®

Check for
updates

nl2spec: Interactively Translating
Unstructured Natural Language

to Temporal Logics with Large Language
Models

Matthias Cosler?, Christopher Hahn'®) Daniel Mendoza'(®),
Frederik Schmitt?, and Caroline Trippel®

CAV 1 Stanford University, Stanford, CA, USA CAV
WM hahnOcs.stanford.edu, {dmendo,trippel}@stanford.edu [SSNFHSN
Evaluation 2 CISPA Helmholtz Center for Information Security, Evaluation

* Saarbriicken, Germany * K Kk
Available {matthias.cosler,frederik.schmitt}@cispa.de Reusable

Abstract. A rigorous formalization of desired system requirements is
indispensable when performing any verification task. This often limits
the application of verification techniques, as writing formal specifications
is an error-prone and time-consuming manual task. To facilitate this,
we present nl2spec, a framework for applying Large Language Models
(LLMs) to derive formal specifications (in temporal logics) from unstruc-
tured natural language. In particular, we introduce a new methodology
to detect and resolve the inherent ambiguity of system requirements in
natural language: we utilize LLMs to map subformulas of the formaliza-
tion back to the corresponding natural language fragments of the input.
Users iteratively add, delete, and edit these sub-translations to amend
erroneous formalizations, which is easier than manually redrafting the
entire formalization. The framework is agnostic to specific application
domains and can be extended to similar specification languages and new
neural models. We perform a user study to obtain a challenging dataset,
which we use to run experiments on the quality of translations. We pro-
vide an open-source implementation, including a web-based frontend.

1 Introduction

A rigorous formalization of desired system requirements is indispensable when
performing any verification-related task, such as model checking [7], synthesis [6],
or runtime verification [20]. Writing formal specifications, however, is an error-
prone and time-consuming manual task typically reserved for experts in the field.
This paper presents nl2spec, a framework, accompanied by a web-based tool,
to facilitate and automate writing formal specifications (in LTL [34] and similar
temporal logics). The core contribution is a new methodology to decompose
the natural language input into sub-translations by utilizing Large Language
Models (LLMs). The nl2spec framework provides an interface to interactively

© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 383-396, 2023.
https://doi.org/10.1007/978-3-031-37703-7_18

https://doi.org/10.6084/m9.figshare.22721161.v2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_18&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_18

384 M. Cosler et al.

A Framework for Translating Unstructured Natural Language to Temporal Logics with Large Language Models Home About

Prompt
Translate this sentence t
Globally, grant 0 and grant 1 do not hold at the same time until it is allowed. Y
2
Model: codex Prompt: generic Number of tries: 3 Temperature: 0.20
[]

Subtranslations B Add Subtranslation | | @ Delete Al |

9 &
Translate and Y to & Y 33.33% ‘
Translate until 4o U Y 33.33% @ ‘

" .
Translate itis allowed y, to a Y 33.33% | ‘
Translate do not hold at the same time to ~(g0&gl) 66.67% ‘

Va Yz

. =
Translate globally 4 to G Y 66.67% W) ‘
Translate ~ grant 0 , o g0 , 100% 7\
Translate grant1 7z to g1l y 100%) ‘
Final Result Translate to LTL
G((!((g0 & g1)) U a)) y; 100.0%

2

Fig. 1. A screenshot of the web-interface for nl2spec.

add, edit, and delete these sub-translations instead of attempting to grapple with
the entire formalization at once (a feature that is sorely missing in similar work,
e.g., [13,30]).

Figure 1 shows the web-based frontend of n12spec. As an example, we con-
sider the following system requirement given in natural language: “Globally,
grant 0 and grant 1 do not hold at the same time until it is allowed”. The tool
automatically translates the natural language specification correctly into the
LTL formula G((!'((g0 & g1)) U a)). Additionally, the tool generates sub-
translations, such as the pair (“do not hold at the same time”, ! (g0 & gl)),
which help in verifying the correctness of the translation.

Consider, however, the following ambiguous example: “a holds until b holds
or always a holds”. Human supervision is needed to resolve the ambiguity on
the operator precedence. This can be easily achieved with n12spec by adding or
editing a sub-translation using explicit parenthesis (see Sect. 4 for more details
and examples). To capture such (and other types of) ambiguity in a benchmark
data set, we conducted an expert user study specifically asking for challenging
translations of natural language sentences to LTL formulas.

