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Robust Routing Made Easy: Reinforcing Networks
Against Non-Benign Faults

Christoph Lenzen , Moti Medina , Mehrdad Saberi , and Stefan Schmid

Abstract— With the increasing scale of communication net-
works, the likelihood of failures grows as well. Since these
networks form a critical backbone of our digital society, it is
important that they rely on robust routing algorithms which
ensure connectivity despite such failures. While most modern
communication networks feature robust routing mechanisms,
these mechanisms are often fairly complex to design and verify,
as they need to account for the effects of failures and rerouting on
communication. This paper conceptualizes the design of robust
routing mechanisms, with the aim to avoid such complexity.
In particular, we showcase simple and generic blackbox transfor-
mations that increase resilience of routing against independently
distributed failures, which allows to simulate the routing scheme
on the original network, even in the presence of non-benign
node failures (henceforth called faults). This is attractive as the
system specification and routing policy can simply be preserved.
We present a scheme for constructing such a reinforced net-
work, given an existing (synchronous) network and a routing
scheme. We prove that this algorithm comes with small constant
overheads, and only requires a minimal amount of additional
node and edge resources; in fact, if the failure probability is
smaller than 1/n, the algorithm can come without any overhead
at all. At the same time, it allows to tolerate a large number
of independent random (node) faults, asymptotically almost
surely. We complement our analytical results with simulations
on different real-world topologies.

Index Terms— Communication networks, computer networks,
routing, algorithms.

I. INTRODUCTION

COMMUNICATION networks have become a critical
backbone of our digital society. For example, many

datacentric applications related to entertainment, social net-
working, or health, among others, are distributed and rely on
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the high availability and dependability of the interconnecting
network (e.g., a datacenter network or a wide-area network).
At the same time, with the increasing scale of today’s dis-
tributed and networked systems (often relying on commodity
hardware as a design choice [2], [7], [25]), the number of
failures is likely to increase as well [26], [27], [31], [44],
[45]. It is hence important that communication networks can
tolerate such failures and remain operational despite the failure
of some of their components.

Robust routing mechanisms aim to provide such guaran-
tees: by rerouting traffic quickly upon failures, reachability
is preserved. Most communication networks readily feature
robust routing mechanisms, in the control plane (e.g. [23],
[24], [28], [47]), in the data plane (e.g. [6], [32], [43], [48]),
as well as on higher layers (e.g. [4]). However, the design
of such robust routing mechanisms is still challenging and
comes with tradeoffs, especially if resilience should extend to
multiple failures [12].

Besides a fast reaction time and re-establishing connectivity,
the resulting routes typically need to fulfill certain additional
properties, related to the network specification and policy.
Ensuring such properties however can be fairly complex, as
packets inevitably follow different paths after failures. Inter-
estingly, while the problem of how to re-establish reachability
after failures is well explored, the problem of providing spe-
cific properties on the failover paths is much less understood.

This paper conceptualizes the design of robust routing,
presenting a new approach to robust routing which concep-
tually differs significantly from existing literature by relying
on proactive reinforcement (rather than reaction to failures).
In particular, our approach aims to overcome the complexities
involved in designing robust routing algorithms, by simply
sticking to the original network and routing specification.
To achieve this, our approach is to mask the effects of
failures using redundancy: in the spirit of error correction,
we proactively reinforce networks by adding a minimal num-
ber of additional nodes and links, rather than coping with
failed components when they occur. The latter is crucial
for practicability: significant refactoring of existing systems
and/or accommodating substantial design constraints is rarely
affordable.

In this paper, to ensure robustness while maintaining the
network and routing specification, we aim to provide a high
degree of fault-tolerance, which goes beyond simple equip-
ment and failstop failures, but accounts for more general faults
which include non-benign failures of entire nodes.
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While our approach presented in this paper will be general
and applies to any network topology, we are particularly inter-
ested in datacenter networks (e.g., based on low-dimensional
hypercubes or d-dimensional tori [29], [40]) as well as in wide-
area networks (which are typically sparse [58]). We will show
that our approach works especially well for these networks.

A. The Challenge

More specifically, we are given a network G = (V,E) and a
routing scheme, i.e., a set of routes in G. We seek to reinforce
the network G by allocating additional resources, in terms
of nodes and edges, and to provide a corresponding routing
strategy to simulate the routing scheme on the original network
despite non-benign node failures.

The main goal is to maximize the probability that the
network withstands failures (in particular, random failures of
entire nodes), while minimizing the resource overhead. Fur-
thermore, we want to ensure that the network transformation is
simple to implement, and that it interferes as little as possible
with the existing system design and operation, e.g., it does not
change the reinforced system’s specification.

Toward this goal, in this paper, we make a number of
simplifying assumptions. First and most notably, we assume
independent failures, that is, we aim at masking faults with
little or no correlation among each other. Theoretically, this
is motivated by the fact that guaranteeing full functionality
despite having f adversarially placed faults trivially requires
redundancy (e.g., node degrees) larger than f . There is also
practical motivation to consider independent faults: many
distributed systems proactively avoid fault clusters [19], [57]
and there is also empirical evidence that in certain scenarios,
failures are only weakly correlated [39].

Second, we treat nodes and their outgoing links as
fault-containment regions (according to [36]), i.e., they are the
basic components our systems are comprised of. This choice
is made for the sake of concreteness; similar results could be
obtained when considering, e.g., edge failures, without chang-
ing the gist of results or techniques. With these considerations
in mind, the probability of uniformly random node failures
that the reinforced system can tolerate is a canonical choice
for measuring resilience.

Third, we focus on synchronous networks, for several
reasons: synchrony not only helps in handling faults, both
on the theoretical level (as illustrated by the famous FLP
theorem [20]) and for ensuring correct implementation, but
it also simplifies presentation, making it easier to focus on
the proposed concepts. In this sense, we believe that our
approach is of particular interest in the context of real-time
systems, where the requirement of meeting hard deadlines
makes synchrony an especially attractive choice.

B. Contributions and Techniques

This paper proposes a novel and simple approach to robust
routing, which decouples the task of designing a reinforced
network from the task of designing a routing scheme over
the input network. By virtue of this decoupling, our approach
supports arbitrary routing schemes and objectives, from load

minimization to throughput maximization and beyond, in
various models of computation, e.g., centralized or distributed,
randomized or deterministic, online or offline, or oblivious.

We first consider a trivial approach: we simply replace each
node by ℓ ∈ N copies and for each edge we connect each pair
of copies of its endpoints, where ℓ is a constant.1 Whenever
a message would be sent over an edge in the original graph,
it should be sent over each copy of the edge in the reinforced
graph. If not too many copies of a given node fail, this enables
each receiving copy to recover the correct message. Thus, each
non-faulty copy of a node can run the routing algorithm as if
it were the original node, guaranteeing that it has the same
view of the system state as its original in the corresponding
fault-free execution of the routing scheme on the original
graph.

When analyzing this approach, we observe that asymptoti-
cally almost surely (a.a.s., with probability 1− o(1)) and with
ℓ = 2f + 1, this reinforcement can sustain an independent
probability p of f Byzantine node failures [50], for any p ∈
o(n−1/(f+1)), i.e., f nodes may violate the protocol in any
arbitrary way (and may hence also collude). This threshold is
sharp up to (small) constant factors: for p ∈ ω(n−1/(f+1)),
a.a.s. there is some node for which all of its copies fail. If we
restrict the fault model to omission faults (faulty nodes may
skip sending some messages but otherwise act according to the
protocol), ℓ = f + 1 suffices. The cost of this reinforcement
is that the number of nodes and edges increase by factors of ℓ
and ℓ2, respectively. Therefore, already this simplistic solution
can support non-crash faults of probability p ∈ o(1/

√
n) at a

factor-4 overhead.
We note that the simulation introduces no large computa-

tional overhead and does not change the way the system works,
enabling to use it as a blackbox. Also randomized algorithms
can be simulated in a similar fashion, provided that all copies
of a node have access to a shared source of randomness. Note
that this requirement is much weaker than globally shared
randomness: it makes sense to place the copies of a node in
physical proximity to approximately preserve the geometrical
layout of the physical realization of the network topology.

