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System requirements related to concepts like information flow, knowledge, and robustness cannot be judged
in terms of individual system executions, but rather require an analysis of the relationship between mul-
tiple executions. Such requirements belong to the class of hyperproperties, which generalize classic trace
properties to properties of sets of traces. During the past decade, a range of new specification logics has been
introduced with the goal of providing a unified theory for reasoning about hyperproperties. This paper gives
an overview on the current landscape of logics for the specification of hyperproperties and on algorithms for
satisfiability checking, model checking, monitoring, and synthesis.

1. INTRODUCTION

In 2008, Clarkson and Schneider coined the term hyperproperties for the general class
of properties that relate multiple executions of a computer system [Clarkson and
Schneider 2008]. In many branches of computer science, however, the study of hyper-
properties began long before that. The literature on information flow security contains
many variations of the noninterference property, which requires that for all computa-
tions and all sequences of actions of a high-security agent A, the resulting observations
made by a low-security observer B are identical to B’s observations that would result
without A’s actions [Goguen and Meseguer 1982]. Noninterference has been adapted
to a variety of scenarios, attackers, and system models (cf. [Sabelfeld and Sands 2009;
Mantel and Reinhard 2007]]). In the design of distributed systems, information flow and
the resulting knowledge of agents plays a fundamental role [Fagin et al. 2003;(Halpern
and Moses 1990]. Another example of a hyperproperty that has been studied in many
disciplines is the engineering notion of robustness [Dullerud and Paganini 2000], i.e.,
the guarantee that a system will not deviate strongly from its expected trajectory when
disturbances enter the system. Variations of robustness have been applied to a wide
range of software systems, from embedded controllers [Barthe et al. 2016] to sorting
algorithms [Chaudhuri et al. 2012].

Despite the strong interest in hyperproperties across many different research areas,
early proposals for specification languages were limited to hyperproperties from par-
ticular domains. A branch of hyperproperties that has seen active logic development
are properties related to knowledge, such as the temporal logic of knowledge [Fagin
et al. 2003]. Reasoning about combinations of programs is possible in relational logics,
such as relational Hoare Logic (RHL), originally introduced by Benton [Benton 2004].
Generally, relational logics are restricted to properties that express a condition over
a given set of programs or a k-fold self-composition of some program for some fixed k;
there are, however, extensions that are directed at specific properties such as differen-
tial privacy [Barthe et al. 2013]] and sensitivity [Barthe et al. 2018]|.

A significant step towards a general logic for hyperproperties was the introduction
of HyperLTL [Clarkson et al. 2014]. HyperLTL adds universal and existential quan-
tification over traces to standard propositional linear-time temporal logic (LTL). Hy-
perLTL can express complex information-flow properties like generalized noninterfer-
ence, declassification, and quantitative noninterference. Unlike specialized techniques
for particular hyperproperties, HyperLTL provides a unifying logic for expressing and
verifying a wide range of policies. A key benefit of such a logic is that it can serve as
a common input language and semantic framework for a range of algorithmic tools.
In the paper, we provide an overview on algorithms for satisfiability checking, model
checking, monitoring, and synthesis with HyperLTL as the common specification lan-

guage.
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Fig. 1: The hierarchy of hyperlogics [Coenen et al. 2019||. Linear-time logics are shown
on the left, branching-time logics on the right. The shaded areas indicate logics with
decidable model-checking problem.

While HyperLTL has found many applications, it is perhaps not surprising that
there are also numerous hyperproperties that cannot be expressed in HyperLTL. An
early observation was that the expressiveness of HyperLTL is incomparable to epis-
temic temporal logic [Bozzelli et al. 2015]. To address this lack of expressiveness in
HyperLTL, a promising idea is to replace LTL with a more powerful logic as the un-
derlying trace logic of HyperLTL.

In the realm of trace properties, LTL is the starting point of a well-known hierarchy
of logics, where LTL is equivalent, by Kamp’s theorem [Kamp 1968, to monadic first-
order logic of order FO[<]. Extending LTL with quantification over propositions leads
to the strictly more expressive QPTL [Sistla 1983]], which can express all w-regular
properties and is also expressively equivalent to monadic second-order logic of one suc-
cessor (S1S) [Kesten and Pnueli 1995]. Extending LTL to branching time leads to the
temporal logic CTL*, which has been shown to be expressively equivalent to monadic
path logic (MPL) [Abrahamson 1980]. Adding quantification over propositions leads to
the strictly more expressive quantified computation tree logic (QCTL*) [French 2001],
which is expressively equivalent to monadic second-order logic (MSO) [Laroussinie and
Markey 2014].

Using the extension of LTL to HyperLTL as a blueprint, we extend the temporal
logics QPTL, CTL*, and QCTL* with quantification over traces or paths to obtain the
corresponding hyperlogics. A different method for the construction of hyperlogics has
been introduced for first-order and second-order logics. Here, the extension consists
of adding the equal-level predicate FE (cf. [Thomas 2009; [Finkbeiner and Zimmermann
2017]]), which relates the same time points on different traces. Figure [1| shows the
resulting hierarchy of hyperlogics (introduced in [Coenen et al. 2019]]). For linear time,
the most striking difference to the hierarchy of the standard logics is that, when lifted
to hyperlogics, FO[<] is no longer equivalent to LTL, and S1S is no longer equivalent
to QPTL: S1S[F] is strictly more expressive than HyperQPTL; HyperQPTL, in turn,
is strictly more expressive than FO[<, E], and FO[<, E] is strictly more expressive
than HyperLTL. For branching time, we have that HyperQCTL* is still expressively
equivalent to MSO[E]. However, MPL, which is equivalent to CTL* in the standard
hierarchy, falls strictly between HyperCTL* and HyperQCTL* when equipped with
the equal-level predicate (MPL[E]).