The key insight in the design of nl2spec is that the process of translation
can be decomposed into many sub-translations automatically via LLMs, and
the decomposition into sub-translations allows users to easily resolve ambigu-
ous natural language and erroneous translations through interactively modifying
sub-translations. The central goal of n12spec is to keep the human supervision

nl2spec 385

minimal and efficient. To this end, all translations are accompanied by a con-
fidence score. Alternative suggestions for sub-translations can be chosen via a
drop-down menu and misleading sub-translations can be deleted before the next
loop of the translation. We evaluate the end-to-end translation accuracy of our
proposed methodology on the benchmark data set obtained from our expert
user study. Note that nl2spec can be applied to the user’s respective appli-
cation domain to increase the quality of translation. As proof of concept, we
provide additional examples, including an example for STL [31] in the GitHub
repository?.

nl2spec is agnostic to machine learning models and specific application
domains. We will discuss possible parameterizations and inputs of the tool in
Sect. 3. We discuss our sub-translation methodology in more detail in Sect. 3.2
and introduce an interactive few-shot prompting scheme for LLMs to generate
them. We evaluate the effectiveness of the tool to resolve erroneous formaliza-
tions in Sect.4 on a data set obtained from conducting an expert user study.
We discuss limitations of the framework and conclude in Sect.5. For additional
details, please refer to the complete version [8].

2 Background and Related Work

2.1 Natural Language to Linear-Time Temporal Logic

Linear-time Temporal Logic (LTL) [34] is a temporal logic that forms the basis
of many practical specification languages, such as the IEEE property specifica-
tion language (PSL) [22], Signal Temporal Logic (STL) [31], or System Verilog
Assertions (SVA) [43]. By focusing on the prototype temporal logic LTL, we
keep the nl2spec framework extendable to specification languages in specific
application domains. LTL extends propositional logic with temporal modalities
U (until) and X (next). There are several derived operators, such as Fo = trueUyp
and Gp = —F-y. Fp states that ¢ will eventually hold in the future and
Gy states that ¢ holds globally. Operators can be nested: GFy, for example,
states that ¢ has to occur infinitely often. LTL specifications describe a sys-
tems behavior and its interaction with an environment over time. For exam-
ple given a process 0 and a process 1 and a shared resource, the formula
G(ro — Fgo) A G(r1 — Fg1) A G—(go A ¢1) describes that whenever a process
requests (r;) access to a shared resource it will eventually be granted (g;). The
subformula G—(gg A ¢g1) ensures that grants given are mutually exclusive.

Early work in translating natural language to temporal logics focused on
grammar-based approaches that could handle structured natural language [17,
24]. A survey of earlier research before the advent of deep learning is provided
in [4]. Other approaches include an interactive method using SMT solving and
semantic parsing [15], or structured temporal aspects in grounded robotics [45]
and planning [32]. Neural networks have only recently been used to translate

! The tool is available at GitHub: https://github.com/realChrisHahn2/nl2spec.

https://github.com/realChrisHahn2/nl2spec

386 M. Cosler et al.

into temporal logics, e.g., by training a model for STL from scratch [21], fine-
tuning language models [19], or an approach to apply GPT-3 [13,30] in a one-
shot fashion, where [13] output a restricted set of declare templates [33] that
can be translated to a fragment of LTLf [10]. Translating natural langauge to
LTL has especially been of interest to the robotics community (see [16] for an
overview), where datasets and application domains are, in contrast to our setting,
based on structured natural language. Independent of relying on structured data,
all previous tools lack a detection and interactive resolving of the inerherent
ambiguity of natural language, which is the main contribution of our framework.
Related to our approach is recent work [26], where generated code is iteratively
refined to match desired outcomes based on human feedback.

2.2 Large Language Models

LLMs are large neural networks typically consisting of up to 176 billion parame-
ters. They are pre-trained on massive amounts of data, such as “The Pile” [14].
Examples of LLMs include the GPT [36] and BERT [11] model families, open-
source models, such as T5 [38] and Bloom [39], or commercial models, such as
Codex [5]. LLMs are Transformers [42], which is the state of the art neural archi-
tecture for natural language proccessing. Additionally, Transformers have shown
remarkable performance when being applied to classical problems in verification
(e.g., [9,18,25,40]), reasoning (e.g., [28,50]), as well as the auto-formalization [35]
of mathematics and formal specifications (e.g., [19,21,49]).