Our approach above raises the question whether we can
reduce the involved overhead further. In this paper, we will
answer this question positively: We propose to apply the above
strategy only to a small subset E′ of the edge set. Denoting
by v1, . . . , vℓ the copies of node v ∈ V , for any remaining
edge {v, w} ∈ E \ E′ we add only edges {vi, wi}, i ∈ [ℓ],
to the reinforced graph. The idea is to choose E′ in a way
such that the connected components induced by E \ E′ are
of constant size, yet |E′| = ε|E|. This results in the same
asymptotic threshold for p, while the number of edges of
the reinforced graph drops to ((1 − ε)ℓ + εℓ2)|E|. For any
constant choice of ε, we give constructions with this property
for grids or tori of constant dimension and minor-free graphs
of bounded degree. Again, we consider the case of f = 1 of
particular interest: in many typical network topologies, we can
reinforce the network to boost the failure probability that can

1Choosing concreteness over generality, we focus on the, in our view, most
interesting case of constant ℓ. It is straightforward to generalize the analysis.
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be tolerated from Θ(1/n) to Ω(1/
√

n) by roughly doubling
(omission faults) or tripling (Byzantine faults) the number of
nodes and edges.

The redundancy in this second construction is near-optimal
under the constraint that we want to simulate an arbitrary
routing scheme in a blackbox fashion, as it entails that we
need a surviving copy of each edge, and thus in particular
each node. In many cases, the paid price will be smaller than
the price for making each individual component sufficiently
reliable to avoid this overhead. Furthermore, we will argue that
the simplicity of our constructions enables us to re-purpose the
redundant resources in applications with less strict reliability
requirements.

Our results show that while approach is general and can be
applied to any existing network topology (we will describe
and analyze valid reinforcements for our faults models on
general graphs), it can be refined and is particularly interesting
in the context of networks that admit suitable partitionings.
Such networks include sparse, minor-free graphs, which are
practically relevant topologies in wide-area networks, as well
as torus graphs and low-dimensional hypercubes, which arise
in datacenters and parallel architectures.

To complement our theoretical findings and investigate the
reinforcement cost in real networks, we conducted experiments
on the Internet Topology Zoo [35]. We find that our approach
achieves robustness at significantly lower cost compared to
the naive replication strategy often employed in dependable
networks.

C. Putting Things Into Perspective

In contrast to much existing robust routing literature on
reactive approaches to link failures [11] (which come with
a delay), we consider a proactive approach by enhancing the
network with redundancy. Our proactive approach also allows
us to replicate the routing scheme (and hence the network
policy) on the new network. In particular, we show that if
the failure probability is smaller than 1/n, there is a good
probability that our approach works even without any overhead
at all. Furthermore, there are two ways in which our system
can be used. One approach is to replicate the entire node
(including the compute part), and then forward the traffic to
its two associated peers. Alternatively, traffic can also simply
be replicated to multiple NICs, without additional compute
requirements, depending on the failure model. More generally,
our contribution can also be seen more abstractly and the
robust routing happen on a logical level, depending on the
failure scenario. Also, we show that in the absence of a valid
message, it can simply be ignored, as the rest of the system
continues to perform

The most closely related work to ours is NetCo [19], which
also relies on network reinforcement and can handle malicious
behavior. NetCo is is based on a robust combiner concept
known from cryptography, and complements each router with
two additional routers. Using software-defined networking,
traffic is replicated across the three (untrusted) devices and
then merged again, using a consensus algorithm. While a
high degree of robustness is achieved, the three-fold overhead

is significant. More importantly, however, in contrast to our
approach, Netco requires special hardware for splitting and
merging the traffic; while the functionality of this hardware
can be simple, it still needs to be trusted. The consensus
requirement dramatically reduces the throughput, as shown in
the empirical evaluation of NetCo in [19].

Our solution does not require such components and is hence
not only more practical but also significantly more performant.

D. Organization

In § II, we sketch the properties of our approach and state
a number of potential applications. In § III, we formalize
the fault models that we tackle in this article alongside the
notion of a valid reinforcement and its complexity measures.
In § IV and § V, we study valid reinforcements on general
graphs, and in § VI, we study more efficient reinforcements
for specific graphs. We complement our analytical results with
an empirical simulation study in § VII. In § VIII we raise
a number of points in favor of the reinforcement approach.
We review related work in § IX, and we conclude and present
a number of interesting follow-up questions in § X.

II. HIGH-LEVEL OVERVIEW: REINFORCING NETWORKS

Let us first give an informal overview of our blackbox trans-
formation for reinforcing networks (for formal specification
see § III), as well as its guarantees and preconditions.

A. Assumptions on the Input Network

We have two main assumptions on the network at hand:
(1) We consider synchronous routing networks, and (2) each
node in the network (alongside its outgoing links) is a fault-
containment region, i.e., it fails independently from other
nodes. We do not make any assumptions on the network
topology, but will provide specific optimizations for practically
relevant topologies (such as sparse, minor-free networks or
hypercubes) in § VI.

B. Valid Reinforcement Simulation Guarantees

Our reinforcements create a number of copies of each node.
We have each non-faulty copy of a node run the routing
algorithm as if it were the original node, guaranteeing that
it has the same view of the system state as its original in the
corresponding fault-free execution of the routing scheme on
the original graph. Moreover, the simulation fully preserves all
guarantees of the schedule, including its timing, and introduces
no big computational overhead. This assumption is simple to
meet in stateless networks, while it requires synchronization
primitives in case of stateful network functions.

C. Unaffected Complexity and Cost Measures

Routing schemes usually revolve around objective functions
such as load minimization, maximizing the throughput, mini-
mizing the latency, etc., while aiming to minimize complexity
related to, e.g., the running time for centralized algorithms,
the number of rounds for distributed algorithms, the message

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Saarl Universitaets. Downloaded on June 28,2023 at 09:35:58 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE/ACM TRANSACTIONS ON NETWORKING

size, etc. Moreover, there is the degree of uncertainty that
can be sustained, e.g., whether the input to the algorithm is
fully available at the beginning of the computation (offline
computation) or revealed over time (online computation).
Our reinforcements preserve all of these properties, as they
operate in a blackbox fashion. For example, our machinery
readily yields various fault-tolerant packet routing algorithms
in the Synchronous Store-and-Forward model by Aiello et.
al [1]. More specifically, from [16] we obtain a centralized
deterministic online algorithm on unidirectional grids of con-
stant dimension that achieves a competitive ratio which is
polylogarithmic in the number of nodes of the input network
w.r.t. throughput maximization. Using [17] instead, we get
a centralized randomized offline algorithm on the unidirec-
tional line with constant approximation ratio w.r.t. throughput
maximization. In the case that deadlines need to be met the
approximation ratio is, roughly, O(log∗ n) [55]. As a final
example, one can obtain from [5] various online distributed
algorithms with sublinear competitive ratios w.r.t. throughput
maximization.

D. Cost and Gains of the Reinforcement

The price of adding fault-tolerance is given by the increase
in the network size, i.e., the number of nodes and edges of
the reinforced network in comparison to the original one. Due
to the assumed independence of node failures, it is straight-
forward to see that the (uniform) probability of sustainable
node faults increases roughly like n−1/(f+1) in return for
(i) a linear-in-f increase in the number of nodes and (ii) an
increase in the number of edges that is quadratic in f . We then
proceed to improve the construction for grids and minor-free
constant-degree graphs to reduce the increase in the number of
edges to being roughly linear in f . Based on this information,
one can then assess the effort in terms of these additional
resources that is beneficial, as less reliable nodes in turn are
cheaper to build, maintain, and operate. We also note that,
due to the ability of the reinforced network to ensure ongoing
unrestricted operability in the presence of some faulty nodes,
faulty nodes can be replaced or repaired before communication
is impaired or breaks down.

E. Preprocessing

Preprocessing is used, e.g., in computing routing tables in
Oblivious Routing [54], [56]. The reinforcement simply uses
the output of such a preprocessing stage in the same manner
as the original algorithm. In other words, the preprocessing
is done on the input network and its output determines the
input routing scheme. In particular, the preprocessing may be
randomized and does not need to be modified in any way.

F. Randomization

Randomized routing algorithms can be simulated as well,
provided that all copies of a node have access to a shared
source of randomness. We remark that, as our scheme locally
duplicates the network topology, it is natural to preserve the
physical realization of the network topology in the sense

that all (non-faulty) copies of a node are placed in physical
proximity. This implies that this constraint is much easier to
satisfy than globally shared randomness.

III. PRELIMINARIES

We consider synchronous routing networks. Formally, the
network is modeled as a directed graph G = (V,E), where
V is the set of n ≜ |V | vertices, and E is the set of m ≜
|E| edges (or links). Each node maintains a state, based on
which it decides in each round for each of its outgoing links
which message to transmit. We are not concerned with the
inner workings of the node, i.e., how the state is updated;
rather, we assume that we are given a scheduling algorithm
performing the task of updating this state and use it in our
blackbox transformations. In particular, we allow for online,
distributed, and randomized algorithms.

