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ABSTRACT

We introduce CryptoBap, a platform to verify weak secrecy and
authentication for the (ARMv8 and RISC-V) machine code of crypto-
graphic protocols. We achieve this by first transpiling the binary of
protocols into an intermediate representation and then performing
a crypto-aware symbolic execution to automatically extract a model
of the protocol that represents all its execution paths. Our symbolic
execution resolves indirect jumps and supports bounded loops us-
ing the loop-summarization technique, which we fully automate.
The extracted model is then translated into models amenable to
automated verification via ProVerif and CryptoVerif using a third-
party toolchain. We prove the soundness of the proposed approach
and used CryptoBap to verify multiple case studies ranging from
toy examples to real-world protocols, TinySSH, an implementation
of SSH, and WireGuard, a modern VPN protocol.

This paper uses colors to distinguish between different abstraction

layers in our modeling and verification [63].
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1 INTRODUCTION

Cryptographic protocols are a vital part of end-user security on the
Internet. Therefore, devising techniques to obtain high-assurance
guarantees about their correctness and security is highly desirable.
Nevertheless, despite the simplicity of such protocols, their design
and implementation are notoriously error-prone, and there have
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been many attacks targeting either their design (e.g., man-in-the-
middle attacks like the triple-handshake attack on TLS [15]) or
implementation (e.g., Heartbleed, CVE-2014-0160).

Formal methods suggest a rigorous foundation to find bugs and
provide guarantees about the correctness and security of crypto-
graphic protocols. Rigorous techniques that have been used so far
to reason about such protocols belong to two main lines of research.
One is based on the Dolev-Yao model, a symbolic model of cryp-
tography [31], while the other, the computational approach [37],
is closer to reality and gives stronger and more realistic security
assurance.

In recent years, significant progress has been made using these
techniques to derive rigorous guarantees based on either abstract
protocol specifications or the concrete implementations in high-
level programming languages such as C or F# [3, 4, 6, 16, 27, 38].
Despite this, there still exists a large gap between the correctness of
cryptographic protocols’ models or high-level implementations and
their object code (i.e., machine code generated by compilers) that
ultimately will execute on hardware. This gapmay result in a lack of
security, even when correctness proofs are developed for a model or
a high-level implementation of the protocol. A major cause for this
gap is the fact that program behavior at the source level can diverge
from its actual behavior when executed on hardware, e.g., due to
compiler-introduced bugs [73]. This is because enabling aggressive
compiler optimizations can lead to missing source-level checks
like code intended to detect integer overflows [69] or null point-
ers [73]. Compilers can invalidate code for secret scrubbing [66] or
even turn constant-time code into a nonconstant-time binary [67].
An example is depicted in Fig. 1 where the compiler (GCC ARM
V11.2.1) removes the memset function used to erase the secret key
from memory. If such a function is part of a protocol specification,
its removal can potentially leak the secret key. Alas, even verify-
ing compilers like CompCert [50] are not a cure-all—verifying all
optimization stages that developers want to enjoy in practice is
tough.

Protocol verification obtains privacy and authenticity guarantees
for an abstract model of the protocol that emphasizes concurrency
and communication, typically abstracting cryptographic primitives
with a fixed set of computation rules for the attacker, known as
the Dolev-Yao model [31]. On the other hand, program verification

obtains functional guarantees but also confidentiality in a program
model that is typically sequential and focused on a single machine.
The attacker is not bound by computation rules or runtime restric-
tions. Several works have adopted features from one domain in the
other—we discuss them in detail in Sec. 2—but this comes at the
cost of complex, inflexible execution models and high development
cost. We advocate for composing these techniques, thereby bridging
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Figure 1: An example of how compilers can invalidate code

for secret scrubbing

the gap between tools and verification technologies that can thus
continue to evolve independently.

Our goal in this paper is to extend the verification of security
protocols to their machine code. This eliminates the need for trust-
ing compilers and provides a higher assurance about the security
and correctness of protocols. To achieve this, we extend HolBA [53]
for the verification of RISC-V and ARM binaries with a method
for symbolic execution that handles interactions with an arbitrary
attacker and trusted cryptographic code. Our symbolic execution
resolves indirect jumps and supports (compile-time) bounded loops
using the summarization technique [68], which we fully automate.
We also devise a sound translation from symbolic execution to an
intermediate layer that is amenable to automated verification with
the protocol verifiers ProVerif [20, 70] and CryptoVerif [21]. Fig. 2
depicts the pipeline of the CryptoBap.

Implementation-level vulnerabilities like the stack-based buffer
overflow in Sami FTP Server 2.0.1 are then covered by the sym-
bolic execution, while protocol-level vulnerabilities like the triple-
handshake attack on TLS [15] are detected by those protocol ver-
ifiers. This is guaranteed by our soundness results and has been
evidenced by the discovery of two flaws in CSur and NSL. If there
is an error in the implementation of the protocol specification, it
could either lead to a model that deviates from the intended be-
havior, or an error during the extraction process. For instance, if a
cryptographic value is erroneously copied within the program, the
symbolic execution precisely tracks the memory and detects any
subsequent library call operating on the wrongly formatted data.
As a result, abstraction would fail, indicating an implementation
error; the failure is in the sense that the abstract operations do not
apply to incorrectly encoded cryptographic data.

Our method is inspired by and builds on a line of work by Aizat-
ulin et al. [3, 4]; Fig. 2 highlights differences between the two ap-
proaches (see Sec. 2 for more details on differences of the two
approaches.) We adopt their process calculus intermediate model

language (IML
1) and translation from IML to ProVerif and Cryp-

toVerif. However, we extract the IML model from the machine code
of protocols, providing more reliable security guarantees that are
independent of the compiler used to generate the object code of
protocols. We demonstrate the effectiveness of our approach by
covering the case studies of Aizatulin et al. [4], including the CSur
case study (which they could not verify due to limitations of their
1We depict BIR in black, bold roman, SBIR in RedOrange, sans serif and IML in
RoyalBlue, text italic. Elements common to all languages are typeset in black, italic.

Figure 2: CryptoBap vs. Csec-modex

framework in handling network messages as C structures), as well
as an implementation of SSH called TinySSH [60]. Moreover, we
have verified WireGuard [32], a modern VPN protocol integrated
into Linux, by automatically extracting its ProVerif model.

Our threat model includes a set of functions whose input and
output behavior are controlled by the attacker. This can represent a
network attacker (when these functions are syscalls for network I/O)
or a VM running in parallel (when these functions are hypercalls in a
security hypervisor, e.g., [30, 43]). The execution platform is trusted
to implement the machine-code semantics correctly and includes a
set of trusted cryptographic functions. These are likewise assumed
to be correct. Also, when outputting to ProVerif, the attacker is
assumed to be Dolev-Yao, i.e., cryptography is perfect.

Outline of the CryptoBap’s approach. As in Fig. 2, Crypto-
Bap (source code is available at https://github.com/FMSecure/CryptoBAP)
takes as input:

• the protocol participants’ binary;
• the symbolic model of cryptographic functions;
• and, the security property we verify for event traces of exe-
cutions, formally defined in Sec. 8.

The properties we consider are safety properties over event traces;
currently, CryptoBap supports verification of authentication and
weak secrecy [23]. To verify these properties, we transpile the par-
ticipants’ binary into the BIR representation, the internal language
of the HolBA framework (see Sec. 3.1). Our transpiler is formally
verified and guarantees to preserve the semantics of the machine
code. However, BIR as defined in [53] is not suitable for reasoning
about the security of cryptographic protocols. We address this by
extending BIR in Sec. 4, e.g., to support network communication,
random number generation, etc.

To export the property checking to off-the-shelf verifiers, we
extract a model of protocol participants that these verifiers can pro-
cess. To automate this, we symbolically execute the BIR translation
to instrument on-the-fly the BIR code with events that flag com-
pletion of certain operations and occurrence of errors, and build its
execution tree that contains all program execution paths. We trans-
late the resulting execution tree to obtain equivalent programs in
IML (see Sec. 3.2 and Sec. 6). The extracted IMLmodel is then passed

https://github.com/FMSecure/CryptoBAP
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new rules for network com-

munication (Sec. 4, Fig. 8)

ARMv8

and RISC-V

BIR
crypto−aware
Symb.Exec.

IML

CryptoVerif

and ProVerif

crypto. assumptions on P (Sec. 4):

• Random number generation

• Crypto library calls

• Event function calls

verified transpiles to

([53, Thm. 2])

traces included in

(from Thm. 7.6)

traces included in

(from Thm. 7.3)

Csec-modex

([2, Thm. 4.3,Thm. 5.2])

attack probabilities are preserved

(from Thm. 8.3

using Thm. 7.6, Thm. 7.3, Sec. A.6.1)

in mixed execution with IML

(IMLB, see Fig. 16 and IMLSB, see Fig. 12)

using pure IML

semantics [2, p. 23]

Figure 3: Organization of the CryptoBap approach.

// the message is in

// raise event_bad

// raise event_accept

x

Figure 4: Running example. Function addresses are chosen randomly. Line numbers and 𝑝𝑐𝑖 are addresses of instructions and

functions in the memory.

to Csec-modex [1, 3], which applies algebraic rewriting to convert
the model into the input language of ProVerif and CryptoVerif.

Akin to prior work [3, 4, 6, 16, 19, 27, 38, 40, 42], we trust the
cryptographic primitives and abstract them with function symbols
that are linked to a Dolev-Yao model when exporting to ProVerif,
or to complexity-theoretic assumptions when exporting to Cryp-
toVerif. Analyzing these primitives’ correctness is important, but it
requires a different methodology, e.g., weakest precondition propa-
gation. Projects like MSR’s Project Everest [14] and the resulting
HACL* library [75], CompCert in conjunction with FCF [11, 74] or
VALE [24] or synthesis approaches like Fiat-Crypto [35] address
this equally challenging problem.

To prove that the extracted IML model preserves the behavior of
the actual binary and to relate back the verified properties to the
protocol binary, we define a mixed execution semantics. The mixed
execution enables protocol participants from different abstraction
layers to run in parallel and communicate (see Sec. 7.1 and Fig. 7.2).
Such a mixed semantic also frees our symbolic execution from

dealing with concurrency. Fig. 3 shows the interconnection between
different layers in our approach. To summarize:

• We present CryptoBap to automate the verification of cryp-
tographic protocols’ binary. Our framework explores all exe-
cution paths of protocols, resolves indirect jumps, and han-
dles (compile-time) bounded loops automatically.

• We extend the vanilla symbolic execution engine in HolBA
to automate the model extraction of cryptographic protocols.
The way we extend the engine is significant. While HolBA’s
vanilla symbolic execution considers the program a holistic
entity and thus basically encodes the semantics of the lan-
guage (BIR), our semantics regards only a part of the whole
program and abstracts cryptographic libraries, attacker calls,
and random number generation.

• We formally verify the soundness of our approach and show
that verified properties can be transferred back to the binary
of analyzed protocols.
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• To evaluate CryptoBap, we have successfully verified mul-
tiple case studies, ranging from toy examples, e.g., CSur, to
TinySSH and WireGuard.

Running example. Our running example, Fig. 4, consists of a
client and a server that use a symmetric-key encryption scheme to
communicate securely. This example shows a weak form of authen-
tication, called aliveness [57]: the server will accept the connection
to the (single) client only if it can successfully decrypt the received
message using the pre-shared key. First, the client encrypts a mes-
sage using the shared key, and sends it to the server. Second, the
server receives the encrypted message at the other end and de-
crypts it using the same key. Depending on whether the decryption
succeeds or fails, either event_accept, to show acceptance of the
connection with the client, or event_bad will be released.

2 RELATEDWORK

In the last decade, cryptographers started to employ and even de-
velop theorem provers to develop verifiable proofs [39]. This started
with the CertiCrypt framework for Coq [8], which subsequently
developed into EasyCrypt [7]. These tools support reasoning about
probabilistic programs and classes of (e.g., poly-time restricted)
adversaries via probabilistic and probabilistic relational Hoare logic.
There are also embeddings of probabilistic reasoning like FCF [64],
Verypto [5] and CryptHOL [55], which are easier to combine with
other techniques (this was demonstrated [12, 64] for C code), but
they require tedious manual analysis and a deep understanding of
the underlying relational probabilistic logic.

These methods are typically used to verify cryptographic con-
structions. By contrast, complex protocols are analyzed using sym-
bolic models, where cryptographic primitives like encryption, signa-
tures, etc. are abstracted using a term algebra and a set of reduction
rules. This makes the analysis of protocols that use such primitives
amenable to automation, e.g., using first-order SAT solving [36],
Horn clause resolution [20] or constraint solving [65]. To great
success: within a decade, protocol verification tools went from
analyzing small academic protocols [22, 46] to fully-fledged TLS
models [13, 29].

This degree of automation comes at the cost of abstraction, both
in terms of the computation environment and the cryptographic
primitives. The former is owed to the focus on protocol specifications
rather than implementations. This makes sense, because often,
the task at hand is to evaluate designs or standards rather than
specific implementations, which can be incomplete or nonexistent.
There are efforts to translate implementations into the protocol
specifications, but they are limited to high-level languages such
as C [3]. The same holds for verification tools that operate at the
source-code level [34, 48].

