
Debugger-driven Embedded Fuzzing
Max Eisele

Robert Bosch GmbH
Renningen, Germany

MaxCamillo.Eisele@de.bosch.com

Abstract—Embedded Systems – the hidden computers in our
lives – are deployed in the billionths and are already in the
focus of attackers. They pose security risks when not tested and
maintained thoroughly. In recent years, fuzzing has become a
promising technique for automated security testing of programs,
which can generate tons of test inputs for a program. Fuzzing
is hardly applied to embedded systems, because of their high
diversity and closed character. During my research I want tackle
that gap in fuzzing embedded systems – short: “Embedded
Fuzzing”. My goal is to obtain insights of the embedded system
during execution, by using common debugging interfaces and
hardware breakpoints to enable guided fuzzing in a generic
and widely applicable way. Debugging interfaces and hardware
breakpoints are available for most common microcontrollers,
generating a potential industry impact. Preliminary results show
that the approach covers basic blocks faster than blackbox
fuzzing. Additionally, it is source code agnostic and leaves the
embedded firmware unaltered.

Index Terms—embedded systems, security testing

I. INTRODUCTION

Google’s OSS-Fuzz project [1] revealed over 30.000 bugs
in about 500 open-source projects by using coverage-guided
fuzzing. The attractiveness of coverage-guided fuzzing comes
from its low setup effort and its automated, unsupervised way
of generating test inputs. Prerequisites are an input interface,
a crash detection, and a coverage feedback mechanism. Based
on a set of inputs, called corpus, new test inputs are generated
iteratively and forwarded to the target program. When new
code coverage is reached during the target’s execution, the
responsible test input is added to the corpus. A crash of the
target program indicates a bug and the responsible test input
is preserved.

Embedded fuzzing comes with additional hurdles, compared
to user applications on general purpose operating systems. Due
to the closed nature of embedded systems, it is difficult to
detect crashes of the target device [2] and gathering code
coverage feedback is challenging.

One way to compensate missing observability is to let the
embedded software run in an emulator. The transparency of
an emulator not only allows to detect faults of the execution,
but also to use memory access sanitizers and generation of
code coverage feedback. Notably emulation-based approaches
are, for instance, HALucinator [3], which enables to re-host
firmware code at the hardware (HW) abstraction layer for more
reusability and P2IM [4], which attaches the fuzzer directly to
the whole HW address space, to let it learn peripheral behavior.
However, re-hosting embedded software into an emulator can

be related to huge amounts of manual work, can lack of fidelity,
and is an open research problem since years [5], [6].

As a result, emulators for embedded systems are rarely
available and techniques for fuzzing on the actual HW have
been developed. IoTFuzzer [7] hooks into accompanying smart
phone applications from Internet of Things (IoT) devices
to send fuzz data to the target device. ARM-AFL [8] has
been proposed for on-target fuzzing on ARM-based embedded
systems. Harzer Roller [9] is a linker-based function trace
and sanitization approach demonstrated for ESP8266 micro-
controllers. For ESP32 microcontrollers a basic block coverage
feedback mechanism, based on static instrumentation, has been
proposed by Boersig et al. [10]. Oh et al. [11] use software
breakpoints for a dynamic instrumentation on microcontroller
code. However, the approaches lack of broad applicability and
mostly require to modify the firmware of the embedded system.

II. DEBUGGER-DRIVEN FUZZING

From my observation, a GNU Debugger (GDB) remote
interface [12] is available for most microcontrollers, serving as
a generic way of gathering insights from the execution of the
System under Test (SUT). The GDB interface can be used to
interrupt the execution, detect the execution of fault handlers,
and to access memory and registers.

I also observed that most microcontrollers have HW break-
point and data watchpoint registers. These can interrupt the
execution upon reaching a corresponding code location when
a specific memory location is accessed. The debugging host is
then notified of the interruption and may resume execution. HW
break and watch points do not disturb the execution as long as
they are not triggered. However, only a limited amount of them
is available, as they are represented by a unique HW register
each. The ARM Cortex-M4 core, for instance, is designed for
up to 8 HW breakpoints and 4 data watchpoints [13].