In language modelling, we model the probability of a sequence of tokens in a
text [41]. The joint probability of tokens in a text is generally expressed as [39]:

T

p(x) = p(z1,...,27) = Hp(xt|$<t))

where x is the sequence of tokens, x; represents the t-th token, and z; is the
sequence of tokens preceding x;. We refer to this as an autoregressive language
model that iteratively predicts the probability of the next token. Neural network
approaches to language modelling have superseded classical approaches, such as
n-grams [41]. Especially Transformers [42] were shown to be the most effective
architecture at the time of writing [1,23,36].

While fine-tuning neural models on a specific translation task remains a valid
approach showing also initial success in generalizing to unstructured natural lan-
guage when translating to LTL [19], a common technique to obtain high perfor-
mance with limited amount of labeled data is so-called “few-shot prompting” [3].
The language model is presented a natural language description of the task usu-
ally accompanied with a few examples that demonstrate the input-output behav-
ior. The framework presented in this paper relies on this technique. We describe
the proposed few-shot prompting scheme in detail in Sect. 3.2.

Currently implemented in the framework and used in the expert-user study
are Codex and Bloom, which showed the best performance during testing.

nl2spec 387

Codex and GPT-3.5-turbo. Codex [5] is a GPT-3 variant that was initially of
up to 12B parameters in size and fine-tuned on code. The initial version of
GPT-3 itself was trained on variations of Common Crawl,> Webtext-2 [37], two
internet-based book corpora and Wikipedia [3]. The fine-tuning dataset for the
vanilla version Codex was collected in May 2020 from 54 million public software
repositories hosted on GitHub, using 159GB of training data for fine-tuning. For
our experiments, we used the commercial 2022 version of code-davinci-002,
which is likely larger (in the 176B range®) than the vanilla codex models. GPT-
3.5-turbo is the currently available follow-up model of GPT-3.

Bloom. Bloom [39] is an open-source LLM family available in different sizes of
up to 176B parameters trained on 46 natural languages and 13 programming
languages. It was trained on the ROOTS corpus [27], a collection of 498 hugging-
face [29,48] datasets consisting of 1.61 terabytes of text. For our experiments,
we used the 176B version running on the huggingface inference API*.

3 The nl2spec Framework

3.1 Overview

The framework follows a standard frontend-backend implementation. Figure 2
shows an overview of the implementation of nl2spec. Parts of the framework
that can be extended for further research or usage in practice are highlighted. The
framework is implemented in Python 3 and flask [44], a lightweight WSGI web
application framework. For the experiments in this paper, we use the OpenAl
library and huggingface (transformer) library [47]. We parse the LTL output
formulas with a standard LTL parser [12]. The tool can either be run as a
command line tool, or with the web-based frontend.

The frontend handles the interaction with a human-in-the-loop. The inter-
face is structured in three views: the “Prompt”, “Sub-translations”, and “Final
Result” view (see Fig.1). The tool takes a natural language sentence, optional
sub-translations, the model temperature, and number of runs as input. It pro-
vides sub-translations, a confidence score, alternative sub-translations and the
final formalization as output. The frontend then allows for interactively select-
ing, editing, deleting, or adding sub-translations. The backend implements the
handling of the underlying neural models, the generation of the prompt, and
the ambiguity resolving, i.e., computing the confidence score including alter-
native sub-translations and the interactive few-shot prompting algorithm (cf.
Sect. 3.2). The framework is designed to have an easy interface to implement
new models and write domain-specific prompts. The prompt is a .txt file that
can be adjusted to specific domains to increase the quality of translations. To
apply the sub-translation refinement methodology, however, the prompt needs to
follow our interactive prompting scheme, which we introduce in the next section.