2.1 Verified crypto protocols’ implementation

There have been efforts to verify (annotated) implementations of
security protocols using: deductive verification[34], type check-
ing [18], code generation [26], and model extraction. Existing work
in model extraction mainly targets implementations in high-level
languages like C [27, 38], F# [6, 13, 17] and Java [42, 62]. However,
due to the complexity of such languages, the existing works have to
limit their scope. For example, [27] does not model floating pointers

and [38] omits explicit casts and negative array indexes. Table 1
compares selected works that verify the security of protocols via
model extraction in some form.

There are also works that recover formats of protocol messages
at the binary level [25, 51, 71, 72]. However, their intent is different
from ours. Existing approaches are mostly applied to malware
binaries and use heuristics to gain insights into their operation.
Thus, they are not concerned with soundness, and the inferred
message formats can be wrong.

Comparison to Aizatulin et al. approach. Closely related
to CryptoBap is Aizatulin’s work [3, 4]. Analogous to our work,
they also proved the soundness of their approach, i.e., showed that
all attacks present in the C code are preserved in the extracted IML

models. The main difference between the two approaches is the
fact that we target protocols’ binary. Moreover, compared to their
approach, which can handle only a single execution path, Crypto-
Bap handles all execution paths of protocols, including those that
contain conditionals, bounded loops, and indirect jumps. More
specifically, Aizatulin’s approach restricts the input programs to
programs that have no “else” branches and no loops. Conceptually,
one may see this as irrelevant because one might speculate that
all paths outside the “main” part are not useful, i.e., they do not
produce network output, or at least none that reveals cryptographic
information (e.g., error codes). But this is still restrictive. First, many
protocols are specified to produce network output in error cases, for
example, decoy messages in anonymity protocols or error messages
that are encrypted. Moreover, seemingly regular protocols have
“else” branches as part of their “main” message flow, once we look at
them with the level of detail necessary to analyze implementations.
For example, cypher suite negotiation in TLS must be formulated
with multiple branches depending on the input message.

Also, their translation from C to C virtual machine (CVM)—
the intermediate language used for extracting the IML model of
protocols—is not verified. This renders relating the verified proper-
ties to the C implementation infeasible. Similarly, they abstracted
cryptographic libraries, attacker calls, and random number gen-
eration in their verification. However, they do not formulate the
requirements on the program under the analysis explicitly. CVM
already assumed to include primitives for library calls, attacker
calls, and random number generation—which are not primitives of
the C language. In this regard, CVM is fairly close to IML. Moreover,
our translation into IML is entirely different (a) because the input
language has a more complex state and interaction with the other
IML entities and (b) because in contrast to Aizatulin’s approach,
we handle conditionals, hence our symbolic execution is not only a
sequence of actions. Finally, while they had to change the source
code of protocols and add dummy functions to flag the occurrence
of events, CryptoBap automates releasing events during symbolic
execution and minimizes user involvement.

3 BACKGROUND

We next explain the preliminaries before presenting the details of
our approach.
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Papers Language Abstract Model Model Type Property Soundness

Aiazatulin et al.[3, 4] C Applied-pi Symb. + Comp. Secrecy, Auth. ✓

Chaki et al.[27] C ASPIER Symb. Secrecy, Auth. ✓

Goubault-Larrecq et al.[38] C Horn clauses Symb. Secrecy, Info. flow ✓

Backes et al.[6] F# RFC Symb. + Comp. Safety properties ✓

Bhargavan et al.[16, 19] F# Pi/CryptoVerif Symb. + Comp. Secrecy, Auth. ✗

Jürjens[42] Java First-order Logic Symb. Secrecy, Auth. ✗

HE et al.[40] Python-JS Applied-pi Symb. Secrecy, Auth. ✗

This work Binary Applied-pi Symb. + Comp. Secrecy, Auth. ✓

Table 1: Selectedmodel extraction approaches; Symb = Symbolic, Comp = Computational, Auth = Authentication, JS = JavaScript.

P ∈ prog := block∗

block := (v, stmt∗)
v ∈ Bval := string | int

stmt := assign(string, e) | assert(e) | halt | jmp(e)
| cjmp(e, e, e)

e ∈ Bexp := v | var string | 3ue | e3be | ifthenelse(e, e, e)
| load(e, e,int) | store(e,e, e,int)

Figure 5: The BIR syntax

3.1 HolBA framework & Vanilla symbolic exec.

CryptoBap relies on HolBA [53] to transpile the binary of protocols
to the BIR representation. BIR is a simple and architecture-agnostic
language used as the internal language of HolBA and is designed
to simplify the binary analysis of programs and facilitate building
analysis tools. HolBA is proof-producing and ensures that the tran-
spilation preserves the semantics of the binary. A BIR program P
includes a number of blocks, see Fig. 5, each consisting of a tuple
of a unique label—a string or an integer—and a few statements.
Each label refers to a particular location in the program and is often
used as the target of jump instructions (i.e., jmp or cjmp). BIR ex-
pressions include constants, standard binary and unary operators
(ranged over by 3b and 3u) for finite integer arithmetic, memory
operations, and conditionals. Fig. 4 presents a BIR snippet for the
running example.

A BIR state (𝜂, pc) ∈ S consists of an environment 𝜂 : Bvar ↦→
Bval which maps variables, i.e., registers ri and memory locations
𝑀𝑒𝑚, to values and a program counter pc that holds the label of the
executing BIR block. The relation −→ ⊆ S × S models the execution
of a BIR block. The execution of 𝑛 steps is denoted by −→∗ if 𝑛 ≥ 0
and −→+ or −→𝑛 , if 𝑛 > 0.

We build CryptoBap on a proof-producing symbolic execution
for BIR [52] that formalizes the symbolic generalization of BIR
(hereafter SBIR). The symbolic semantics is bisimilar to the concrete
one and allows guiding the execution while maintaining a sound
set of reachable states from an initial symbolic state (we call this
the symbolic execution structure). To generalize from BIR to SBIR,
symbolic expressions SE are defined that can be interpreted to BIR
values Bval via an interpretation H : SE → Bval. In addition to the
symbolic environment 𝜂 : Bvar ↦→ SE, the SBIR state (𝜙, 𝜂, pc) ∈ S

also contains a path condition 𝜙 ∈ SE and a pc that is kept concrete
to obtain a concrete control flow.

Let −→→ : S × S be the single-step transition relation of SBIR and
−→→𝑛 (or −→→+ ) denote a multi-step symbolic transition. We write
si→𝑛

Lsj to restrict the transition from si to sj to the label set L. For
the HolBA’s vanilla symbolic execution, Lindner et al. [52] proved
that a single SBIR execution step soundly matches a single BIR
execution step, characterized by the following simulation theorem:

Property 1. For all si,H , sj, si s.t. si ∼H
si, if si→sj then there

exist an H
′
and sj s.t. H ⊆H

′
and si−→→sj and sj ∼H

′ sj.

The simulation relation ∼
H

asserts the consistency of corre-
sponding BIR and SBIR states, i.e., their program counters are
equal, their environments are equal through the interpretation H ,
and the evaluation of 𝜙 under H results in true. Then the soundness
of the symbolic execution structure for multiple steps corresponds
to the extension of Property 1 to a multi-step simulation theorem.

3.2 Csec-modex toolchain & IML

Aizatulin et al. [3] proposed an automated technique to verify the
security of cryptographic protocols’ C implementation. At a high
level, Csec-modex takes as input the C code of protocol partic-
ipants together with a template file for the verifier (ProVerif or
CryptoVerif). The toolchain extracts the IML model of the protocol,
which is then converted into the verifier’s input language. The tem-
plate encodes assumptions about cryptographic primitives in the
implementation, the environment process which spawns the par-
ticipants and generates shared cryptographic material, and a query
for the security property that is checked for the implementation.

The intermediatemodel language, IML, is a version of the applied-
pi calculus extended with bitstring manipulation primitives. In
Fig. 6, BS = {0, 1}∗ is the set of finite bitstrings, Ops is the set of
operations, including cryptographic primitives, and op(e1, . . . , em)
denotes function application. IML expressions are evaluated with
respect to an environment 𝜂 : Ivar ↦→ BS ∪ {⊥} which maps
variables to bitstrings or ⊥.

P and Q represent input/output processes. An executing process
is the basic unit of execution in IML and has the form (𝜂, P), where
P is either an input or output process. The input process 0 does
nothing. In IML, inputs and outputs are performed using in and out
in which c denotes the channel name and e1, . . . , em indicate the
protocol participants’ identifier. The construct new x : t generates
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d, e ∈ Iexp := expression

b ∈ BS, x ∈ Ivar bitstrings, variables
op(e1, . . . , em) computation, op ∈ Ops

P,Q ∈ IML := process

0, P |Q nil, parallel composition
!i≤m P replicating P , m times
new x : t; P randomness
in(c[e1, . . . , em], x); P input
out (c[e1, . . . , em], e); P output
event (d1, . . . , dm); P event
if e then P [else Q] conditional
let x = e in P assignment
assume e; P assumption

Figure 6: A fragment of IML syntax

t = fixed𝑛 for some 𝑛 ∈ N |b| = 𝑛

(𝜂,new x : t;P),Q
fr (b)
−−−−→→→ 1

2
n

(𝜂 [x ↦→ b],P),Q

JeK𝜂 = b ≠ ⊥ b
′ = truncate(b,maxlen(c))

∀𝑗 ≤ 𝑚 : JejK𝜂 = bj ≠ ⊥ Q′ = reduce({(𝜂,Q)})

∃!(𝜂′,Q′) ∈Q : Q′ = in(c[e′1, . . . , e′m], x′); P′∧∀𝑗 ≤ 𝑚 : Jej ′K𝜂′ = bj ≠ ⊥

(𝜂, out (c[e1, . . . , em], e);Q),Q−→→→
1
(𝜂′ [x′ ↦→ b

′], P′),Q ⊎ Q′ \ {(𝜂′,Q′)}

Figure 7: The semantics of IML [2, p. 23] transition relation.

a uniform random number of type t and event (d1, . . . , dm) is used
to raise an event during the execution.

An IML state (𝜂, P),Q ∈ S includes an output process P and a
multiset of executing input processes Q. The initial configuration of
an input process Q is defined as (∅, out (c, 𝜀); 0), reduce(∅,Q) where
reduce represents a function that executes a sequence of processes
inside Q (e.g., Q = P1; P2 ; ...) until an input process waiting for a
message from channel c is reached (see 2nd rule in Fig. 7).

We use
a−→→→

p
⊆ S × S to denote the IML transition relation with

the probability p and the event a. The event a may be empty or
include a single event of the form ev(b1, ..., bm), where ev is an
event symbol and b1, ..., bm are bitstrings. Moreover, an IML trace
is defined as R = s1

a1−−→→→
p1
· · · an−1−−−→→→

pn−1 sn ⊆ R𝜄 (Q).
We have borrowed the semantics of the IML transition relations

from [2, p. 23]. A few representative transition rules of IML for
random number generation and sending a message on the channel
c are presented in Fig. 7 and the rest explained in Sec. A.1. In this
figure truncate cuts messages according to the provided length and
maxlen is the maximum size of the channel. We extend the random
number generation rule with an event fr which represents the
creation of a fresh bitstring b. This simplifies stating our invariants
but is operationally the same.

4 BIR WITH CRYPTOGRAPHY

BIR, as described in [53], does not support ingredients required to
reason about the security of cryptographic protocols. To resolve

these issues, we model random number generation and abstract
network communications and formulate assumptions on state trans-
formation in certain function calls on top of the existing BIR se-
mantics. Such an extension preserves the verified properties of BIR
and, thus, the soundness of binary transpilation.

Using the information in the (unstripped) binaries’ header and
preprocessing of lifted programs, we split the address space of
BIR into five label sets: L = LN ⊎ LOp ⊎ LA ⊎ LR ⊎ LE . The
sets LOp =

⋃
op∈Op, LA , LR , LE correspond to the cryptographic

libraries, attacker calls, random number generation, and event func-
tions. Addresses outside these label sets are classified as normal exe-
cution points in LN . Moreover, a specific label set LL ⊂ LN defines
loop entry points. For each label set, we axiomatize the expected
behavior of the BIR program by defining a number of assumptions.
We also define a specific entry point for each function—denoted by
𝜉ℓ for ℓ ∈ {LN , LOp, LA , LR , LE }—and ensure that function calls
are done only through the specified entry points.

In the crypto-aware symbolic execution, these function calls will
be treated as atomic operations. We thus introduce some notation
to indicate with an event whenever a sequence of steps passes via
these special functions.

We extend the BIR transition relation with events,
a−→ ⊆ S ×

E × S, where E is the set of observable events plus the silent transi-

tion 𝜏 . Then, a multi-step BIR transition s0
(a1, . . . , am )−−−−−−−−−−→+sn exists if

s0
a1−−→∗s1 . . . sn−1

am−−→∗sn where si
a−→∗sj if si

𝜏−→∗ a−→ 𝜏−→∗sj is reminis-
cent to the big-step semantics. Also, we use Rb (P, s0) to denote the
set of execution traces of P starting from the initial state s0.