A. Probability-p Byzantine Faults Byz(p)

The set of faulty nodes F ⊆ V is determined by sampling
each v ∈ V into F with independent probability p. Nodes in
F may deviate from the protocol in arbitrary ways, including
delaying, dropping, or forging messages, etc.

B. Probability-p Omission Faults Om(p)

The set of faulty nodes F ⊆ V is determined by sampling
each v ∈ V into F with independent probability p. Nodes in
F may deviate from the protocol by not sending a message
over an outgoing link when they should. We note that it is
sufficient for this fault model to be satisfied logically. That
is, as long as a correct node can identify incorrect messages,
it may simply drop them, resulting in the same behavior of
the system at all correct nodes as if the message was never
sent.

C. Simulations and Reinforcement

For a given network G = (V,E) and a scheduling algorithm
A, we will seek to reinforce (G, A) by constructing G′ =
(V ′, E′) and scheduling algorithm A′ such that the original
algorithm A is simulated by A′ on G′, where G′ is subject to
random node failures. We now formalize these notions. First,
we require that there is a surjective mapping P : V ′ → V ; fix
G′ and P , and choose F ′ ⊆ V ′ randomly as specified above.

Definition 1 (Simulation Under Byz(p)): Assume that in
each round r ∈ N, each v′ ∈ V ′ \ F ′ is given the same
input by the environment as P (v′). A′ is a simulation of A
under Byz(p), if for each v ∈ V , a strict majority of the nodes
v′ ∈ V ′ with P (v′) = v computes in each round r ∈ N the
state of v in A in this round. The simulation is strong, if not
only for each v ∈ V there is a strict majority doing so, but
all v′ ∈ V ′ \ F ′ compute the state of P (v′) in each round.

Definition 2 (Simulation Under Om(p)): Assume that in
each round r ∈ N, each v′ ∈ V ′ is given the same input
by the environment as P (v′). A′ is a simulation of A under
Om(p), if for each v ∈ V , there is v′ ∈ V ′ with P (v′) = v
that computes in each round r ∈ N the state of v in A in this
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round. The simulation is strong, if each v′ ∈ V ′ computes the
state of P (v′) in each round.

Definition 3 (Reinforcement): A (strong) reinforcement of a
graph G = (V,E) is a graph G′ = (V ′, E′), a surjective
mapping P : V ′ → V , and a way of determining a scheduling
algorithm A′ for G′ out of scheduling algorithm A for G. The
reinforcement is valid under the given fault model (Byz(p) or
Om(p)) if A′ is a (strong) simulation of A a.a.s.

Resources and Performance Measures.: We use the fol-
lowing performance measures.

(i) The probability p of independent node failures that can
be sustained a.a.s.

(ii) The ratio ν ≜ |V ′|/|V |, i.e., the relative increase in the
number of nodes.

(iii) The ratio η ≜ |E′|/|E|, i.e., the relative increase in the
number of edges.

We now briefly discuss, from a practical point of view, why we
do not explicitly consider further metrics that are of interest.

Other Performance Measures

• Latency: As our reinforcements require (time-preserving)
simulation relations, in terms of rounds, there is no
increase in latency whatsoever. However, we note that
(i) we require all copies of a node to have access to the
input (i.e., routing requests) of the simulated node and (ii)
our simulations require to map received messages in G′ to
received messages of the simulated node in G. Regarding
(i), recall that it is beneficial to place all copies of a node
in physical vicinity, implying that the induced additional
latency is small. Moreover, our constructions naturally
lend themselves to support redundancy in computations
as well, by having each copy of a node perform the
tasks of its original; in this case, (i) comes for free.
Concerning (ii), we remark that the respective operations
are extremely simple; implementing them directly in
hardware is straightforward and will have limited impact
on latency in most systems.

• Bandwidth/link capacities. We consider the uniform set-
ting in this work. Taking into account how our simula-
tions operate, one may use the ratio η as a proxy for this
value.

• Energy consumption. Regarding the energy consumption
of links, the same applies as for bandwidth. The energy
nodes use for routing computations is the same as in the
original system, except for the overhead induced by Point
(ii) we discussed for latency. Neglecting the latter, the
energy overhead is in the range [min{ν, η}, max{ν, η}].

• Hardware cost. Again, neglecting the computational over-
head of the simulation, the relative overhead lies in the
range [min{ν, η}, max{ν, η}]

In light of these considerations, we focus on p, ν, and η as key
metrics for evaluating the performance of our reinforcement
strategies.

IV. STRONG REINFORCEMENT UNDER BYZ(p)
We now present and analyze valid reinforcements under

Byz(p) for our faults model on general graphs. Given are the

input network G = (V,E) and scheduling algorithm A. Fix a
parameter f ∈ N and set ℓ = 2f + 1.

A. Reinforced Network G′

We set V ′ ≜ V × [ℓ], where [ℓ] ≜ {1, . . . , ℓ}, and denote
vi ≜ (v, i). Accordingly, P (vi) ≜ v. We define E′ ≜
{(v′, w′) ∈ V ′ × V ′ | (P (v′), P (w′)) ∈ E}.

B. Strong Simulation A′ of A

Consider node v′ ∈ V ′ \ F ′. We want to maintain the
invariant that in each round, each such node has a copy of
the state of v = P (v′) in A. To this end, v′

(1) initializes local copies of all state variables of v as in A,
(2) sends on each link (v′, w′) ∈ E′ in each round the

message v would send on (P (v′), P (w′)) when executing
A, and

(3) for each neighbor w of P (v′) and each round r, updates
the local copy of the state of A as if v received the message
that has been sent to v′ by at least f + 1 of the nodes w′

with P (w′) = w (each one using edge (w′, v′)).
Naturally, the last step requires such a majority to exist;
otherwise, the simulation fails. We show that A′ can be
executed and simulates A provided that for each v ∈ V ,
no more than f of its copies are in F ′.

Lemma 1: If for each v ∈ V , |{vi ∈ F ′}| ≤ f , then A′

strongly simulates A.
Proof: We show the claim by induction on the round

number r ∈ N, where we consider the initialization to anchor
the induction at r = 0. For the step from r to r + 1, observe
that because all v′ ∈ V ′ \F ′ have a copy of the state of P (v′)
at the end of round r by the induction hypothesis, each of
them can correctly determine the message P (v′) would send
over link (v, w) ∈ E in round r + 1 and send it over each
(v′, w′) ∈ E with P (w′) = w. Accordingly, each v′ ∈ V ′ \F ′

receives the message A would send over (w, v) ∈ E from each
w′ ∈ V ′ \ F ′ with P (w′) = w (via the link (w′, v′)). By the
assumption of the lemma, we have at least ℓ−f = f +1 such
nodes, implying that v′ updates the local copy of the state of
A as if it received the same messages as when executing A in
round r + 1. Thus, the induction step succeeds and the proof
is complete. □

C. Resilience of the Reinforcement

We now examine how large the probability p can be for the
precondition of Lemma 1 to be satisfied a.a.s.

Theorem 1: If p ∈ o(n−1/(f+1)), the above construc-
tion is a valid strong reinforcement for the fault model
Byz(p). If G contains Ω(n) nodes with non-zero outdegree,
p ∈ ω(n−1/(f+1)) implies that the reinforcement is not
valid.

Proof: By Lemma 1, A′ strongly simulates A if for each
v ∈ V , |{vi ∈ F ′}| ≤ f . If p ∈ o(n−1/(f+1)), using ℓ =
2f + 1 and a union bound we see that the probability of this
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6 IEEE/ACM TRANSACTIONS ON NETWORKING

event is at least

1− n

2f+1∑
j=f+1

(
2f + 1

j

)
pj(1− p)2f+1−j

≥ 1− n

2f+1∑
j=f+1

(
2f + 1

j

)
pj

≥ 1− n

(
2f + 1
f + 1

)
pf+1

f∑
j=0

pj

≥ 1− n(2e)f · pf+1

1− p
= 1− o(1).

Here, the second to last step uses that
(
a
b

)
≤ (ae/b)b and the

final step exploits that p ∈ o(n−1/(f+1)).
For the second claim, assume w.l.o.g. p ≤ 1/3, as increasing

p further certainly increases the probability of the system to
fail. For any v ∈ V , the probability that |{vi ∈ F ′}| > f is
independent of the same event for other nodes and larger than(

2f + 1
f + 1

)
pf+1(1− p)f ≥

(
3
2

)f

pf+1(1− p)f ≥ pf+1,

since
(
a
b

)
≥ (a/b)b and 1 − p ≥ 2/3. Hence, if G contains

Ω(n) nodes v with non-zero outdegree, p ∈ ω(n−1/(f+1))
implies that the probability that there is such a node v for
which |{vi ∈ F ′}| > f is at least

1−
(
1− pf+1

)Ω(n) ⊆ 1−
(

1− ω

(
1
n

))Ω(n)

= 1− o(1).