2 https://commoncrawl.org/.
3 https://blog.cleuther.ai/gpt3-model-sizes/ .
* https://huggingface.co/inference-api.

https://commoncrawl.org/
https://blog.eleuther.ai/gpt3-model-sizes/
https://huggingface.co/inference-api

388 M. Cosler et al.

S EEEEEEE——
Natural Language
Temperature
an
Number of runs

Sub-translations

(Frontend

Sub-translations '

A

(" | Backend)

Formal LTL spec

[Natural Language] [Temperature] [Sub-translations]
l Sub-translations J l Number of runs J lConﬁdence scoresJ

|
Ambiguity
,,
L—»' Neural Models ' j
\ _J

Fig. 2. Overview of the nl2spec framework with a human-in-the-loop: highlighted
areas indicate parts of the framework that are effortlessly extendable.

3.2 Interactive Few-Shot Prompting

The core of the methodology is the decomposition of the natural language input
into sub-translations. We introduce an interactive prompting scheme that gener-
ates sub-translations using the underlying neural model and leverages the sub-
translations to produce the final translation. Algorithm 1 depicts a high-level
overview of the interactive loop. The main idea is to give a human-in-the-loop
the options to add, edit, or delete sub-translations and feed them back into
the language models as “Given translations” in the prompt (see Fig.3). After
querying a language model M with this prompt F', model specific parameters P
and the interactive prompt that is computed in the loop, the model generates
a natural language explanation, a dictionary of sub-translations, and the final
translation. Notably, the model M can be queried multiple times as specified
by the number of runs r, thereby generating multiple possible sub-translations.
The confidence score of each sub-translation is computed as votes over multiple
queries and by default the sub-translation with the highest confidence score is
selected to be used as a given sub-translation in the next iteration. In the fron-
tend, the user may view and select alternative generated sub-translations for
each sub-translation via a drop-down menu (see Fig. 1).

Figure 3 shows a generic prompt, that illustrates our methodology. The
prompting scheme consists of three parts. The specification language specific
part (lines 1-4), the fewshot examples (lines 5-19), and the interactive prompt

nl2spec 389

Translate the following natural language sentences into an LTL formula and explain your
translation step by step. Remember that X means '"next", U means "until", G means
"globally", F means "finally", which means GF means "infinitely often". The formula
should only contain atomic propositions or operators &, ~, ->, <->, X, U, G, F.
Natural Language: Globally if a holds then c¢ is true until b. Given translations: {}

6 Explanation: "a holds" from the input translates to the atomic proposition a.

[

7 "c is true until b" from the input translates to the subformula c¢ U b. "if x then y"

8 translates to an implication x -> y, so "if a holds then c is true until b" translates
9 to an implication a -> ¢ U b. "Globally" from the input translates to the temporal

10 operator G. Explanation dictionary: {"a holds" : "a", "c is true until b" : "c U b",
11 "if a holds then ¢ is true until b" : "a -> ¢ U b", "Globally" : "G"} So the final

12 LTL translation is G a -> ¢ U b.FINISH Natural Language: Every request r is

13 eventually followed by a grant g. Given translations: {} Explanation: "Request r"

14 from the input translates to the atomic proposition r and "grant g" translates to the
15 atomic proposition g. "every" means at every point in time, i.e., globally, "never"
16 means at no point in time, and "eventually" translates to the temporal operator F.

17 "followed by" is the natural language representation of an implication. Explanation
18 dictionary: {"Request r" : "r", "grant g" : "g", "every" : "G", "eventually": "F",
19 "followed by" : "->"} So the final LTL translation is G r -> F g.FINISH

Fig. 3. Prompt with minimal domain knowledge of LTL.

including the natural language and sub-translation inputs (not displayed, given
as input). The specification language specific part leverages “chain-of-thought”
prompt-engineering to elicit reasoning from large language models [46]. The key
of n12spec, however, is the setup of the few-shot examples. This minimal prompt
consists of two few-shot examples (lines 5-12 and 12-19). The end of an exam-
ple is indicated by the “FINISH” token, which is the stop token for the machine
learning models. A few-shot example in n12spec consists of the natural language
input (line 5), a dictionary of given translations, i.e., the sub-translations (line
5), an explanation of the translation in natural language (line 6-10), an expla-
nation dictionary, summarizing the sub-translations, and finally, the final LTL
formula.

This prompting scheme elicits sub-translations from the model, which serve
as a fine-grained explanation of the formalization. Note that sub-translations
provided in the prompt are neither unique nor exhaustive, but provide the con-
text for the language model to generate the correct formalization.