We define ret : S → L to obtain the next execution point immedi-
ately reachable after returning from a call. 𝑚𝑠𝑡𝑜𝑟𝑒 : (Bvar ↦→
Bval) × Bvar × 2Bvar × BS × N → (Bvar ↦→ Bval) × Bval
stores bitstrings into the memory in the BIR environment. Given
ℎ𝑒𝑎𝑝 ∈ 𝑀𝑒𝑚 and 𝑙 ∈ {1, 8, 16, 32, 64, 128} and |b| a multiple of 𝑙
that can be encoded in 128 bits,𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂, ℎ𝑒𝑎𝑝,𝑀𝑒𝑚, b, 𝑙) stores b
in 𝑙-bit chunks, preceded by 𝑙 (encoded as a word) in the memory
𝑀𝑒𝑚 ⊆ Bvar, starting from the pointer stored in ℎ𝑒𝑎𝑝 .𝑚𝑠𝑡𝑜𝑟𝑒 re-
turns a new environment and the address of the data within it, as
indicated by ℎ𝑒𝑎𝑝 in the previous environment 𝜂. We also introduce
notation for reading this bitstring. Let ∥ be the byte concatenation
operator. Then,𝑚𝑙𝑜𝑎𝑑 (𝜂, a) def

=

i=1...𝜂 (a)𝜂 (a + 𝑖) for the given 𝜂 and
the address ‘a’.

CryptoBap supports call-by-value, call-by-reference, and data
passing via global variables (which TinySSH uses) call conventions.
For brevity, we focus on the call-by-value convention; the others
follow a similar pattern.

Random number generation (RNG). BIR is a deterministic
language; as a result, we are unable to draw cryptographic keys
without an external source of randomness that the attacker cannot
predict. Thus, we allocate a memory region RM in the initial state
for storing 𝑘 ∈ N random values of size 𝑙 ∈ N , for the security
parameter 𝑛 = 𝑙𝑤 that is a multiple of some supported word length
𝑤 . We assume RM is an ordered list of 𝑘𝑙 consecutive addresses.
To track the number of words read from RM, we define a counter
rk and store it in the environment. Given an initial state s0 and a
random tape rm

k
∈ {0, 1}𝑘𝑙×𝑤 the state s0 .𝜂 [RM ↦→ rm

k
, rk ↦→ 0]
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pc ∈ 𝜉As pc′ = ret (𝜂, pc) a = 𝜂 [r0] e =𝑚𝑙𝑜𝑎𝑑 (𝜂, a)
As

P ⊢ (𝜂, pc), c[e1, . . . , e𝑚]
Out(e, (e1, . . . , e𝑚 ) )
−−−−−−−−−−−−−−−−−→(𝜂, pc′), e ::c[e1, . . . , e𝑚]

pc ∈ 𝜉Ar pc′ = ret (𝜂, pc) (𝜂′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂, ℎ𝑒𝑎𝑝A , 𝑀𝑒𝑚A , e′, 128)
Ar

P ⊢ (𝜂, pc), e′ ::c[e1, . . . , e𝑚]
In(e′, (e1, . . . , e𝑚 ) )
−−−−−−−−−−−−−−−−→(𝜂′ [r0 ↦→ a], pc′), c[e1, . . . , e𝑚]

Figure 8: The semantics of BIR network communication. BIR uses IML channels c for communication.

is an instance of this initial state. To extract a random number
of size 𝑙 from RM, we define ℜ : (Bvar → Bval) × N → BS

which returns a value from RM yet unread: ℜ(𝜂, 𝑛) def
= let x =

𝜂 [rk] in

𝑖=0...𝑙−1𝜂 [RM + x + 𝑖] . This construction is reminiscent

of probabilistic Turing machines, only that the random number
generator is finite due to the finite-memory restriction of BIR’s
memory.

We call a function from LR with lR ∈ LR one of its entry
points an RNG function, if for any entering state (𝜂0, lR ) for which
ℜ(𝜂0, n) is defined, and execution point (𝜂′′, l) after returning from
RNG, i.e., l = ret (𝜂0, lR ), the output register holds the address of
a copy of the random value and rk is updated, i.e., 𝜂′′ = 𝜂′ [r0 ↦→
a; rk ↦→ 𝜂0 [rk] +𝑙] with (𝜂′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂0, ℎ𝑒𝑎𝑝,𝑀𝑒𝑚, xi, 128) s.t.

xi = ℜ(𝜂0, 𝑛). We denote RNG steps as (𝜂0, lR )
Fr(xi )−−−−−→∗

LR (𝜂
′′, l),

with 𝑖 =
⌊
𝜂0 [rk ]

𝑙

⌋
+ 1 being a counter for the number of times the

RNG function was called.

Network communication. Protocols relate events on different
participants. Therefore, a setting where multiple parties run in par-
allel is essential to analyze protocols’ correctness. Sec. 7 introduces
a mixed execution, in which BIR programs run in parallel with IML

processes. The latter model protocol participants for which we do
not have a BIR implementation, but also the adversary.

Our BIR programs rely on an IML channel for communication
that has the form c[e1, . . . , em], where e1, . . . , em are expressions
which identify communicating parties and their channel c. To send
a message e (𝜉As in Fig. 8), we fetch the value of e from the memory
address 𝜂 [r0], put it on the channel e :: c[e1, . . . , em], and release
the Out(e, (e1, . . . , em)) event.

To receive a message e′ :: c[e1, . . . , em], represented by 𝜉Ar in
Fig. 8, we store it in a buffer that is only accessible to libraries
and return (via register r0) the address, i.e., ‘a’, of the memory
region where the message e′ is stored. Passing the address via r0
is just one way to model the send and receive functions that also
accommodates passing the buffer address by reference. CryptoBap
models these functions according to the implementation.

Crypto library. We establish a set of concrete assumptions on
the way crypto libraries operate. That is, a crypto-library call, like
op, computes the correct result, never invokes another function,
and only changes its own memory, i.e.,𝑀𝑒𝑚Op. We denote library

steps with (𝜂0, lop)
Cr(v)
−−−−−→∗

LOp (𝜂
′′, l), and expect transitions using

labels outside LOp do not change the memory of library calls.
We call Lop ⊆ ⋃

op∈Op the library implementation of op (with
arity𝑚) and lop ∈ 𝜉Op one of its entry points, if for any entering
state (𝜂0, lop) and the return state (𝜂′′, l), the function result v =

op(b1, . . . , bm) for bi = 𝑚𝑙𝑜𝑎𝑑 (𝜂, ri), 𝑖 ∈ {1, . . . ,𝑚}, is stored in
a heap and its address is put into r0: 𝜂′′ = 𝜂′ [r0 ↦→ a] where
(𝜂′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂0, ℎ𝑒𝑎𝑝Op, 𝑀𝑒𝑚Op, v, 128).

Event functions. Event functions identify specific steps in our
program that we want to argue about. For example, when a protocol
ends with the establishment of a key, that key is used to transmit
some data. We want to show that, whenever this step is reached,
it is authenticated, i.e., the purported communication partner has
requested the execution of this step (e.g., f(msg) in Fig. 4). What
happens in this step is not important for us, only that it is reached.
We hence assume, for simplicity, that such functionality is replaced
by stand-ins we call event functions. These only raise a visible event,
but do not alter the memory. We denote the transition correspond-

ing to an event function call with (𝜂0,lE )
Ev(b1, . . . , bm )−−−−−−−−−−−−→∗

LE(𝜂0,l)
where lE ∈ LE is the entry point, bi =𝑚𝑙𝑜𝑎𝑑 (𝜂, ri) for 𝑖 ∈ {1, . . . ,𝑚}
are event parameters, and l ∈ LN .

5 CRYPTO-AWARE SYMBOLIC EXECUTION

We have significantly extended HolBA’s vanilla symbolic execu-
tion [52] to handle network communication, calls to crypto primi-
tives and event functions, and random number generation, which
are essential to reason about protocols’ security. We defined the
rules for our symbolic execution in Fig. 9. In this figure, range(𝑓 )
returns the image of 𝑓 . For library calls, we define an oracle 𝐿 :
𝜉Op × (Bvar ↦→ SE) → SE to compute the result of the invoked
function w.r.t. the current pc and symbolic environment. For the
symbolic execution, we initialize the memory region to store ran-
dom numbers RM with symbolic values. Thus,ℜ signifies the sym-
bolic lifting of ℜ, and RNG generates a fresh symbolic expression
to represent the extracted value.

Similar to BIR transitions, we extend the symbolic transition
relation of SBIR with events, i.e.,

a−→→ ⊆ S× E× S, and use Rs (P, s0)
to denote the set of symbolic traces of P starting at s0.

Bounded Loops. Loops can naïvely be handled by unrolling.
This, however, is inefficient in most cases and can quickly result in
a path explosion. To avoid this, we summarize loops following Stre-
jček [68]. The algorithm summarizes the loops’ effect on program
variables and path conditions to compute a necessary condition on
the loop’s inputs to reach a specific execution point in the program.
The summary is computed in terms of a tuple of iterated symbolic

state and looping condition. The iterated symbolic state computes
for each variable modified within the loop its symbolic value based
on the initial value of the program’s variables and path counters.
Each path counter indicates the number of iterations of a specific
path within the loop leading from the loop entry point to itself.
For each path in the loop, a path condition is computed, and the
conjunction of all such conditions is the looping condition.

We have automated the loop summarization process in our
symbolic execution. In Fig. 9, the function processLoop : S →
SE × (Bvar ↦→ SE) represents our implementation to summarize
loops’ effect. It takes as input the symbolic state of the loop entry
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pc ∈ 𝜉As pc′ = ret (𝜙, 𝜂, pc) a = 𝜂 [r0] e =𝑚𝑙𝑜𝑎𝑑 (𝜂, a)
A𝑠

P ⊢ (𝜙, 𝜂, pc), c[e1, . . . , em]
Out(e, (e1, . . . , em ) )−−−−−−−−−−−−−−−−→→(𝜙, 𝜂, pc′), e ::c[e1, . . . , em]

pc ∈ 𝜉E pc′ = ret (𝜙, 𝜂, pc) (d1, . . . , dm) ∉ range(𝜂)
event

P ⊢ (𝜙, 𝜂, pc)
Ev(d1, . . . , dm )−−−−−−−−−−−−→→(𝜙, 𝜂, pc′)

pc ∈ 𝜉L pc′ = exit (pc) t ∉ range(𝜂) (𝜙 ′, 𝜂′) = processLoop(𝜙, 𝜂, pc)
loop

P ⊢ (𝜙, 𝜂, pc)
loop(t)
−−−−−−→→+ (𝜙 ′, 𝜂′, pc′)

pc ∈ 𝜉R
pc′ = ret (𝜙, 𝜂, pc)

𝑖 =

⌊
𝜂 [rk ]
𝑙

⌋
+ 1

xi ∉ range(𝜂)
xi = ℜ(𝜂, 𝑛)

(𝜂′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂, ℎ𝑒𝑎𝑝,𝑀𝑒𝑚, xi, 128)
𝜂′′ = 𝜂′ [r0 ↦→ a; rk ↦→ 𝜂 [rk] + 𝑙]

RNG(𝑛)
P ⊢ (𝜙, 𝜂, pc)

Fr(xi )−−−−−→→(𝜙, 𝜂′′, pc′)

pc ∈ 𝜉A𝑟
pc′ = ret (𝜙, 𝜂, pc) e ∉ range(𝜂) (𝜂′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂,ℎ𝑒𝑎𝑝A , 𝑀𝑒𝑚A , e, 128) A𝑟

P ⊢ (𝜙, 𝜂, pc), e ::c[e1, . . . , em]
In(e, (e1, . . . , em ) )−−−−−−−−−−−−−−−→→(𝜙, 𝜂′ [r0 ↦→ a], pc′), c[e1, . . . , em]

pc ∈ 𝜉Op pc′ = ret (𝜙, 𝜂, pc) v ∉ range(𝜂) v = 𝐿(pc, 𝜂) (𝜂′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂,ℎ𝑒𝑎𝑝Op, 𝑀𝑒𝑚Op, v, 128)
library

P ⊢ (𝜙, 𝜂, pc)
Cr(v)
−−−−−→→(𝜙, 𝜂′ [r0 ↦→ a], pc′)

Figure 9: Crypto-aware symbolic execution semantics. Here, e, d, v, xi ∈ SE.

point and reflects the effect of the loop body in its exit state (com-
puted by exit : 𝜉L → L). The rule also raises the event loop(t) with
t being the number of loop iterations.

Loops in protocol implementations are often not bounded; typi-
cally, each session runs in a 𝑤ℎ𝑖𝑙𝑒 (𝑡𝑟𝑢𝑒){..} loop until the server
is externally terminated. However, the semantics of IML, like most
cryptographic standard models, assumes a bound on the protocol.
Thus, we need to assume that such loops are externally terminated
after some polynomial time in the security parameter. This is cap-
tured by our automated loop summarization and by translation to
the replication operator.

Indirect Jumps. If during symbolic execution of the code, we
encounter an indirect jump, e.g., jmp e, we evaluate e w.r.t. the
current state to get an expression e

′; we then query the SMT solver
for a satisfiable assignment to tgt = e

′∧𝜙 , assuming that tgt does
not occur in e

′ and 𝜙 . The solver returns one possible target, say t.
We repeat this procedure, each time asking the solver to exclude
found targets, until the query becomes unsatisfiable. This technique
was sufficient for our experiments; however, for more complex
cases, some optimizations would be required, e.g., considering only
a subset of possible targets instead of enumerating all.