The logics in the hierarchy significantly extend the expressiveness of HyperLTL.
Already the extension to QPTL suffices, for example, to subsume epistemic temporal
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logic [Rabe 2016]]. At the same time, a large part of the hierarchy is still supported
by algorithmic analysis. The shaded areas of Fig. [1| indicate logics where the model-
checking problem is decidable.

The focus of the next sections is on HyperLTL. We introduce the syntax and seman-
tics of the logic in Section [2| and discuss the satisfiability, model checking, monitoring,
and synthesis problems in Sections We return to the hierarchy of hyperlogics in
Section [7, where we also briefly discuss further extensions to probabilistic, infinite-
state, and asynchronous hyperproperties.

2. HYPERLTL

HyperLTL [Clarkson et al. 2014] is an extension of linear-time temporal logic
(LTL) [Pnueli 1977]. In the following, we briefly define the syntax and semantics of
LTL and then describe the extension to HyperLTL. Let AP be a finite set of atomic
propositions. A trace over AP is a map ¢t: N — 24P denoted by ¢(0)t(1)t(2)---. Let
(24F)« denote the set of all traces over AP.

21. LTL

The formulas of LTL are generated by the following grammar:

¢ u=al|p|erp | Xep | Uy
where a € AP is an atomic proposition, the Boolean connectives — and A have the
usual meaning, X is the temporal next operator, and U is the temporal until operator.
We also consider the usual derived Boolean connectives, such as vV, —, and <, and
the derived temporal operators eventually F ¢ = true U p, globally G ¢ = —F —p, weak
until pW 1 = (pU) V G p, and release o R = —(—¢ U —)). The satisfaction of an
LTL formula ¢ over a trace ¢ at a position i € N, denoted by ¢,i |= ¢, is defined as
follows:

Lika it ac i),

t,i = —p iff ¢4 £ o,

t,z’):gol/\gog iff t,i):gol andt,z’):<p2,

t,iEXp iff ti+1Eep,

t,Z'ZgalUQOQ iff HkZZt,k':(pQ/\VZSj<kt,J):g01

We say that a trace ¢ satisfies a sentence ¢, denoted by ¢ | ¢, if ¢,0 = ¢. For example,
the LTL formula G (e« — Fb) specifies that every position in which a is true must
eventually be followed by a position where b is true.

2.2. HyperLTL
The formulas of HyperLTL are generated by the grammar

¢u=3m. ¢ | Vm. b | ¢
Yu=ar | W [ YAY | XY | 9 U

where « is an atomic proposition from a set AP and = is a trace variable from a set V.
Further Boolean connectives and the temporal operators F, G, W, and R are derived
as for LTL.

The semantics of HyperLTL is defined with respect to a trace assignment, a partial
mapping I1: V — (247)¥, The assignment with empty domain is denoted by ITy. Given
a trace assignment II, a trace variable 7, and a trace ¢, we denote by II[r — ¢] the
assignment that coincides with II everywhere but at 7, which is mapped to ¢. The
satisfaction of a HyperLTL formula ¢ over a trace assignment II and a set of traces T'
at a position i € N, denoted by 7,11, |= ¢, is defined as follows:

ACM SIGLOG News 3 0000, Vol. 0, No. 0



T.1i E ax iff aeIl(n)(3),
T,1L,i = i T IL G 9,
T ILi =y Avps iff T,ILi b= b and T, 11,7 = oo,
T,1L,i = X4 i T+ 1 9,
T,1,i = Uty iff 3k >i T, 1Lk = 1

AVi < j < k. T1Lj =,
TILik=3r ¢ iff IteT. T —t,ikE o,
T,11,i =EVr. ¢ iff vieT. T,1[r —t],ifE ¢.

We say that a set T of traces satisfies a sentence ¢, denoted by T' |= ¢, if T\, 11,0 = ¢.

A Kripke structure is a tuple K = (5, so, 9, AP, L) consisting of a set of states S, an
initial state s, a transition function § : S — 2°, a set of atomic propositions AP, and
a labeling function L : S — 2P that assigns to each state a set of atomic propositions
that are true in the state. We require that each state s has a successor, that is §(s) # 0,
to ensure that every execution of a Kripke structure can always be continued to infinity.
In a finite Kripke structure, S is a finite set.

A path of a Kripke structure is an infinite sequence sgs; ... € S“ such that s is the
initial state of K and s,11 € d(s;) for all ¢« € N. By Paths(K, s), we denote the set of all
paths of K starting in state s € S. A trace of a path o = s¢s; ... is a sequence of labels
loly ... with I; = L(s;) for all i € N. Tr(K, s) is the set of all traces of paths of a Kripke
structure K starting in state s. A Kripke structure K with initial state s satisfies an
LTL formula ¢, denoted by K = ¢ iff for all traces = € Tr(K, s¢), it holds that = |= ¢.
Likewise, the Kripke structure satisfies a HyperLTL formula ¢, also denoted by K = ¢,
iff Tr(K, so) = ¢.

2.3. Examples

We illustrate the specification of hyperproperties with HyperLTL using some promi-
nent examples from information-flow security.

— A system satisfies observational determinism [Zdancewic and Myers 2003| if every
pair of traces with the same low-security input remains indistinguishable for an
observer; i.e., the program appears to be deterministic to low-security users. For a
system with low-security input [ and output o, observational determinism can be
expressed in HyperLTL as follows:

WAL (Z,r 4 lﬂ-/) - G (Oﬂ <~ Oﬂ/)

— Noninference [McLean 1994] specifies that the behavior observable by an observer
must not change when all high-security inputs are replaced by a dummy input. In
the following HyperLTL formula, we express noninference for a high-security input
h, which we set to false as dummy input, low-security input /, and output o:

V. 3n'. G (ﬁhﬂ/ A (lﬂ- > lﬂ-/) A (Oﬂ- ~ Oﬂ-/))

— Generalized noninterference [McCullough 1988] is similar to observational determin-
ism in that it requires that the output (o) should not be influenced by high-security
input (k). Unlike observational determinism, it allows, however, for nondeterministic
behavior in the low-security input (I):

Var 3r". G ((hy < har) A (L 4 Lin) A (s 45 050))

The existentially quantified trace 7’/ combines the high-security input of the univer-
sally quantified trace = with the low-security input and output of the universally
quantified trace 7’.
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Table I: Complexity of HyperLTL satisfiability for formulas from the full logic, and
for the temporal safety and liveness fragments. A HyperLTL formula is temporal
safety (resp. temporal liveness) if its LTL body describes a safety (resp. liveness)
property. All results denote completeness.