4 Evaluation

In this section, we evaluate our framework and prompting methodology on a data
set obtained by conducting an expert user study. To show the general applica-
bility of this framework, we use the minimal prompt that includes only minimal
domain knowledge of the specification language (see Fig.3). This prompt has
intentionally been written before conducting the expert user study. We lim-
ited the few-shot examples to two and even provided no few-shot example that
includes “given translations”. We use the minimal prompt to focus the evaluation
on the effectiveness of our interactive sub-translation refinement methodology in

390 M. Cosler et al.

Algorithm 1: Interactive Few-shot Prompting Algorithm

1 Input: Natural language S, Few-shot prompt F', set of given sub-translations
(s,), and language model M
2 Interactions: set of sub-translations (s, ¢), confidence scores C
3 Set of Model specific parameter P: e.g., model-temperature ¢, number of
runs r
4 Output: LTL formula ¢ that formalizes S
L ¢, (s,¢) ,C = empty
while user not approves LTL formula ¢ do
interactive_prompt = compute_prompt(S, F, (s, ¢))
¥, (s,¢) ,C = query(M, P, interactive_prompt)
(s,) = user_interaction((s,¢) ,C)
end while
return

resolving ambiguity and fixing erroneous translations. In practice, one would like
to replace this minimal prompt with domain-specific examples that capture the
underlying distribution as closely as possible. As a proof of concept, we elaborate
on this in the full version [8].

4.1 Study Setup

To obtain a benchmark dataset of unstructured natural language and their for-
malizations into LTL, we asked five experts in the field to provide examples that
the experts thought are challenging for a neural translation approach. Unlike
existing datasets that follow strict grammatical and syntatical structure, we
posed no such restrictions on the study participants. Each natural language
specification was restricted to one sentence and to five atomic propositions
a,b,c,d,e. Note that n12spec is not restricted to a specific set of atomic propo-
sitions (cf. Fig.1). Which variable scheme to use can be specified as an initial
sub-translation. We elaborate on this in the full version [8]. To ensure unique
instances, the experts worked in a shared document, resulting in 36 benchmark
instances. We provide three randomly drawn examples for the interested reader:

natural language S LTL specification v

If b holds then, in the next step, ¢ holds until a holds or always ¢ holds |b -> X ((c U a) || G ¢)
If b holds at some point, a has to hold somewhere beforehand (Fb) > (!bU (a & 'b))
One of the following aps will hold at all instances: a,b,c G(alblc

The poor performance of existing methods (cf. Table1) exemplify the diffi-
culty of this data set.

4.2 Results

We evaluated our approach using the minimal prompt (if not otherwise stated),
with number of runs set to three and with a temperature of 0.2.

nl2spec 391

Quality of Initial Translation. We analyze the quality of initial translations, i.e.,
translations obtained before any human interaction. This experiment demon-
strates that the initial translations are of high quality, which is important to
ensure an efficient workflow. We compared our approach to fine-tuning language
models on structured data [19] and to an approach using GPT-3 or Rasa [2] to
translate natural language into a restricted set of declare patterns [13] (which
could not handle most of the instances in the benchmark data set, even when
replacing the atomic propositions with their used entities). The results of eval-
uating the accuracy of the initial translations on our benchmark expert set is
shown in Table 1.

At the time of writing, using Codex in the backend outperforms GPT-3.5-
turbo and Bloom on this task, by correctly translating 44.4% of the instances
using the minimal prompt. We only count an instance as correctly translated
if it matches the intended meaning of the expert, no alternative translation
to ambiguous input was accepted. Additionally to the experiments using the
minimal prompt, we conducted experiments on an augmented prompt with in-
distribution examples after the user study was conducted by randomly drawing
four examples from the expert data set (3 of the examples haven’t been solved
before, see the GitHub repository or full version for more details). With this in-
distribution prompt (ID), the tool translates 21 instances (with the four drawn
examples remaining in the set), i.e., 58.3% correctly.

This experiment shows 1) that the initial translation quality is high and
can handle unstructured natural language better than previous approaches and
2) that drawing the few-shot examples in distribution only slightly increased
translation quality for this data set; making the key contributions of nl2spec,
i.e., ambiguity detection and effortless debugging of erroneous formalizations,
valuable. Since nl2spec is agnostic to the underlying machine learning models,
we expect an even better performance in the future with more fine-tuned models.

