
FieldFuzz: In Situ Blackbox Fuzzing of Proprietary Industrial
Automation Runtimes via the Network

Andrei Bytes
Singapore University of Technology

and Design
Singapore

Prashant Hari Narayan Rajput
Tandon School of Engineering
Brooklyn, New York, USA

Constantine Doumanidis
New York University Abu Dhabi

Abu Dhabi, UAE

Nils Ole Tippenhauer
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

Michail Maniatakos
New York University Abu Dhabi

Abu Dhabi, UAE

Jianying Zhou
Singapore University of Technology

and Design
Singapore

ABSTRACT
Networked Programmable Logic Controllers (PLCs) are proprietary
industrial devices utilized in critical infrastructure that execute
control logic applications in complex proprietary runtime environ-
ments that provide standardized access to the hardware resources
in the PLC. These control applications are programmed in domain-
specific IEC 61131-3 languages, compiled into a proprietary binary
format, and process data provided via industrial protocols. Control
applications present an attack surface threatened by manipulated
traffic. For example, remote code injection in a control application
would directly allow to take over the PLC, threatening physical
process damage and the safety of human operators. However, as-
sessing the security of control applications is challenging due to
domain-specific challenges and the limited availability of suitable
methods. Network-based fuzzing is often the only way to test such
devices but is inefficient without guidance from execution tracing.

This work presents the FieldFuzz framework that analyzes the
security risks posed by the Codesys runtime (used by over 400
devices from 80 industrial PLC vendors). FieldFuzz leverages effi-
cient network-based fuzzing based on three main contributions:
i) reverse-engineering enabled remote control of control applica-
tions and runtime components, ii) automated command discovery
and status code extraction via network traffic and iii) a monitoring
setup to allow on-system tracing and coverage computation. We
use FieldFuzz to run fuzzing campaigns, which uncover multiple
vulnerabilities, leading to three reported CVE IDs. To study the
cross-platform applicability of FieldFuzz, we reproduce the findings
on a diverse set of Industrial Control System (ICS) devices, showing
a significant improvement over the state-of-the-art.

CCS CONCEPTS
• Security and privacy; • Computer systems organization→
Embedded and cyber-physical systems;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’23, October 2023, Hong Kong
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10. . . $15.00
https://doi.org/10.1145/3607199.3607226

KEYWORDS
industrial control systems, programmable logic controllers, fuzzing

ACM Reference Format:
Andrei Bytes, Prashant Hari Narayan Rajput, Constantine Doumanidis, Nils
Ole Tippenhauer, Michail Maniatakos, and Jianying Zhou. 2023. FieldFuzz:
In Situ Blackbox Fuzzing of Proprietary Industrial Automation Runtimes via
the Network. In The 26th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID ’23), October 16–18, 2023, Hong Kong, Hong
Kong. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3607199.
3607226

1 INTRODUCTION
Industrial Control Systems (ICS) comprise critical infrastructure
such as desalination plants, smart grids, transportation systems,
and the nuclear sector. Digital control and communication in ICS
are performed by proprietary Operational Technology (OT) devices
which suffer from security challenges known to the IT domain
(such as parsing bugs for traffic). In addition, OT devices commonly
do not employ OS-level countermeasures that are standard practice
in IT nowadays [2]. Exploiting such vulnerabilities could have cata-
strophic physical consequences, such as destroying equipment [36].

At the core of ICS, Programmable Logic Controllers (PLCs) pro-
cess sensor readings while executing control logic to perform real-
time control of physical processes. Engineers write control appli-
cations in programming languages defined by the IEC 61131-3
standard, and executed in proprietary runtime environments on
the PLCs. The runtime environment, Integrated Development Envi-
ronment (IDE), and compiler are proprietary software of the device
manufacturer. The most significant Original Equipment Manufac-
turer (OEM) generic framework is the Codesys runtime, which
is at the heart of ≈80 industrial device vendors ranging over 400
devices, including manufacturers such as Schneider Automation,
Bosch Rexroth, WAGO, and Hitachi Europe [17], representing at
least ≈20% of the active PLCs worldwide [38].

Security threats to this ecosystem can be introduced, mainly via
the control applications (through their handling of sensor data) and
the diverse software components of runtimes. In addition, vendors
can extend runtimes with their third-party libraries, exacerbating
supply chain risks, as the final runtime is a collection of components
from various sources. The urgent/11 and ripple20 vulnerabilities [4,
24] are recent examples of critical supply chain security issues in ICS
devices. In both cases, low-level network traffic handling libraries

https://doi.org/10.1145/3607199.3607226
https://doi.org/10.1145/3607199.3607226
https://doi.org/10.1145/3607199.3607226

RAID ’23, October 2023, Hong Kong Bytes et al.

contained bugs that allowed privileged remote code execution by
the attacker, affecting millions of devices.

Given this, how could third parties (such as operators) test PLC
devices and their control logic applications for (security) bugs? For
analysis of proprietary IT software, fuzzing has been very successful
in recent years. Unfortunately, due to domain-specific challenges,
available fuzzers cannot directly be applied to PLC runtimes or their
IEC 61131-3 control applications. In particular, PLC runtimes are
complex stateful multithreaded applications that interact through
proprietary protocols with the environment. Furthermore, control
applications must be executed within the runtime, requiring new
inputs (via memory-mapped I/O) in each scan cycle. To the best
of our knowledge, ICSFuzz [38] is the only reported tool in the
literature for fuzzing control applications. However, it suffers from
significant drawbacks, such as losses in input delivery synchro-
nization, slow fuzzing speed, manual crash monitoring, and only
supporting a specific physical device (a WAGO PLC). Applying tra-
ditional fuzzers to this problem, on the other hand, like AFL++, also
has limitations as such methods cannot control the runtime, often
lack network capabilities, and cannot fuzz in situ, i.e., correctly
execute the bespoke control applications binaries used in ICS.

This work proposes a novel unified approach for vulnerabil-
ity discovery throughout the computational stack of PLCs in the
Codesys ecosystem (including their control applications). We re-
alize this approach in the FieldFuzz framework, which is the first
platform capable of fuzzing all components in a PLC, including the
IEC 61131-3 control applications. It leverages reverse-engineered
features of the proprietary Codesys platform and protocols to allow
fuzzing of the runtime during its execution (in context), and the
control applications in the runtime context, providing meaningful
crashes. Furthermore, we designed Ghost, our system for obtaining
accurate instruction-level coverage statistics, that is injected in situ
in the closed proprietary PLCs as a control application, allowing
easy and multi-platform deployment. Our experiments discovered
multiple vulnerabilities that were responsibly disclosed to corre-
sponding device vendors. Three CVE IDs have been assigned to
vulnerabilities discovered by FieldFuzz.

In summary, our main contributions are the following:
(1) We reverse the Codesys runtime and its proprietary communi-

cation protocol to enable complete remote control over control
application execution in the runtime, enabling fuzzing of the
control applications and the runtime in their native execution
environments, leading to three CVEs.

(2) We demonstrate the feasibility and efficacy of our approach
through our implementation and evaluation of FieldFuzz for
both the control applications and the runtime. In addition, we
introduce a local monitor called Ghost that provides further
fuzzing feedback when injected into the target as a control
application. As we leverage the standard communication proto-
cols and runtime APIs, our approach allows cross-architecture
fuzzing of diverse Codesys targets independent of the target
platform and device vendor.

(3) We demonstrate improvement over the state-of-the-art (i.e.,
ICSFuzz [38]) in control application fuzzing with higher perfor-
mance, reliable scan cycle control, input delivery, monitoring,
and breakpoint-based coverage feedback. FieldFuzz supports
fuzzing runtime components that are inherently unreachable

GPIO CPU
RTOS / Bare-metal FW

Runtime

Tr
ac

e
M

an
ag

er

O
pe

nS
SL

A
la

rm
 M

an
ag

er

C
on

tro
l

A
pp

lic
at

io
n

Sc
he

du
le

r

IO
 M

an
ag

er

…
Component

Process

System

Hardware

Figure 1: PLC System stack. Blocks with thick borders belong
to the proprietary codebase and require reverse engineering
to facilitate fuzzing.

by ICSFuzz. In contrast to ICSFuzz, our approach applies to any
target which supports Codesys (architecture independent).

2 BACKGROUND AND PRIORWORK
2.1 PLC Runtimes for Control Applications
Process engineers write control logic using IEC 61131-3 compliant
programming languages (such as Ladder Logic) on an engineering
workstation. While certain ICS platforms interpret the intermedi-
ate representation of the control program, others employ an IEC
compiler to produce a compiled control binary. These control bi-
naries differ from known executable formats such as ELF or PE,
and cannot execute independently. Therefore, they are loaded and
executed in complex PLC runtimes, which control every aspect of
the binary execution (see Figure 1).

In general, PLC runtimes, such as the Codesys runtime that we
focus on in this work, are complex applications that encapsulate a
wide array of functionality almost akin to a fully-fledged operating
system. As illustrated in Figure 1, these runtimes operate on top of
minimal real-time operating systems or bare-metal PLC firmware.
In the first case, the runtime might rely on the functionality offered
by theOS, while in the latter case, the runtime is part of the firmware
image. Regardless of the runtime deployment method, the runtime
usually contains distinct but interconnected components that en-
able core functionality such as: executing the control application,
I/O delivery, network communications, cryptographic functions,
logging, event and exception handling, facilitating atomic opera-
tions, and more. Some components are solely purposed to interact
with an open-source dependency (such as OpenSSL). In Figure 1, we
mark the component responsible for communication with OpenSSL
as part of the proprietary codebase. The reason behind this is that to
provide such interaction, the runtime implements additional logic
and wraps the core libraries into independent components of its
proprietary format.

2.2 Codesys Environment
Codesys is a multi-platform software that includes the development
system and the runtime for target ICS devices. The runtime is a col-
lection of components with a modular architecture implemented as

FieldFuzz: In Situ Blackbox Fuzzing of Proprietary Industrial Automation Runtimes via the Network RAID ’23, October 2023, Hong Kong

statically compiled and dynamically linked necessary libraries [1],
provided by Codesys, the device vendors, or open-source. At the
same time, the increase in traditional vulnerabilities in control
applications follows the evolution of the support of advanced ex-
ternal libraries [30]. For example, consider CVE-2020-6081, which
exploits code execution vulnerability in PLC_TASK functionality of
Codesys runtime 3.5.14.30, triggerable by a specially crafted net-
work packet, enabling remote code execution. Furthermore, the
runtime is also vulnerable to other classical vulnerabilities like
out-of-bounds read (CVE-2021-30194), write (CVE-2021-30193),
NULL pointer dereference (CVE-2021-29241), and more.