We symbolically execute BIR programs to instrument them with
events that facilitate clear observation of implementation behavior
and to obtain their execution tree, which is later used to obtain the
corresponding IML model. A node in this tree is either a branching
node Branch(𝛾, T1, T2) with the condition 𝛾 and sub-trees Ti, or
an event node node(pc, ev) with pc specifying where the event
occurred. We add a halt statement at the end of each complete path,
i.e., leaves are due to halt statements with ⊥ as the event. An edge
connects two nodes iff they are in the transition relation.

The tree is constructed from a BIR program and an initial sym-
bolic state as follows: the root is the initial state. For any node,
including the root, the crypto-aware symbolic execution gives us
up to two successors states. If the node represents a branching
statement, we obtain two successor states. We store the statement’s

condition in a branching node and proceed to translate the two
successor states into subtrees. If the node represented any other
statement, there can only be one or no successor state, and we store
an event node with, or respectively without, a successor tree. Since
we abstract function calls and loops, we safely assume that each
node in the tree can be uniquely identified by the pc of its statement.
We define the selection operator "[]" to extract the node for a given
program counter, e.g., T[pc] will return a node indexed by pc.

Fig. 4 shows a fragment of the symbolic execution tree for the
client of our running example. Note that, each function call is
depicted with two nodes: the first node loads the address of the
callee into pc, and the second node is the actual call, represented
as an atomic transition.

6 MODEL EXTRACTION

We now proceed to explain how to automatically extract the IML

model from protocols’ BIR representation. Our model extraction
approach relies on translating the symbolic execution tree T of the
protocol under adversarial semantics into its corresponding IML

model. We translate T into an executing process Qfull according
to the rules depicted in Fig. 10, where LTM represents the compiled
process, i.e. Qfull = LTM. Since T contains all possible execution of
protocols and their interactions with the crypto primitives and the
attacker, the extracted model includes all behaviors of the protocol
at its binary representation (i.e., all attacks present at the binary
level are preserved in the extracted model).

Our translation converts leaf nodes into a nil process 0. For in-
ternal nodes, we translate the event stored in each node into its
IML counterpart. Loops are modeled using the replication operator
of IML; LoopProc : 𝜉L → P converts the loop body into its corre-
sponding IML process using the defined rules. Notice that we do
not translate 𝜏 events. Fig. 10 also presents our rules to translate
symbolic BIR expressions. Intuitively, the symbolic execution is
used to symbolically compute the effects of such transitions, while
the protocol model only contains the interactions with the network.
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T = node ::T′ Event tree
LLeaf ::T′M ↦→ 0; LT′M
Lnode ::T′M := Events nodes

L(pc, 𝜏) ::T′M ↦→ LT′M
L(pc, Ev(d1, . . . , dm)) ::T′M ↦→ event (d1, . . . , dm); LT′M
L(pc, In(v, (e1, . . . , em))) ::T′M ↦→ in(c[e1, . . . , em], v); LT′M
L(pc,Out(e, (e1, . . . , em))) ::T′M ↦→ out (c[e1, . . . , em], e); LT′M
L(pc,Cr(v)) ::T′M ↦→ let x = v in LT′M where

x is fresh
L(pc, Fr(xi)) ::T′M ↦→ new xi; LT′M
L(pc, loop(t)) ::T′M ↦→ !t≤mLoopProc(pc); LT′M

L(pc,Branch(𝛾, T1, T2))M ↦→ if L𝛾M then LT1M else LT2M

L𝛾M := Expressions

Lb ∈ BvalM ↦→ LbM ∈ BS

Lx ∈ BvarM ↦→ LxM ∈ Ivar

L𝛾
1
3b𝛾2M ↦→ L𝛾

1
ML3bML𝛾2M Binary Ops.

L3bM ↦→


∧ AND
∨ OR
= Equal
+ Plus
. . .

L3u𝛾
′M ↦→ L3uML𝛾 ′M Unary Ops.

L3uM ↦→
{

¬ Not
⊥ otherwise

Lf (e1, . . . , em)M ↦→ LfM(Le1M, . . . , LemM)

Figure 10: Rules for the translation of the symbolic execution

tree T to IML model.

Our rules to translate expressions are standard. The only interesting
one is the translation of the function application, which is used, e.g.,
to translate memory load/store and bitwise operations. For exam-
ple, this rule translates a memory load operation load(mem, pa, 𝑙),
for 𝑙 ∈ {1, 8, 16, 32, 64, 128}, into read (x1, 𝑙), where x1 is the fresh
name chosen for the symbolic value in mem at the address pa.

Fig. 4 presents the IML model of the running example. In this
model, c is the input and output channel, bad is the event that
we release if the decryption is not successful, and enc (dec) is the
encryption (resp., the decryption).

6.1 CryptoBap vs. Csec-modex IMLmodels

Our derived IML models are simpler than Csec-modex without
losing accuracy. To demonstrate this, we use the simple XOR case
study fromCsec-modex set of case studies. Simple XOR implements
a protocol in which the one-time pad includes both protocol parties.
The methodology we employ to derive the IML model from binary
code differs significantly from that used in Csec-modexwhich leads
to much simpler models. The most glaring difference between Cryp-
toBap and Csec-modex is that our analysis produces a symbolic
tree that is translated into an IML process with conditionals and
replication (see Fig. 10) instead of a single path that is translated into
a linear IML process. Even for the linear subprocesses, our toolchain
produces processes that are shorter and often human-readable (at
least for small case studies, e.g., XOR). This is because the Csec-
modex translates each symbolic CVM process (their intermediate

representation of C) into IML and performs the most simplification
steps concerning the bitwise operations (concatenation, extraction,
etc.) later at the translation step into CryptoVerif and ProVerif. For
instance, in Csec-modex’s IML model for the client side of simple
XOR case study, shown in Fig. 11, (1)^[u,1] | nonce1 is simplified
to conc1(nonce1) in its CryptoVerif model. Instead, we leverage
the support for simplification of these operations at symbolic ex-
ecution time, because (i) support there is much more mature (ii)
will benefit from future development (iii) simplified constraints can
also be used for path elimination and simplification in follow-up
states. In addition to this, our IML model for the client side of the
simple XOR case study is more concise since several assumptions
made in Csec-modex’s IML model were unnecessary for verifying
this particular case study. Fig. 11 presents the different IML models
produced by CryptoBap and Csec-modex for the client side of
simple XOR case study.

7 SOUNDNESS OF CRYPTOBAP’S APPROACH

The extracted IML model should preserve the BIR program’s be-
haviors to ensure that we can transfer the verified properties back
to the binary of protocols.

7.1 Soundness of translation into IML

To show that our extracted IML model preserves the semantics of
the protocols’ binary, we need to prove that our translation from a
crypto-aware symbolic execution tree into an IML process is sound,
i.e., for each path in the symbolic execution tree there is an equivalent

IML execution trace.

Our symbolic execution supports communication with the at-
tacker, which, like honest protocol parties given by specification, is
represented as an IML process. Thus, we need to prove soundness
in the context of an IML process, i.e., that each execution trace ob-
tained by symbolically executing the BIR program in parallel with
an IML attacker has an equivalent IML trace where the translated
processes run in parallel with the same attacker. Our strategy to
prove this is to construct an IML-SBIR, IMLSB, mixed execution
semantics to facilitate the communication of BIR programs and
the IML attacker. IMLSB is generic and considers BIR programs
and IML processes as independent entities running in parallel and
communicating through a channel.

The IML process already describes the parallel execution of par-
ties and how they share secrets. We only need to integrate BIR
into this framework. Therefore, we extend IML with a construct
run(pc, (y1, . . . , ym)) to initialize BIR symbolic memory and trans-
fer control to the BIR program specified by the pc. To share the
secrets, we generate fresh symbolic values y1, . . . , ym and store
them in the environment 𝜂 of the BIR program.

In the following, we use I {P} as a pair of an IML process I ex-
tended with the run construct and a BIR program P that defines the
entry points therein. Slightly misusing notation, I {si} also denotes
states of the mixed semantics.

Fig. 12 shows the operational semantics of IMLSB which com-
bines IML input and output processes [2, p. 23] with the transition
relations of SBIR in Fig. 9. In the figure, rules I𝑡𝑜SB and SB𝑡𝑜I de-
fine the communication between the symbolic BIR program and the
IML process. Using these rules a protocol participant can receive
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Csec-modex’s IML model CryptoBap’s IML model
assume argv0 = argv0 in

.

.

.
new var1: fixed_20;

let nonce1 = var1 in

assume Defined(pad) in

assume len(pad) = 21 in

let xor1 = XOR ((1)^[u,1]| nonce1 , pad) in
.
.
.

let msg1 = xor1 in

out(c, msg1);

new OTP_48: fixed_64;

let Conc1_66 = conc1(OTP_48) in

let XOR_70 = exclusive_or(Conc1_66 ,pad) in

out(c, XOR_70);

Figure 11: IML models produced by CryptoBap vs. Csec-modex for the client side of simple XOR case study

pc ∈ LN ⊎ 𝜉Op ⊎ 𝜉R ⊎ 𝜉E (𝜙, 𝜂, pc) a−→→(𝜙 ′, 𝜂′, pc′)
normal

P ⊢ (𝜙, 𝜂, pc),Q𝜄×s a−→→→
1,H (𝜙 ′, 𝜂′, pc′),Q𝜄×s

JeK𝜂 = b ≠ ⊥ b
′ = truncate(b,maxlen(c)) ∀𝑗 ≤ 𝑚 : JejK𝜂 = bj ≠ ⊥ Q𝜄×s′ = reduce({(𝜂,Q)})

∃!((𝜙,𝜂,pc), c[e1, . . . , em]) ∈Q𝜄×s : pc ∈ 𝜉Ar ∧ ∀𝑗 ≤𝑚 : H (𝜂 [ej])=bj ≠ ⊥ pc′ = ret (𝜙, 𝜂, pc)

e∉ range(𝜂) H (e)=b′ (𝜂′, a) = 𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂, ℎ𝑒𝑎𝑝A , 𝑀𝑒𝑚A , e, 128) Q𝜄×s′′ = {((𝜙, 𝜂, pc), c[e1, . . . , em])}
I𝑡𝑜SB

P ⊢ (𝜂, out (c[e1, . . . , em], e);Q),Q𝜄×s In(e, (e1, . . . , em ) )−−−−−−−−−−−−−−−→→→
1,H ((𝜙, 𝜂′ [r0 ↦→ a], pc′), c[e1, . . . , em]),Q𝜄×s ⊎ Q𝜄×s′ \ Q𝜄×s′′

pc ∈ 𝜉As pc′ = ret(𝜙, 𝜂, pc) Q𝜄×s′ = {(𝜙, 𝜂, pc′)} a = 𝜂 [r0] e =𝑚𝑙𝑜𝑎𝑑 (𝜂, a) H (e) = b ≠ ⊥ b
′ = truncate(b,maxlen(c))

∀𝑗 ≤ 𝑚 : H (𝜂 [ej]) = bj ≠ ⊥ ∃!(𝜂,Q) ∈ Q𝜄×s : Q = in(c[e1, . . . , em], x); P ∧ ∀𝑗 ≤ 𝑚 : JejK𝜂 = bj ≠ ⊥ Q𝜄×s′′ = {(𝜂,Q)}
SB𝑡𝑜I

P ⊢ ((𝜙, 𝜂, pc), c[e1, . . . , em]),Q𝜄×s Out(e, (e1, . . . , em ) )−−−−−−−−−−−−−−−−→→→
1,H (𝜂 [x ↦→ b

′], P),Q𝜄×s ⊎ Q𝜄×s′ \ Q𝜄×s′′

∀𝑗 ≤ 𝑚 : JyjK𝜂 = bj ≠ ⊥ (y1, . . . , ym) ∉ range(𝜂
0
) ∀𝑗 ≤ 𝑚 : H (yj) = bj ≠ ⊥ ∀𝑗 ≤ 𝑚 : (𝜂

j+1, ai) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂j, ℎ𝑒𝑎𝑝,𝑀𝑒𝑚, yj, 128)
run

P ⊢ (𝜂, run(pc, (y1, . . . , ym))),Q𝜄×s−→→→
1,H (𝜙, 𝜂

m+1 [r0 ↦→ a1, . . . , rm ↦→ am], pc),Q𝜄×s

Figure 12: The mixed semantics of SBIR and IML shown by IMLSB.

a sent message if its channel identifiers have the same evaluation
as the channel identifiers of the sender. To send a message, i.e.,
when pc is in the label set 𝜉As , we first fetch the symbolic value
e from the memory location r0, truncate the interpretation of the
message according to the maximum length of the IML channel c,2
and then place it in the IML environment 𝜂. When pc is in 𝜉Ar
and the BIR program receives input from the IML channel c, we
receive the truncated bitstring b

′ from an IML state and generate
a fresh symbolic value e such that the interpretation of e is equal
to bitstring b′. Then, we store the symbolic value e in the memory
and return its address in r0.