If there is such a node v, there are algorithms A and inputs
so that A sends a message across some edge (v, w) in some
round. If faulty nodes do not send messages in this round,
the nodes wi ∈ V ′ \ F ′ do not receive the correct message
from more than f nodes vi and the simulation fails. Hence,
the reinforcement cannot be valid. □

Remark 1: For constant p, one can determine suitable
values of f ∈ Θ(log n) using Chernoff’s bound. However,
as our focus is on small (constant) overhead factors, we refrain
from presenting the calculation here.

D. Efficiency of the Reinforcement

For f ∈ N, we have that ν = ℓ = 2f + 1 and η = ℓ2 =
4f2 + 4f + 1, while we can sustain p ∈ o(n−1/(f+1)). In the
special case of f = 1, we improve from p ∈ o(1/n) for the
original network to p ∈ o(1/

√
n) by tripling the number of

nodes. However, η = 9, i.e., while the number of edges also
increases only by a constant, it seems too large in systems
where the limiting factor is the amount of links that can be
afforded.

V. STRONG REINFORCEMENT UNDER OM(p)
The strong reinforcement from the previous section is,

trivially, also a strong reinforcement under Om(p). However,
we can reduce the number of copies per node for the weaker
fault model. Given are the input network G = (V,E) and
scheduling algorithm A. Fix a parameter f ∈ N and, this
time, set ℓ = f + 1.

A. Reinforced Network G′

We set V ′ ≜ V × [ℓ] and denote vi ≜ (v, i). Accord-
ingly, P (vi) ≜ v. We define E′ ≜ {(v′, w′) ∈ V ′ ×
V ′ | (P (v′), P (w′)) ∈ E}.

B. Strong Simulation A′ of A

Each node2 v′ ∈ V ′

(1) initializes local copies of all state variables of v as in A,
(2) sends on each link (v′, w′) ∈ E′ in each round the

message v would send on (P (v′), P (w′)) when executing
A, and

(3) for each neighbor w of P (v′) and each round r, updates
the local copy of the state of A as if v received the (unique)
message that has been sent to v′ by some of the nodes w′

with P (w′) = w (each one using edge (w′, v′)).
Naturally, the last step assumes that some such neighbor
sends a message and all w′ with P (w′) send the same such
message; otherwise, the simulation fails. We show that A′ can
be executed and simulates A provided that for each v ∈ V ,
no more than f of its copies are in F ′.

Lemma 2: If for each v ∈ V , |{vi ∈ F ′}| ≤ f , A′ strongly
simulates A.

Proof: Analogous to the one of Lemma 1, with the
difference that faulty nodes may only omit sending messages
and thus a single correct copy per node is sufficient. □

C. Resilience of the Reinforcement

We now examine how large the probability p can be for the
precondition of Lemma 1 to be satisfied a.a.s.

Theorem 2: The above construction is a valid strong rein-
forcement for the fault model Om(p) if p ∈ o(n−1/(f+1)).
If G contains Ω(n) nodes with non-zero outdegree, p ∈
ω(n−1/(f+1)) implies that the reinforcement is not valid.

Proof: By Lemma 2, A′ strongly simulates A if for each
v ∈ V , |{vi ∈ F ′}| ≤ f = ℓ− 1. For v ∈ V ,

Pr [{vi | i ∈ [ℓ]} ∩ F ′ = ℓ] = pf+1.

By a union bound, A′ thus simulates A with probability
1− o(1) if p ∈ o(n−1/(f+1)).

Conversely, if there are Ω(n) nodes with non-zero outdegree
and p ∈ ω(n−1/(f+1)), with probability 1− o(1) all copies of
at least one such node v are faulty. If v sends a message
under A, but all corresponding messages of copies of v are
not sent, the simulation fails. This shows that in this case the
reinforcement is not valid. □

D. Efficiency of the Reinforcement

For f ∈ N, we have that ν = ℓ = f + 1 and η = ℓ2 =
f2 + 2f + 1, while we can sustain p ∈ o(n−1/(f+1)). In the
special case of f = 1, we improve from p ∈ o(1/n) for the
original network to p ∈ o(1/

√
n) by doubling the number of

nodes and quadrupling the number of edges.

2Nodes suffering omission failures still can simulate A correctly.
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VI. MORE EFFICIENT REINFORCEMENT

In this section, we reduce the overhead in terms of
edges at the expense of obtaining reinforcements that are
not strong. We stress that the obtained trade-off between
redundancy (ν and η) and the sustainable probability of
faults p is asymptotically optimal: as we require to preserve
arbitrary routing schemes in a blackbox fashion, we need
sufficient redundancy on the link level to directly simulate
communication. From this observation, both for Om(p) and
Byz(p) we can readily derive trivial lower bounds on redun-
dancy that match the constructions below up to lower-order
terms.

A. A Toy Example

Before we give the construction, we give some intuition
on how we can reduce the number of required edges. Con-
sider the following simple case. G is a single path of n
vertices (v1, . . . , vn), and the schedule requires that in round
i, a message is sent from vi to vi+1. We would like to use
a “budget” of only n additional vertices and an additional
(1 + ε)m = (1 + ε)(n − 1) links, assuming the fault model
Om(p). One approach is to duplicate the path and extend
the routing scheme accordingly. We already used our entire
budget apart from εm links! This reinforcement is valid as
long as one of the paths succeeds in delivering the message
all the way. The probability that one of the paths “survives”
is 1 − (1 − (1 − p)n)2 ≤ 1 − (1 − e−pn)2 ≤ e−2pn, where
we used that 1 − x ≤ e−x for any x ∈ R. Hence, for any
p = ω(1/n), the survival probability is o(1). In contrast, the
strong reinforcement with ℓ = 2 (i.e., f = 1) given in § V
sustains any p ∈ o(1/

√
n) with probability 1−o(1); however,

while it adds n nodes only, it requires 3m additional edges.
We need to add some additional edges to avoid that the

likelihood of the message reaching its destination drops too
quickly. To this end, we use the remaining εm edges to “cross”
between the two paths every h ≜ 2/ε hops (assume h is an
integer), cf. Figure 1. This splits the path into segments of h
nodes each. As long as, for each such segment, in one of its
copies all nodes survive, the message is delivered. For a given
segment, this occurs with probability 1−(1−(1−p)h)2 ≥ 1−
(ph)2. Overall, the message is thus delivered with probability
at least (1− (ph)2)n/h ≥ 1− nhp2. As for any constant ε, h
is a constant, this means that the message is delivered a.a.s.
granted that p ∈ o(1/

√
n)!

Remark 2: The reader is cautioned to not conclude from
this example that random sampling of edges will be sufficient
for our purposes in more involved graphs. Since we want to
handle arbitrary routing schemes, we have no control over the
number of utilized routing paths. As the latter is exponential
in n, the probability that a fixed path is not “broken” by F
would have to be exponentially small in n. Moreover, trying to
leverage Lovász Local Lemma for a deterministic result runs
into the problem that there is no (reasonable) bound on the
number of routing paths that pass through a single node, i.e.,
the relevant random variables (i.e., whether a path “survives”)
exhibit lots of dependencies.

Fig. 1. On the right: our toy example with n = 9, m = 8, ε = 1/2,
and h = 4. The number of additional edges is (1 + ε)m, instead of 3m as
in the strong reinforcement construction. On the left: a 6-ary 2-dimensional
hypercube. The subdivision of the node set into 2-ary 2-dimensional subcubes
is illustrated by dotted lines.

B. Partitioning the Graph

To apply the above strategy to other graphs, we must take
into account that there can be multiple intertwined routing
paths. However, the key point in the above example was not
that we had path segments, but rather that we partitioned the
nodes into constant-size regions and added few edges inside
these regions, while fully connecting the copies of nodes at
the boundary of the regions.

In general, it is not possible to partition the nodes into
constant-sized subsets such that only a very small fraction
of the edges connects different subsets; any graph with good
expansion is a counter-example. Fortunately, many network
topologies used in practice are good candidates for our
approach. In the following, we will discuss grid networks and
minor free graphs, and show how to apply the above strategy
in each of these families of graphs.