2.3 Prior Work
Protocol fuzzing. There is a considerable amount of work on
fuzzing network protocols. For instance, AFLNET [34], a greybox
fuzzer fed with a mutated corpus of recorded network messages,
utilizes state-feedback for guiding the fuzzer, and KiF [3] for fuzzing
session initiation protocol. In addition, Pulsar is a stateful black-box
fuzzing testing technique for proprietary network protocols that
utilize automated reverse engineering and simulation [15]. There
are ICS network protocol-specific solutions such as Peach*[29], a
coverage-based improvement over the standard Peach fuzzer [16].
PropFuzz [31] monitors the behavior of the controller along with
the network connection to detect unexpectedly long jitters in the
control process. Polar [28] utilizes static and dynamic taint analysis
to identify vulnerable operations with semantic aware mutation
to improve the fuzzing procedure. Finally, ICS3Fuzzer [11] is a
framework for discovering implementation bugs in the supervisory
software by fuzzing the network communication protocol employed
to communicate with the field devices. It synchronizes the controls
of the GUI operation and network communications to fuzz the en-
tire supervisory software. It should be noted that ICS3Fuzzer fuzzes
the supervisor software and is not concerned with fuzzing PLC
devices. While FieldFuzz can also do protocol fuzzing (as ICS com-
munication is a component), it focuses on vulnerability discovery
of any component integrated into the PLC.
Control application security. Research on control application
binaries focuses primarily on their safety verification. For instance,
Canet et al. [6] employ formal semantics and a model checking
tool to verify rich behaviors and properties of Instruction List PLC
programs. Other approaches detect malicious inputs to the PLC by
verifying against temporal safety properties [13], and monitoring
violations in specifications [22]. In VetPLC, Zhang et al. [40] utilize
static analysis for creating timed event graphs combined with in-
variant data traces to detect hidden safety violations. Guo et al. [18]
automatically translate control logic into C and perform symbolic
execution to generate test cases. On the other hand, AttkFinder [7]
uses information flow-guided symbolic execution on an intermedi-
ate representation. Keliris et al. [26] reverse-engineered the Codesys
v2.3 file format for control application binaries to propose an auto-
mated on-the-fly attack formulation. Similarly, CLIK [25] automat-
ically modifies control logic executing on a PLC, and sends false
data to the engineering software using captured network traffic.

The closest work on directly fuzzing industrial binaries is ICS-
Fuzz [38], a fuzzing framework for primarily fuzzing control appli-
cations. It supplies inputs to the control binary by overwriting the

value at the memory-mapped GPIO and collects coverage metrics
by overwriting NOP instructions. It detected multiple crashes for a
synthetic control application binary dataset and a limited subset of
runtime functions. However, as further discussed in Section 3.4, it
features numerous significant limitations.

3 FUZZING OF PROPRIETARY INDUSTRIAL
CONTROLLERS

This work addresses the following overall problem: How to system-
atically and efficiently identify (security) bugs in proprietary PLC
runtimes? As listed below, achieving this goal requires address-
ing several research questions. Then, we summarize research and
engineering challenges for achieving the overall goal.

3.1 Research Questions
• RQ1: How to systematically (and efficiently) test control applica-
tions running in situwithin a complex proprietarymulti-threaded
runtime such as the one used by Codesys?

• RQ2: How to guide the in situ testing of proprietary bare-metal
runtimes without local access to the device?

• RQ3: Is it possible to generalize the testing approach to be cross-
platform?

3.2 Research and Engineering Challenges
Fuzzing the PLC stack is a challenging task for the following rea-
sons:
• PLC runtimes are typically closed-source proprietary software,
necessitating black-box fuzzing and requiring extensive reverse
engineering.

• Cross-platform PLC runtime rehosting is very difficult due to
the complex interactions with hardware and peripherals. Even
in the more straightforward case of IoT firmware, recent efforts
have only achieved partial rehosting [10, 23]. At the same time,
symbolic execution of the runtime and its control applications
is also challenging, given the complexity of the binary, leaving
fuzzing on the actual (proprietary) hardware as the only option.

• The PLC runtime runs as a root process (on some platforms, as a
kernel module), and can be seen as a system-on-a-system since
it takes over significant hardware resources (timers, I/Os, etc.) to
ensure its real-time operation. Controlling it from a fuzzer is as
challenging as controlling a full-blown operating system.

3.3 Threat Model and Assumptions
We assume that the owner of the PLC conducts its fuzzing to iden-
tify security vulnerabilities in the runtime or the control application
executed within it. The PLC’s runtime is available as a binary with-
out debugging information, while the owner can install additional
control applications on the PLC (leveraged for injecting the Ghost
monitor). The goal is to identify vulnerabilities exploitable by an
adversary who can monitor, intercept and modify sensor [39] or
network communication to the PLC [26], essentially performing
a man-in-the-middle (MITM) attack (e.g., as in Stuxnet [27] and
IRONGATE [21]). Other similar research works employ the same
assumption, such as TCP veto [19] and CLIK [25].

RAID ’23, October 2023, Hong Kong Bytes et al.

Table 1: Comparison of FieldFuzz with state-of-the-art
for fuzzing control applications and runtime. #, G#, and
 represent non-existent, partial, and full support.

Works Runtime Control Application Misc

Su
pp

or
t

In
-c
on

te
xt

fu
zz
in
g

In
pu

td
el
iv
er
y

Co
ve
ra
ge

fe
ed
ba
ck

Cr
as
h
m
on

ito
rin

g
Su

pp
or
t

In
-r
un

tim
e
fu
zz
in
g

In
pu

td
el
iv
er
y

M
ul
ti
ve
nd

or
su
pp

or
t

Sc
an

cy
cl
e
co
nt
ro
l

Co
ve
ra
ge

fe
ed
ba
ck

Cr
as
h
m
on

ito
rin

g

In
pu

to
ve
rn

et
w
or
k

Ba
re
-m

et
al
fu
zz
in
g

AFL++ [12] G# G# # # # # # # # # # # # #
ICSFuzz [38] G# # G# # G# # G# # # G# # #
FieldFuzz G#

3.4 Limitations of existing methods
While other approaches can potentially be applied to fuzzing con-
trol logic applications, these either fail at addressing the challenges
mentioned above or feature significant limitations that hinder ef-
forts towards efficient and reliable in situ fuzzing (see Table 1). Two
such approaches are AFL++ [12], a generic general-purpose fuzzer,
and ICSFuzz [38], explicitly built for fuzzing control applications.

Vanilla AFL++ cannot fuzz control applications for several rea-
sons. Firstly, control binaries are compiled into bespoke formats
meant for execution within the context of their runtimes; thus,
AFL++ cannot execute them outside their runtime environment.
Moreover, AFL++ cannot control the runtime or the scan cycle, emu-
late input delivery from peripherals, monitor the control application
and runtime for crashes, and fails to perform in-runtime fuzzing
for such programs. Additionally, AFL++ generally requires shell
access, making it incompatible with industrial controllers where
the runtime is distributed as a bare-metal firmware image with
no underlying OS or kernel module. Finally, AFL++ lacks network
fuzzing capabilities, which prevents fuzzing proprietary PLCs.

ICSFuzz, on the other hand, can fuzz control applications running
on PLCs but features significant limitations that hamper fuzzing
efficiency. First, it utilizes the KBUS subsystem for input delivery to
the control application, necessitating a physical PLC, and making
it non-scalable. Due to a lack of scan cycle synchronization, it
periodically drops fuzzing inputs and is slow. Furthermore, ICSFuzz
lacks automation for observing the state of the control program and
involves manual crash monitoring. Finally, it also performs limited
stateless fuzzing of the shared library functions of the Codesys
runtime on WAGO PLC, discovering some crashes. However, due
to the stateless and out-of-context nature of the fuzzing, it misses
vulnerabilities requiring the execution context of the runtime.

AFL++ and ICSFuzz cannot directly interact with the runtime
by calling its specific functions, nor can they maintain the run-
time state. Consequently this also prevents them from fuzzing the
entirety of the runtime, limiting their reach and capabilities. Field-
Fuzz, on the other hand, is created explicitly for fuzzing in the ICS
environment and addresses all the above limitations. Its methodol-
ogy is designed to be particularly generic, and control application
fuzzing is just an instance of component fuzzing, as was the case
with protocol fuzzing discussed in Section 2.3.

Alarm Manager

OpenSSL

Input Generation

FieldFuzz

Input Delivery & Execution

Monitoring & Feedback

R
un

tim
e

Fr
on

t-E
nd

Ghost

PLC

Control
Application

Control
Samples

Coverage

Figure 2: Overview of FieldFuzz. It controls and tests the
target control application via the reversed runtime protocol
while Ghost obtains additional coverage data.

4 FIELDFUZZ
We address the research questions and reach our goals through a
novel custom fuzzing framework, which allows in situ fuzzing of
the control application (and other components) within the context
of the PLC runtime. To allow this fuzzing to run on black-box pro-
prietary PLC hardware, we fuzz via the network interface of the
runtime (addressing RQ1). To allow for more efficient fuzzing, we
inject a custom application, dubbed Ghost, into the target via the
control application loading mechanism (addressing RQ2), providing
FieldFuzz with fuzzing feedback. Utilizing the standardized (propri-
etary) network interface should also allow cross-platform fuzzing,
which we validate experimentally (addressing RQ3). Figure 2 pro-
vides a high-level overview of the proposed system.

4.1 Overview
As illustrated in more detail in Figure 3, our proposed methodology
consists of 3 interconnected stages. 1) In the Input Generation stage,
we leverage the IDE to communicate with the runtime, reverse engi-
neer its Codesys v3 communication protocol to understand packet
metadata, and build an input corpus for fuzzing. This input corpus
is further mutated based on the feedback from the Monitoring &
Feedback stage. 2) Since FieldFuzz utilizes the network interface to
provide inputs to the control application and the runtime, the Input
Delivery & Execution stage encapsulates the mutated input into
the proper packet structure. This packet is parsable by the runtime
and is sent over the network. It fuzzes the control application by
delivering inputs and controlling its execution by sending service
requests to the runtime for single scan cycle execution. 3) In the
Monitoring & Feedback stage, FieldFuzz communicates with the
runtime services to monitor the runtime state and collect feedback.
Additionally, it receives coverage feedback from our Ghost mon-
itor, injected into the runtime via the control application loading
mechanism. Finally, the complete feedback is relayed to the Input
Generation stage to generate future inputs and guide the fuzzing
efforts.