We use the standard notion of trace inclusion to show the trans-
lations’ soundness (see Thm. 7.3), i.e., the set of IMLSB execution
traces is a subset of the IML execution traces. To prove this for-
mally, we define a simulation relation ∼

H ,L.M⊆ 𝑆𝜄×s × S between
states/events of these two abstraction layers and show that it is
preserved by the single-step executions. The simulation relation,

2A requirement from Csec-modex’s correctness proof for the translation to ProVerif
and CryptoVerif. As the attacker’s polynomial bound is chosen after the process, the
attacker could send a large message that the process runs out of time reading it.

I {si} ∼H ,L.M si , checks if (i) the IML output process in the given IML

state is the correct translation of the symbolic state in T according
to the rules in Fig. 10, i.e., si .P = LT[si .pc]M, and (ii) the environ-
ments of the two abstractions are related through the interpretation
H , i.e., for all x ∈ dom(I {si}.𝜂) there are x ∈ dom(si .𝜂) and an H

s.t. H (I {si}.𝜂 [x]) = si .𝜂 [x]. Lemma 7.1 shows that the initial states
of IMLSB and the derived IML process are in the relation.

Lemma 7.1. For a symbolic execution tree T of the BIR program P,
an IML process I and any 𝑘 ∈ N the size of the random memory, let

I {s0} = (𝑇𝑟𝑢𝑒, 𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0], pc0) be an initial symbolic

state in IMLSBand s0 = (𝜂
0
,Qfull) the corresponding initial IML state.

Then, for all H : I {s0} ∼H ,L.M s0 .

Next, we show that single-step transitions preserve the simula-
tion relation.

Lemma 7.2 (State/Event Eqivalence). Let P be a BIR pro-

gram and I be an IML process, then, for all si , I {si}, I {sj} and H s.t.

I {si} ∼H ,L.M si and I {si}
𝑎𝜄×s−−−−→→→+

p,H I {sj}, there exist an H
′
and sj s.t.

H ⊆ H
′
, si

a−→→→
p
sj and I {sj} ∼H

′,L.M sj and if a ≠ ⊥ then 𝑎𝜄×s =H ′ a.



CryptoBap: A Binary Analysis Platform for Cryptographic Protocols CCS ’23, November 26–30, 2023, Copenhagen, Denmark

We then show the translation’s soundness by extending the
simulation relation to execution traces, i.e., ∼

H ,L.M,𝑘 ⊆ R𝜄×s × R𝜄 ,
w.r.t an upper bound3 𝑘 ∈ N on the number of RNG steps of
the execution rng : 𝑅 → N . That is, 𝑅𝜄×s ∼

H ,L.M,𝑘 R holds, iff,
rng(𝑅𝜄×s) ≤ 𝑘 and for all I {s} and 𝑎𝜄×s ∈ 𝑅𝜄×s there exist s, a ∈ R,
and H s.t. I {s} ∼

H ,L.M s and 𝑎𝜄×s=H a.
Finally, we show that executions of the mixed IML and symbolic

execution and IML preserve the simulation relation. Note that, in
the following, we assume a single BIR program that implements dif-
ferent protocol participants with distinct sets of program counters.
The results can be extended to multiple BIR programs, as presented
in Appendix A.7.

Theorem 7.3 (Trace Inclusion). Let P be a BIR program, I be

an IML process, and 𝑘 ∈ N is any upper bound on the number of

RNG steps, then, for all mixed IML and symbolic execution traces

𝑅𝜄×s ∈R𝜄×s (I {P}, 𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0]) s.t. rng(𝑅𝜄×s) ≤𝑘 , there

are an IML trace R∈R𝜄 (I {LPM}) and an H s.t. 𝑅𝜄×s ∼
H,L.M,𝑘 R.

Proof. The goal is to show that for all IMLSB traces, there is an
equivalent IML trace that are in the simulation relation through the
interpretation H . We prove the theorem by induction on the length
of the execution traces:

• Base case. Follows from Lem. 7.1.
• Inductive case. Follows from Lem. 7.2.

We present the proof of lemmas 7.1 and 7.2 in Appendix A.4. □

Thm. 7.3 is the first step to relating the properties we verify for
the IML model to the actual binary of the protocol. We showed
that the IML model resulting from translation covers all behaviors
in the IMLSB semantics. Recall that we have to talk about behav-
ioral properties in the mixed semantics (as opposed to the pure
BIR semantics) as protocol properties typically concern more than
one party. Next, we show that these symbolic behaviors cover all
concrete behaviors.

7.2 Soundness of Symbolic Execution

To ensure that the extracted IML model preserves the semantics of
the protocol’s binary, we have to prove further that our symbolic
execution is behaviorally equivalent to the transpiled BIR code.
To show this, we construct a mixed IML-BIR execution semantics,
hereafter IMLB, that allows the BIR program to communicate with
the same IML attacker at the IMLSB level. The IMLB execution
semantics is presented in Appendix A.3-Fig 16—the rules are similar
and have the same meaning as those defined for IMLSB.

Our proof strategy to show the behavioral equivalence of IMLB
and IMLSB is similar to our technique to prove the soundness of the
IML translation. That is, we first show the state/event equivalence
between the two abstractions and then use this to prove the trace
inclusion of IMLB in IMLSB.

We show the state/event equivalence by extending the simulation
relation of Property 1 to a relation ∼

H
⊆ 𝑆 𝜄×b × 𝑆𝜄×s between IMLB

and IMLSB. The relation I {si} ∼
H

I {si} checks that I {si}.pc =

I {si}.pc, and for all x ∈ dom(I {si}.𝜂) there exist x ∈ dom(I {si}.𝜂)
and an interpretation H s.t. H (I {si}.𝜂 [x]) = I {si}.𝜂 [x]. The first

3This bound 𝑘 is needed because of BIR’s finite memory model.

step in showing this simulation relation between the two layers is
to prove that the initial states are in the relation using Lem. 7.4:

Lemma 7.4. For a BIR program P, an IML process I and any upper

bound 𝑘 ∈ N on the number of RNG steps, let I {s0} = (𝜂0 [RM ↦→
rm

k
, rk ↦→ 0], pc0) be an initial BIR state in IMLB and I {s0} =

(𝑇𝑟𝑢𝑒, 𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0], pc0) be the corresponding initial

state in IMLSB. Then, I {s0} ∼H
I {s0} for all H .

We then prove that the single-step transitions of IMLB and IMLSB

preserve the simulation relation using Lem. 7.5.

Lemma 7.5 (State/Event Eqivalence). Let P be a BIR program

and I be an IML process, then, for all I {si}, I {si}, I {sj} and H s.t.

I {si} ∼H
I {si} and I {si}

𝑎𝜄×b−−−→→→+
p
I {sj}, there exist anH ′

and I {sj} s.t.

H ⊆ H
′
, I {si}

𝑎𝜄×s−−−−→→→+
p,H ′ I {sj}, I {sj} ∼H

′ I {sj} and 𝑎𝜄×b =H ′ 𝑎𝜄×s.

We show the behavioral equivalence between the two layers
by extending the simulation relation to execution traces ∼

H ,𝑘
⊆

R𝜄×b × R𝜄×s w.r.t an upper bound 𝑘 ∈ N on the number of RNG
steps. That is, 𝑅𝜄×b ∼

H ,𝑘
𝑅𝜄×s holds, iff, rng(𝑅𝜄×b) ≤ 𝑘 , and for all

I {s}, 𝑎𝜄×b ∈ 𝑅𝜄×b there exist I {s}, 𝑎𝜄×s ∈ 𝑅𝜄×s and an H s.t. I {s} ∼
H

I {s} and 𝑎𝜄×b=H 𝑎𝜄×s.

Theorem 7.6 (Trace Inclusion). Let P be a BIR program, I be

an IML process, and 𝑘 ∈ N is any upper bound on RNG steps, then,

for all IMLB traces 𝑅𝜄×b ∈ R𝜄×b (I {P}, 𝜂0 [RM ↦→ rm
k
, rk ↦→ 0]) s.t.

rng(𝑅𝜄×b) ≤ 𝑘 , there are an IMLSB trace𝑅𝜄×s ∈ R𝜄×s (I {P}, 𝜂
0
[RM ↦→

rm
k
, rk ↦→ 0]) and an H s.t. 𝑅𝜄×b ∼

H ,𝑘
𝑅𝜄×s.

Proof. Thm. 7.6 shows that for all IMLB traces, there is an equiv-
alent IMLSB trace through a properly chosen interpretation H . We
prove Thm. 7.6 by induction on the length of the traces.

• Base case. The base case can be proved using Lem. 7.4.
• Inductive case. The inductive step can be proved using
Lem. 7.5.

Appendix A.5 presents the proof of lemmas 7.4 and 7.5. □

Thm. 7.6 shows that, for an appropriately chosen interpretation
and random memory, symbolic and concrete executions of a BIR
program are behaviorally equivalent. This holds in the mixed IML-
(S)BIR semantics, i.e., when coupled with the same IML attacker
and protocol partners.

8 SECURITY PROPERTIES

From the simulation results between concrete BIR, symbolic BIR
and extracted IML, we will now conclude our target result, which ar-
gues that probabilistic security results translate across these levels
of abstraction. The security properties we consider, i.e., authenti-
cation and weak secrecy, are safety properties over event traces.
Specifically, we consider a security property𝜓 as a polynomially
decidable prefix-closed set of event traces.

Example. For SSH, we show authentication between the events
AcptS (𝑃𝐾𝑆 , 𝑃𝐾𝐶 ) (in the server model derived from the TinySSH
binary) and AcptC (𝑃𝐾𝑆 , 𝑃𝐾𝐶 ) (in the client model implemented
based on the SSH specification) where 𝑃𝐾𝑆 and 𝑃𝐾𝐶 are the server’s
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public key and the client’s public key, respectively.

Auth = {t ∈ 𝜓 | ∀𝑖 ∈ N : t [𝑖] = AcceptS (𝑃𝐾𝑆 , 𝑃𝐾𝐶 )
=⇒ (∃ 𝑗 ∈ N : 𝑗 < 𝑖 ∧ t [ 𝑗] = AcceptC (𝑃𝐾𝑆 , 𝑃𝐾𝐶 )) }

We quantify the probability of a protocol remaining secure
by considering the complementary probability: the sum of the
probabilities of each violation. To avoid double counting, we only
sum over the set of shortest violating prefixes, i.e., 𝜓¬ = {t ∉

𝜓 |∀t′ .t′ is prefix of t =⇒ t
′ ∈𝜓 }. As security properties are prefix-

closed, this captures the probability of a violation. The system we
analyze consists of the protocol implementations in BIR. Say 𝑇𝛼
denotes a set of event traces obtained from the respective set of
execution traces R𝛼 ⇂events , pr is a probability distribution function
that computes the probability of an event trace and BS

𝑘
𝑛 is a set of

bit strings for generating 𝑘 random numbers of length 𝑛, then:

Definition 8.1 (BIR insecurity). For a BIR program P, an IML pro-
cess I , a security parameter𝑛 ∈ N , and𝑘 ∈ N the size ofBIR’s ran-
dommemory, the insecurity of I {P}w.r.t.𝜓 is: insec(I {P}, 𝑛, 𝑘,𝜓 ) =
2−𝑛 ·𝑘 · ∑

rmk∈BS𝑘𝑛
𝑡 𝜄×b∈𝑇 𝜄×b

rm
k

∩𝜓¬

pr (𝑡 𝜄×b) where 𝑇 𝜄×b
rmk

= 𝑇 𝜄×b (I {P}, 𝜂0 [RM ↦→

rm
k
, rk ↦→ 0]).

After translating P into LPM, we define insecurity in terms of
IML’s probabilistic semantics.

Definition 8.2 (IML insecurity). The insecurity of an IML process I
w.r.t a trace property𝜓 and a security parameter𝑛 is insec(I , 𝑛,𝜓 ) =∑

t∈T (I ,𝑛)∩𝜓¬ pr (t)where pr (s0−→→→p1
s1 · · · sn−1−→→→pn

sn) =
∏

1≤𝑖≤𝑛
pi .

Note that definitions 8.1 and 8.2 coincide on IMLB processes
that do not contain the run-construct, as in this case, the RNG
rule (like any other BIR rule) can never be applied and thus 𝑘
be chosen to be 0. This applies to the IMLB processes resulting
from our translation. Thm. 8.3 shows the translation is sound. Note
that I contains BIR programs (via the run construct), but also IML

processes that represent communication partners and the network
attacker.

Theorem 8.3 (Translation preserves attacks). Given a BIR
program P, an IML process I , a security parameter 𝑛 ∈ N , a trace

property𝜓 and an upper bound 𝑘 ∈ N on the number of RNG steps

in 𝑇 𝜄×b (I {P}, 𝜂0 [RM ↦→ rm
k
, rk ↦→ 0]), we get that

insec(I {P}, 𝑛, 𝑘,𝜓 ) ≤ insec(I {LPM}, 𝑛,𝜓 ).

Via [2, Thm. 4.3,Thm. 5.2] we obtain a bound for insec(I {LPM}, 𝑛,𝜓 )
from either of the backends, ProVerif or CryptoVerif. In cryptogra-
phy, probability bounds are expressed as asymptotic functions in
the security parameter. CryptoVerif provides a symbolic expression
of such a probability bound and, furthermore, proves that the bound
is negligible, i.e., it decreases faster than the inverse of any polyno-
mial. On the other hand, ProVerif only confirms the existence of
a negligible bound. In both cases, the existence of this negligible
upper bound ensures insec(I {P}, 𝑛, 𝑘,𝜓 ) is negligible.