Research Goals

The goal of this thesis is to enable easy applicable, and
efficient embedded fuzzing. I propose the following approaches:

• Coverage-guided fuzzing using HW breakpoints.
• Concolic execution using a debugger.
• Recovering input specifications using HW watchpoints.
Hardware breakpoints: enable feedback collection from the

execution of the SUT. Breakpoints are set to interesting code
locations, using the control flow graph of the program for
guidance, which can be derived from source code or recovered
with binary analysis tools like GHIDRA [14]. However, since



the amount of HW breakpoints is limited, they must be placed
cleverly. Also, transitive knowledge about other, non-selected
basic blocks should be leveraged. For instance, by using the
dominator graph of the control flow graph, other basic blocks
that must have been executed before the current one can be
determined [15].

Assuming a control flow graph, I propose the following
strategies to place breakpoints:

• Random Neighbor: Randomly select basic blocks, whose
parent block was already reached.

• Reachability Count: Prefer basic blocks, that have more
successive (reachable) blocks.

• Page Rank: Prefer basic blocks with a higher Page
Rank [16] score.

Using HW breakpoints to generate coverage feedback intro-
duces an inevitable overhead, through (re-)setting operations
and handling interrupts. On the other hand, finding new code
blocks or paths during fuzzing usually follows a logarithmic
curve over time [17]. Most coverage is found more at the
beginning of a fuzzing campaign and renders the breakpoint
interrupt overhead negligible over time. Overall, the overhead
is expected to be dominated by the reset time of available
breakpoints. The following research questions arise:

RQ1: How well can a limited amount of HW breakpoints
aid a meaningful coverage-guided fuzzing of embedded
systems?

RQ2: How does the number of available breakpoints affect the
fuzzing performance?

RQ3: What is the dominating overhead and how to reduce it?
RQ4: How well is the introduced overhead compensated by

faster input space exploration?
Concolic Execution: is a partial symbolic execution of the

target’s code based on a concrete execution trace. Since the
debugger can be used for single stepping through code and
reading memory, it can generate all necessary information
to enable concolic execution with ANGR [18]. Thereby new
input is generated, which can cover previously unreached
code. However, trace generation with single stepping and
the constraint solving from the symbolic execution can take
a substantial amount of time, which leads to the research
question:

RQ5: How much improves debugger-driven concolic execution
for unreached basic blocks the performance of the previ-
ously presented coverage-guided fuzzing method?

Recovered Input Specifications: can be used for efficient
fuzzing without the need for coverage feedback. Gopinath
et al. [19] showed that input grammars can be derived from
a program by observing how and when the input buffer is
accessed.

Data watchpoints can retrieve the same information by
triggering an interrupt when the appropriate memory address
is accessed. Therefore, the input buffer must be located within
the address space and each test input must be executed several
times, depending on its length and the amount of available
HW data watchpoints. The related research question is:

RQ6: How well can input specifications of an embedded
system be recovered by using a limited amount of data
watchpoints?

III. PRELIMINARY RESULTS

The actual fuzzer in the debugger-driven fuzzing method is
interchangeable. In the current implementation, libfuzzer [20]
is used. Following plots demonstrate the performance of the
debugger-driven fuzzing method, compared to fuzzing without
feedback. In order to simulate different amounts of available
HW breakpoints, the results are obtained in an emulator.

(a) Comparison between different
strategies, using 8 breakpoints.

(b) Comparison between different
amounts of available breakpoints with
the PageRank strategy.

Figure 1: Coverage over time plots, on fuzzing libjpeg-
turbo [21] with debugger-driven fuzzing. Note that time axis
is of logarithmic scale.

Figure 1a shows the coverage over time across the proposed
strategies and blackbox fuzzing over 48 hours. Each breakpoint
strategy outperforms blackbox fuzzing after a short while.
Figure 1b shows how the number of available breakpoints
influences the found coverage over time. As expected, a higher
amount of breakpoints leads to a faster exploration of code.

IV. EVALUATION AND EXPECTED CONTRIBUTION

To show the generality of Debugger-driven Fuzzing I will
first evaluate it on targets of the Fuzzer Test Suite [22] and
thereby compare it against other software security testing tools,
including blackbox fuzzing and emulation-based coverage-
guided fuzzing. The latter represents an upper bound and
is not expected to be exceeded. To demonstrate the broad
applicability, I plan an evaluation on real products, in which
case it is unlikely to get emulation-based coverage-guided
fuzzing up and running.