4.2 Input Generation
FieldFuzz leverages the proprietary communication protocol uti-
lized by Codesys to communicate with the runtime for enabling
fuzzing over the network. This protocol facilitates hierarchical
device-to-device communication between the engineering software
(IDE) and the target devices (PLC, HMI touch panels, Gateways).
The flexible nature of the protocol allows its routing in a single

FieldFuzz: In Situ Blackbox Fuzzing of Proprietary Industrial Automation Runtimes via the Network RAID ’23, October 2023, Hong Kong
In

te
gr

at
ed

D

ev
el

op
m

en
t

En
vi

ro
nm

en
t (

ID
E)

R
untim

e

Services

Ghost

Control
Application

Reverse
engineer the

protocol

Build

Corpus

Mutated
input

Packet
metadata Create service

layer network
packet

Run single
cycle

Monitor
runtime states

Collect
Feedback

Network
communication

Send
packet

Status
codes

Coverage

Input Generation Input Delivery & Execution

Execute

Monitoring & Feedback

State PLC

Figure 3: FieldFuzz methodology overview for fuzzing control applications and the runtime.

Table 2: Commands associated with components of our interest at the service layer. In bold, are the commands replicated by
FieldFuzz that are crucial for the fuzzing routines. Additional markings correspond to the fuzzing stage: ‘ I ’: Initialization, ‘ D ’:
Input delivery, ‘ E ’: Execution control, ‘ M ’: Monitoring.

Cmp Command ID Cmp Command ID Cmp Command ID Cmp Command ID

Cm
pD

ev
ic
e
[0
x0
1]

GetTargetIdent𝐼 ,𝑀 0x01

Cm
pA

pp
[0
x0
2]

DeleteApp 0x04
Cm

pA
pp

[0
x0
2]

ReadAppList𝐼 ,𝑀 0x18

Cm
pA

pp
[0
x0
2]

ReadProjectInfo 0x31
Login𝐼 0x02 Download 0x05 SetNextStatement 0x19 DefineFlow 0x32
Logout𝐼 0x03 OnlineChange 0x06 ReleaseForceList 0x20 ReadFlowValues 0x33

SessionCreate𝐼 0x0A DeviceDownload 0x07 UploadForceList 0x21 DownloadEncrypted 0x34
ResetOrigin 0x04 CreateDevApp 0x08 SingleCycle𝐷 0x22 ReadAppContent 0x35
EchoService 0x05 Start𝐼 0x10 CreateBootProject 0x23 SaveRetains 0x36

SetOperatingMode 0x06 Stop 0x11 ReInitApp 0x24 RestoreRetains 0x37
GetOperatingMode 0x07 Reset𝐼 ,𝐸 0x12 ReadAppStateList 0x25 GetAreaAddress𝐷 0x38
InteractiveLogin 0x08 SetBP 0x13 LoadBootApp 0x26 LeaveExecpointsActive 0x39
RenameNode 0x09 ReadStatus𝑀 0x14 RegisterBootApp 0x27 ClaimExecpointsForApp 0x40

Cm
pA

pp
[0
x0
2] Login𝐼 0x01 DeleteBP 0x15 CheckFileConsistency 0x28 CmpMonitor2

[0x1B]
Read 0x01

Logout𝐼 0x02 ReadCallStack 0x16 ReadAppInfo𝐼 0x29 Write𝐷 0x02

CreateApp 0x03 GetAreaOffset 0x17 DownloadCompact 0x30 CmpPlcShell
[0x11] Execute𝑀,𝐸 0x01

industrial network with diverse segments of Ethernet, CAN, Se-
rial, Sercos, and other media. Without loss of generality, FieldFuzz
connects to field devices with TCP over Ethernet.

To gain sufficient knowledge for implementing FieldFuzz, we
developed a complete Wireshark dissector for the Codesys v3 com-
munication protocol, written in Lua. Using the dissector’s parsing
and filtering capabilities on the captured traffic, combined with
manual reverse engineering of the runtime, and published infor-
mation [32], we extracted all the information needed to develop
FieldFuzz. This also allowed us to collect a corpus of valid inter-
actions with components, and communication patterns required
for stateful (maintaining session and runtime state) fuzzing. In Sec-
tion 5, we discuss and estimate the manual steps that are required
to fuzz the runtime components.

The runtime utilizes a proprietary network stack to facilitate
network communication between nodes1, with four layers:
Block layer. This layer is responsible for communication over the
physical interfaces. It processes a verification number and the total
number of bytes in the packet. It then transfers the rest of the packet
to the Datagram layer.
Datagram layer. This layer detects Codesys nodes in the network
and routes the packets appropriately. It parses the verification num-
ber, hop information structure, a service_group_id identifying the

1Detailed information about the network stack is available in [32].

destination service, a packet length field, the sender and receiver
addresses, and optional padding.
Channel layer. This layer ensures synchronized communication,
integrity verification, and delivery acknowledgment. Communica-
tions rely on opening, maintaining, and closing communication
channels. Beyond data, packets contain an ID that indicates the
desired functionality concerning channel management, a flag field,
a channel_id for identifying the open channel, and packet metadata
(e.g., checksums, acknowledgment IDs, etc.).
Service layer. This layer is responsible for querying the requested
service and transmitting the operating settings. Among others, the
message in this layer contains the service_group_id field, which
refers to the unique ID that the runtime uses internally to identify
available services. The message contains command_id to indicate
the target command within a specific service. Finally, the message
also features session, content, and protocol metadata fields.

We identify the invariant and variable fields in the packet struc-
ture based on the packet captures collected from the network com-
munication between the Codesys IDE and the runtime. Invariant
fields are the metadata information required by FieldFuzz to con-
struct the input delivery packet, such as service group (identifying
the requested service), command ID (identifying the requested
runtime command), and more. Such fields do not change values
between similar categories of requests. On the other hand, variable

RAID ’23, October 2023, Hong Kong Bytes et al.

fields whose value changes in the communication are the poten-
tial fuzzing inputs. For instance, if a user forces a value change
for a variable in the control application, the varying fields will be
limited to the user-specified forced input value, address offsets for
the variable in the control application memory space, the size of
the variable, session identifiers, and more. However, the invariant
fields, such as service and command IDs, will remain consistent,
making them easily identifiable. Using such a procedure, we build
metadata information for requesting particular runtime services,
and identify fuzzing input fields. Typically, Service Group IDs (2
bytes) for the vendor-added components specific to a runtime vari-
ant are enumerable and within a dedicated range beginning from
0x100, along with the Command IDs (2 bytes). FieldFuzz sequen-
tially enumerates the 2 bytes of the Command ID and reads the
returned status code to determine existing commands. Some of the
commands validate the device-level and application-level session
or both. The standard status codes indicate which commands do
not exist for the enumerated Service Group ID. We save the valid
tuples as component interfaces for fuzzing.

Table 2 presents a subset of commands associated with a select
few runtime components and is crucial for our fuzzing routines. The
commands identified and replicated by FieldFuzz are denoted in bold
and marked according to their utilization in different stages of our
fuzzing methodology. While these are the commands whose input
format is pre-programmed and known to FieldFuzz, we show later
in Section 7 that FieldFuzz allows interaction with any component
of choice that is reachable from the network by specifying an ID
tuple for routing, and the corpus to produce the input.

4.3 Input Delivery & Execution
In literature, bare-metal IO modules are often utilized as the pri-
mary communication method for PLCs [14, 38]. However, such
an approach is not scalable and is often specific to the model or
series of the PLC. Another approach is to utilize the Modbus proto-
col from the Fieldbus family of network communication protocols.
However, such an approach would require the project to include the
Modbus client object to receive read and write commands, requir-
ing explicit declarations of exports in the control project, usually
disabled by default. Commonly, the HMI displays and modifies in-
puts to a program using the OPC Unified Architecture (OPC UA)
protocol. However, OPC UA support is not present in all Codesys
distributions and requires a license; otherwise, the OPC UA server
shuts down after 2 hours. Furthermore, using symbolic access for
input delivery requires implicit mapping of the global variable list
to the project, allowing the operator workstation to access chosen
variables by name.

The abovementioned approaches require explicit configuration
modification in the control project to support specific Fieldbus pro-
tocols and symbolic variables. To address this problem, FieldFuzz
utilizes a universal approach and does not require project modifica-
tion while enabling read and write to any variable regardless of its
type and visibility scope. It utilizes tags, a nested binary structure
to send requests, command payloads, and replies to the service
layer of the runtime as defined in its proprietary network stack.
Each tag starts with its ID: tag_id, which often corresponds to the
type of payload or status code, the tag_size, tag_data, and some

additional_data. The tag also contains data_size; the size of the
supplied data, write_value; the value to be written, and write_offset,
which is the offset of the target variable from the start of the data
section.

FieldFuzz initiates communication with the runtime over the
network using its proprietary protocol while the runtime listens on
multiple ports for connection requests (TCP 1217, 11740, and UDP
1740 to 1743). Depending on the requested service layer command,
it establishes sessions in at least two stages to reliably invoke com-
mands in the target components: the device, and the application
login stage. FieldFuzz utilizes the CmpDevice Login command to
retrieve a device-level session handle from the runtime, which the
runtime associates with the channel in its mapping tables. It then
retrieves a list of loaded applications from CmpApp component. If the
application is loaded on the PLC, FieldFuzz can open an additional
session via the CmpApp Login command to obtain the application
session ID and its handle. The session information is maintained
to perform stateful operations with the runtime. Finally, it imple-
ments a keepalive mechanism to keep the channel active despite
the timeout imposed by the runtime.
Input delivery to the runtime components. To deliver inputs to
the control application and other runtime components, FieldFuzz
first creates a (service_group_id, command_id) tuple to identify
the appropriate component for routing the input. Next, using the
recursive tag encoder algorithm [33], it builds a binary tag structure
to place the value into a corresponding field based on the corpus of
pre-known Tag IDs and their value formats. The resulting binary
structure is included in the body of a Service Layer packet. Next,
FieldFuzz calculates a CRC32 checksum for this data, constructs a
packet header, and encapsulates it with all the remaining layers.

For delivering the input, FieldFuzz sends this prepared packet
containing the fuzzing input to the runtime over the active chan-
nel. The Block Layer of the runtime receives the packet, processes
it, and passes it to a component that parses the service_group_id
from the packet header and routes the packet to the target compo-
nent. Finally, the communication handler of the target component
performs sanity checks for the data format and passes the input
binary stream to the function that implements the corresponding
command_id.