Full HyperLTL Temporal Safety Temporal Liveness
full logic »il full fragment | coRE 3 full fragment | %13
Iy EXPSPACE 2 v*3* G (X*) coRE 3 VI*F (X*) NP3
3 PSPACE 2 V3G NEXP3 |Vv3*FA---AF | NP3
v* PSPACE 2 W X NEXP 3

1 [Fortin et al. 2021]
2 [Finkbeiner and Hahn 2016]
3 [Beutner et al. 2022]

As discussed in the introduction, hyperproperties have many applications beyond
security. An illustrative example is the specification of error resistant codes, which
transmit data over noisy channels (cf. [Finkbeiner et al. 2015]]). A typical correctness
condition for such a code is that all code words have a certain minimal Hamming
distance. The following HyperLTL formula specifies that all code words produced by
an encoder with input 7 and output o have a Hamming distance of at least d:

VN7’ (F (ig <> —ip)) — —Ham(d — 1,7, ")
where the subformula Ham(d, 7, ') is defined recursively as follows:

Ham(-1,7,7") = false
Ham(d, m,7') = (ox 0. )W ((05 > —0,) A XHam(d—1,w,7")).

The subformula Ham(d, w, ') expresses that the Hamming distance between the out-
puts on 7 and 7’ is less than d: for d > 0 this means that either = and 7’ agree forever
on the output o, or there is a point in time where they differ and the suffixes from that
point onward have a Hamming distance of less than d — 1. The full specification thus
means that on any pair of traces 7, 7’ where the input eventually differs, the Hamming
distance must not be less than d.

3. SATISFIABILITY

In the HyperLTL satisfiability problem, we decide, for a given HyperLTL formula ¢,
whether or not there exists a set T of traces such that T = ¢. Table [I| gives an
overview on the complexity of the satisfiability problem. Satisfiability of HyperLTL
formulas without quantifier alternation is PSPACE-complete [Finkbeiner and Hahn
2016], which is the same complexity as LTL satisfiability [Sistla and Clarke 1985]. For
formulas from the 3*V* fragment, the complexity increases to EXPSPACE [Finkbeiner
and Hahn 2016]. Formulas of this fragment can be translated into equisatisfiable
(but exponentially larger) formulas with only existential formulas by explicitly enu-
merating all possible interactions between the universal and existential quantifiers.
Satisfiability of hyperproperties with V*3* trace quantifier alternation is undecidable
[Finkbeiner and Hahn 2016; Fortin et al. 2021].

3.1. Satisfiability of the V*3* fragment

The V*3* fragment contains many interesting hyperproperties, such as noninference
and generalized noninterference. Despite the general undecidability, some positive re-
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sults have been obtained by classifying hyperproperties into temporal safety and tem-
poral liveness [Beutner et al. 2022]. A HyperLTL formula is temporal safety (resp.
temporal liveness) if its LTL body describes a safety (resp. liveness) property! The re-
striction to temporal safety reduces the complexity from Y1 to coRE. While still unde-
cidable, this enables using common first-order techniques such as resolution, tableaux,
and related methods [Robinson and Voronkov 2001]. In contrast to temporal safety
properties, the class of temporal liveness formulas is of analytical complexity. As shown
in Table [T, both temporal safety and temporal liveness contain decidable fragments. A
notable difference is that while formulas from the v*3* G (X*) fragment are undecid-
able, formulas from the V3* F (X*) are decidable [Beutner et al. 2022].

3.2. Practical algorithms

Despite the general undecidability, there is significant practical interest in algorithms
that detect satisfiability and unsatisfiability of HyperLTL formulas.

Decision procedures. The decidability of the 3*V* fragment is particularly useful in
practice because it allows us to check implications between alternation-free formulas.
The tool EAHyper implements the decision procedure as a reduction to LTL satisfia-
bility [Finkbeiner et al. 2017].

Finding largest models. For formulas in the V3* fragment, an incomplete method to de-
tect (un)satisfiability is to search for the largest model that satisfies the formula. For
satisfiable V3* formulas, this model is unique. The algorithm iteratively eliminates
choices for the 3* quantifiers that admit no witness trace when chosen for the vV quan-
tifier [Beutner et al. 2022].

Finding smallest models. A method for general HyperLTL formulas is to search for finite
models of bounded size and then iteratively increase the bound [Finkbeiner et al. 2018;
Mascle and Zimmermann 2020]]. Such an approach finds smallest models, but cannot
determine unsatisfiability.

4. MODEL CHECKING

In model checking, we decide, for a given finite Kripke structure K and a given Hyper-
LTL formula ¢, whether or not £ = ¢. The model-checking problem is decidable. As
shown in the right-most column of Table |II} the complexity is non-elementary in the
number of quantifier alternations; each quantifier alternation causes a further expo-
nential cost. Fortunately, many hyperproperties of interest have only a small number
of quantifier alternations. Observational determinism, for example, is a universal for-
mula and, therefore, only requires nondeterministic logarithmic space in the size of
the Kripke structure; noninference and generalized noninterference both have a sin-
gle quantifier alternation and, hence, can be checked in PSPACE. The table further-
more shows that quantifier alternation is much less costly for Kripke structures with
restricted structures, such as acyclic graphs and trees For acyclic graphs, the com-
plexity of all model-checking problems is in the polynomial hierarchy within PSPACE,
for trees even in deterministic logarithmic space. In the following, we first sketch a
basic automata-theoretic model-checking procedure, and then discuss more practical
approaches.