1) Grid Networks: We can generalize the above strategy to
hypercubes of dimension d > 1.

Definition 4 (Hypercube Networks): A q-ary d-dimensional
hypercube has node set [q]d and two nodes are adjacent if they
agree on all but one index i ∈ [d], for which |vi − wi| = 1.

Lemma 3: For any h, d ∈ N, assume that h divides q ∈ N
and set ε = 1/h. Then the q-ary d-dimensional hypercube can
be partitioned into (q/h)d regions of hd nodes such that at
most an ε-fraction of the edges connects nodes from different
regions.

Proof: We subdivide the node set into h-ary
d-dimensional subcubes; for an example of the subdivision
of the node set of a 6-ary 2-dimensional hypercube into 2-ary
2-dimensional subcubes see Figure 1. There are (q/h)d such
subcubes. The edges crossing the regions are those connecting
the faces of adjacent subcubes. For each subcube, we attribute
for each dimension one face to each subcube (the opposite face
being accounted for by the adjacent subcube in that direction).
Thus, we have at most dhd−1 crossing edges per subcube. The
total number of edges per subcube are these crossing edges
plus the d(h− 1)hd−1 edges within the subcube. Overall, the
fraction of crossedges is thus at most 1/(1 + (h− 1)) = 1/h,
as claimed. □

Note that the above result and proof extend to tori, which
also include the “wrap-around” edges connecting the first and
last nodes in any given dimension.

2) Minor Free Graphs: Another general class of graphs that
can be partitioned in a similar fashion are minor free bounded-
degree graphs.

Definition 5 (H-Minor Free Graphs): For a fixed graph H ,
H is a minor of G if H is isomorphic to a graph that can be
obtained by zero or more edge contractions on a subgraph of
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G. We say that a graph G is H-minor free if H is not a minor
of G.

For any such graph, we can apply a corollary from [42,
Coro. 2], which is based on [3], to construct a suitable
partition.

Theorem 3 ([42]): Let H be a fixed graph. There is a
constant c(H) > 1 such that for every ε ∈ (0, 1] and every
H-minor free graph G = (V,E) with degree bounded by ∆
a partition R1, . . . , Rk ⊆ V with the following properties can
be found in time O(|V |3/2):

(i) ∀i : |Ri| ≤ c(H)∆2

ε2 ,
(ii) ∀i the subgraph induced by Ri in G is connected.

(iii) |{(u, v) | u ∈ Ri, v ∈ Rj , i ̸= j}| ≤ ε · |V |.
Remark 3: Grids and tori of dimension d > 2 are not

minor-free.
We note that this construction is not satisfactory, as it involves
large constants. It demonstrates that a large class of graphs is
amenable to the suggested approach, but it is advisable to
search for optimized constructions for more specialized graph
families before applying the scheme.

C. Reinforcement

Equipped with a suitable partition of the original graph G =
(V,E) into disjoint regions R1, . . . , Rk ⊆ V , we reinforce as
follows. As before, we set V ′ ≜ V × [ℓ], denote vi ≜ (v, i),
define P (vi) ≜ v, and set ℓ ≜ f + 1. However, the edge set
of G′ differs. For e = (v, w) ∈ E,

E′e ≜

{
{(vi, wi) | i ∈ [ℓ]} if ∃k′ ∈ [k] : v, w ∈ Rk′

{(vi, wj) | i, j ∈ [ℓ]} else,

and we set E′ ≜
⋃

e∈E E′e.
1) Simulation Under Om(p): Consider v ∈ V . We want to

maintain the invariant that in each round, some vi has a copy
of the state of v in A. To this end, v′ ∈ V ′

(1) initializes local copies of all state variables of v as in A
and sets knowv′ = true;

(2) sends on each link (v′, w′) ∈ E′ in each round
• message M , if P (v′) would send M via (P (v′), P (w′))

when executing A and knowv′ = true,
• a special symbol ⊥ if knowv′ = true, but v would not

send a message via (P (v′), P (w′)) according to A, or
• no message if knowv′ = false;

(3) if, in a given round, knowv′ = true and v′ receives for
each neighbor w of P (v′) a message from some wj ∈ V ′,
it updates the local copy of the state of v in A as if P (v′)
received this message (interpreting ⊥ as no message); and

(4) if this is not the case, v′ sets knowv′ = false.
We claim that as long as knowv′ = true at v′, v′ has indeed
a copy of the state of P (v′) in the corresponding execution
of A; therefore, it can send the right messages and update its
state variables correctly.

Lemma 4: Suppose that for each k′ ∈ [k], there is some
i ∈ [ℓ] so that {vi | v ∈ Rk′} ∩ F ′ = ∅. Then A′ simulates A.

Proof: Select for each Rk′ , k′ ∈ [k], some i such that
{vi | v ∈ Rk′}∩F ′ = ∅ and denote by C the union of all these
nodes. As P (C) = V , it suffices to show that each v′ ∈ C
successfully maintains a copy of the state of P (v′) under A.

However, we also need to make sure that all messages, not
only the ones sent by nodes in c, are “correct,” in the sense
that a message sent over edge (v′, w′) ∈ E′ in round r would
be sent by A over (P (v′), P (w′)) (where ⊥ means no message
is sent). Therefore, we will argue that the set of nodes Tr ≜
{v′ ∈ V ′ | knowv′ = true in round r} knows the state of their
counterpart P (v′) under A up to and including round r ∈ N.
As nodes v′ with knowv′ = false do not send any messages,
this invariant guarantees that all sent messages are correct in
the above sense.

We now show by induction on the round number r ∈ N
that (i) each v′ ∈ Tr knows the state of P (v′) under A and
(ii) C ⊆ Tr. Due to initialization, this is correct initially, i.e.,
in “round 0;” we use this to anchor the induction at r = 0,
setting T0 ≜ V ′.

For the step from r to r + 1, note that because all v′ ∈ Tr

have a copy of the state of P (v′) at the end of round r by
the induction hypothesis, each of them can correctly determine
the message P (v′) would send over link (v, w) ∈ E in round
r + 1 and send it over each (v′, w′) ∈ E′ with P (w′) = w.
Recall that v′ ∈ Tr+1 if and only if v′ ∈ Tr and for each
(w, P (v′)) ∈ E there is at least one w′ ∈ V ′ with P (w′) = w
from which v′ receives a message. Since under Om(p) nodes
in F ′ may only omit sending messages, it follows that v′ ∈
Tr+1 correctly updates the state variables of P (v′), just as
P (v′) would in round r + 1 of A.

It remains to show that C ⊆ Tr+1. Consider vi ∈ C and
(w, v) ∈ E. If v, w ∈ Rk′ for some k′ ∈ [k], then wi ∈ C by
definition of C. Hence, by the induction hypothesis, wi ∈ Tr,
and wi will send the message w would send in round r +1 of
A over (w, v) ∈ E to vi, using the edge (wi, vi) ∈ E′. If this
is not the case, then there is some j ∈ [ℓ] such that wj ∈ C and
we have that (wj , vi) ∈ E′. Again, vi will receive the message
w would send in round r+1 of A from wj . We conclude that
vi receives at least one copy of the message from w for each
(w, v) ∈ E, implying that v ∈ Tr+1 as claimed. Thus, the
induction step succeeds and the proof is complete. □

Figure 2 provides an example of a comparison between a
network, a naive duplication of that network, and its reinforce-
ment. The simulation process of sending a message in the same
sample network is shown in Figure 3.

2) Resilience of the Reinforcement: We denote R ≜
maxk′∈[k]{|Rk′ |} and r ≜ mink′∈[k]{|Rk′ |}.

Theorem 4: The above construction is a valid reinforcement
for Om(p) if p ∈ o((n/r)−1/(f+1)/R). Moreover, if G
contains Ω(n) nodes with non-zero outdegree and R ∈ O(1),
p ∈ ω(n−1/(f+1)) implies that the reinforcement is not valid.

Proof: By Lemma 4, A′ simulates A if for each k′ ∈ [k],
there is some i ∈ [ℓ] so that {vi | v ∈ Rk′}∩F ′ = ∅. For fixed
k′ and i ∈ [ℓ],

Pr [{vi | v ∈ Rk′} ∩ F ′ = ∅] = (1− p)|Rk′ | ≥ 1−Rp.