It should be noted that since FieldFuzz provides fuzzing inputs
to the control application and the runtime components over the
network, it needs to maintain the session information relating to
the state of the corresponding runtime component. It maintains the
state of blk_id and ack_id counters required for generating valid
subsequent packet headers. It also stores the application session ID,
and its handle. Furthermore, identifying known states is essential
for uncovering vulnerabilities since the components of the runtime
are interconnected such that they call functions and access struc-
tures belonging to each other. This process provides inputs to target
components, enabling stateful component fuzzing.
Input delivery to the control application. Delivering inputs to
the control application involves several additional routines. Field-
Fuzz achieves this by performing awrite operation over the network
to the control application memory segment. Typically, the runtime
separates data and code (as compiled instructions) into separate
memory segments, referred to as Area0 and Area3, respectively.
FieldFuzz reads and writes variables using relative offset addresses

FieldFuzz: In Situ Blackbox Fuzzing of Proprietary Industrial Automation Runtimes via the Network RAID ’23, October 2023, Hong Kong

in the Area0 memory segment. For this, it constructs short bytecode
programs as inputs for the CmpMonitor2 component, using a set of
58 opcodes specific to the runtime. Depending on the syntax, the
opcodes can read inputs from the interpreter stack and receive up
to 4 inline arguments. For implementation, we extract the opcode
table from the reverse-engineered runtime binary and map their
names and format using a relevant decompiled dynamic library
loaded by the Codesys IDE on the operator workstation. The inter-
preter performs various checks and returns the status code in the
first byte of the tag (e.g., wrong pointer, buffer overrun, and more).
FieldFuzz detects a successful read operation with the presence
of tag 0x40 in the reply, and a failed attempt by the presence of
tag 0x41. In contrast, the write operation requires a more complex
bytecode program, and returns no data in reply for a successful
attempt. Nevertheless, FieldFuzz can still verify the write (input
delivery) operation by detecting the presence of tag 0x41.

4.4 Monitoring & Feedback
Understanding code coverage is essential to assessing the effec-
tiveness of our fuzzing campaigns. However, this is particularly
challenging since the Codesys runtime is proprietary software. As
a result, we are forced to utilize blackbox fuzzing on the binary
level without access to the source code, which is not straightfor-
ward since the runtime employs a binary packing mechanism as
an anti-tampering measure, hindering our efforts to locate relevant
code blocks corresponding to the components. Additional analysis
of the dumped memory regions of the runtime shows that the run-
time binary is stripped of its debug symbols during compilation,
further increasing the difficulty of locating interesting components
for fuzzing.

To address the challenges of visibility into the fuzzed execution
of the runtime components, FieldFuzz utilizes a combination of
status codes, and a Ghost monitor loaded using the standard control
program loading mechanism, to enable and infer code coverage.
Status code for execution feedback.When a component executes
a requested command, it returns a value to the callee, indicating
the completion status of the requested operation. These internal
identifiers are called status codes and differ from Service Group IDs
mapped to the components.

As a code path coverage mechanism, FieldFuzz watches for the
status codes returned by the different layers of the Codesys v3 net-
work protocol stack and the output of various runtime components,
maintaining the status code sequence during the fuzzing session.
Based on the status code sequence changes resulting from mutated
inputs, it understands and differentiates the execution path inside
the component function. The status codes differ as the fuzzing input
traverses the lower network layers. Essentially, a different part of
the target function returns a different status code due to a change
in the execution path. Therefore, whenever fuzzing uncovers a new
execution path (by observing the status code), FieldFuzz adds it to
the list of known states and initiates a new fuzzing campaign. For
example, a reply with only Channel Layer status codes indicates a
failure to reach the Service Layer for processing. The status codes
can determine whether the command reached the target function
or failed due to the lack of authentication, wrong Command ID,

Runtime
Memory

Dump

1

Ghost

Configure memory addresses

2 Spawn runtime & Attach Frida

3 Intercept ServiceRegister()

4 Stalk Handlers

5 Process offsets from
dynamic recompilations

6 Disassemble

Runtime

Frida Interc.

0x55555D900AC0
0x55555D8FEEC0
0x55555D8FF100
0x55555D8FF800
0x55555D8FFA10
0x55555D8FFB60

Handler Pointers

0x084feb47
0x084fec30
0x084fec50
0x084fed42
0x084fee05
0x084fee48

Basic Block offsets

Frida Stalker

7 Assess Coverage & OutputCoverage
Statistics

%

Figure 4: The steps involved in the operation of Ghost.

or incorrect payload format. Some of the notable status codes in-
clude those corresponding to missing tags (L7TagMissing), and
non-existing command groups (L7UnknownCmdGrp) or commands
(L7UnknownCmd).

To retrieve the status of the execution of the control application
binary, FieldFuzz surveys the CmpApp and CmpPlcShell compo-
nents. Upon exception, a core dump and crash log from CmpLog
are retrieved from the controller remotely for further investigation.
Furthermore, to detect crashes of the runtime, it constantly mon-
itors the latency in the channel and the consistency of the Block
Layer counter.
Ghost for code coverage feedback. During the runtime initial-
ization phase, component setup functions make calls to a function
used to register runtime components. These calls include mem-
ory pointers to the entry points of the runtime components. In
order to capture these memory pointers, we leverage Frida[35], a
dynamic instrumentation toolkit widely used for reverse engineer-
ing. Using Frida, we dynamically intercept calls to the registration
function and locate the memory pointers to the component entry
point. Then, using these pointers as starting points, we analyze
the components and locate all the memory segments relevant to
their commands. The use of Frida in our toolchain does not hamper
our approach on more limited systems, as it can be compiled for a
variety of architectures and utilized through its C API.

Accurate assembly instruction-level coverage requires instru-
mentation and monitoring of the spawned runtime threads for han-
dling command invocation. Unfortunately, anti-tampering mech-
anisms hamper attempts at static instrumentation, so we utilize
Frida to monitor for calls to component functions. When a call is
intercepted, we launch Frida’s code tracing engine that dynami-
cally recompiles assembly code and traces the executing thread. By
getting feedback from the recompilation process, we can keep track
of executed basic blocks using their offsets in memory.

To automate this process, we introduce Ghost, our tool for dy-
namic black box instrumentation of the Codesys runtime to obtain
accurate instruction-level coverage statistics (see Figure 4). Ghost
is initially configured with access to the runtime memory dump
and the relevant memory segments of the target components. Upon
execution, it spawns the runtime and immediately independently
attaches a set of scripts to capture all runtime component setup calls

RAID ’23, October 2023, Hong Kong Bytes et al.

Fuzzing Codesys

runtime

F
u

zzin
g

 C
o

n
tro

l

ap
p

licatio
n

FieldFuzz

UbuntuF
u

zz
er

N
o

d
e

Codesys Runtime

[Linux SL]

Ubuntu VM

Codesys Runtime

[Linux SL x64]

Ubuntu VM

Control Application

Hypervisor

In
te

l
X

eo
n

Figure 5: Experimental setup for fuzzing control applications
and the runtime.

to avoid Codesys anti-tampering measures that execute on startup.
Having captured the pointers to component functions, Ghost uti-
lizes Frida to capture calls to them and consequently traces the
runtime threads executing component code. While fuzzing with
FieldFuzz, Ghost receives the notifications of dynamic recompi-
lation events with their memory offsets, indicating the current
execution of a basic block. Ghost then disassembles the relevant
memory segment and keeps track of the executed assembly instruc-
tions. Upon exit, it saves the context information for component
functions, a log of the dynamic recompilation events, and extensive
instruction-level coverage information.

4.5 Protocol Dissector
To gain sufficient knowledge for implementing FieldFuzz and to
support the fuzzing campaigns, we have developed a complete
Wireshark dissector for the Codesys v3 communication protocol.
The full-featured dissector for Codesys v3 protocol enables the use
of Wireshark with advanced filter expressions and custom columns
for every aspect of the Codesys v3 stack. Based on the knowledge
gained in this work, we also provide the dissector with symbols
to translate the packet data into human-readable component, com-
mand and field names. The dissector significantly streamlines the
process of input corpus collection, crash investigation and exploit
development. It is implemented using the Wireshark Lua API and
provides the following capabilities:

(1) Live decoding of the network traffic capture (IDE-to-PLC,
PLC-to-PLC, Gateways, HMIs)

(2) Analysis of the pre-recorded dump files
(3) Detection of the Codesys network stack on non-standard

ports using magic constants
(4) Using advanced filter expressions for all layers of the Codesys

v3 stack
(5) Using custom columns for all layers of the Codesys v3 stack
(6) Choosing between the use of human-readable symbols and

raw values for filters and column data or combining both
(7) Direct access to the Layer 7 binary tag tree and recursive

extraction of the payloads

5 FUZZING CAMPAIGNS
To address RQ1 and RQ2, we apply the FieldFuzz framework to fuzz
the Codesys runtime and control application binaries. An overview
of the binaries is provided in Sections 6 and 7, respectively.

Table 3: Components and service groups at the service layer.

Component ID Component ID
CmpAlarmManager 0x18 CmpLog 0x05

CmpApp 0x02 CmpMonitor 0x03
CmpAppBP 0x12 CmpMonitor2 0x1B

CmpAppForce 0x13 CmpOpenSSL 0x22
CmpCodeMeter 0x1D CmpSettings 0x06
CmpCoreDump 0x1F CmpTraceMgr 0x0F
CmpDevice 0x10 CmpUserMgr 0x0C

CmpFileTransfer 0x08 CmpVisuServer 0x04
CmpIecVarAccess 0x09 CmpPlcShell 0x11

CmpIoMgr 0x0B SysEthernet 0x07

5.1 Fuzzing Setup
Figure 5 shows the basic experimental setup for fuzzing the Codesys
runtime and control application binaries. We utilize two virtual
machines with the Codesys runtime variant for Linux, which run
on the Intel Xeon-based hypervisor server. The runtime includes
a standard init.d wrapper that facilitates the automatic runtime
restart after a crash caused by FieldFuzz. In addition, we disable the
system-wide address space layout randomization (ASLR) on these
virtualized nodes to simplify the crash investigation.
Scalability options. It should be noted that FieldFuzz supports
directly fuzzing physical devices, however, these are optional. Field-
Fuzz can utilize multiple virtual machines to scale the fuzzing setup.
On the other hand, another potential possibility to scale the exper-
iment in a single VM is to utilize the ability of the channel layer
of the runtime to handle multiple channels simultaneously, a func-
tionality supported by FieldFuzz. While FieldFuzz primarily uses
TCP over Ethernet, it can fuzz any node in the plant by relaying the
packets through other devices, including the nodes of the network
that are not reachable by Ethernet, such as those connected by
serial interface or CAN bus.
Estimation of manual efforts. Assuming that the operator is
already familiar with the FieldFuzz Framework and the Wireshark
dissector, the manual efforts required to derive an input corpus
and setup fuzzing for a typical standard component of the runtime
can be roughly estimated as one hour of work. If no traffic capture
is available, an input corpus can be bootstrapped through limited
reverse-engineering of the component packet handler in the run-
time. In our experience during reverse engineering the runtime,
we found that packet handler code is quite structured and deriving
sufficient information from the binary to produce correct messages
can be done in a few hours.
Identifying fuzzing runtime targets. As discussed earlier, the
runtime is a collection of components (including the component
responsible for executing control binaries), so fuzzing the runtime
implies interaction with the components responsible for its func-
tionality. However, despite the runtime having a single generic
codebase, its actual builds can significantly vary based on the target
architecture, vendor modifications, and hardware platform con-
straints. Therefore, the first step is to create a complete list of all
instantiated components. To achieve that, we start by extracting the
interfaces of components reachable from the network. The compo-
nent interfaces are defined as the tuple: (Service Group, Command).
First, we identify the runtime components loaded by the particular
runtime from the boot log of the device and its device description