1Temporal safety and temporal liveness differ from the notions of hypersafety and hyperliveness [Clarkson
and Schneider 2008].

“To satisfy the requirement that every state of a Kripke structure has a successor state, we assume implicit
selfloops on terminal states in tree-shaped and acyclic Kripke structures [Bonakdarpour and Finkbeiner
2018].
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Table II: Complexity of the HyperLTL model-checking problem for
tree-shaped, acyclic, and general Kripke structures. The complex-
ity is given in the size of the Kripke structure, where k is the num-
ber of quantifier alternations in (v*3*)*. All results denote com-
pleteness.

Trees || Acyclic graphs General graphs
/3t NL! NL 2
Jry Ty TIT L! NP/coNP ! PSPACE 3
net
(v*3*)* (k—1)-EXPSPACE *
PR

I [Bonakdarpour and Finkbeiner 2018]
2 [Finkbeiner et al. 2015]

3 [Clarkson et al. 2014]]

4 [Rabe 2016]

4.1. The basic algorithm

The following basic algorithm (described in more detail in [Finkbeiner et al. 2015
reduces the model-checking problem to the language emptiness problem of a Biichi
automaton: the given Kripke structure satisfies the formula if and only if the language
of the resulting automaton is empty.

The construction starts by negating the given formula, so that the resulting
formula describes the existence of an error. Let the new formula have the form
QrnmnQamp_1...Q1m1. ¢, where Q1,Q2,...Q, are trace quantifiers in {3,V}, and ¢ is a
quantifier-free formula over atomic propositions indexed by trace variables {7y, ..., }.
Similar to standard LTL model checking, we convert the LTL formula v into an equiv-
alent Biichi automaton A, over the alphabet (247)". Each letter is a tuple of n sets of
atomic propositions, where the ith element of the tuple represents the atomic proposi-
tions of trace ;.

The algorithm then eliminates the quantifiers one at a time, starting with the inner-
most quantifier. Before the elimination of the ith quantifier, the automaton A;_; over
alphabet (247)("~%) has been constructed, and now the first component of the tuple
corresponds to 7;. We assume that @Q); is an existential quantifier; if Q); is a universal
quantifier, we turn it into an existential quantifier by complementing A; 1, based on
the equivalence Vr.¢p = —3-¢.

We then combine A; ; with the Kripke structure X to ensure that the first compo-
nent is chosen consistently with some path in K. Since ); is an existential quantifier,
we eliminate the first component of the tuple by existential projection on the automa-
ton. This results in the next automaton A;. After n such steps, all quantifiers have
been eliminated and the language of the resulting automaton is over the one-letter
alphabet consisting of the empty tuple. The HyperLTL formula is satisfied if and only
if the language of automaton A,, is empty.
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4.2. Practical algorithms

Because of the expensive automata constructions, it is difficult to implement the ba-
sic algorithm efficiently. In the following, we briefly discuss some more practical ap-
proaches.

Self-composition. For the alternation-free fragment of HyperLTL, the model-checking
problem can be solved by self-composition [Barthe et al. 2011]. If the system is given as
a circuit C and the HyperLTL formula consists of an LTL formula ¢) and a quantifier
prefix consisting of k exclusively universal quantifiers (the case of exclusively existen-
tial quantifiers is analogous), then a new circuit can be constructed that consists of &k
copies of C' and a monitor circuit Cy, that recognizes violations of 1. The HyperLTL
model-checking problem then reduces to a standard model-checking problem of a trace
property on the newly constructed circuit. This approach has been implemented in the
HyperLTL model checker MCHyper [[Finkbeiner et al. 2015]|.

Strategy-based verification. HyperLTL properties with a V*3* quantifier alternation can
be verified by finding a winning strategy for the “existential” player in a game against
a “universal” player [Coenen et al. 2019]. In this game, the existential and universal
players chose the existential and universal traces, respectively, by picking the succes-
sor state on paths through the Kripke structure, one position at a time. This strategy
can be provided manually or synthesized by a game-solving algorithm. Strategy-based
verification is incomplete because the existential player must choose the next state af-
ter observing only a finite prefix of the universal traces. The approach can be made
complete by adding prophecy variables [Beutner and Finkbeiner 2022a]. Strategy-
based verification was originally developed for finite-state hardware but has been ex-
tended to infinite-state software [Beutner and Finkbeiner 2022b|.

Bounded Model Checking. In bounded model checking (BMC) for HyperLTL [Hsu et al.
2021]], the system is unfolded up to a fixed depth. Pending obligations beyond that
depth are either treated pessimistically (to show the satisfaction of a formula) or opti-
mistically (to show the violation of a formula). While BMC for trace properties reduces
to SAT solving, BMC for hyperproperties naturally reduces to QBF solving. As usual
for bounded methods, BMC for HyperLTL is incomplete.

Language inclusion. The complementation operation in the basic algorithm, which
is necessary for every quantifier alternation, can be replaced with language inclu-
sion [Beutner and Finkbeiner 2023]. To check a HyperLTL formula ¢ = Vx.37’. ¢, we
first construct an automaton by intersecting a self-composition of the Kripke structure
with the automaton for ¢ over the alphabet (27)2, and then eliminating the second
component by existential projection, resulting in an automaton over the alphabet 227,
The Kripke structure satisfies ¢ iff its language is contained in the language of this
automaton. Model checking via language inclusion is a complete verification method.