With the proposed method, I expect to lower prerequisites
and setup efforts for efficient embedded fuzzing. Debugger-
driven embedded fuzzing could pose an easy-to-use, source
code agnostic, and non-invasive method for security testing of
embedded systems.

ACKNOWLEDGMENT

My thesis is supervised by Prof. Andreas Zeller from CISPA
Helmholtz Center for Information Security, Saarland and I
carry out this work as a PhD candidate at Saarland University.



REFERENCES

[1] Google, “OSS-Fuzz,” https://google.github.io/oss-fuzz/, 2021, accessed:
2021-12-20.

[2] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti, “What
you corrupt is not what you crash: Challenges in fuzzing embedded
devices.” in NDSS, 2018.

[3] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator: Firmware
re-hosting through abstraction layer emulation,” in 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020, pp. 1201–1218.

[4] B. Feng, A. Mera, and L. Lu, “P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling,” in 29th
{USENIX} Security Symposium ({USENIX} Security 20), 2020, pp.
1237–1254.

[5] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-Gavitt,
M. Egele, A. Francillon, L. Lu, N. Gregory et al., “SoK: Enabling
security analyses of embedded systems via rehosting,” in Proceedings
of the 2021 ACM Asia Conference on Computer and Communications
Security, 2021, pp. 687–701.

[6] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A. Clements,
“Challenges in firmware re-hosting, emulation, and analysis,” ACM
Computing Surveys (CSUR), vol. 54, no. 1, pp. 1–36, 2021.

[7] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “IoTFuzzer: Discovering memory corruptions
in iot through app-based fuzzing.” in NDSS, 2018.

[8] R. Fan, J. Pan, and S. Huang, “ARM-AFL: Coverage-guided fuzzing
framework for ARM-Based IoT devices,” in International Conference
on Applied Cryptography and Network Security. Springer, 2020, pp.
239–254.

[9] K. Bogad and M. Huber, “Harzer roller: Linker-based instrumentation
for enhanced embedded security testing,” in Proceedings of the 3rd
Reversing and Offensive-oriented Trends Symposium, 2019, pp. 1–9.

[10] M. Börsig, S. Nitzsche, M. Eisele, R. Gröll, J. Becker, and I. Baumgart,
“Fuzzing framework for ESP32 microcontrollers,” in 2020 IEEE Interna-
tional Workshop on Information Forensics and Security (WIFS). IEEE,
2020, pp. 1–6.

[11] J. Oh, S. Kim, E. Jeong, and S.-M. Moon, “OS-less dynamic binary
instrumentation for embedded firmware,” in 2015 IEEE Symposium in
Low-Power and High-Speed Chips (COOL CHIPS XVIII). IEEE, 2015,
pp. 1–3.

[12] B. Gatliff, “Embedding with gnu: the gdb remote serial protocol,”
Embedded Systems Programming, vol. 12, pp. 108–113, 1999.

[13] Arm, “Arm Cortex-M4 Technical Reference Manual,”
https://developer.arm.com/documentation/100166/0001, 2009, accessed:
2022-01-03.

[14] National Security Agency, “Ghidra,” https://ghidra-sre.org/, 2019, ac-
cessed: 2021-12-20.

[15] H. Agrawal, “Efficient coverage testing using global dominator graphs,”
in Proceedings of the 1999 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, 1999, pp. 11–20.

[16] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[17] M. Böhme and B. Falk, “Fuzzing: On the exponential cost of vulnerability
discovery,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 713–724.

[18] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State
of) The Art of War: Offensive Techniques in Binary Analysis,” in IEEE
Symposium on Security and Privacy, 2016.

[19] R. Gopinath, B. Mathis, and A. Zeller, “Mining input grammars from
dynamic control flow,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 172–183.

[20] LLVM, “libfuzzer a library for coverage-guided fuzz testing,”
https://llvm.org/docs/LibFuzzer.html, accessed: 2021-11-22.

[21] “libjpeg-turbo,” https://libjpeg-turbo.org/, accessed: 2021-11-22.
[22] “Google fuzzer test suite,” https://github.com/google/fuzzer-test-suite,

accessed: 2021-11-22.