FieldFuzz: In Situ Blackbox Fuzzing of Proprietary Industrial Automation Runtimes via the Network RAID ’23, October 2023, Hong Kong

file used by the IDE. Next, we identify the Service Group IDs of the
loaded components. For the generic set of components developed by
Codesys, we get this information from the decompiled libraries of
the IDE and the captured network communication. Table 3 presents
a subset of components in our target runtime variant.
Fuzzing inputs. To collect a dataset of valid inputs, we trigger
commands with the Codesys IDE and capture its communication
with the runtime. We extract Service layer payloads and decode
the nested binary tag structure using our Wireshark dissector. We
then save the tag IDs, structure, and valid payloads for each (Ser-
vice Group, Command) tuple. Next, we determine the packet fields
derived from the session identifier to identify the variant fields
for maintaining state information. Finally, we save these inputs as
seeds with the identified format for the current runtime distribution.
After creating an initial corpus of input seeds, we utilize python
bindings for libradamsa [20] mutators ported from AFL++ [12]
to mutate the byte payload. We generate byte blocks of variable
length to pass them inside the tags without mutating the tag ID
and preserving the remaining structure of the corpus. To prevent
fragmentation of the packets that carry the generated payloads, we
calculate the maximum length constraint for all tags in order to
not exceed the fragmentation threshold value of the runtime (512
bytes in the default installation) cumulatively, including the layer
headers. We apply the set of techniques provided by the mutation
engine of libradamsa in default execution mode (including Bit and
Byte Flipping, Block Swapping, Value Substitution, Byte expansion)
to form unexpected data inside the byte blocks. It should be em-
phasized that mutations are semi-random and are not currently
guided by coverage (which is a topic of future work). FieldFuzz then
delivers the input to the runtime over the network.
Code coverage. The Ghost monitor calculates coverage on the
component, handler, and command level (see Section 4.4). On the
component level, coverage includes all the memory segments asso-
ciated with a component, complete with the command code and its
entry-point function. Entry function coverage indicates the percent-
age of instructions executed within the entry function for running
the various component commands. Finally, command coverage is
limited to the memory segments relevant to each command.
Deployment. Performing the above steps and preparing to run
Ghost to obtain coverage information can be particularly challeng-
ing on PLCs that do not offer shell access. We work around this by
exploiting functionality readily available within Codesys by em-
bedding the relevant binaries into the control application project
such that it is downloaded onto the local file system while loading
the control application binary on the PLC. It also loads the Ghost
deployment script written in Structured Text employing the native
SysFileCopy API (available in the SysFile library) to relocate the
binary files in the file system. Since the runtime runs with root
privileges, we utilize SysFileOpen and SysFileWrite to modify
the CODESYSControl.cfg runtime configuration file by append-
ing [SysProcess]Command=AllowAll to it for enabling arbitrary
shell command execution. Having done this, we restart the runtime
through the IDE or reboot the target PLC to force the configuration
changes. Upon reboot, we use SysProcessExecuteCommand2 (part
of the SysProcess library) to perform the necessary setup and run
Ghost with root privileges.

Table 4: Code coverage recorded while fuzzing commands
belonging to the Codesys Trace Manager component.

Command Command ID Command Coverage
RecordAdd 0x0D 95.14%
PacketCreate 0x02 56.17%
PacketClose 0x06 97.56%

PacketComplete 0x04 97.56%
PacketStart 0x0A 97.56%
PacketRead 0X07 26.98%
PacketStop 0X0B 97.56%

PacketGetConfig 0X0F 71.54%
PacketOpen 0x05 92.5%

PacketReadList 0X01 90.48%

As a proof of concept, we run fuzzing campaigns on functions
of three standard components: CmpTraceMgr, CmpPlcShell, and
CmpDevice. To derive the input corpus and initialize the campaigns,
approximately one hour of manual work was required per each
fuzzed component. FieldFuzz was able to uncover a variety of
crashes, which we then analyzed, focusing on uncovering vulnera-
bilities. For brevity, we provide extensive discussions for one CVE
and shorter discussions for the others. It should be noted that the
CVEs found through our FieldFuzz campaigns could not have been
discovered using other state of the art fuzzers like ICSFuzz. This
is because the fuzzing process requires interacting with runtime
components which cannot be reached by these fuzzers.

5.2 Fuzzing CmpTraceMgr Component
(CVE-2022-22514)

Setup. To investigate the crash, we use FieldFuzz to generate a
standalone exploit from a template. It connects with a SoftPLC
(VM) node with full-featured debugging capabilities and sends the
service layer payload to the Codesys runtime. To observe critical
runtime errors, we enable core dumps and disable the error han-
dling behavior of the SysExcept component that intercepts POSIX
signals from the runtime for internal interpretation. We modify
CODESYSControl.cfg to disable the internal exception handler and
instruct the runtime to append the logs to a file with a permissive
log filtering mask. To record core dumps, we launch the runtime
binary (codesyscontrol.bin) as a standalone process outside its
init.d service wrapper and provide it with a -d flag for detailed
logging.
Crash analysis. FieldFuzz reported a crash for service group 0x0F,
command ID 0x0D, belonging to the CmpTraceMgr component. Our
examination of the original pcap file with the dissector revealed
that the recordAdd (0x0D) command (with a 148 bytes payload)
causes the crash. This payload incorporates three levels of nested
binary tags.

The CmpTraceMgr component consists of eight critical opera-
tions which are triggered by the service layer commands in se-
quence. This default component is available in most full-featured
distributions of the runtime. It is a backend for the Trace program
organization unit object used in control application projects for
recording and visualizing variable trends in the physical process.
Here, the recordAdd operation causes SEGFAULT because when the
command is sent out-of-order, the component enters an unexpected
state operating on a pointer to a structure of a packet object that

RAID ’23, October 2023, Hong Kong Bytes et al.

is never correctly initialized. The offset calculation into this non-
existent structure is controlled by FieldFuzz input. An adversary can
exploit this offset, forcing the runtime to perform mov operations
on invalid memory addresses.
Call stack investigation. At least 12 network stack functions
handle the packet before it finally reaches the function related to
CmpSrv, which is the top component of the network stack. Finally,
CmpSrv calls an exported hook function of CmpTraceMgr, which
acts as a handler for all service layer commands for the service group
0x0F. The hook function extracts the command ID from the packet
header and jumps into the condition based on command 0x0D.
Functions imported from the CmpBinTagUtil component parse the
fuzzing input, and decode the 17 binary tags, including tag 0x40
which influences calculations of a memory address offset, the value
for which is controlled by FieldFuzz. Consequently, a SIGSEGV oc-
curs in the command handler function for the recordAdd command,
caused by a mov instruction attempting to access the nonexistent
memory address. The corrupted memory offset is from a structure
that stores a tracing packet derived from the value supplied by
FieldFuzz.
Status code example. The component changes its returned sta-
tus codes based on the multiple execution path conditions. The
recordAdd function does several sanity checks for the supplied
value. For example, a reply containing the tag 0xFF7F with a status
code 0x02 is caused by the payloads in tag 0x40 that are outside the
expected range, such as 0x0 and 0xFFFFFFFF, preventing the crash
by sanitizing inputs before reaching the vulnerable instruction. An-
other state of the component, indicated by the returned status code
0x11, neither causes a crash nor forms a successful trace packet
processing result. In this case, the payload falls into the allowed
range and passes the elementary entry checks of the recordAdd
function. This input reaches the vulnerable read operation; how-
ever, the exception is handled, and the component returns a packet
without any data.
Coverage. Table 4 presents the coverage reported by Ghost during
fuzzing campaigns on the CmpTraceMgr component. Our fuzzing
strategy obtained high coverage for the majority of the component
commands. In the cases of PacketCreate and PacketRead, upon
examining the relevant instruction blocks, low coverage can be
attributed to a lack of generation of stateful sequence command
events during input mutation. Employing stateful input mutation
strategies can improve the coverage for such command [5, 8, 41].
However, input mutation strategies are orthogonal to our work and
will be explored in future research.

This vulnerability has been reported to the vendor, and was
assigned CVE-2022-22514.

5.3 Fuzzing CmpDevice Component
(CVE-2022-22508)

CmpDevice is an essential component responsible for the authenti-
cation and network discovery of the PLC. It uses the SetNodeName
(0x09) command for changing an identification string employed
for in-network discovery and initiating a connection with the PLC.
Unfortunately, a specially crafted packet sent to the runtime pre-
vents the IDE from communicating with the PLC, resulting in a
connection error. Moreover, this issue is persistent even across

reboots because the payload from the network packet ends up in
a persistent runtime configuration file and keeps restoring upon
device boot. The vulnerability was reported to the vendor, and
CVE-2022-22508 was assigned.

The runtime becomes unresponsive due to a specially crafted
packet sent to Service Group 0x01 (CmpDevice), command 0x09
(SetNodeName), with tag 0x58, and a long bytestring consisting of
non-printable characters as a service layer payload. This crafted
bytestring is not sanitized properly by CmpDevice before being
passed to the local SysTarget component (potentially vendor-
specific, we tested on official Codesys distributions), and then stored
permanently in the NodeNameUnicode property field. The device
is not accessible even after a reboot because the node identifier is
appended to the CODESYSControl.cfg configuration file as a new
record. CmpSettings processes this file which is then consumed
by SysTarget. The connecting client attempts to perform device
discovery through the channel layer and calls CmpDevice again
to perform GetTargetIdent and CreateSession commands. Sys-
tem log messages suggest that CmpNameServiceServer, a channel
layer component that exports its functions to CmpRouter and imple-
ments a Codesys-specific naming system protocol [32], processes
the bytestring. Consequently, the device fails to respond to further
scan requests, and the dynamic libraries of the Codesys IDE raise
several exceptions. Manual removal of the SysTarget section from
the runtime configuration file restores the operational state of the
device after a reboot.