5. MONITORING

In monitoring, we determine, at runtime and in an online fashion, whether a system
under observation satisfies a given HyperLTL formula. For trace properties, this is typ-
ically done by observing growing prefixes of the trace produced by a running system.
Monitoring hyperproperties is more difficult because a violation of a hyperproperty
generally involves a set of traces. Two principal ways in which the traces can be pre-
sented to the monitor are the parallel and sequential monitoring models [Finkbeiner
et al. 2019]] illustrated in Fig.[2| In the parallel model, the assumption is that the num-
ber of traces is fixed in advance. All traces then become available simultaneously, one
position at a time from left to right. The parallel model occurs, for example, in secure-
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T - 7T1(0) 7T1(1) 71'1(2) T - 7T1(0) 7T1(1) 7T1(2) 7T1(|771|—1>

ma:  mwe(0) wa(l)  ma(2) - mo: ma(0) ma(l) m(2) .- ma(|me|—1)
T3 - 7T3(0) 7T3(1) 7T3(2)
SM
%

Tt mn(0) (1) m(2)
PM
Y

Fig. 2: Parallel monitoring (PM) vs. sequential monitoring (SM) of hyperproperties. In
parallel monitoring, the number of traces is fixed in advance, and the monitor observes
one position of all traces at a time; in sequential monitoring, the number of traces is a
priori unbounded, and the monitor observes one position of one trace at a time.

multi-execution [Devriese and Piessens 2010], where several system executions are
generated by providing different high-security inputs. In the sequential model, the
traces become available one at a time. In this model, the number of traces is a priori
unbounded. The sequential model applies, for example, when multiple sessions of a
system are to be monitored one after the other in an online fashion. In the following,
we focus on the sequential model.

5.1. Finite-trace HyperLTL

Since the monitoring verdict is based on observing finite traces, we adapt the seman-
tics of HyperLTL to this setting. Let Il,: V — (24F)* be a partial function mapping
trace variables to finite traces. By ¢ € Il5, we denote that trace ¢ is in the image of I14,.
The satisfaction of a HyperLTL formula ¢ over a finite trace assignment I, and a set
of finite traces 7', denoted by (T, 1lf,,i) = ¢, is defined as follows [Brett et al. 2017
Hahn et al. 2019]:

T, g, i = ax iff aeIlg,(m)(0),

T, I, = iff T, 1lg,,i ¥,

Ta Hﬁnal ): 1/}1 /\¢2 iff T7 Hﬁ’rul ): 1/]1 and T7 Hﬁ,,“Z ‘: 1p27

T Mg, il= X9 iff Wte g, |t] >i+1and T, M, + 1 o,
T Mg b= Uty 3F Ik >k < min (1] AT T j = v

AV > G < k. T, j =1,
T Mpp,if=3n.¢  iff 3t €T T Iga[r > t],i = ¢,
T, Mg, i = V. ¢ iff VteT. T,1lg,[r— t],i = ¢

Note that the finite traces may differ in length; since the temporal operators advance
in all considered traces simultaneously, there is an implicit cut-off at the end of the
shortest trace.

5.2. The basic algorithm

We describe a basic algorithm for sequentially monitoring HyperLTL formulas of the
form V7, ..., m,. ¥, where ¢ is an LTL formula expressing a safety property (for a more
general approach see [Finkbeiner et al. 2019]). From 1, we construct a deterministic
finite-word automaton over alphabet (24")", which recognizes all sequences such that
the traces =y, . .., ,, obtained from the components of the tuples, violate ). The moni-
toring algorithm stores the set T" of traces seen so far and a map S that assigns to each
n-tuple of traces seen so far a state of the automaton. When a new trace = starts, S is
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initialized with all n-tuples from traces in 7"U {r} that contain the new trace 7. When
the current trace 7 progresses, we update the state assigned to each tuple with the
successor state of the automaton. If the automaton reaches a final state, a violation is
reported.

5.3. Practical algorithms

The currently available algorithms for monitoring hyperproperties can be grouped into
two main approaches:

Combinatorial approaches. As combinatorial approaches [Agrawal and Bonakdarpour
2016}, [Finkbeiner et al. 2019] we understand algorithms that store the traces seen
so far and explicitly iterate over the different combinations of the traces. Such ap-
proaches can be optimized with efficient data structures for storing sets of traces, such
as prefix trees [Finkbeiner et al. 2020], and by reducing the number of tuples that
need to be considered, for example by recognizing reflexive, symmetric, and transi-
tive specifications. Such optimizations are implemented in the monitoring tool RVHy-
per [Finkbeiner et al. 2018].

Constraint-based approaches. Constraint-based approaches [Brett et al. 2017; Hahn
et al. 2019] avoid storing the traces explicitly by translating the monitoring task into
a constraint system. As new traces arrive, the constraint system is checked for satisfi-
abilty and rewritten according to the resulting requirements on future traces.

6. SYNTHESIS

In synthesis, we decide whether there exists an implementation that satisfies a given
HyperLTL formula, and, if so, construct such an implementation. We refer to the de-
cision part of synthesis as the realizability problem. We consider HyperLTL formulas
where the atomic propositions AP = I U O are partitioned into a set I of inputs and a
set O of outputs. We are interested in finding implementations, called strategies, which
observe the inputs and compute the outputs in such a way that the specification is
satisfied.

Formally, a strategy f: (2/)* — 2© is a function that maps sequences of input val-
uations 2/ to an output valuation 2°. The behavior of a strategy f: (2/)* — 2° is
characterized by an infinite tree, called computation tree, that branches by the val-
uations of I and whose nodes w € (2/)* are labeled with the strategic choice f(w).
For an infinite word w = wowiws--- € (2!)“, the corresponding trace is defined as
(f(€) Uwo)(f(wo) Uwr)(f(wowr) Uws)--- € (21Y9)«. The set of traces produced by f,
written traces(f), is {w | w € f}. We define the satisfaction of a HyperLTL formula ¢
(over propositions I U O) on strategy f, written f | ¢, as traces(f) = ¢. A HyperLTL
formula ¢ is realizable if there is a strategy f: (27)* — 2© that satisfies ¢.