Teacher-Student Experiment. In this experiment, we generate an initial set of
sub-translations with Codex as the underlying neural model. We then ran the
tool with Bloom as a backend, taking these sub-translations as input. There were
11 instances that Codex could solve initially that Bloom was unable to solve. On
these instances, Bloom was able to solve 4 more instances, i.e., 36.4% with sub-
translations provided by Codex. The four instances that Bloom was able to solve

Table 1. Translation accuracy on the benchmark data set, where B stands for Bloom
and C stands for Codex and G for GPT-3.5-Turbo.

nl2ltl [13] | T-5 [19] nl2spec+B |nl2spec+C | nl2spec+C | nl2spec+C
rasa fine-tuned | initial initial initial+ID interactive
1/36 (2.7%) | 2/36 (5.5%) | 5/36 (13.8%) | 16/36 (44.4%) | 21/36 (58.3%) | 31/36 (86.1%)
- - - nl2spec+G | nl2spec+G | nl2spec+G
initial initial+ID interactive
- - - 12/36 (33.3%) | 17/36 (47.2%) | 21/36 (58.3%)

392 M. Cosler et al.

with the help of Codex were: “It is never the case that a and b hold at the same
time.”, “Whenever a is enabled, b is enabled three steps later.”, “If it is the case
that every a is eventually followed by a b, then ¢ needs to holds infinitely often.”,
and “One of the following aps will hold at all instances: a,b,c”. This demonstrates
that our sub-translation methodology is a valid appraoch: improving the quality
of the sub-translations indeed has a positive effect on the quality of the final
formalization. This even holds true when using underperforming neural network
models. Note that no supervision by a human was needed in this experiment to
improve the formalization quality.

Ambiguity Detection. Out of the 36 instances in the benchmark set, at least 9 of
the instances contain ambiguous natural language. We especially observed two
classes of ambiguity: 1) ambiguity due to the limits of natural language, e.g.,
operator precedence, and 2) ambiguity in the semantics of natural language;
nl2spec can help in resolving both types of ambiguity. Details for the following
examples can be found in the full version [8].

An example for the first type of ambiguity from our dataset is the example
mentioned in the introduction: “a holds until b holds or always a holds”, which
the expert translated into (a U b) | G a. Running the tool, however, trans-
lated this example into (a U (b | G(a))). By editting the sub-translation of
“a holds until b holds” to (a U b) through adding explicit parenthesis, the tool
translates as intended. An example for the second type of ambiguity is the follow-
ing instance from our data set: “Whenever a holds, b must hold in the next two
steps.” The intended meaning of the expert was G (a -> (b | X b)), whereas
the tool translated this sentence into G((a -> X(X(b)))). After changing the
sub-translation of “b must hold in the next two steps” to b | X b, the tool
translates the input as intended.

Fizing Erroneous Translation. With the inherent ambiguity of natural lan-
guage and the unstructured nature of the input, the tool’s translation cannot
be expected to be always correct in the first try. Verifying and debugging sub-
translations, however, is significantly easier than redrafting the complete for-
mula from scratch. Twenty instances of the data set were not correctly trans-
lated in an initial attempt using Codex and the minimal prompt in the backend
(see Table1). We were able to extract correct translations for 15 instances by
performing at most three translation loops (i.e., adding, editing, and removing
sub-translations), We were able to get correct results by performing 1.86 trans-
lation loops on average. For example, consider the instance, “whenever a holds,
b holds as well”, which the tool mistakenly translated to G(a & b). By fixing
the sub-translation “b holds as well” to the formula fragment -> b, the sentence
is translated as intended. Only the remaining five instances that contain highly
complex natural language requirements, such as, “once a happened, b won’t
happen again” were need to be translated by hand.

In total, we correctly translated 31 out of 36 instances, i.e., 86.11% using the
nl2spec sub-translation methodology by performing only 1.4 translation loops
on average (see Table1).

nl2spec 393

5 Conclusion

We presented nl2spec, a framework for translating unstructured natural lan-
guage to temporal logics. A limitation of this approach is its reliance on compu-
tational resources at inference time. This is a general limitation when applying
deep learning techniques. Both, commercial and open-source models, however,
provide easily accessible APIs to their models. Additionally, the quality of initial
translations might be influenced by the amount of training data on logics, code,
or math that the underlying neural models have seen during pre-training.