5.4 Fuzzing CmpPlcShell Component
(CVE-2022-22507)

CmpPlcShell is a default built-in component that fetches informa-
tion from the device, such as firmware revision and system load.
It can also perform system diagnostics of the device by sending
string commands of a particular format. An adversary can trigger
a segmentation fault, crashing all the runtime threads by sending a
specially crafted payload from the Codesys v3 network stack. The
vulnerability was reported to the vendor, and CVE-2022-22507was
assigned.

The main command body is passed inside tag 0x10, while an
additional tag 0x12 is required by some commands for handling the
arguments. FieldFuzz detects the crash for the tag 0x12 because the
runtime performs a memory read operation outside valid memory
boundaries. By sending a sequence of packets, it is possible to force
the runtime to perform memory access operations and enumerate
the valid address range with the offset increments. As the offset
grows in each operation by an internal loop, an unhandled SIGSEGV
fault occurs once the operation exceeds valid memory boundaries.

6 CROSS-ARCHITECTURE GENERALIZATION
To address RQ3, we discuss the cross-architecture generalization
of our approach. While the runtime has a single generic codebase,
specifics for each target platform and architecture are reflected in
different build variants. For instance, on platforms driven by the
VxWorks real-time operating system (RTOS), the entire Codesys
runtime is shipped as a kernel module. The embedded bare-metal
runtime variant has a much smaller set of components but im-
plements more complex system components to interact with the

FieldFuzz: In Situ Blackbox Fuzzing of Proprietary Industrial Automation Runtimes via the Network RAID ’23, October 2023, Hong Kong

Table 5: Codesys runtime binaries for different targets.

Device Arch Size (MB) Packed
WAGO PFC200 arm32 4.6 ✗

BeagleBone Black arm32 5.8 ✓

Linux SoftPLC x64 9.7 ✓

Raspberry Pi arm32 5.5 ✓

SIMATIC IOT2000 x32 6.4 ✗

emPC-A/iMX6 arm32 6 ✓

Windows RTE x32 103.9 ✓

hardware. In more modern ICS devices powered by RTLinux (such
as WAGO Touch Panel 600 series or WAGO PFC200 PLC), the run-
time operates as root in the userspace and reuses resources provided
by the OS, such as network sockets, timers, and file descriptors.
Runtime binaries. As shown in Table 5, the size of the runtime
binaries varies across various architectures from 4.6 MB to 103.9
MB. This is because the number of components and shared libraries
linked statically or dynamically differs across different variants. In
addition, some binaries are packed, involving license management
and anti-tamperingmechanisms. Our primary distribution of choice
in this work (Codesys Control for Linux x64) employs a packing
mechanism that we reverse dynamically by dumping the memory
segments of the live process. On the other hand, the runtime variant
for Windows devices (Codesys Control RTE x32) includes custom
renamed and encrypted sections. From the section names and the
protection function, we have noticed that these are managed by
Wibu-Systems CodeMeter protection software [37], which has also
been used by Siemens and Rockwell [9].

SysMem, SysSocket, and SysCom are some critical hardware-
dependent components in the runtime. At some point in the exe-
cution path, other components rely on the exported functions pro-
vided by these lower-level system components, which can influence
the behavior of the crashes. Therefore, to assess the applicability of
our findings, we test the attacks against different runtime variants
by employing physical devices, as shown in Figure 6. We utilize
a replayer node that initiates communication with the Gateway.
The latter forwards the communications to multiple platforms in
parallel. In this case, the Intel Xeon server acts as a VM hypervisor
and the Gateway to WAGO PFC200, Raspberry Pi 4, and Odroid C2.
This setup enables FieldFuzz to quickly test the same payload across
multiple architectures and variants of the runtime. We observe the
differences in the behavior of the crashes to adjust the input pay-
load and port it between architectures. As a proof of concept, we
replay the fuzzing inputs for crashing the CmpTraceMgr component
(CVE-2022-22514)), which is available on all of the tested devices.
The payload corresponding to the input is passed through the tag
0x40 and is four bytes long. On an x86 system with ASLR disabled,
the crash input causes a SIGSEGV. However, with ASLR enabled,
replaying the same value does not lead to a stable SIGSEGV because
the resulting offset in the recordAdd function in most of the trials
points to an unexpected but valid memory address. As a result, the
command function of the component returns a status code (0x11),
preventing the crash. On an x64 system, even enumerating the
entire 4-byte range did not cause a crash. Nevertheless, such run-
time variants accept longer payloads (8 bytes), eventually leading
to the crash. The payload behaves identically on Intel and ARM,

causing crashes on both the VM and physical devices; it only differs
between 32 and 64 bit architectures of the target device.

7 FUZZING CONTROL APPLICATION
BINARIES

We are now ready to demonstrate the application of FieldFuzz to
the main goal of control application binary fuzzing. The compiled
control application runs in the thread spawned by the SysTask
component, which is not exported to the network and thus cannot
be influenced directly. Instead, FieldFuzz fuzzes the binary inside
the runtime context by controlling its execution through the CmpApp
component. The latter offers complete control over start, stop, cold
reset, and single-cycle operations with the runtime. Table 2 shows
the commands replicated for CmpApp.

To set up the experiment, FieldFuzz logs in to the device and
starts the control application. Next, it takes over the execution
control of the application while providing fuzzing inputs for every
scan cycle. Since FieldFuzz has complete control over the scan cycle,
it does not drop any inputs due to a lack of synchronization. Finally,
it logs crash inputs based on the status feedback received.
Synthetic binaries. We use the same dataset of synthetic appli-
cations as used in ICSFuzz [38] for performing the experimental
evaluation of FieldFuzz. The dataset comprises control applications
written in Structured Text that include introduced vulnerabilities
in their imported functions, such as buffer overflows and out-of-
bounds write. These vulnerabilities exist due to missing bound
checks in imported IEC 61131 library functions. Thus, the family of
synthetic applications labeled in the dataset as bf_mmove can cause
a buffer overflow under certain conditions due to insufficient buffer
size validation before calling a SysMemMove library function. Similar
to the control application, this library is written in Structured Text.
By looking deeper into its implementation in the runtime, we ob-
serve that SysMem component of the runtime provides the backend
for this library and is implemented in C. The call of this wrapper,
initiated by the control application, ends up in C code which trig-
gers the native memmove function. For this reason, the crash in a
vulnerable control application causes the failure of its thread and
affects the entire runtime process (running with root privileges).
Out-of-bounds write vulnerabilities involve an uninitialized array
with a variable index manipulated to write at an arbitrary location.
The numbers in the names of the vulnerable binaries correlate with
the complexity of the code. For instance, bf_mmove_1 is the sim-
plest initialization of the SysMemMove, while bf_mmove_12 consists
of multiple loops and conditional branching statements.

Table 6 shows the results of fuzzing the control application bi-
nary and its comparison with ICSFuzz. As the table demonstrates,
on average FieldFuzz is ≈4.1x and ≈8.3x faster for arm32 and x64
(Intel) runtime variants, respectively, compared to ICSFuzz. The
performance advantage of FieldFuzz comes from the communica-
tion protocol-based input delivery and complete control over the
scan cycle. On the other hand, ICSFuzz incurs high latency and
drops inputs during fuzzing when it misses the scan input cycle of
the runtime. It should be noted that the number of crashes reported
in Table 6 are a result of intentionally introduced vulnerabilities in
the synthetic control applications used for performance evaluation.
They concern solely the control applications, not the runtime itself.

RAID ’23, October 2023, Hong Kong Bytes et al.

Linux

Codesys Runtime

[32 bit]

W
A

G
O

P
F

C
 2

0
0 Codesys Runtime

[Rpi SL x32]

Linux

R
P

i

Codesys Runtime

[Linux ARM SL x64]

LinuxO
d

ro
id

C
2

Rinetd

[Gateway Server]

Ubuntu

In
te

l

X
eo

n

FieldFuzz

UbuntuF
u

zz
er

N
o

d
e

Figure 6: Experimental setup for cross-architecture validation of the fuzzing results.

Table 6: Performance comparison of FieldFuzz against ICSFuzz. The execution speed metrics for FieldFuzz and ICSFuzz
correspond to employing one VM and physical PLC, respectively. Markings: 1 - BeagleBone (ARM), 2 - Linux x64 (Intel), 3 -
Wago PFC100 (ARM).

Control
Applications

Execution Speed
(inputs/sec)

First Crash
(seconds)

First Crash
(inputs) Crashes

FieldFuzz [38] FieldFuzz [38] FieldFuzz [38] FieldFuzz [38]
A81 x642 A83 A81 x642 A83 A81 x642 A83 A81 x642 A83

bf_mcpy_1 294.6 593 70.88 0.014 0.25 234 6 148 15270 8289 7876 32
bf_mcpy_6 286.4 642.4 64.2 0.071 1.43 188 22 898 12172 290 2384 21
bf_mcpy_8 244.6 645.6 66.06 21.34 7.08 279 5124 4566 18216 145 359 17
bf_mcpy_12 320.6 526.2 62.11 0.584 1.95 426 181 999 26645 847 977 9
bf_mset_1 223.3 560.6 64.56 0.027 0.04 208 8 22 13441 22200 18105 21
bf_mset_3 268.6 571.2 62.68 0.063 0.03 174 8 17 10906 21723 16085 24
bf_mset_5 289.3 503.2 68.8 0.008 0.56 254 2 281 17554 4447 4373 16
bf_mset_9 314.3 584.8 69.76 - 74.53 623 - 43216 43530 0 25 7

bf_mmove_1 291.6 660.2 64.63 0.025 0.005 176 1 2 11245 20006 16749 28
bf_mmove_4 245.3 578.2 63.1 0.008 0.003 159 1 1 10070 20146 15165 24
bf_mmove_7 232 573 66.31 0.007 0.005 229 1 3 15317 17010 14493 15
bf_mmove_12 257.3 508.2 64.53 - 182.14 783 - 92456 50643 0 15 6
oob_1_arr_1 278 598.8 71.86 2.06 0.14 55 556 83 3880 6121 6291 39
oob_1_arr_6 308 591 77.03 0.027 1.39 103 14 821 8085 5541 6600 28
oob_1_arr_9 284.6 571.2 69.78 - 273.8 105 - 155938 7326 0 12 27
oob_1_arr_13 297.2 507 75.2 12.11 97.86 207 3564 49165 27241 254 686 19
oob_2_arr_1 298.6 520.8 73.53 - 154.42 117 - 80080 8558 0 12 35
oob_2_arr_5 326.6 520.4 71.1 - 155.62 165 - 80662 22759 0 16 27
oob_2_arr_8 295.5 592.64 69.8 - 102.97 188 - 60384 13366 0 12 22
oob_2_arr_13 312.25 502.2 70.95 - 97.86 192 - 48694 13401 0 17 19
Average 283.43 567.53 68.34 2.8 57.6 243 729.85 30921 17481 6351 5512 22

For the scope of this evaluation, we perform one run for each
fuzzing campaign. Each campaign targets a distinct vulnerability
in the control application binary. To provide metrics comparable to
ICSFuzz, we do not perform additional grouping or deduplication
of these crashes. We record the time of the first occurred crash in
the campaign and increment the number of subsequent occurring
crashes to produce the total metric within a one-hour time window.