The realizability problem is undecidable. As we will see in the following, already
the universal fragment suffices to encode the distributed synthesis problem, which
is known to be undecidable [Pnueli and Rosner 1990]. The 3* and 3*V! fragments of
HyperLTL are decidable [Finkbeiner et al. 2020b].

6.1. Distributed synthesis

Due to the expressiveness of HyperLTL, the HyperLTL synthesis problem subsumes
various classic synthesis problems. For the fragment of HyperLTL with only a single,
universal quantifier Vr. ¢, the HyperLTL realizability problem is exactly the LTL real-
izability problem of ). With two universal quantifiers, we can express various LTL re-
alizability problems with restrictions on the flow of information, such as synthesis un-
der incomplete information [Kupferman and Vardi 1997|, distributed synthesis [Pnueli
and Rosner 1990]], and fault-tolerant synthesis [Dimitrova and Finkbeiner 2009]. We
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Fig. 3: Example architectures of distributed systems.

illustrate this in the following with the classic distributed synthesis problem (for more
details and encodings of other synthesis problems, see [Finkbeiner et al. 2020b]).

The distributed synthesis problem introduces the concept of architectures as a con-
straint on the information flow. An architecture is a set of processes P, with distinct
environment process p.,, € P, such that the processes produce outputs synchronously,
but each process bases its decision only on the history of valuation of inputs that it
observes.

Formally, a distributed architecture A is a tuple (P, peny,Z,O) where P is a fi-
nite set of processes with distinguished environment process pe,, € P. The functions
I:P — 22P and O: P — 24P define the inputs and outputs of processes. While pro-
cesses may share the same inputs (in case of broadcasting), the outputs of processes
must be pairwise disjoint, i.e., for all p # p’ € P it holds that O(p)nO(p’) = 0. W.l.o.g. we
assume that Z(pe,,) = 0. We denote by P~ = P\ {peny } the set of processes excluding
the environment process. Figure |3|shows several example architectures.

To encode distributed realizability as a HyperLTL realizability problem, we first
define the notion of independence as a hyperproperty:

DY o= (\/ (ary <» aw,)> R </\ (cr ¢ 077/)>
acA ceC
DZ’:C requires that the valuations of propositions C on traces m and 7’ have to be
equal until and including the point in time where there is a difference in the valua-
tion of some proposition in A. Prefacing universal quantification, that is, the formula

Vrvr'. fo",ic guarantees that every proposition ¢ € C solely depends on propositions
in A. Distributed realizability of (¢, A) then corresponds to the realizability of the fol-
lowing HyperLTL formula over inputs O(pe,,) for P~ and outputs UpE p- O(p):

Vv o] A /\ D;EZ)HO@)

pEP™

6.2. Practical algorithms

Since the model-checking problem is decidable, the synthesis problem also becomes
decidable if the set of potential solutions is finite. Bounded synthesis and controller
synthesis ensure this by introducing a bound on the size of the implementation and by
fixing the state graph of the implementation, respectively.

Bounded synthesis. In bounded synthesis [Finkbeiner and Schewe 2013], the size of
the implementation is bounded by a constant, which can be increased incrementally.
For universal HyperLTL formulas, this approach has been used to find finite gener-
ators of realizing strategies by encoding this search as a satisfiability problem for a
decidable constraint system [Finkbeiner et al. 2020b]l. In order to detect unrealizable
specifications, the approach simultaneously searches for counterexamples to realizabil-
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ity. For a universal HyperLTL formula ¢ = Vr - - - V7,,. ¢ over inputs I and outputs O,
a counterexample to realizability is a set of input traces 7' C (27)“ such that for every
strategy f: (27)* — 29, the trace set that results from applying f to the input traces
in 7T satisfies —¢ = Iy - - - Im,. .

Controller synthesis. The controller synthesis problem is a simpler variant of synthesis.
In addition to the HyperLTL formula, we are given a plant model, which provides the
state space of the implementation. The transitions of the plant model are partitioned
into controllable and uncontrollable transitions. The goal of the controller synthesis
problem is to eliminate a subset of the controllable transitions in such a way that the
specification is satisfied. Controller synthesis is decidable for HyperLTL [Bonakdar-
pour and Finkbeiner 2020]. Controller synthesis has also been combined with synthe-
sis from trace properties. In a first step, the plant is synthesized by finding a (most
permissive) strategy for a safety trace property that defines the desired functional-
ity of the system. In a second step, transitions that violate a given hyperproperty are
removed from the plant by controller synthesis [Coenen et al. 2023].

7. THE HIERARCHY OF HYPERLOGICS

HyperLTL is the starting point of the hierarchy of hyperlogics discussed in the in-
troduction and shown in Fig. This hierarchy was initially studied in [Coenen
et al. 2019]; it adds significant expressiveness to HyperLTL. Similar to the exten-
sion of LTL with trace quantification, the temporal logics HyperQPTL, HyperCTL*,
and HyperQCTL* are obtained from the standard temporal logics QPTL, CTL*, and
QCTL* by adding quantifiers over traces (or, in the case of CTL* and QCTL*, paths),
so that the formula can refer to multiple traces or paths at the same time. The other
logics in the hierarchy, FO[<, E1, SIS[F], MPL[E], and MSO[FE] are obtained from the
standard first-order and second-order logics FO, S1S, MPL, and MSO by adding the
equal-level predicate F (cf. [Thomas 2009; Finkbeiner and Zimmermann 2017]), which
indicates that two points happen at the same time.