Accordingly, the probability that for a given k′ the precondi-
tion of the lemma is violated is at most (Rp)f+1. As k ≤ n/r,
taking a union bound over all k′ yields that with probability
at least 1 − n/r · (Rp)f+1, A′ simulates A. Therefore, the
reinforcement is valid if p ∈ o((n/r)−1/(f+1)/R).
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Fig. 2. Comparison between a sample network, its naive duplication, and its reinforcement using two replications (ℓ = 2) and two partitions (k = 2). The
node overhead, edge overhead, and maximum node fault probability tolerance (p) under omission fault for 99% network reliability for these three networks
are (a) 1, 1, ∼0.002; (b) 2, 2, ∼0.02; and (c) 2, 2.67, ∼0.028, respectively. Note that both the naive duplication and the reinforced networks are guaranteed
to be robust to one faulty node. However, the latter can handle some additional cases, like c1 and d2 nodes being faulty.

Fig. 3. An illustration of a sample routing in the partitioned reinforced network from Figure 2. (a) Consider the case when node c1 is faulty, under the
omission fault assumption, and a message was to be sent along the a − c − d − e route in the initial network. The goal is to track this message in the
reinforced network. (b) The message is sent from a1 to c1, and from a2 to c2. (c) Node c1 is not able to send the message to the next node. On the other
hand, node c2 sends the message to both d1 and d2. (d) d1 and d2 both receive a message, and therefore, send it to e1 and e2, respectively. At this point,
the routing is successful, as only one of e1 or e2 receiving the message is sufficient. While this is an example of routing a single message, the reinforced
network is able to operate for any algorithm that is runnable on the initial network. More detail can be found in Section VI-C.

Now assume that r ≤ R ∈ O(1) and also that p ∈
ω(n−1/(f+1)) ⊆ ω((n/r)−1/(f+1)/R). Thus, for each v ∈ V ,
all v′ ∈ V ′ with P (v′) = v simultaneously end up in F ′

with probability ω(1/n). Therefore, if Ω(n) nodes have non-
zero outdegree, with a probability in 1− (1− ω(1/n))Ω(n) =
1 − o(1) for at least one such node v all its copies end up
in F ′. In this case, the simulation fails if v sends a message
under A, but all copies of v′ suffer omission failures in the
respective round. □

3) Efficiency of the Reinforcement: For f ∈ N, we have that
ν = ℓ = f + 1 and η = (1− ε)ℓ + εℓ2 = 1 + (1 + ε)f + εf2,
while we can sustain p ∈ o(n−1/(f+1)). In the special case
of f = 1 and ε = 1/5, we improve from p ∈ o(1/n) for the
original network to p ∈ o(1/

√
n) by doubling the number of

nodes and multiplying the number of edges by 2.4.
Remark 4: For hypercubes and tori, the asymptotic notation

for p does not hide huge constants. Lemma 3 shows that h
enters the threshold in Theorem 4 as h−d+1/2. For the cases
of d = 2 and d = 3, which are the most typical (for d > 3 grids
and tori suffer from large distortion when embedding them into
3-dimensional space), the threshold on p degrades by factors
of 11.2 and 55.9, respectively.

D. Simulation Under Byz(p)

The same strategy can be applied for the stronger fault
model Byz(p), if we switch back to having ℓ = 2f +1 copies
and nodes accepting the majority message among all messages
from copies of a neighbor in the original graph.

Consider node v ∈ V . We want to maintain the invariant
that in each round, a majority among the nodes vi, i ∈ [ℓ], has

a copy of the state of v in A. For v′ ∈ V ′ and (w, P (v′)) ∈ E,
set Nv′(w) ≜ {w′ ∈ V ′ | (w′, v′) ∈ E′}. With this notation,
v′ behaves as follows.
(1) It initializes local copies of all state variables of v as

in A.
(2) It sends in each round on each link (v′, w′) ∈ E′ the

message v would send on (P (v′), P (w′)) when executing
A (if v′ cannot compute this correctly, it may send an
arbitrary message).

(3) It updates its state in round r as if it received, for each
(w, P (v′)) ∈ E, the message the majority of nodes in
Nv′(w) sent.

Lemma 5: Suppose for each k′ ∈ [k], there are at least
f + 1 indices i ∈ [ℓ] so that {vi | v ∈ Rk′}∩F ′ = ∅. Then A′

simulates A.
Proof: Select for each Rk′ , k′ ∈ [k], f + 1 indices i

such that {vi | v ∈ Rk′} ∩ F ′ = ∅ and denote by C the union
of all these nodes. We claim that each v′ ∈ C successfully
maintains a copy of the state of P (v′) under A. We show
this by induction on the round number r ∈ N, anchored at
r = 0 due to initialization.

For the step from r to r+1, observe that because all v′ ∈ C
have a copy of the state of P (v′) at the end of round r by the
induction hypothesis, each of them can correctly determine the
message P (v′) would send over link (v, w) ∈ E in round r +
1 and send it over each (v′, w′) ∈ E with P (w′) = w. For each
v′ ∈ C and each (w, P (v′)), we distinguish two cases. If P (v′)
and w are in the same region, let i be such that v′ = vi. In this
case, Nv′(w) = {wi} and, by definition of C, wi ∈ C. Thus,
by the induction hypothesis, wi sends the correct message in
round r+1 over the link (w′, v′). On the other hand, if P (v′)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Saarl Universitaets. Downloaded on June 28,2023 at 09:35:58 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE/ACM TRANSACTIONS ON NETWORKING

and w are in different regions, Nv′(w) = {wi | i ∈ [ℓ]}. By the
definition of C and the induction hypothesis, the majority of
these nodes (i.e., at least f + 1 of them) sends the correct
message w would send over (w, P (v′)) in round r + 1 when
executing A. We conclude that v′ correctly updates its state,
completing the proof. □

1) Resilience of the Reinforcement: As before, denote R ≜
maxk′∈[k]{|Rk′ |} and r ≜ mink′∈[k]{|Rk′ |}.

Theorem 5: The above construction is a valid reinforcement
for the fault model Byz(p) if p ∈ o((n/r)−1/(f+1)/R).
Moreover, if G contains Ω(n) nodes with non-zero outdegree,
p ∈ ω(n−1/(f+1)) implies that the reinforcement is not valid.

Proof: By Lemma 5, A′ simulates A if for each k′ ∈ [k],
there are at least f + 1 indices i ∈ [ℓ] so that {vi | v ∈ Rk′}∩
F ′ = ∅. For fixed k′ and i ∈ [ℓ],

Pr [{vi | v ∈ Rk′} ∩ F ′ = ∅] = (1− p)|Rk′ | ≥ 1−Rp.

Thus, analogous to the proof of Theorem 1, the probability
that for a given k′ the condition is violated is at most

2f+1∑
j=f+1

(
2f + 1

j

)
(Rp)j(1−Rp)2f+1−j

= (2e)f (Rp)f+1(1 + o(1)).

By a union bound over the at most n/r regions, we conclude
that the precondition p ∈ o((n/r)−1/(f+1)/R) guarantees that
the simulation succeeds a.a.s.

For the second statement, observe that for each node v ∈ V
of non-zero outdegree,

Pr [|{vi} ∩ F ′| ≥ f + 1] ≥ pf+1 = ω

(
1
n

)
.

Thus, a.a.s. there is such a node v. Let (v, w) ∈ E and assume
that A sends a message over (v, w) in some round. If v and w
are in the same region, the faulty nodes sending an incorrect
message will result in a majority of the 2f + 1 = |{w′ ∈
V ′ |P (w′) = w}| copies of w attaining an incorrect state (of
the simulation), i.e., the simulation fails. Similarly, if w is in
a different region than v, for each copy of w the majority
message received from Nw′(v) will be incorrect, resulting in
an incorrect state. □

Remark 5: Note that the probability bounds in Theorem 5
are essentially tight in case R ∈ O(1). A more careful analysis
establishes similar results for r ∈ Θ(R)∩ω(1), by considering
w.l.o.g. the case that all regions are connected and analyzing
the probability that within a region, there is some path so that
for at least f + 1 copies of the path in G′, some node on
the path is faulty. However, as again we consider the case
R ∈ O(1) to be the most interesting one, we refrain from
generalizing the analysis.

2) Efficiency of the Reinforcement: For f ∈ N, we have that
ν = ℓ = 2f +1 and η = (1−ε)ℓ+εℓ2 = 1+(2+2ε)f +4εf2,
while we can sustain p ∈ o(n−1/(f+1)). In the special case
of f = 1 and ε = 1/5, we improve from p ∈ o(1/n) for the
original network to p ∈ o(1/

√
n) by tripling the number of

nodes and multiplying the number of edges by 4.2.