It should also be emphasized that the measurements in Table 6
are extracted for a single fuzzing instance for FieldFuzz. ICSFuzz
requires a vendor-specific KBUS IO subsystem for input delivery,
bounding itself to a physical device. Therefore ICSFuzz requires
a physical device for fuzzing, which limits its scalability. On the
other hand, FieldFuzz can parallelize fuzzing sessions by simply
spawning multiple VMs.

Furthermore, FieldFuzz detects considerably more crashes than
ICSFuzz, allowing it to cover a wider input space. On average, it de-
tects ≈291x and ≈262x more crashes for the arm32 and x64 runtime
variants, respectively, in the same one-hour fuzzing period. How-
ever, FieldFuzz detects fewer crashes for a select few samples across

both variants. As mentioned previously, while higher-level com-
ponents normally originate from exact same codebase, low-level
system components can differ across various devices and architec-
tures. We have observed that variants of memory management and
exception handling implementation in device-specific system com-
ponents can cause differences in crash behavior. For example, in
our 32 bit runtime variant, we observe that the SysMem component
prevented the runtime from crashing for some samples and instead
wrote “Operation not permitted" in the logs, successfully sanitizing
the input.

8 DISCUSSION AND LIMITATIONS
Evaluation limitations: During the evaluation, we compared
FieldFuzz to ICSFuzz since it is the only state-of-the-art work specif-
ically targeting ICS devices. However, While ICSFuzz was designed
to run on the device itself, FieldFuzz interacts with remote devices
over the network. Due to this architectural difference, it is not pos-
sible to compare the performance on the same hardware platform
from the computational efficiency point of view. Therefore, in this
evaluation, we aim to compare these two systems in their ability to

FieldFuzz: In Situ Blackbox Fuzzing of Proprietary Industrial Automation Runtimes via the Network RAID ’23, October 2023, Hong Kong

discover vulnerabilities in the control programs and the runtime
by common metrics. Moreover, as the Ghost coverage mechanism
injects logic and operates on the fuzzed device itself, it can po-
tentially consume significant memory and compute resources of
these constrained devices. This adds a potential risk to meeting the
real-time constraints of the PLC operation when fuzzing custom
component functions with a larger codebase. A more thorough
performance evaluation of this aspect is required and is a direc-
tion for future work. Next, the scope of our evaluation included a
single run per fuzzing campaign (runtime component or control
application binary) and did not address the potential run-to-run
performance variety of the fuzzer. Finally, in the chosen metrics
and the evaluation approach, we have mainly targeted to produce
the metrics that are compatible with ICSFuzz, as was discussed in
Section 7.
Runtime security mitigations. The latest runtime version en-
ables the User Management feature by default, thwarting unautho-
rized login into the PLC. However, out-of-the-box credentials are
the default unless manually changed, while the communication is
not encrypted. The runtime also expects the client to perform the
Login action with CmpDevice for establishing a session, but this
process does not involve actual authentication. Furthermore, the se-
curity mitigation properties of the runtime executable differ among
platforms. For instance, the WAGO PFC200 PLC (with firmware
03.00.39(12)) used in our setup contains the runtime that is com-
piled without all of the typical exploit mitigations (no Relocation
Read-Only (RELRO), stack canary, NX bit, or Position Indepen-
dent Executable (PIE)). Finally, the monitoring bytecode interpreter,
involved with input delivery to the control application by perform-
ing extensive memory operations, applies its own memory access
checks. For each execution, before loading the bytecode, the inter-
preter sets a canary to ensure the integrity of the stack. However, we
found that this canary has a fixed value of 0x5AF096A5 regardless
of the target platform, which defeats its purpose.
Runtime component coverage.Maximizing component coverage
through different mutation strategies is orthogonal to our work
and can be explored as a future research direction. Methodologies
such as SNOOZE [5], program-adaptive mutational fuzzing [8], and
PAVFuzz [41] can be integrated with FieldFuzz to improve coverage.
Black-box fuzzing challenges. FieldFuzz does not require access
or any modifications to the controller, ensuring the universality and
scalability of the proposed approach. However, this incurs limited
code coverage information. We rely on the retrieved status codes
to partially address this for runtime components for understanding
the execution path. We have found that the debugging capabilities
of the full-featured VM can emulate the functionality of the service
layer without requiring actual network transmission. This requires
pre-loading a harness as a shared library into the runtime and
hooking the authentication and packet processing functions in
the runtime process. This approach builds a more traditional and
comprehensive fuzzing approach combined with full-featured code
coverage. However, in the context of ICS, such a white-box fuzzing
approach has substantial limitations:

(1) The compiled harness and fuzzing instance is tied to one specific
target platform (architecture), while some vulnerabilities are
platform-specific, reducing generalization.

(2) This approach is possible with a SoftPLC build of the runtime on
top of a typical desktop-grade VM. However, real-world COTS
devices hardly have such extensive debugging and instrumen-
tation capabilities.

(3) Full shell access for controlling the device is rare, as many
ICS devices embed the runtime on legacy RTOS or use bare-
metal runtime variations. Gaining white-box fuzzing capabil-
ities would require re-flashing the controller with a modified
kernel image and relying on remote debugging.

9 CONCLUSION
This paper presents FieldFuzz – a fuzzing framework for control
applications and industrial runtimes, capable of discovering vulner-
abilities in over 400 known ICS devices from 80 industrial device
vendors. It facilitates efficient network-based fuzzing by i) reverse-
engineering enabled remote control of control applications and
runtime components, ii) automated command discovery and status
code extraction via network traffic and iii) a monitoring setup to
allow on-system tracing and coverage computation. It is the first
fuzzer to be able to fuzz control applications in situ, within their
execution context of the runtime, even on target blackbox devices.
We successfully fuzz the various runtime instances (on different
architectures and by different vendors) of the Codesys runtime,
reporting three CVEs. In addition, FieldFuzz achieves a speedup
of ≈8.3x compared to the state-of-the-art for control application
binaries and an increased crash discovery of ≈291x and ≈262x for
32 and 64 bit runtime variants, respectively. We perform fuzzing
on physical and virtualized ICS devices to demonstrate automation
capabilities, reliability, and performance improvements against the
current state-of-the-art. With FieldFuzz, we provide researchers
with a robust open-source framework to enable future research in
this direction.

REPORTED CVES & PUBLISHED TOOLS
As a result of this work, our reported vulnerabilities were assigned
CVE-2022-22514, CVE-2022-22508, and CVE-2022-22507. We re-
lease FieldFuzz, Ghost, and the Wireshark dissector for Codesys v3
protocol as open source tools with this work.

ACKNOWLEDGMENTS
Constantine Doumanidis has been supported by the NYU Abu
Dhabi Center for Cyber Security, and Prashant Rajput has been
supported by the NYU Abu Dhabi Global PhD Fellowship.

Jianying Zhou’s research is supported by the National Research
Foundation, Singapore, under its National Satellite of Excellence
Programme “Design Science and Technology for Secure Critical
Infrastructure: Phase II”. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not reflect the views of National Research Foundation,
Singapore.

REFERENCES
[1] 2021. CODESYS Runtime (Brochure). https://www.codesys.com/products/

codesys-runtime/control.html [Online; accessed 25. Jan. 2023].
[2] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro Etalle. 2019. Challenges in

designing exploit mitigations for deeply embedded systems. In Proceedings of
European Symposium on Security and Privacy (EuroS&P). IEEE, 31–46.

https://github.com/fridgebuyer/FieldFuzz
https://github.com/fridgebuyer/FieldFuzz-Ghost
https://github.com/fridgebuyer/codesys3-dissector
https://github.com/fridgebuyer/codesys3-dissector
https://www.codesys.com/products/codesys-runtime/control.html
https://www.codesys.com/products/codesys-runtime/control.html

RAID ’23, October 2023, Hong Kong Bytes et al.

[3] Humberto J Abdelnur, Radu State, and Olivier Festor. 2007. KiF: a stateful SIP
fuzzer. In Proceedings of the 1st international Conference on Principles, Systems
and Applications of IP Telecommunications. 47–56.

[4] Armis. 2019. URGENT/11 – 11 zero day vulnerabilities impacting billions of
mission-critical devices.

[5] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth, Richard Kem-
merer, and Giovanni Vigna. 2006. SNOOZE: toward a Stateful NetwOrk prOtocol
fuzZEr. In International conference on information security. Springer, 343–358.

[6] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen. 2000. Towards the
automatic verification of PLC programs written in Instruction List. In Proceedings
of IEEE international conference on systems, man and cybernetics, Vol. 4. 2449–2454
vol.4. https://doi.org/10.1109/ICSMC.2000.884359

[7] John HCastellanos, Martin Ochoa, Alvaro A Cardenas, Owen Arden, and Jianying
Zhou. 2021. AttkFinder: Discovering Attack Vectors in PLC Programs using
Information Flow Analysis. In Proceedings of International Symposium on Research
in Attacks, Intrusions and Defenses (RAID). 235–250.

[8] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In 2015 IEEE Symposium on Security and Privacy. 725–741.
https://doi.org/10.1109/SP.2015.50

[9] CISA. [n. d.]. CodeMeter US-Cert. https://us-cert.cisa.gov/ics/advisories/icsa-
20-203-01 [Online; accessed 20. Aug. 2021].