At the core of n12spec lies a methodology to decompose the natural language
input into sub-translations, which are mappings of formula fragments to relevant
parts of the natural language input. We introduced an interactive prompting
scheme that queries LLMs for sub-translations, and implemented an interface
for users to interactively add, edit, and delete the sub-translations, which avoids
users from manually redrafting the entire formalization to fix erroneous transla-
tions. We conducted a user study, showing that n12spec can be efficiently used
to interactively formalize unstructured and ambigous natural language.

Acknowledgements. We thank OpenAl for providing academic access to Codex and
Clark Barrett for helpful feedback on an earlier version of the tool.

References

1. Al-Rfou, R., Choe, D., Constant, N., Guo, M., Jones, L.: Character-level language
modeling with deeper self-attention. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 3159-3166 (2019)

2. Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: open source language
understanding and dialogue management. arXiv preprint arXiv:1712.05181 (2017)

3. Brown, T\, et al.: Language models are few-shot learners. Adv. Neural Inf. Process.
Syst. 33, 1877-1901 (2020)

4. Brunello, A., Montanari, A., Reynolds, M.: Synthesis of 1tl formulas from natural
language texts: state of the art and research directions. In: 26th International
Symposium on Temporal Representation and Reasoning (TIME 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

5. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021)

6. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
J. Symb. Logic 28(4) (1963)

7. Clarke, E.M.: Model checking. In: Ramesh, S., Sivakumar, G. (eds.) FSTTCS 1997.
LNCS, vol. 1346, pp. 54-56. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0058022

8. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: interactively
translating unstructured natural language to temporal logics with large language
models. arXiv preprint arXiv:2303.04864 (2023)

9. Cosler, M., Schmitt, F., Hahn, C., Finkbeiner, B.: Iterative circuit repair against
formal specifications. In: International Conference on Learning Representations (to
appear) (2023)

http://arxiv.org/abs/1712.05181
http://arxiv.org/abs/2107.03374
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1007/BFb0058022
http://arxiv.org/abs/2303.04864

394

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

M. Cosler et al.

De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: IJCAI 2013 Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence, pp. 854-860. Association for Computing
Machinery (2013)

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

Fuggitti, F.: LTLf2DFA. Zenodo (2019). https://doi.org/10.5281/ZENODO.
3888410, https://zenodo.org/record /3888410

Fuggitti, F., Chakraborti, T.: Nl2ltl-a python package for converting natural lan-
guage (nl) instructions to linear temporal logic (1tl) formulas (2023)

Gao, L., et al.: The pile: an 800 gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027 (2020)

Gavran, I., Darulova, E., Majumdar, R.: Interactive synthesis of temporal spec-
ifications from examples and natural language. Proc. ACM Program. Lang.
4(OOPSLA), 1-26 (2020)

Gopalan, N.; Arumugam, D., Wong, L.L., Tellex, S.: Sequence-to-sequence lan-
guage grounding of non-markovian task specifications. In: Robotics: Science and
Systems, vol. 2018 (2018)

Grunske, L.: Specification patterns for probabilistic quality properties. In: 2008
ACM/IEEE 30th International Conference on Software Engineering, pp. 31-40.
IEEE (2008)

Hahn, C., Schmitt, F., Kreber, J.U., Rabe, M.N., Finkbeiner, B.: Teaching tempo-
ral logics to neural networks. In: International Conference on Learning Represen-
tations (2021)

Hahn, C., Schmitt, F., Tillman, J.J., Metzger, N., Siber, J., Finkbeiner, B.: Formal
specifications from natural language. arXiv preprint arXiv:2206.01962 (2022)
Havelund, K., Rosu, G.: Monitoring java programs with java pathexplorer. Elec-
tron. Notes Theor. Comput. Sci. 55(2), 200-217 (2001)

He, J., Bartocci, E., Nickovié, D., Isakovic, H., Grosu, R.: Deepstl: from english
requirements to signal temporal logic. In: Proceedings of the 44th International
Conference on Software Engineering, pp. 610-622 (2022)