7.1. Linear-time hyperlogics
The logics shown on the left in Fig. (1| are linear-time logics.

FOI<,E]. FOI<, E] is a first-order logic for the specification of hyperpropoper-
ties [Finkbeiner and Zimmermann 2017]]. Kamp’s theorem [Kamp 1968] (in the formu-
lation of [[Gabbay et al. 1980]) states that linear-time temporal logic (LTL) is expres-
sively equivalent to monadic first-order logic of order FO[<]. To express hyperproper-
ties, we add to FO[<] the equal-level predicate F. Given a set of atomic propositions
AP and a set V; of first-order variables, we define the syntax of FO[<, E] formulas as
follows:

Tu=Px)|z<y|lz=y|E(z,y)

=70 |6V | 3n.,
where a € AP and z,y € V1. While FO[<] formulas are interpreted over a trace t, we
interpret an FO[<, E] formula ¢ over a set of traces 7', writing T' |= ¢ if T satisfies ¢.
We assign first-order variables with elements from the domain 7' x N. The < relation
is defined as the set {(t,n1), (t,n2) € (T x N)? | n; < no} and the equal-level predicate
is defined as {(t1,n), (t2,n) € (T x N)?}.

FOI<, E] can express promptness requirements such as the existence of a common

deadline over all traces by which a certain predicate a must become true on all traces:

JxVy. E(x,y) = P.(y)
Promptness cannot be expressed in HyperLTL [Bozzelli et al. 2015].
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HyperQPTL. HyperQPTL [Rabe 20161 captures the w-regular hyperproper-
ties [Finkbeiner et al. 2020a]l. HyperQPTL extends HyperLTL with quantification
over atomic propositions. To easily distinguish quantification over traces 3=, V7 and
quantification over propositions Jp, Vp, we use boldface for the latter. The formulas of
HyperQPTL are generated by the following grammar:

¢pu=3r. ¢ | Vr. ¢ | ¥ | Tp. & | Vp. @
Yu=ar | p| | YAy [ Xy | Fy

where a,p € AP and 7 € V. The semantics of HyperQPTL corresponds to the semantics
of HyperLTL with additional rules for propositional quantification:

T,0L,i = 3q.¢ iff 3t e (2w T 1r, —t],i = ¢,
T,1L,i =Vq.¢ iff vte (2l T r, —t],i = ¢,
T,ILi =q iff g ell(my)().

HyperQPTL can express all properties expressible in FO[<, E], and, additionally, w-
regular hyperproperties like “on even positions, proposition a has the same value on
all traces.” In the following HyperQPTL formula, even positions are identified by the
existentially quantified proposition even:

Jeven. Vr.Vr'. even A G ((even +» X —even) A (even — (ar <> a)))

Another class of properties that can be expressed in HyperQPTL are epistemic proper-
ties that express that an agent, who can only observe a subset of the atomic proposition
has the knowledge that some trace property ¢ is true. This is expressed as the require-
ment that all traces that agree with the current trace on the observable propositions
up to the current point in time satisfy ¢. HyperQPTL subsumes epistemic temporal
logic [Rabe 2016].

S1S[E]. S1S[E]is monadic second-order logic with one successor (S1S) extended with
the equal-level predicate. Let V1 = {1, 2, ...} be a set of first-order variables, and V5 =
{X1, Xs,...} a set of second-order variables. The formulas ¢ of SIS[F] are generated
by the following grammar:

Tu=x | min(z) | Suce(r)

p=7€X | 7=7| E(r,7) | 7¢ | &V ¢ | Tz.¢p | 3X.0,

where x € V; is a first-order variable, Succ denotes the successor relation, and min(x)
indicates the minimal element of the trace identified by z. Furthermore, F (7, 7) is the
equal-level predicate and X € Vo U{X, | a € AP}. We interpret S1S[E] formulas over
a set of traces T'. As for FO[<, F], the domain of the first-order variables is T" x N.

S1S[E] adds significant expressiveness to HyperQPTL. For example, it is possible
to encode the existence of a terminating computation of a Turing machine [Coenen
et al. 2019]. While the model-checking problem of HyperQPTL is still decidable (with
a similar algorithm as for HyperLTL), the model-checking problem for S1S[F] is thus
undecidable.

7.2. Branching-time hyperlogics

The logics shown on the right in Fig.|l|are branching-time logics. While the linear-time
logics are interpreted over sets of traces, we interpret the branching-time logics over
infinite trees. A Kripke structure satisfies a branching-time formula iff its unrolling
into an infinite tree satisfies the formula.
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HyperCTL*. Extending HyperLTL to branching time leads to the temporal logic
HyperCTL*. HyperCTL* [[Clarkson et al. 2014]] has the same syntax as HyperLTL,
except that the quantifiers refer to paths rather than traces, and that path quantifiers
may occur in the scope of temporal modalities. Let 7 € V be a path variable from an
infinite supply of path variables V and let 37. ¢ be the explicit existential path quan-
tification. HyperCTL* formulas are generated by the following grammar:

bi=an| 6|6V |Xe|6Us|3m o
The semantics of a HyperCTL* formula is defined with respect to an infinite tree-
shaped Kripke structure 7 and a path assignment 11 : V — Paths(T ), which is a partial
mapping from path variables to paths in the tree. The satisfaction relation  is given
as follows:

T,1Li = ax iff ae L(II(7)(7)),

TILi E ¢ i TL i Er o,

T,H,’i’:¢1/\¢2 iff T,H,i':(bl andT,H7i):¢27

TIi=Xe  iff T,ILi+1kE o,

T, LiE g1 U¢y iff 35 >4 T,1,j = ¢,
AV <k < g T ILk =7 ¢,

T,1,i = 3r.¢ iff 3p € Paths(T). p[0,i] = €0, 4],
/\T,H[?T*—)p,&l—)p},i >:d)a

where we use ¢ to denote the last path that was added to the path assignment II. We
say that a tree 7 satisfies a HyperCTL* formula ¢, written as 7 | ¢, if 7,0,0 |
¢, where () denotes the empty path assignment. HyperCTL* can express the flow of
information that appears in different branches of the computation tree, as illustrated
in the following example (taken from [Finkbeiner 2017])):

An observer who sees a can infer which branch was taken in the first nondeterminis-
tic choice, but not which branch was taken in the second nondeterministic choice. This
is expressed by the HyperCTL* formula

V. XV’ X (ax < azr).

MPL[E]. Monadic path logic equipped with the equal-level predicate (MPL[E]) is the
extension of FO[<, E] with second-order quantification, where the second-order quan-
tification is restricted to full paths in the tree.