We present the proof of Thm. 8.3 in Appendix A.6. Based on
definitions 8.1 and 8.2, we calculate the probability distribution in
both IML and IMLB. While the probability of all transitions except
for random number generation is 1, we need to demonstrate other

requirements, such as extra randomness, injective event trace in-
clusion, etc. To this end, we present lemmas in Sec. A.6.1 that show
these requirements, which is necessary to prove Thm. 8.3.

9 EVALUATION

Wehave implementedCryptoBap on theHOL4 theorem prover [41]
using itsmetalanguage SML.CryptoBap relies onHolBA’s semantics-
preserving transpiler and symbolic execution [52, 53]. We signifi-
cantly extended the HolBA vanilla symbolic execution to handle
crypto primitives, communication with the attacker, indirect jumps,
and loops, which are essential to verify the security of protocols.
We also adapted the Csec-modex’s pipeline to process CryptoBap-
generated IML. Table 2 shows the list of protocol implementations
that we used in our evaluation.

Simple case studies. Apart from the XOR case study discussed
in Sec. 6.1, we also verified other case studies of [3, 4] to evaluate
CryptoBap. The only exception to [3, 4] is smart metering protocol

which is not open source. For other cases, we obtained the same
result. Additionally, in contrast to [3], which could not handle CSur,
we successfully verified this case study.

RPC implements the MAC-based remote procedure call proto-
col [10]. We verified the client request and the server response
authenticity under the MAC unforgeability assumption against
chosen-message attacks with symbolic and computational guar-
antees. RPC-enc is an implementation of the RPC protocol that
uses authenticated encryption. We also verified the secrecy of the
payloads (which is not protected by theMAC-based RPC) with an as-
sumption that authenticated encryption is indistinguishable against
the chosen-plaintext attack and provides ciphertext integrity. CSur
is the Needham-Schroeder public-key authentication protocol [61].
We verified the secrecy and authentication properties for the CSur
binary. Our analysis confirmed that CSur is vulnerable to attack
in [56] and leaks protocol parties’ nonces. Similar to [4], we also
removed the assumption (i.e., all cryptographic material plus nonce
are tagged) used in [3] for the Needham-Schroeder-Lowe (NSL) case
study to obtain the computational soundness result. We confirmed
the flaw in the protocol discovered in [4]: if the nonce of the second
party is not tagged and is sent separately, it can be (mis)used as the
first protocol message.

Simple MAC implements the first half of the RPC protocol in
which a single payload is concatenated with its MAC [10]. We
verified the payload authenticity under the unforgeability of MAC
against the chosen-message attack assumption. For simple XOR
case study, we verified the secrecy of the payload with CryptoVerif.
We did not attempt verification with ProVerif, as the analysis of
theories with XOR requires extra effort [47], while CryptoVerif’s
attacker model is strictly stronger.

Verification of TinySSH and WireGuard. We further evalu-
ated CryptoBap by verifying TinySSH and WireGuard protocols.
TinySSH is a minimalistic SSH server that implements a subset of
SSHv2 features and ships with its own crypto library. To formulate
authentication properties, which ought to hold for any commu-
nication partner to the TinySSH server that conforms to the SSH
protocol specification, we modeled the client side of the SSH pro-
tocol in IML; agents at the other end of the communication line
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Protocol ARM
Loc

Verified
Code Size

Feasible
Path

Infeasible
Path

IML

Loc
CryptoVerif
(CV) Loc

ProVerif
(PV) Loc

Time (Second) Verified in Primitives
IML CV PV

RPC 1.8K 0.659K 8 178 23 236 102 10 0.035 0.012 CV & PV UF-CMA MAC
RPC-enc 53K 0.294K 28 348 53 313 118 9 0.073 0.047 CV & PV IND-CPA INT-CTXT AE
CSur 0.7K 0.382K 11 237 29 277 177 6 0.656 0.035 flaw IND-CCA2 PKE
NSL 2.8K 0.595K 23 455 56 296 204 35 2.740 0.052 flaw, verified IND-CCA2 PKE
Simple MAC 1.5K 0.294K 13 149 29 207 101 8 0.047 0.033 CV & PV UF-CMA MAC
Simple XOR 2.4K 0.100K 2 50 7 141 – 4 0.40 – CV XOR
TinySSH 18K 0.476K 136 1079 87 286 190 55 0.077 0.079 CV & PV CRHF-CDH† & UF-CMA SIGN

WG Initiator 27K 1.323K 68 1482 181 – 222 52 – 59.646 PV DH-X25519‡ & ROM-hash★Responder 153 1389 464 47
Table 2: Case studies. ARM assembly includes crypto code and the code that is used in preprocessing, e.g., to compute the

control flow of the program required in loop summarization. Primitives are standard, except Collision-resistant hash based

on computational Diffie-Hellman (†), Curve25519 [49] (‡) and hash function in the Random Oracle Model [9] (★). Also, WG =

WireGuard.

are manually developed. We manually specified the cryptographic
assumptions about the primitives used by the TinySSH implemen-
tation in CryptoVerif and ProVerif templates. We verified mutual
authentication with ProVerif and CryptoVerif.

WireGuard implements virtual private networks akin to IPSec
and OpenVPN. It is quite recent andwas incorporated into the Linux
kernel (stable) in March 2020. We have automatically extracted, for
the first time, the WireGuard’s ProVerif model from its linux imple-
mentation binary—all other existing models are hand-written and
derived from the specification [33, 44, 54]. Existing WireGuard’s
symbolic models often utilize pattern matching to verify authen-
tication. This involves constructing the entire message from the
initial stage and subsequently comparing it to the received message
from the network, which requires further justification. In contrast,
our extracted model from the implementation closely represents
the actual behavior of WireGuard, as it deconstructs the network
message using ChaCha20Poly1305 Decryption for the purpose of
authenticating ChaCha20Poly1305 Aauthenticated Encryption with
Associated Data (AEAD). As a result, our model obviates the need
for additional caution when verifying the authentication property.
We model the handshake and first transport message, after which
the key exchange is concluded, and prove the protocol participants
mutually agree on the resulting keys.

TinySSH and WireGuard are case studies with indirect jumps
in their binary, and TinySSH is the only one that features multiple
sessions. The other case studies from [3, 4] do not contain loops
as [3, 4] did not support them. We handle the loops inside the imple-
mentation of TinySSH using the summarization technique Sec. 5,
which is automated by CryptoBap—these loops handle, e.g., read-
ing key files of variable size. TinySSH spawns a new server for
each incoming TCP connection by using inetd, which we correctly
cover in our template files. We hence handle multiple sessions,
including potential replay attacks, correctly.

10 CONCLUDING REMARKS

We introduced CryptoBap to analyze the binary of cryptographic
protocols. CryptoBap enables sound verification of authentication
and weak secrecy for protocols’ machine code using the model
extraction technique. We have automated extracting models from
the binary of protocols and formally proved that the extracted IML

model preserves the protocol’s behavior at its machine-code level.
Additionally, we showed that the verified properties for the IML

model could be transferred back up to a mixed execution seman-
tics, where the BIR translation of the protocol can be coupled and
communicate with an IML attacker.

The problem of deciding secrecy is generally undecidable [59]
even in dedicated protocol specification languages whose seman-
tics are designed for verification. Hence the verification tool at the
backend must necessarily sacrifice automation or completeness. In
practice, ProVerif sacrifices completeness but verifies many typical
protocols. It is as easy to construct programs that are not recognized
as secure by ProVerif as it is to write programs that purposefully
break our abstractions in symbolic execution (e.g., by using a ran-
domly generated key to guide the control flow). Lacking a syntactic
criterion of what protocol implementations should or should not do,
we have evaluated the automation and completeness of CryptoBap
via case studies while ensuring soundness through proofs.

The current implementation of CryptoBap has a few limitations.
At the protocol verification level, our limits are currently those
of the protocol verification backend. These are constantly improv-
ing and we are currently working on targeting Tamarin [58] as
well. An example of our limitations at the code handling level is
infinite loops. The soundness of handling loops using the replica-
tion operator !mP can hold as long as enough randomness can be
stored in the memory, which is finite. Hence, the number of RNG
steps is limited by BIR’s finite memory in combination with its
deterministic semantics. Thus, BIR needs to be extended with exter-
nal non-determinism to handle infinite loops. Moreover, similar to
other related works, we trust the implementation of cryptographic
primitives. This means if there is any bug in these primitives that
violates the protocols’ security, these violations will not be detected.
The exclusion of these primitives from our verification is because
their verification requires a different methodology (e.g., weakest
precondition propagation). This is different from the goal we set
ourselves in the paper. Also, while the CryptoBap’s approach is
generic, at present, we can analyze only ARM and RISC-V bina-
ries. To extend our analysis to other architecture, the only part
that needs to be extended is the HolBA transpiler. Finally, we have
tried to reduce manual effort, yet, there still remains a necessity for
the user to initialize and steer the verification process. Mainly, the
user specifies (i) The code fragments they want to verify: the code-
under-analysis to the lifter, and the function names that are trusted
(libraries) or untrusted (attacker/network) to the symbolic execu-
tion engine; (ii) the symbolic model of cryptographic functions, and
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(iii) the security assumptions on the cryptographic primitives and
security queries in the verifiers’ template files.

In the future, we plan to mechanize our proofs in a proof assis-
tant such as HOL4 [41]. Moreover, to better cover top-level loops,
it is necessary to handle non-monotonous global states, i.e., state
changes that alter how a protocol reacts to future messages. This
problem was recognized in protocol verification, for instance, in the
more recent Tamarin verifier [58] or ProVerif’s global state exten-
sions [28]. It would thus be promising to skip Aizatulin’s toolchain
altogether and target one of these tools. Tamarin’s multiset-rewrite
calculus is well-suited for modeling state machines. Moreover, one
could essentially reuse the state-access axioms from SAPIC [45] to
handle persistent data stored in the heap.
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Simplified C Code
do {

k = receive ();

if (!k) assert(false);

} while (! newkey(k));

Figure 14: A simplified loop

from the TinySSH binary.

𝑎

𝑐𝑏

𝑑

𝑓

end

𝑒

start

k

!newkey(k) newkey(k)

k = receive()

k ≠ 0 k = 0

assert(𝑓 𝑎𝑙𝑠𝑒)

Figure 15: Flowgraph of the ex-

ample loop.
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JeK𝜂 = true

(𝜂, if e then P else P
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Figure 13: The semantics of IML [2, p. 23].

A APPENDIX

A.1 IML Semantics

Fig. 13 presents the IML semantics. The inference rules for random
number generation and sending a message on the channel c are ex-
plained in Fig. 7. The construct event (d1, . . . , dm) is used to raise an
event ev(b1, . . . , bm) during the execution where ev is an event sym-
bol and b1, . . . , bm are bitstrings stored for expressions d1, . . . , dm
in the IML environment 𝜂. The if e then P else P

′ construct reduces
to P if the expression e evaluates to true with respect to the IML

environment 𝜂, otherwise reduces to P′. The construct assume e; P
reduces to P only in the case that the expression e evaluates to true

with respect to the IML environment 𝜂. To execute the construct
let x = e in P , the bitstring b stored for the expression e in the IML

environment 𝜂 is fetched. Subsequently, the value of the variable
x is updated with the bitstring b in the environment 𝜂 and the
construct reduces to P .

A.2 Loop Summarization Example

Our symbolic execution engine handles bounded loops using the
summarization technique of Strejček [68]. We show by an example
how this method is used in our symbolic execution to summarize
loops. Fig. 14 is (the simplified version of) a loop from the TinySSH’s
implementation, and Fig. 15 indicates its flowgraph. Our example
loop consists of nodes {𝑎, 𝑏, 𝑑, 𝑒}, with 𝑎 being the entry node of
the loop, and a single path 𝜋1 = 𝑎𝑏𝑑𝑒𝑎. The program continues to
execute from node 𝑐 if a new key is received.

The loop’s effect can be described by an iterated symbolic en-
vironment 𝜂

®t
for ®t iterations of the loop. The ®t is a vector of path

counters, which in our example, consists of a single counter 𝑡1 that
is assigned to 𝜋1. The only variable which is modified within the
loop is k. In our example, the value of k is independent of the num-
ber of loop iterations and the initial values of program variables,
and it can be described by a symbolic value 𝜂

®t
[k] = k®t .

The looping condition describes the necessary condition to keep
looping along the acyclic paths inside a given loop. For our example,
the looping condition,𝜙

®t
= 𝜙

1
, consists of a single formula𝜙

1
which

describes the required condition to loop along the acyclic path 𝜋1.
The formula 𝜙

1
is based on two assertions, namely, !newkey(k)

and k ≠ 0. Let’s say that in the symbolic environment, the stored
values of k in (𝑡 ′1 − 1)-st and 𝑡 ′1-st iteration of the path 𝜋1 are kt′

1
−1

and k
t
′
1

, respectively. Then, to get 𝑡1 iterations of 𝜋1, the formula
𝜙
1
says that for each 𝑡 ′1 satisfying 0 < 𝑡 ′1 ≤ 𝑡1, kt′

1
−1 is not a new

key, k
t
′
1

is received from the channel, and it is not equal to zero:
𝜙
®t
≡ 𝜙

1

𝜙
1
≡ ∀𝑡 ′1 . (0 < 𝑡 ′1 ≤ 𝑡1 →

( !newkey(k
t
′
1
−1) ∧ k

t
′
1

= receive() ∧ k
t
′
1

≠ 0))

The loop summary is characterized by (𝜂
®t
, 𝜙

®t
) which we attach

it to the symbolic state at the entry node 𝑎. Afterward, we proceed
to execute the program from the exit point 𝑐 .