[10] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David
Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.
2020. HALucinator: Firmware Re-hosting Through Abstraction Layer Emulation.
In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1201–1218. https://www.usenix.org/conference/usenixsecurity20/presentation/
clements

[11] Dongliang Fang, Zhanwei Song, Le Guan, Puzhuo Liu, Anni Peng, Kai Cheng,
Yaowen Zheng, Peng Liu, Hongsong Zhu, and Limin Sun. 2021. ICS3Fuzzer: A
Framework for Discovering Protocol Implementation Bugs in ICS Supervisory
Software by Fuzzing. In Annual Computer Security Applications Conference (Vir-
tual Event, USA) (ACSAC). Association for Computing Machinery, New York, NY,
USA, 849–860. https://doi.org/10.1145/3485832.3488028

[12] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Proceedings of USENIX
Workshop on Offensive Technologies (WOOT). USENIX Association.

[13] Luis Garcia, Saman Zonouz, Dong Wei, and Leandro Pfleger De Aguiar. 2016.
Detecting PLC control corruption via on-device runtime verification. In 2016
Resilience Week (RWS). IEEE, 67–72.

[14] Luis A. Garcia, Ferdinand Brasser, Mehmet H. Cintuglu, Ahmad-Reza Sadeghi,
and Saman A. Zonouz. 2017. Hey, My Malware Knows Physics! Attacking
PLCs with Physical Model Aware Rootkit. ResearchGate (Jan 2017). https:
//doi.org/10.14722/ndss.2017.23313

[15] Hugo Gascon, ChristianWressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. 2015. Pulsar: Stateful black-box fuzzing of proprietary network protocols.
In International Conference on Security and Privacy in Communication Systems.
Springer, 330–347.

[16] GitLab. [n. d.]. Peach Fuzzer. https://peachtech.gitlab.io/peach-fuzzer-
community/ [Online; accessed 7. Feb. 2023].

[17] CODESYS Group. [n. d.]. CODESYS Device Directory. https://www.codesys.
com/download/download-center.html [Online ; Accessed: September 2021].

[18] Shengjian Guo, Meng Wu, and Chao Wang. 2017. Symbolic Execution of Pro-
grammable Logic Controller Code. In Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 326–336.
https://doi.org/10.1145/3106237.3106245

[19] John T. Hagen and Barry E. Mullins. 2013. TCP veto: A novel network attack
and its Application to SCADA protocols. In 2013 IEEE PES Innovative Smart Grid
Technologies Conference (ISGT). 1–6. https://doi.org/10.1109/ISGT.2013.6497785

[20] Aki Helin. [n. d.]. Python bindings for libradamsa. https://github.com/tsundokul/
pyradamsa [Online ; Accessed: January 2022].

[21] J Homan, Sean McBride, and R Caldwell. 2016. IronGate ICS malware: Nothing to
see here... Masking malicious activity on SCADA systems. FireEye threat research
blog (2016).

[22] Helge Janicke, Andrew Nicholson, Stuart Webber, and Antonio Cau. 2015.
Runtime-monitoring for industrial control systems. Electronics 4, 4 (2015), 995–
1017.

[23] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Mason, Stephen Checkoway,
Stefan Savage, and Kirill Levchenko. 2021. Jetset: Targeted Firmware Rehost-
ing for Embedded Systems. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). USENIX Association, 321–338. https://www.usenix.org/conference/
usenixsecurity21/presentation/johnson

[24] JSOF Tech. 2020. Ripple 20 – 19 Zero-Day Vulnerabilities Amplified by the Supply
Chain.

[25] Sushma Kalle, Nehal Ameen, Hyunguk Yoo, and Irfan Ahmed. 2019. Clik on PLCs!
attacking control logic with decompilation and virtual PLC. In Binary Analysis
Research (BAR) Workshop, Network and Distributed System Security Symposium
(NDSS).

[26] Anastasis Keliris and Michail Maniatakos. 2019. ICSREF: A framework for auto-
mated reverse engineering of industrial control systems binaries. Network and
Distributed System Security Symposium (NDSS) (2019).

[27] Ralph Langner. 2011. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security
& Privacy 9, 3 (2011), 49–51.

[28] Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun Jiao, and Jiaguang Sun.
2019. Polar: Function code aware fuzz testing of ics protocol. ACM Transactions
on Embedded Computing Systems (TECS) 18, 5s (2019), 1–22.

[29] Zhengxiong Luo, Feilong Zuo, Yuheng Shen, Xun Jiao, Wanli Chang, and Yu
Jiang. 2020. ICS protocol fuzzing: coverage guided packet crack and generation.
In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[30] MITRE. [n. d.]. CVE List. https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=
Codesys [Online ; Accessed: January 2023].

[31] Matthias Niedermaier, Florian Fischer, and Alexander von Bodisco. 2017. Prop-
Fuzz—An IT-security fuzzing framework for proprietary ICS protocols. In 2017
International Conference on Applied Electronics (AE). IEEE, 1–4.

[32] A. Nochvay. 2019. Security research: CODESYS Runtime, a PLC control frame-
work. Part 1. https://ics-cert.kaspersky.com/reports/2019/09/18/security-
research-codesys-runtime-a-plc-control-framework-part-1 [Online; accessed
20. Aug. 2021].

[33] A. Nochvay. 2019. Security research: CODESYS Runtime, a PLC control
framework. Part 2. https://ics-cert.kaspersky.com/publications/reports/
2019/09/18/security-research-codesys-runtime-a-plc-control-framework-part-
2/#_Toc16177444 [Online; accessed 20. Aug. 2021].

[34] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNet: a
greybox fuzzer for network protocols. In 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, 460–465.

[35] Ole André V. Ravnås. [n. d.]. Frida: Dynamic instrumentation toolkit for devel-
opers, reverse-engineers, and security researchers. https://frida.re/ [Online;
accessed 26. Jul. 2022].

[36] Abraham Serhane, Mohamad Raad, Raad Raad, and Willy Susilo. 2018. PLC
Code-Level Vulnerabilities. In 2018 International Conference on Computer and
Applications (ICCA). 348–352. https://doi.org/10.1109/COMAPP.2018.8460287

[37] WIBU Systems. [n. d.]. CodeMeter from Wibu-Systems. https://www.wibu.com/
products/codemeter.html [Online; accessed 20. Aug. 2021].

[38] Dimitrios Tychalas, Hadjer Benkraouda, and Michail Maniatakos. 2021. ICS-
Fuzz: Manipulating I/Os and Repurposing Binary Code to Enable Instrumented
Fuzzing in ICSControl Applications. In Proceedings of USENIX Security Symposium
(USENIX Security). USENIX Association. https://www.usenix.org/conference/
usenixsecurity21/presentation/tychalas

[39] David Urbina, Jairo Giraldo, Nils Ole Tippenhauer, and Alvaro Cardenas. 2016.
Attacking fieldbus communications in ICS: Applications to the SWaT testbed. In
Proceedings of the Singapore Cyber-Security Conference (SG-CRC) 2016. IOS Press,
75–89.

[40] Mu Zhang, Chien-Ying Chen, Bin-Chou Kao, Yassine Qamsane, Yuru Shao, Yikai
Lin, Elaine Shi, Sibin Mohan, Kira Barton, James Moyne, and Z. Morley Mao.
2019. Towards Automated Safety Vetting of PLC Code in Real-World Plants. In
2019 IEEE Symposium on Security and Privacy (SP). 522–538. https://doi.org/10.
1109/SP.2019.00034

[41] Feilong Zuo, Zhengxiong Luo, Junze Yu, Zhe Liu, and Yu Jiang. 2021. PAVFuzz:
State-Sensitive Fuzz Testing of Protocols in Autonomous Vehicles. In 2021 58th
ACM/IEEE Design Automation Conference (DAC). 823–828. https://doi.org/10.
1109/DAC18074.2021.9586321

https://doi.org/10.1109/ICSMC.2000.884359
https://doi.org/10.1109/SP.2015.50
https://us-cert.cisa.gov/ics/advisories/icsa-20-203-01
https://us-cert.cisa.gov/ics/advisories/icsa-20-203-01
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://doi.org/10.1145/3485832.3488028
https://doi.org/10.14722/ndss.2017.23313
https://doi.org/10.14722/ndss.2017.23313
https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://www.codesys.com/download/download-center.html
https://www.codesys.com/download/download-center.html
https://doi.org/10.1145/3106237.3106245
https://doi.org/10.1109/ISGT.2013.6497785
https://github.com/tsundokul/pyradamsa
https://github.com/tsundokul/pyradamsa
https://www.usenix.org/conference/usenixsecurity21/presentation/johnson
https://www.usenix.org/conference/usenixsecurity21/presentation/johnson
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Codesys
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Codesys
https://ics-cert.kaspersky.com/reports/2019/09/18/security-research-codesys-runtime-a-plc-control-framework-part-1
https://ics-cert.kaspersky.com/reports/2019/09/18/security-research-codesys-runtime-a-plc-control-framework-part-1
https://ics-cert.kaspersky.com/publications/reports/2019/09/18/security-research-codesys-runtime-a-plc-control-framework-part-2/#_Toc16177444
https://ics-cert.kaspersky.com/publications/reports/2019/09/18/security-research-codesys-runtime-a-plc-control-framework-part-2/#_Toc16177444
https://ics-cert.kaspersky.com/publications/reports/2019/09/18/security-research-codesys-runtime-a-plc-control-framework-part-2/#_Toc16177444
https://frida.re/
https://doi.org/10.1109/COMAPP.2018.8460287
https://www.wibu.com/products/codemeter.html
https://www.wibu.com/products/codemeter.html
https://www.usenix.org/conference/usenixsecurity21/presentation/tychalas
https://www.usenix.org/conference/usenixsecurity21/presentation/tychalas
https://doi.org/10.1109/SP.2019.00034
https://doi.org/10.1109/SP.2019.00034
https://doi.org/10.1109/DAC18074.2021.9586321
https://doi.org/10.1109/DAC18074.2021.9586321

	Abstract
	1 Introduction
	2 Background and Prior Work
	2.1 PLC Runtimes for Control Applications
	2.2 Codesys Environment
	2.3 Prior Work

	3 Fuzzing of Proprietary Industrial Controllers
	3.1 Research Questions
	3.2 Research and Engineering Challenges
	3.3 Threat Model and Assumptions
	3.4 Limitations of existing methods

	4 FieldFuzz
	4.1 Overview
	4.2 Input Generation
	4.3 Input Delivery & Execution
	4.4 Monitoring & Feedback
	4.5 Protocol Dissector

	5 Fuzzing Campaigns
	5.1 Fuzzing Setup
	5.2 Fuzzing CmpTraceMgr Component (CVE-2022-22514)
	5.3 Fuzzing CmpDevice Component (CVE-2022-22508)
	5.4 Fuzzing CmpPlcShell Component (CVE-2022-22507)

	6 Cross-Architecture Generalization
	7 Fuzzing Control Application Binaries
	8 Discussion and Limitations
	9 Conclusion
	Acknowledgments
	References