Let Vi = {z1,29,...} be a set of first-order variables, and V> = {X;,X>,...} a set
of second-order variables. The formulas ¢ of MPL[E] are generated by the following
grammar:

= | p|P1V e | g |IX.0
Yu=Py(z) |z <ylz=y|xreX|E(,y),

where a € AP, z,y € V1, and X € V5. In the semantics of MPL[F], first-order vari-
ables are assigned to nodes in the tree and second-order variables to sets of nodes
whose elements constitute exactly one path of the tree. P, evaluates to the set of nodes
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whose label contains a. x < y indicates that x is an ancestor of y. Atomic formulas
r € X and z = y are interpreted as set membership and equality on nodes, respec-
tively. The equal-level predicate E(x,y) denotes that two nodes = and y are on the
same level, i.e., have the same number of ancestors. MPL[E] is strictly more expres-
sive than HyperCTL*. Similarily to HyperQPTL, MPL[ E] can express properties about
knowledge [[Coenen et al. 2019].

HyperQCTL* and MSO[E]. HyperQCTL* [[Coenen et al. 2019] extends HyperCTL* with
quantification over atomic propositions. The formulas of HyperQCTL* are generated
by the following grammar:

¢ == ax | 20 | ¢ove | X¢ | ¢U¢ | Imo | Ip.o

where a,p € AP and 7 € V. The semantics of HyperQCTL* corresponds to the seman-
tics of HyperCTL* with an additional rule for propositional quantification: Jp.¢ is sat-
isfied iff ¢ is satisfied after the labeling of the tree has been modified by (re-)assigning
the valuation of p to the nodes of the tree. HyperQCTL* has the same expressive-
ness as second-order monadic logic equipped with the equal-level predicate (MSO[E]),
i.e., the extension of FO[<, F] with second-order quantification [Coenen et al. 2019].
While the model-checking problem for MPL[E] is still decidable [Finkbeiner 2021], the
model-checking problems for HyperQCTL* and MSO[ E] are undecidable [[Coenen et al.
2019].

7.3. Further extensions

In addition to the logics discussed so far, HyperLTL has been extended in numerous
further directions. In the following, we briefly discuss three major areas of ongoing
research.

Probabilistic hyperproperties. To reason about probabilistic hyperproperties of Markov
decision processes, HyperLTL has been extended with probabilistic operators and
strategy quantifiers, resulting in the temppral logic PHL [Dimitrova et al. 2020]]; simi-
lar extensions are the logics HyperPCTL [[Abraham and Bonakdarpour 2018; Abrahdm
et al. 2020] and HyperPCTL* [Wang et al. 2021]].

Infinite-state hyperproperties. HyperTSL [Coenen et al. 2023|] is a temporal logic for
the specification of hyperproperties of infinite-state software. It is based on temporal
stream logic (TSL) [Finkbeiner et al. 2019, which extends linear temporal logic (LTL)
with the concept of cells and uninterpreted functions and predicates. These mecha-
nisms separate the temporal control flow from the concrete data in the system, which
enables reasoning about infinite-state systems. First-order HyperLTL extends Hyper-
LTL with first-order quantifiers over uninterpreted sorts [Finkbeiner et al. 2017].
For cyber-physical systems, HyperLTL has also been extended with real-valued sig-
nals [Nguyen et al. 2017; Wang et al. 2019].

Asynchronous hyperproperties. While HyperLTL has a strictly synchronous semantics,
and a general logic for asynchronous hyperproperties has not been proposed yet, there
are already two extensions of HyperLTL that go in this direction: the extension with
trajectory quantifiers [Baumeister et al. 2021]] considers multiple schedulings between
the traces; Stuttering HyperLTL [Bozzelli et al. 2021]] eliminates stuttering steps from
the traces. A further big step towards asynchronous hyperproperties is the temporal
fixpoint calculus H,, [Gutsteld et al. 2021]], which integrates the quantifiers from Hy-
perLTL into the modal p-calculus. Many asynchronous hyperproperties can also be
encoded in HyperATL* [Beutner and Finkbeiner 2021]], an extension of HyperLTL to
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games with multiple coalitions of players. Asynchronous hyperproperties are increas-
ingly supported by practical verification approaches such as bounded model check-
ing [Hsu et al. 2023].

8. CONCLUDING REMARKS

HyperLTL and its extensions are a powerful unifying framework for reasoning about
hyperproperties. For a wide range of algorithmic problems, including satisfiability,
model checking, monitoring, and synthesis, the logics provide a common specification
language and semantic foundation. It is encouraging that the model-checking problem
remains decidable for a large portion of the hierarchy of hyperlogics, allowing for the
development of automated verification techniques that cover broad classes of hyper-
properties in a uniform manner.

Despite the significant progress over the past decade, much work remains to be done.
Many of the currently available algorithms focus on finite-state hardware; reasoning
about hyperproperties of infinite-state software remains a challenge. It is also clear
that the expressiveness of logics like HyperLTL is dwarfed by the general power of
hyperproperties. Many concepts that relate to concerns like privacy [Kalloniatis et al.
2008]], explainability [Clinciu and Hastie 2019], or fairness [Mehrabi et al. 2021] are
arguably covered by Clarkson and Schneider’s general definition of hyperproperties as
properties of sets of traces; yet a specification language that would provide a unifying
theory for all these notions remains out of reach for now.
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