A.3 IMLB Semantics

Fig. 16 presents the IML-BIR mixed execution semantics.

A.4 Soundness of Translation into IML

Lemma 7.1. For a symbolic execution tree T of the BIR program P,
an IML process I and any 𝑘 ∈ N the size of the random memory, let

I {s0} = (𝑇𝑟𝑢𝑒, 𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0], pc0) be an initial symbolic

state in IMLSBand s0 = (𝜂
0
,Qfull) the corresponding initial IML state.

Then, for all H : I {s0} ∼H ,L.M s0 .

Proof. By construction of our symbolic tree we know that
for pc0, we have LTM. Thus, from translation rule LTM = Q

full

in Fig. 10 we get that s0 .P = Q
full . Then, we can conclude that

(𝑇𝑟𝑢𝑒, 𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0], pc0) ∼H ,L.M (𝜂

0
,Qfull). □
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pc ∈ LN ⊎ 𝜉C ⊎ 𝜉R ⊎ 𝜉E (𝜂, pc) a−→(𝜂′, pc′)
normal

P ⊢ (𝜂, pc),Q𝜄×b a−→→→
1
(𝜂′, pc′),Q𝜄×b

∀𝑗 ≤ 𝑚 : JyjK𝜂 = bj ≠ ⊥ ∀𝑗 ≤ 𝑚 : (𝜂j+1, aj) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂j, ℎ𝑒𝑎𝑝,𝑀𝑒𝑚, bj, 128)
run

P ⊢ (𝜂, run(pc, (y1, . . . , ym))),Q𝜄×b−→→→
1
(𝜂m+1 [r0 ↦→ a1, . . . , rm−1 ↦→ am], pc),Q𝜄×b

JeK𝜂 = b ≠ ⊥ b
′ = truncate(b,maxlen(c)) ∀𝑗 ≤ 𝑚 : JejK𝜂 = bj ≠ ⊥ Q𝜄×b′ = reduce({(𝜂,Q)})

∃!((𝜂, pc), c[e1′, . . . , em′]) ∈ Q𝜄×b : pc ∈ 𝜉Ar ∧ ∀𝑗 ≤ 𝑚 : 𝜂 [ej′]=bj ≠ ⊥

(𝜂′, a)=𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂,ℎ𝑒𝑎𝑝A , 𝑀𝑒𝑚A , b
′, 128) pc′= ret (𝜂, pc) Q𝜄×b′′= {((𝜂, pc), c[e1′, . . . , em′])}

I𝑡𝑜B

P ⊢ (𝜂, out (c[e1, . . . , em], e);Q),Q𝜄×b
In(b′, (e′1, . . . , e′m ) )−−−−−−−−−−−−−−−−→→→

1
((𝜂′ [r0 ↦→ a], pc′), c[em′, . . . , em′]),Q𝜄×b ⊎ Q𝜄×b′ \ Q𝜄×b′′

pc ∈ 𝜉As pc′ = ret (𝜂, pc) Q𝜄×b′ = {(𝜂, pc′)} a = 𝜂 [r0] b =𝑚𝑙𝑜𝑎𝑑 (𝜂, a) ∀𝑗 ≤ 𝑚 : 𝜂 [ej] = bj ≠ ⊥

∃!(𝜂,Q) ∈Q𝜄×b :Q= in(c[e1′, . . . , em′], x); P ∧ ∀𝑗 ≤ 𝑚 : Jej ′K𝜂 = bj ≠ ⊥ b
′ = truncate(b,maxlen(c))

B𝑡𝑜I
P ⊢ ((𝜂, pc), c[e1, . . . , em]),Q𝜄×b Out(b, (e1, . . . , em ) )−−−−−−−−−−−−−−−−→→→

1
(𝜂 [x ↦→ b

′], P),Q𝜄×b ⊎ Q𝜄×b′ \ {(𝜂,Q)}

Figure 16: The mixed semantics of BIR and IML shown by IMLB.

Lemma 7.2 (State/Event Eqivalence). Let P be a BIR pro-

gram and I be an IML process, then, for all si , I {si}, I {sj} and H s.t.

I {si} ∼H ,L.M si and I {si}
𝑎𝜄×s−−−−→→→+

p,H I {sj}, there exist an H
′
and sj s.t.

H ⊆ H
′
, si

a−→→→
p
sj and I {sj} ∼H

′,L.M sj and if a ≠ ⊥ then 𝑎𝜄×s =H ′ a.

Proof of lemma 7.2 is done by a case split on the type of label
sets in the BIR program P.

Proof. We prove the statement by a case split based on the type
of the program counter I {si}.pc.

• pc ∈ LE
Since I {si} ∼H ,L.M si , we know that si .P = LT[si .pc]M. Based
on the translation rules in Fig. 10, we get that si .P = event (d1,
. . . , dm); LT′M. Also, by construction of the symbolic exe-
cution tree we know that there exist T0 and T1 such that
T = T0 :: (pc, Ev(d1, . . . , dm)) :: (pc′, ev) :: T1. Therefore,
based on the operational semantics of IML processes [2, p. 23]

and translation rules in Fig. 10, we get si
ev (b1, . . . , bm )−−−−−−−−−−−−→→→

1
sj

and sj = (𝜂, LT[sj .pc′]M),Q.
Based on the semantics of IMLSB, Fig. 12, we find I {sj} =

(𝜙, 𝜂, pc′),Q𝜄×s that is in the relation I {si}
𝑎𝜄×s−−−−→→→

1,H I {sj}
such that 𝑎𝜄×s = Ev(d1, . . . , dm).
Finally, we choose H ′ by extending H according to the ex-
ecuted operation and such that H ′ (dj) = bj for 0 < 𝑗 ≤
𝑚. Therefore, we can conclude that (𝜙, 𝜂, pc′),Q𝜄×s ∼

H
′,L.M

(𝜂, LT[si .pc′]M),Q and Ev(d1, . . . , dm) =H ′ ev(b1, . . . , bm).

• pc ∈ LC
Since I {si} ∼H ,L.M si , we know that si .P = LT[si .pc]M. Based
on the translation rules in Fig. 10, we get that si .P = let x = v

in LT′M. Also, by construction of the symbolic execution tree
we know that there exist T0 and T1 such that T = T0 ::
(pc,Cr(v)) :: (pc′, ev) ::T1.

Therefore, based on the operational semantics of IML pro-
cesses [2, p. 23] and translation rules in Fig. 10, we get that
si−→→→1

sj and sj = (𝜂 [x ↦→ b], LT[sj .pc′]M),Q. Based on the
semantics of IMLSB, Fig. 12, we find I {sj} = (𝜙, 𝜂′′, pc′),

Q𝜄×s that is in the transition relation I {si}
𝑎𝜄×s−−−−→→→

1,H I {sj}
such that 𝑎𝜄×s = Cr(v) and 𝜂′′ = 𝜂′ [r0 ↦→ a] where (𝜂′, a) =
𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂, ℎ𝑒𝑎𝑝Op, 𝑀𝑒𝑚Op, v, 128).
Finally, we choose H ′ by extending H according to the ex-
ecuted operation and such that H ′ (v) = b. Therefore, we
can conclude that (𝜙, 𝜂′ [r0 ↦→ a], pc′),Q𝜄×s ∼

H
′,L.M (𝜂 [x ↦→

b], LT[si .pc′]M),Q.

• pc ∈ LR
Since I {si} ∼H ,L.M si , we know that si .P = LT[si .pc]M. Based
on the translation rules in Fig. 10, we get that si .P = new x;
LT′M. Also, by construction of the symbolic execution tree
we know that there exist T0 and T1 such that T = T0 ::
(pc, Fr(x)) :: (pc′, ev) ::T1.
Therefore, based on the operational semantics of IML pro-
cesses [2, p. 23] and translation rules in Fig. 10, we get that

si

fr (b)
−−−−→→→ 1

2
n

sj and sj = (𝜂 [x ↦→ b], LT[sj .pc′]M),Q. Based on
the semantics of IMLSB, Fig. 12, we find I {sj} = (𝜙, 𝜂′′, pc′),

Q𝜄×s that is in the relation I {si}
𝑎𝜄×s−−−−→→→

1,H I {sj} such that
𝑎𝜄×s = Fr(x) and 𝜂′′ = 𝜂′ [r0 ↦→ a; rk ↦→ 𝜂 [rk] + 𝑙] where
(𝜂′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂,ℎ𝑒𝑎𝑝,𝑀𝑒𝑚, x, 128) and x = ℜ(𝜂, 𝑛).
Finally, we choose H ′ by extending H according to the exe-
cuted operation and such that H ′ (x) =b. Therefore, we can
conclude that (𝜙, 𝜂′ [r0 ↦→ a; rk ↦→ 𝜂 [rk]+𝑙], pc′),Q𝜄×s ∼

H
′,L.M

(𝜂 [x ↦→ b], LT[si .pc′]M),Q and
fr (b) =H ′ Fr(x).
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• pc1 ∈ LAs ∧ pc2 ∈ LAr
In this case, since pc1 ∈ LAs , we have an IML output process
out in the IML state si . Based on IOut rule in the operational
semantics of IML processes [2, p. 23], we get that there is
an IML input process in in the multiset of executing input
processes that is ready to receive input from the channel.
Therefore, there exists a node in our symbolic execution tree
such that its program counter is in the label set LAr .
More formally, since I {si} ∼

H ,L.M si , we know that si .P =

LT[si .pc1]M. Based on the translation rules in Fig. 10, we get
that si .P = out (c[e1, . . . , em], e); LT′M. Based on the oper-
ational semantics of IML processes [2, p. 23], we get that
si−→→→1

sj and sj = (𝜂′ [v ↦→ b
′], P′),Q ⊎ Q′ \ Q′′ such that

Q′′ = {(𝜂′, in(c[e1′, . . . , em′], v); P′)}.
Therefore, there exist T0 and T1 such that T′ = T0 :: (pc2, In(v,
(e1′, . . . , em′))) :: (pc′, ev) ::T1 and it holds that in(c[e1′, . . . ,
em

′], v); P′ = LIn(v, (e1′, . . . , em′))M; LevM.
Since we have an event node (pc2, In(v, (e1′, . . . , em′))), we
get that there exist an intermediate state I {s

l
} ∈ Q𝜄×s such

that I {s
l
} = {((𝜙, 𝜂′, pc2), c[e1′ , . . . , em′])} and pc2 ∈ LAr .

Based on the semantics of IMLSB, Fig. 12, we find I {sj} =

((𝜙, 𝜂′′′, pc′), c[e1′, . . . , em′]),Q𝜄×s⊎Q𝜄×s′\Q𝜄×s′′ that is in

the transition relation I {si}
𝑎𝜄×s−−−−→→→+

1,H I {sj} such that 𝑎𝜄×s =
Out(e, (e1, . . . , em)); . . . ; In(v, (e1′, . . . , em′)) and 𝜂′′′ = 𝜂′′
[r0 ↦→ a] where (𝜂′′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂′, ℎ𝑒𝑎𝑝A , 𝑀𝑒𝑚A , v, 128)
and pc′ = ret (𝜙, 𝜂′, pc2)
Finally, we choose H ′ by extending H according to the ex-
ecuted operation and such that H ′ (v) = b

′. Thus, we can
conclude that ((𝜙, 𝜂′′ [r0 ↦→ a], pc′), c[e1′, . . . , em′]),Q𝜄×s⊎
Q𝜄×s′ \Q𝜄×s′′ ∼

H
′,L.M (𝜂′ [v ↦→ b

′], LT[si .pc′]M),Q⊎Q′ \Q′′.

• pc ∈ LN ∧ pc ∉ LL
We show this case by a case split based on P(I {si}.pc).
– P(I {si}.pc) ≠ Branch(𝛾, T1, T2)
Since I {si} ∼

H ,L.M si , we know that si .P = LT[si .pc]M. By
construction of the symbolic execution tree we know that
there exist T0 and T1′ such that T = T0 :: (pc, 𝜏) :: (pc′, ev) ::
T1

′.
Therefore, based on the operational semantics of IML pro-
cesses [2, p. 23] and translation rules in Fig. 10, we get that
sj = (𝜂′, LT[sj .pc′]M),Q and si−→→→1

sj . Based on the seman-
tics of IMLSB, Fig. 12, we find I {sj} = (𝜙 ′, 𝜂′, pc′),Q𝜄×s

that is in the relation I {si}−→→→1,H I {sj}.
Finally, we choose H ′ by extending H according to the ex-
ecuted operation and such that H ′ (I {sj}.𝜂) = sj .𝜂. There-
fore, we can conclude that (𝜙 ′, 𝜂′, pc′),Q𝜄×s ∼

H
′,L.M (𝜂′,

LT[si .pc′]M),Q.