VII. EMPIRICAL EVALUATION

We have shown that our approach from § VI works partic-
ularly well for graphs that admit a certain partitioning, such
as sparse graphs (e.g., minor-free graphs) or low-dimensional
hypercubes. To provide some empirical motivation for the rel-
evance of these examples, we note that the topologies collected
in the Rocketfuel [58] and Internet Topology Zoo [35] projects
are all sparse: almost a third (namely 32%) of the topologies
even belong to the family of cactus graphs, and roughly half
of the graphs (49%) are outerplanar [52].

To complement our analytical results and study the rein-
forcement cost of our approach in realistic networks, we con-
ducted simulations on the around 250 networks from the
Internet Topology Zoo. While we have a fairly good under-
standing of the different network topologies deployed in
practice, unfortunately, little is known about the state-of-the-
art protection mechanisms used by network operators today.
Network operators are typically reluctant to share details about
their infrastructure for security reasons, rendering a compar-
ative evaluation difficult. That said, it seems relatively safe
to assume that the most robust solutions rely on an one-by-
one (“A/B”) replication strategy which allows to completely
reroute traffic to a backup network; this baseline requires
doubling resources and can hence be fairly costly.

In the following, we will report on our main insights. Due
to space constraints, we focus on the case of omission faults;
the results for Byzantine faults follow the same general trends.

Recall that we replace each node by f + 1 of its copies,
and each edge with endpoints in different regions of the
partition with (f + 1)2 copies; every other edge is replaced
by f + 1 copies. Our goal is to do this partitioning such
that it minimizes the edge overhead of the new network and
maximizes the probability of the network’s resilience. The
fault probability of the network for given p, f and partitions
with l1, l2, . . . , lk nodes is calculated as 1 −

∏k
i=1[1 − (1 −

(1− p)li)f+1].
In the following, as a case study, we fix a target network

failure probability of at most 0.01. That is, the reinforced
network is guaranteed to operate correctly with a probability of
99%, and we aim to maximize the probability p with which
nodes independently fail subject to this constraint. For this
fixed target resilience of the network, we determine the value
of p matching it using the above formula. We remark that the
qualitative behavior for smaller probabilities of network failure
is the same, where the more stringent requirement means that
our scheme outperforms naive approaches for even smaller
network sizes.

For the examined topologies, it turned out that no special-
ized tools were needed to find good partitionings. We consid-
ered a Spectral Graph Partitioning tool [30] and Metis [34],
a partitioning algorithm from a python library. For small
networks (less than 14 nodes), we further implemented a brute-
force algorithm, which provides an optimal baseline.

Figure 4 shows the resulting edge overheads for the different
partitioning algorithms as a function of p and for f = 3,
at hand of a specific example. For reference, we added the
value of p for the original graph (f = 0) to the plot, which
has an overhead factor of 1 (no redundancy).
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Fig. 4. Edge overhead for f = 3 and different partitioning algorithms as a
function of p.

Fig. 5. Edge overhead for f ∈ [1, 10] as a function of p.

As to be expected, for each algorithm and the fixed value of
f = 3, as the number of components in partitionings increases,
the edge overhead and p increase as well. The “Singleton
partition” point for f = 3 indicates the extreme case where the
size of the components is equal to 1 and the approach becomes
identical to strong reinforcement (see § V); hence, it has an
edge overhead of (f + 1)2 = 16. The leftmost points of the
f = 3 curves correspond to the other extreme of “partitioning”
the nodes into a single set, resulting in naive replication of the
original graph, at an edge overhead of f + 1 = 4.

We observed this general behavior for networks of all sizes
under varying f , where the spectral partitioning consistently
outperformed Metis, and both performed very close to the
brute force algorithm on networks to which it was applica-
ble. We concluded that the spectral partitioning algorithm is
sufficient to obtain results that are close to optimal for the
considered graphs, most of which have fewer than 100 nodes,
with only a handful of examples with size between 100 and
200. Accordingly, in the following we confine the presentation
to the results obtained using the spectral partitioning algorithm.

In Figure 5, we take a closer look on how the edge overhead
depends on f , at hand of a network of 33 nodes. Note that
the partitionings do not depend on f , causing the 10 curves to

Fig. 6. Study of p for all Topology Zoo networks and f = 1, sorted by size.

have similar shape. As f increases, the node overhead, edge
overhead, and p for the reinforced networks increase. We can
see that it is advisable to use larger values of f only if the
strong reinforcement approach for smaller f cannot push p to
the desired value. We also see that f = 1 is sufficient to drive
p up to more than 6%, improving by almost two orders of
magnitude over the roughly 0.01/33 ≈ 0.03% the unmodified
network can tolerate with probability 99%. While increasing
f further does increase resilience, the relative gains are much
smaller, suggesting that f = 1 is the most interesting case.

Following up on this, in Figure 6 we plot p for all
existing networks in the Topology Zoo using the spectral
graph partitioning algorithm and f = 1. Specifically, for
each network, we calculated the value of p on a set of
reinforced networks with different node and edge overheads.
Naturally, with increasing network size, the value of p that
can be sustained at a given overhead becomes smaller. Note,
however, that naive replication quickly loses ground as n
becomes larger. In particular, already for about 20 nodes,
an edge overhead of 3 with our approach is better than adding
two redundant copies of the original network, resulting in
more nodes, but the same number of edges. Beyond roughly
50 nodes, our approach outperforms two independent copies of
the network using fewer edges, i.e., an edge overhead of 2.5.

To show more clearly when our approach outperforms naive
network replication, Figure 7 plots the relative gain in the
probability p of node failure that can be sustained compared
to the original network.

This plot is similar to the previous one. The y-axis now
represents p divided by the value of p for the original graph.
We now see that naive replication provides an almost constant
improvement across the board. This is due to the fact that
under this simple scheme, the reinforcement fails as soon as
in each copy of the graph at least one node fails, as it is
possible that a routing path in the original graph involves all
nodes corresponding to failed copies.

Denote by pk the probability of node failure that can be
sustained with 99% reliability when simply using k copies of
the original graph (in particular p1 ≈ 0.01/n). For small k, the
probability (1−pk)n that a single copy of the original graph is
fault-free needs to be close to 1. Hence, we can approximate
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Fig. 7. Relative improvement over baseline for all Topology Zoo networks.

(1 − pk)n ≈ 1 − pkn. The probability that all copies contain
a failing node is hence approximately (pkn)k. Thus, p1n ≈
0.01 ≈ (pkn)k, yielding that

pk

p1
=

pkn

p1n
≈ 0.011/k

0.01
= 1001−1/k.

In particular, we can expect ratios of roughly 10 for k = 2 and
21.5 for k = 3, respectively. The small discrepancy to the
actual numbers is due to the approximation error, which would
be smaller for higher target resilience.

As the plot clearly shows, our method achieves a relative
improvement that increases with n, as predicted by Theorem 4.
In conclusion, we see that our approach promises substantial
improvements over the naive replication strategy, which is
commonly employed in mission-critical networks (e.g., using
dual planes as in RFC 7855 [53]).

VIII. DISCUSSION

In the previous sections, we have established that
constant-factor redundancy can significantly increase reliabil-
ity of the communication network in a blackbox fashion. Our
constructions in § VI are close to optimal. Naturally, one
might argue that the costs are still too high. However, apart
from pointing out that the costs of using sufficiently reliable
components may be even higher, we would like to raise a
number of additional points in favor of the approach.

A. Node Redundancy

When building reliable large-scale systems, fault-tolerance
needs to be considered on all system levels. Unless nodes are
sufficiently reliable, node replication is mandatory, regardless
of the communication network. In other words, the node
redundancy required by our construction may not be an actual
overhead to begin with. When taking this point of view,
the salient question becomes whether the increase in links
is acceptable. Here, the first observation is that any system
employing node redundancy will need to handle the arising
additional communication, incurring the respective burden on
the communication network. Apart from still having to handle
the additional traffic, however, the system designer now needs

to make sure that the network is sufficiently reliable for the
node redundancy to matter. Our simple schemes then provide a
means to provide the necessary communication infrastructure
without risking to introduce, e.g., a single point of failure
during the design of the communication network; at the same
time, the design process is simplified and modularized.

B. Dynamic Faults

Because of the introduced fault-tolerance, faulty compo-
nents do not impede the system as a whole, so long as the
simulation of the routing scheme can still be carried out.
Hence, one may repair faulty nodes at runtime. If T is the
time for detecting and fixing a fault, we can discretize time in
units of T and denote by pT the (assumed to be independent)
probability that a node is faulty in a given time slot, which
can be bounded by twice the probability to fail within T time.
Then the failure probabilities we computed in our analysis
directly translate to an upper bound on the expected fraction
of time during which the system is not (fully) operational.

