacklist and thus falsely
becomes part of the fingerprint.

Non-Presence in Memory A fundamental assumption we
make is that the malware code is present in memory at the
time the memory dump is taken. This follows the intuition that
persistence is an inherent property of malware, as adversaries
have an incentive to ensure that their malware runs all the time.
This is true for the vast majority of malware types in the wild,
except for some types of malware such as ransomware, which
terminates after decrypting the files of the user. This could
be solved by a more sophisticated dumping mechanism which
takes a dump of the whole memory or certain memory areas
after process termination using secure VM monitoring [15].

Complex Packing XOSSIG focuses on the malware mem-
ory footprint and thus copes with the diverse set of runtime
packers used by the prevalent malware families in our dataset.
This supports the findings of Ugarte-Pedrero et al. who ob-
served that the vast majority of in-the-wild malware maps its
entire unpacked code segment in memory [4]. Having said this,
malware in principle can deploy more sophisticated packing
schemes. For example, the x86 code identification that we
use would fail to detect the malware’s code if VM-based
obfuscation was used. Here, we would have to recognize the
bytecode of the custom virtual machine. Similarly, if packers
encrypts and decrypts code parts (e.g., functions) on demand,
we can only learn the n-grams of the code which is decrypted
at the time of taking the memory dump. Adapting XOSSIG for
these needs, e.g., using a more sophisticated memory dumping
procedure is an interesting future work challenge.

Alternative Bytecode and Interpreted Code Our current
prototype is tailored to x86 code, given its prevalence in the
Windows malware domain. Consequently, the prototype can-
not identify .NET bytecode or interpreted code (e.g., Python,
PowerShell) such as used by fileless malware. This can be
addressed by extending our code identification strategy to
.NET bytecode and other bytecode, or to interpreted languages,
respectively. This does not fundamentally change our concept
and is mostly an engineering effort that requires to study
another ISA and/or interpreter.

Evasion When XOSSIG finds wide adoption in practice,
malware authors may aim to subvert the fingerprint extraction.
In principle, attackers could use XOSSIG to find out whether



or not their current code exposes characteristic memory ar-
tifacts. There are several strategies to remove characteristic
memory contents, which we will briefly discuss. First, malware
authors may duplicate their code to subvert our uniqueness
assumption of unique chunks. We could solve this problem
by relaxing our notion of unique chunks by allowing such
a chunk to appear at multiple offsets and requiring the pages
which share those offsets to be similar. Second, malware could
use fine-grained code randomization approaches [16], [17]
to remove any invariance from its code such that no single
chunk will be shared for multiple executions. However, given
code randomization has not found wide adoption in practice
as it adds suspicious randomization behavior that would ease
detection. Fhird, malware could try to deploy anti disassembly
tricks such as overlapping instructions and obscuring control
flow, which would fool our code detection technique. This
could be solved by using a more complex machine-learning
assisted code detection technique [18].

B. Further Use Cases

We believe that our general methodology also allows several
use cases other than identifying known malware families in
infected memory dumps.

Malware Labeling The increased adoption of behavioral
malware detection methodologies has reduced the quality of
malware labels. Frequently, labels are too generic to be usable
by experts. We envision that our approach could be used
as a mechanism to label malware executables. For example,
AV vendors or sandbox operators may want to extend their
knowledge of malware families and run our method as an
add-on to existing classification techniques.

Efficient Storage of Forensic Evidence Our approach
helps to persistently store the forensic footprint of a malware.
Sandboxes that execute hundreds of thousands of programs
per day can only save compact and aggregated information
of the malware activity. Persistently storing complete memory
dumps is a challenge for many sandbox operators due to the
sheer file size. By storing the set of extracted characteristic
pages only, we significantly reduce the storage capacities
that are required compared to storing full memory dumps.
The extracted characteristic pages were orders of magnitude
smaller (KiB instead of GiB) than entire memory dumps.

Assisting Manual Analysis While our approach is primar-
ily designed to speed up and automate the malware family
detection process, it could also be useful for manual malware
analysis. Due to the small number of extracted pages, an
analyst could inspect those pages manually to quickly gain
additional insights about the analyzed malware. This could
be useful if the analyst wants to avoid a lengthy unpacking
process, since the characteristic pages should contain the
unpacked code pages of the malware. One possibility would
be that an analyst uses our approach and does the remaining
analysis on the extracted pages using static analysis tools.

Method TPR FPR
Critical APIs [25] 47.56% 55.87%
peHash [26] 2.44% 0%
AVCLASS [13] 70.73% 2.36%
XOS 93% 0.15%

TABLE II
RELATED WORK COMPARISON

VI. RELATED WORK

To the best of our knowledge, we describe and release
the first approach to automatically extract code signatures
from packed malware by introducing the concept of cross-OS
execution. While prior works already aimed to cluster/classify
malware, we are not aware of a technique that can readily
extract family-specific code signatures from even packed bi-
naries. In the following, we will discuss prior classification
ideas and summarize other related studies.