IEEE-Commission, et al.: IEEE standard for property specification language
(PSL). IEEE Std 1850-2005 (2005)

Kaplan, J., et al.: Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361 (2020)

Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software Engineering, pp. 372-381 (2005)
Kreber, J.U., Hahn, C.: Generating symbolic reasoning problems with transformer
gans. arXiv preprint arXiv:2110.10054 (2021)

Lahiri, S.K., et al.: Interactive code generation via test-driven user-intent formal-
ization. arXiv preprint arXiv:2208.05950 (2022)

Laurengon, H., et al.: The bigscience roots corpus: a 1.6 tb composite multilingual
dataset. In: Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (2022)

Lewkowycz, A., et al.: Solving quantitative reasoning problems with language mod-
els. arXiv preprint arXiv:2206.14858 (2022)

Lhoest, Q., et al.: Datasets: a community library for natural language processing.
arXiv preprint arXiv:2109.02846 (2021)

http://arxiv.org/abs/1810.04805
https://doi.org/10.5281/ZENODO.3888410
https://doi.org/10.5281/ZENODO.3888410
https://zenodo.org/record/3888410
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2206.01962
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2110.10054
http://arxiv.org/abs/2208.05950
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2109.02846

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

nl2spec 395

Liu, J.X., et al.: Lang2ltl: translating natural language commands to temporal
specification with large language models. In: Workshop on Language and Robotics
at CoRL 2022

Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152-166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
312

Patel, R., Pavlick, R., Tellex, S.: Learning to ground language to temporal logical
form. In: NAACL (2019)

Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103,
pp. 169-180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_18
Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pp. 46-57. IEEE (1977)

Rabe, M.N., Szegedy, C.: Towards the automatic mathematician. In: Platzer, A.,
Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 25-37. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_2

Radford, A., Narasimhan, K., Salimans, T., Sutskever, 1., et al.: Improving lan-
guage understanding by generative pre-training (2018)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, 1., et al.: Language
models are unsupervised multitask learners. OpenAl blog 1(8), 9 (2019)

Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(140), 1-67 (2020). http://jmlr.org/papers/
v21/20-074.html

Scao, T.L., et al.: Bloom: a 176b-parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100 (2022)

Schmitt, F., Hahn, C., Rabe, M.N., Finkbeiner, B.: Neural circuit synthesis from
specification patterns. Adv. Neural Inf. Process. Syst. 34, 15408-15420 (2021)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379-423 (1948)

Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
(2017)

Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Asser-
tions. Springer, Heidelberg (2005). https://doi.org/10.1007/b137011

Vyshnavi, V.R., Malik, A.: Efficient way of web development using python and
flask. Int. J. Recent Res. Asp 6(2), 16-19 (2019)

Wang, C., Ross, C., Kuo, Y.L., Katz, B., Barbu, A.: Learning a natural-
language to 1tl executable semantic parser for grounded robotics. arXiv preprint
arXiv:2008.03277 (2020)

Wei, J., et al.: Chain of thought prompting elicits reasoning in large language
models. arXiv preprint arXiv:2201.11903 (2022)

Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019)

Wolf, T., et al.: Transformers: State-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38-45 (2020)

Wu, Y., et al.: Autoformalization with large language models. arXiv preprint
arXiv:2205.12615 (2022)

Zelikman, E.; Wu, Y., Goodman, N.D.: Star: bootstrapping reasoning with reason-
ing. arXiv preprint arXiv:2203.14465 (2022)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/11837862_18
https://doi.org/10.1007/978-3-030-79876-5_2
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2211.05100
https://doi.org/10.1007/b137011
http://arxiv.org/abs/2008.03277
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2205.12615
http://arxiv.org/abs/2203.14465

396 M. Cosler et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	nl2spec: Interactively Translating Unstructured Natural Language to Temporal Logics with Large Language Models
	1 Introduction
	2 Background and Related Work
	2.1 Natural Language to Linear-Time Temporal Logic
	2.2 Large Language Models

	3 The nl2spec Framework
	3.1 Overview
	3.2 Interactive Few-Shot Prompting

	4 Evaluation
	4.1 Study Setup
	4.2 Results

	5 Conclusion
	References