C. Adaptivity

The employed node- and link-level redundancy may be
required for mission-critical applications only, or the system
may run into capacity issues. In this case, we can exploit that
the reinforced network has a very simple structure, making
various adaptive strategies straightforward to implement.

(i) One might use a subnetwork only, deactivating the
remaining nodes and links, such that a reinforced net-
work for smaller f (or a copy of the original network,
if f = 0) remains. This saves energy.

(ii) One might subdivide the network into several smaller
reinforced networks, each of which can perform different
tasks.

(iii) One might leverage the redundant links to increase the
overall bandwidth between (copies of) nodes, at the
expense of reliability.

(iv) The above operations can be applied locally; e.g., in a
congested region of the network, the link redundancy
could be used for additional bandwidth. Note that if only
a small part of the network is congested, the overall
system reliability will not deteriorate significantly.

Note that the above strategies can be refined and combined
according to the profile of requirements of the system.

IX. RELATED WORK

Robust routing is an essential feature of dependable com-
munication networks, and has been explored intensively in the
literature already.

Resilient Routing on the Network Layer: In contrast to
our approach, existing resilient routing mechanisms on the
network layer are typically reactive. They can be categorized
according to whether they are supported in the control plane,
e.g., [8], [14], [23], [24], [28], and [47], or in the data plane,
e.g., [13], [22], [38], [43], [59], and [61], see also the recent
survey [11]. These mechanisms are usually designed to cope
with link failures. Resilient routing algorithms in the control
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plane typically rely on a global recomputation of paths (either
centralized [60], distributed [23] or both [46]), or on tech-
niques based on link reversal [24], and can hence re-establish
policies relatively easily; however, they come at the price
of a relatively high restoration time [23]. Resilient routing
algorithms in the dataplane can react to failures significantly
faster [18]; however, due to the local nature of the failover,
it is challenging to maintain network policies or even a high
degree of resilience [12]. In this line of literature, the network
is usually given and the goal is to re-establish routing paths
quickly, ideally as long as the underlying physical network is
connected (known as perfect resilience [18], [21]).

In contrast, in this paper we ask the question of how to
proactively enhance the network in order to tolerate fail-
ures, rather than reacting to them. In particular, we consider
more general failures, beyond link failures and benign faults.
We argue that such a re-enforced network simplifies routing
as it is not necessary to compute new paths. The resulting
problems are very different in nature, also in terms of the
required algorithmic techniques.

Local Faults: In this paper, we consider more general
failure models than typically studied in the resilient routing
literature above, as our model is essentially a local fault
model. Byzantine faults were studied in [15] and [51] in
the context of broadcast and consensus problems. Unlike its
global classical counterpart, the f -local Byzantine adversary
can control at most f neighbors of each vertex. This more
restricted adversary gives rise to more scalable solutions, as the
problems can be solved in networks of degree O(f); without
this restriction, degrees need to be proportional to the total
number of faults in the network.

We also limit our adversary in its selection of Byzan-
tine nodes, by requiring that the faulty nodes are chosen
independently at random. As illustrated, e.g., by Lemma 1
and Theorem 1, there is a close connection between the
two settings. Informally, we show that certain values of p
correspond, asymptotically almost surely (a.a.s), to an f -local
Byzantine adversary. However, we diverge from the approach
in [15] and [51] in that we require a fully time-preserving
simulation of a fault-free routing schedule, as opposed to
solving the routing task in the reinforced network from scratch.

Fault-Tolerant Logical Network Structures: Our work is
reminiscent of literature on the design fault-tolerant network
structures. In this area (see [49] for a survey), the goal is
to compute a sub-network that has a predefined property,
e.g., containing minimum spanning tree. More specifically,
the sub-network should sustain adversarial omission faults
without losing the property. Hence, the sub-network is usually
augmented (with edges) from the input network in comparison
to its corresponding non-fault-tolerant counterpart. Naturally,
an additional goal is to compute a small such sub-network.
In contrast, we design a network that is reinforced (or
augmented) by additional edges and nodes so that a given
routing scheme can be simulated while facing randomized
Byzantine faults. As we ask for being able to “reproduce” an
arbitrary routing scheme (in the sense of a simulation relation),
we cannot rely on a sub-network.

The literature also considered random fault models. In the
network reliability problem, the goal is to compute the prob-
ability that the (connected) input network becomes discon-
nected under random independent edge failures. The reliability
of a network is the probability that the network remains
connected after this random process. Karger [33] gave a fully
polynomial randomized approximation scheme for the network
reliability problem. Chechik et. al [10] studied a variant of the
task, in which the goal is to compute a sparse sub-network that
approximates the reliability of the input network. We, on the
other hand, construct a reinforced network that increases the
reliability of the input network; note also that our requirements
are much stricter than merely preserving connectivity.

Self-healing systems: In the context of self-healing rout-
ing (e.g., Castañeda et al. [9]), researchers have studied a
model where an adversary removes nodes in an online fashion,
one node in each time step (at most n such steps). In turn,
the distributed algorithm adds links and sends at most O(∆)
additional messages to overcome the inflicted omission fault.
Ideally, the algorithm is “compact”: each node’s storage is
limited to o(n) bits. A nice property of the algorithm in [9] is
that the degrees are increased by at most 3. For our purposes,
an issue is that the diameter is increased by a logarithmic
factor of the maximum initial degree, and hence the same
holds for the latency of the routing scheme. Instead, we design
a network that is “oblivious” to faults in the sense that the
network is “ready” for independent random faults up to a
certain probability, without the need to reroute messages or any
other reconfiguration. Moreover, our reinforcements tolerate
Byzantine faults and work for arbitrary routing schemes.
We remark that compact self-healing routing schemes also
deal with the update time of the local data structures following
the deletion of a node; no such update is required in our
approach.

Robust Peer-to-Peer Systems: Peer-to-peer systems are
often particularly dynamic and the development of robust
algorithms hence crucial. Kuhn et. al [37] study faults in
peer-to-peer systems in which an adversary adds and removes
nodes from the network within a short period of time (this
process is also called churn). In this setting, the goal is
to maintain functionality of the network in spite of this
adversarial process. Kuhn et al. [37] considered hypercube and
pancake topologies, with a powerful adversary that cannot be
“fooled” by randomness. However, it is limited to at most
O(∆) nodes, where ∆ is the (maximum) node degree, which
it can add or remove within any constant amount of time. The
main idea in [37] is to maintain a balanced partition of the
nodes, where each part plays the role of a supernode in the
network topology. This is done by rebalancing the nodes after
several adversarial acts, and increasing the dimensionality of
the hypercube in case the parts become too big.

Hypercubes were also of particular interest in this paper.
We employ two partitioning techniques to make sure that:
(1) the size of each part is constant and (2) the number of
links in the cut between the parts is at most ε · n, where n
is the number of nodes. These partitioning techniques help
us dial down the overheads within each part, and avoid a
failure of each part due to its small size. However, we note
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that our motivation for considering these topologies is that
they are used as communication topologies, for which we can
provide good reinforcements, rather than choosing them to
exploit their structure for constructing efficient and/or reliable
routing schemes (which is of course one, but not the only
reason for them being used in practice).

X. CONCLUSION

In this paper, we proposed simple replication strategies
for improving network reliability. Despite being simple and
general, both in terms of their application and analysis, our
strategies can substantially reduce the required reliability on
the component level to maintain network functionality com-
pared the baseline, without losing messages or increasing
latencies. The presented transformations allow us to directly
reuse non-fault-tolerant routing schemes as a blackbox, and
hence avoid the need to refactor working solutions. We con-
sider this property highly useful in general and essential in
real-time systems.

Hence, being prepared for non-benign faults can be simple,
affordable, and practical, and therefore enables building larger
reliable networks. Interestingly, while our basic schemes may
hardly surprise, we are not aware of any work systematically
exploring and analyzing this perspective.

We understand our work as a first step and believe that
it opens several interesting avenues for future research. For
example:
(i) Which network topologies allow for good partitions as

utilized in § VI? Small constants here result in highly
efficient reinforcement schemes, which are key to practical
solutions.

(i) Is it possible to guarantee strong simulations at smaller
overheads?

(i) Can constructions akin to the one given in § VI be applied
to a larger class of graphs?

On the practical side, while our simulations indicate that
our approach can be significantly more efficient than a naive
one-by-one replication strategy to provision dependable ISP
networks, it will be interesting to extend these empirical stud-
ies and also consider practical aspects such as the incremental
deployment in specific networks.
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