Malware Classification XOSSIG extracts malware finger-
prints that can be used in a memory-forensic setting to classify
if a malware family has infected a system. Related work
addressed malware classification problems from orthogonal
angles. For example, Shrestha et al. [19] and Tian et al. [20]
aim to classify malware based on the strings found in the
executable. While printable strings are a characteristic indi-
cator, malware typically protects against such data signatures
using on-demand data de-/encryption. Lee et al. [21] classify
malware based on a sequence of API calls monitored during
execution of all processes on a system, which is not possible in
our case as we do post-mortem analysis. Other solutions such
as by Santos et al. [22], Blichmann [23] or Bilstein et al. [24]
extract byte sequences from the malware code to re-identify
a family. All of these approaches either require completely
unpacked samples as input or have a setup for automatically
unpacking the sample that is susceptible to evasion. Apart
from that, we want to emphasize again that XOSSIG targets
a different use case, i.e., detecting the presence of a certain
malware family in a memory dump as opposed to classifying
samples. Since memory dumps are orders of magnitudes larger
than samples, the chance of false positives therefore drastically
increases.

More closely related to our methodology are approaches
that can be used to classify the malware family based on static
information and packed samples. For example, Sathynarayan
et al. [25] propose classifiers based on API calls. They use a
list of critical APIs and measure their call frequency to get
characteristic profiles for a malware family. Wichersky [26]
proposed peHash, which collects static information from the
PE header and creates a hash of malware samples that can be
used to recognize similar samples from the same family. Se-
bastián et al. [13] proposed AVCLASS, which labels malware
as a variant of a known family by normalizing anti-virus labels.
To demonstrate how their classification performance relates to
ours, we tested their implementations or reimplemented the
approaches in a comparative evaluation. We used our dataset
(Section IV) for training and testing the related approaches.



The results of this comparison is depicted in Table II. A
problem for the critical API call methodology is that the
majority of the samples do not use as many critical API calls.
For example, 65% of all samples in our case use only up to 5
critical APIs, which is not sufficiently characteristic to reliably
identify families. The problem here is that Sathynarayanán
et al. extract API call frequencies statically, whereas the low
number of calls is a strong indication that the majority of
the samples are packed. This is also unfavorable for pe-
Hash, which is even more sensitive to such static obfuscation
techniques. The calculated hash was different for almost all
malware samples, and useless for classification. This also
causes peHash’s FPR to drop to 0%, as we almost never saw
a hash learned during the training phase again. In fact, only
twice, once for Tedroo and once for Dridex, we encountered
a true positive. Finally, AVclass performs the best of the three
with a TPR of 70.73% and a FPR of 2.36%. Given that
AVclass is based on labels of modern AV engines that can deal
with standard obfuscation and packing techniques, it does not
suffer to the same extent that the two other approaches do.
However, AVclass’s accuracy is bound by the accuracy of the
AV labels, and hence, XOSSIG outperforms it.

Cross-Sandbox Execution To the best of our knowledge,
we are the first to exploit OS diversity in the broader context
of malware analysis. Kirat et al. [12] and Balzarotti et al. [27]
proposed to execute malware in multiple sandbox environ-
ments to detect evasive malware behavior in analysis systems.
Whereas we diversify the OS, these works execute malware in
the same OS and diversify the hypervisor. They use this diver-
sification to search for differences in the behavioral profile to
detect sandbox-evasive behavior. While their methodology and
goal is different from ours, their usage of cross-environment
execution motivated us to explore cross-OS execution in our
context.

Memory Forensics While we are not aware of works
that classify malware families forensically, as described next,
VMI has been used to detect suspicious malware behavior
in prior work. Other approaches like Quincy by Barbosch et
al. [28] or ShellOS by Snow et al. [29] try to detect malicious
code in a purely forensic setting. However, they both stop at
detecting malicious code of any malware, which is in contrast
to our approach which detects a specific malware family and
learns the corresponding code pages. Also, both Quincy and
ShellOS detect very specific strains of malicious code, i.e.,
code injections and shellcode, which in turn requires strong
domain knowledge which our approach does not.

Malware Unpacking and Code Extraction An interesting
aspect of our work is that by extracting the characteristic pages
we implicitly unpack the malware. While the unpacking is
not complete (lack of coherent buffer of bytes, loss of PE
headers, etc.), our approach may assist analysts in unpacking.
Compared to other solutions [30], [31], [32], our approach
benefits from the fact that it does not require any domain-
specific or OS modifications for code extraction.

Code Identification For identifying the code of the mal-
ware, we use a custom dissassembly-based heuristic. This is

different from what other research on this topic has used so
far. Irfan et al. [33] propose to use the relocation information
of executable files to solve this problem, which however we
cannot rely upon for stripped and packed malware executable.
ByteWeight by Bao et al. [34] or Nucleus by Andriesse et
al. [35] aim to solve the problem of finding functions in code.
Whereas ByteWeight uses machine learning to learn function
prologues and epilogues, Nucleus is based on CFG analysis.
However, since the objective of those approaches is not to
detect code, but rather to find the starting and ending offsets
of functions inside already-identified code, these approaches
do not solve our core problem of identifying code.

VII. CONCLUSION

We introduced Cross OS Execution to automatically learn
the forensic fingerprint of malware by running a malicious
sample on different OSes. Compared to other solutions, our
method benefits from complete automation, is agnostic of OS-
specific idiosyncrasies, and raises the bar for evasion given
the generic nature of our approach. Our research stresses
the importance of certain aspects in the area of malware
classification that have not been targeted by most academic
work so far. We experimentally verified that we can (i)
automatically learn the characteristics of a malware family,
(ii) use those characteristics to automatically detect them in
infected memory dumps, and (iii) that all of this can be done
in a purely memory-forensic setting. Our results show that it is
feasible to focus on pure code to create characteristic malware
fingerprints. We believe that defenders can significantly extend
their knowledge of malware by adopting ideas of our approach
and hope to foster further research in this area with this work.
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