– P(I {si}.pc) = Branch(𝛾, T1, T2) case 𝑇𝑟𝑢𝑒 (case 𝐹𝑎𝑙𝑠𝑒)
Since I {si} ∼H ,L.M si , we know that si .P = LT[si .pc]M. Based
on the translation rules in Fig. 10, we get that si .P =

if L𝛾M then LT1M else LT2M. Also, by construction of the
symbolic execution tree we know that there exist T0, T1′,
and T2

′ s.t. T = T0 :: (pc,Branch(𝛾, ((pc′,−) :: T1′), T2))
(T = T0 :: (pc,Branch(𝛾, T1, ((pc′′,−) ::T2′)))).

Therefore, based on the operational semantics of IML pro-
cesses [2, p. 23] and translation rules in Fig. 10, we get
that sj = (𝜂, LT[sj .pc′]M),Q

(
sj = (𝜂, LT[sj .pc′′]M),Q

)
and

si−→→→1
sj .

Based on the semantics of IMLSB, Fig. 12, we find sj =

(𝜙, 𝜂, pc′)
(
sj = (𝜙, 𝜂, pc′′)

)
that is in the transition rela-

tion I {si}−→→→1,H I {sj}. Therefore, we can conclude that
(𝜙, 𝜂, pc′),Q𝜄×s ∼

H
′,L.M (𝜂, LT[si .pc′]M),Q(

(𝜙, 𝜂, pc′′),Q𝜄×s ∼
H
′,L.M (𝜂, LT[si .pc′′]M),Q

)
.

• P(I {si}.pc) ∈ LL
Since I {si} ∼H ,L.M si , we know that si .P = LT[si .pc]M. Based
on the translation rules in Fig. 10, we get that si .P = !t≤m
LoopProc(si .pc). Also, by construction of the symbolic exe-
cution tree we know that there exist T0, and T1 such that
T = T0 :: (pc, loop(t)) :: (pc′, ev) ::T1 such that pc′ = exit (pc).
Therefore, based on the operational semantics of IML pro-
cesses [2, p. 23] and translation rules in Fig. 10, we get
sj = (𝜂′, LT[sj .pc′]M),Q and si−→→→1

sj such that 𝜂′ [t] = b.
Based on the semantics of IMLSB, Fig. 12 and the computed
loop summary, we find I {sj} = (𝜙 ′, 𝜂′, pc′),Q𝜄×s that is in

the transition relation I {si}
𝑎𝜄×s−−−−→→→

1,H I {sj}, 𝑎𝜄×s = loop(t),
and pc′ = exit (pc).
Finally, for every IML variable x and symbolic BIR variable x
that I {sj}.𝜂 [x] ≠ I {si}.𝜂 [x] and sj .𝜂 [x] ≠ si .𝜂 [x], we choose
H
′ by extending H according to the executed operation such

that H ′ (I {sj}.𝜂 [x]) = sj .𝜂 [x]. Moreover, for the symbolic
counter t which represents the number of iterations of the
loop in symbolic execution and the number of the process
replication b, we have H ′ (t) = b. Therefore, we can conclude
that (𝜙 ′, 𝜂′, pc′),Q𝜄×s ∼

H
′,L.M (𝜂′, LT[sj .pc′]M),Q.

□

A.5 Soundness of Symbolic Execution

Lemma 7.4. For a BIR program P, an IML process I and any upper

bound 𝑘 ∈ N on the number of RNG steps, let I {s0} = (𝜂0 [RM ↦→
rm

k
, rk ↦→ 0], pc0) be an initial BIR state in IMLB and I {s0} =

(𝑇𝑟𝑢𝑒, 𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0], pc0) be the corresponding initial

state in IMLSB. Then, I {s0} ∼H
I {s0} for all H .

Proof. We chooseH such that for 0 < 𝑖 ≤ 𝑘 ,H (I {s0}.𝜂.RM[xi])
= I {s0}.𝜂.RM[xi]. Finally, we can conclude that (𝜂0 [RM ↦→ rm

k
, rk

↦→ 0], pc0) ∼H
(𝑇𝑟𝑢𝑒, 𝜂

0
[RM ↦→ rm

k
, rk ↦→ 0], pc0). □

Lemma 7.5 (State/Event Eqivalence). Let P be a BIR program

and I be an IML process, then, for all I {si}, I {si}, I {sj} and H s.t.

I {si} ∼H
I {si} and I {si}

𝑎𝜄×b−−−→→→+
p
I {sj}, there exist anH ′

and I {sj} s.t.

H ⊆ H
′
, I {si}

𝑎𝜄×s−−−−→→→+
p,H ′ I {sj}, I {sj} ∼H

′ I {sj} and 𝑎𝜄×b =H ′ 𝑎𝜄×s.

Proof of lemma 7.5 is done by a case split on the type of label
sets in the BIR program P.

Proof. We prove the statement by a case split based on the type
of the program counter I {si}.pc.

• pc ∈ LE
Based on the mixed semantics of IML and BIR, Fig. 16, we
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get that I {sj} = (𝜂′, pc′),Q𝜄×b and I {si}
𝑎𝜄×b−−−→→→

1
I {sj}. Based

on the definition of event functions in Sec. 4, we have pc′ =
ret (𝜂, pc), 𝑎𝜄×b = Ev(b1, . . . , bm) and 𝜂′ = 𝜂. Since I {si} ∼H

I {si}, we get that I {si}.pc ∈ LE . Based on the semantics
of IMLSB, Fig. 12, we find I {sj} = (𝜙, 𝜂, pc′),Q𝜄×s that is in

the transition relation I {si}
𝑎𝜄×s−−−−→→→

1,H I {sj} such that 𝑎𝜄×s =
Ev(d1, . . . , dm).
Therefore, we choose H ′ by extending H according to the
executed operation and such that H ′ (dj) =bj for 0 < 𝑗 ≤ 𝑚.
Moreover, since the environment of both sj and sj are the
same as si and si, respectively, we get that I {sj}.𝜂 =H ′ I {sj}.𝜂.
Finally, we can conclude that (𝜂, pc′),Q𝜄×b ∼

H
′ (𝜙, 𝜂, pc′),

Q𝜄×s and Ev(b1, . . . , bm) =H ′ Ev(d1, . . . , dm).

• pc ∈ LC
Based on the mixed semantics of IML and BIR, Fig. 16, we

get that I {sj} = (𝜂′′, pc′),Q𝜄×b and I {si}
𝑎𝜄×b−−−→→→

1
I {sj}. Based

on the definition of crypto calls in Sec. 4, we have 𝑎𝜄×b =

Cr(v), pc′ = ret (𝜂, pc) and 𝜂′′ = 𝜂′ [r0 ↦→ a] where (𝜂′, a) =
𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂, ℎ𝑒𝑎𝑝Op, 𝑀𝑒𝑚Op, v, 128).
Since I {si} ∼

H
I {si}, we get that I {si}.pc ∈ LC . Based on

the semantics of IMLSB, Fig. 12, we find I {sj} = (𝜙, 𝜂′′, pc′)

,Q𝜄×s that is in the transition relation I {si}
𝑎𝜄×s−−−−→→→

1,H I {sj}
such that 𝑎𝜄×s = Cr(v) and 𝜂′′ = 𝜂′ [r0 ↦→ a] where (𝜂′, a) =
𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂, ℎ𝑒𝑎𝑝Op, 𝑀𝑒𝑚Op, v, 128).
Therefore, we choose H ′ by extending H according to the
executed operation and such that H ′ (v) = v. Hence, we
get that I {sj}.𝜂 =H ′ I {sj}.𝜂. Finally, we can conclude that
(𝜂′′, pc′),Q𝜄×b ∼

H
′ (𝜙, 𝜂′′, pc′),Q𝜄×s and Cr(v) =H ′ Cr(v).

• pc ∈ LR
Based on the mixed semantics of IML and BIR, Fig. 16, we

get that I {sj} = (𝜂′′, pc′),Q𝜄×b and I {si}
𝑎𝜄×b−−−→→→

1
I {sj}. Based

on the definition of RNG in Sec. 4, we have 𝑎𝜄×b = Fr(x
d
),

𝑑 =

⌊
𝜂 [rk ]
𝑙

⌋
+ 1, 𝜂′′ = 𝜂′ [r0 ↦→ a; rk ↦→ 𝜂 [rk] + 𝑙] where

(𝜂′, a) = 𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂,ℎ𝑒𝑎𝑝,𝑀𝑒𝑚, x
d
, 128), x

d
= ℜ(𝜂, 𝑛) and

pc′ = ret (𝜂, pc).
Since I {si} ∼

H
I {si}, we get that I {si}.pc ∈ LR . Based on

the semantics of IMLSB, Fig. 12, we find I {sj} = (𝜙, 𝜂′′, pc′)

,Q𝜄×s that is in the relation I {si}
𝑎𝜄×s−−−−→→→

1,H I {sj} such that
𝑎𝜄×s = Fr(x

d
′ ), 𝑑′ =

⌊
𝜂 [rk ]
𝑙

⌋
+ 1 and 𝜂′′ = 𝜂′ [r0 ↦→ a; rk ↦→

𝜂 [rk] +𝑙] where (𝜂′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂, ℎ𝑒𝑎𝑝,𝑀𝑒𝑚, xd′ , 128) and
x
d
′ = ℜ(𝜂, 𝑛).

Since I {si} ∼
H

I {si} and I {si}.𝜂 =H I {si}.𝜂, we get that
𝑑′ = 𝑑 . Finally, we choose H ′ by extending H according to
the executed operation and such that H ′ (x

d
) = x

d
. Hence,

we get that I {sj}.𝜂 =H ′ I {sj}.𝜂. Therefore, we can conclude
that (𝜂′′, pc′),Q𝜄×b ∼

H
′ (𝜙, 𝜂′′, pc′),Q𝜄×s and Fr(x

d
) =H ′

Fr(x
d
).

• pc1 ∈ LAs ∧ pc2 ∈ LAr

In this case, I {si}
𝑎𝜄×b−−−→→→+

p
I {sj} amounts to 3 sub-transitions

as follows. First, using the B𝑡𝑜I rule in Fig. 16, we have the

transition relation I {si}
Out(b, (e1, . . . , em ) )−−−−−−−−−−−−−−−−→→→

1
I {sx } such that

I {si}.pc1 ∈ LAs .
Then, based on the operational semantics of IML output pro-
cesses [2, p. 23], the transition I {sx }−→→→+

p
I {sy} takes place.

Finally, we have I {sy}
In(b′, (e′1, . . . , e′m ) )−−−−−−−−−−−−−−−−→→→

1
I {sj} using I𝑡𝑜B

rule in Fig. 16 such that there exist a BIR state ((𝜂, pc2), c[e′1,
. . . , e′m]) in the multiset of executing states I {sy}.Q𝜄×b such
that pc2 ∈ 𝜉Ar .
Since I {si} ∼H

I {si}, we need to find a mixed symbolic and
IML state I {sj} such that I {sj} ∼H

I {sj} and it is reachable
from intermediate states I {sx } and I {sy} using SB𝑡𝑜I and
I𝑡𝑜SB rules in Fig. 12, respectively.
Therefore, since pc1 ∈ LAs , based on the mixed semantics
of IML and BIR, Fig. 16, we get that there exist an IML state

I {sx } such that I {si}
Out(b, (e1, . . . , em ) )−−−−−−−−−−−−−−−−→→→

1
I {sx } and I {sx } =

(𝜂 [x ↦→ b
′], P),Q𝜄×b \ Q𝜄×b′ such that b′ = truncate(b,

maxlen(c)).
Since I {si} ∼H

I {si}, we get that I {si}.pc1 ∈ LAs . Based on
the semantics of IMLSB, Fig. 12, we find I {sx } = (𝜂 [x ↦→
b
′], P),Q𝜄×s \ Q𝜄×s′that is in the transition relation I {si}
𝑎𝜄×s−−−−→→→

1,H I {sx } such that 𝑎𝜄×s = Out(e, (e1, . . . , em)).
Since pc2 ∈ LA𝑟

, based on the mixed semantics of IML and
BIR, Fig. 16, we get that there exist an IML state sy such

that I {sy}
In(b′, (e′1, . . . , e′m ) )−−−−−−−−−−−−−−−−→→→

1
I {sj} and I {sj} = ((𝜂′ [r0 ↦→

a], pc′), c[e′1, . . . , e
′
m]),Q𝜄×b⊎Q𝜄×b′\Q𝜄×b′′ such that (𝜂′, a) =

𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂,ℎ𝑒𝑎𝑝A , 𝑀𝑒𝑚A , b
′, 128) and pc′ = ret (𝜂, pc2).

Since I {si} ∼H
I {si}, we get that I {si}.pc2 ∈ LAr . Based on

the semantics of IMLSB, Fig. 12, we find I {sj} = ((𝜙, 𝜂′ [r0 ↦→
a], pc′), c[e1′, . . . , em′]),Q𝜄×s ⊎ Q𝜄×s′ \ Q𝜄×s′′ that is in the

relation I {sy}
𝑎𝜄×s−−−−→→→

1,H I {sj} such that pc′ = ret (𝜙, 𝜂, pc2),
𝑎𝜄×s = In(e′, (e1′, . . . , em′)) and (𝜂′, a) =𝑚𝑠𝑡𝑜𝑟𝑒 (𝜂,ℎ𝑒𝑎𝑝A ,
𝑀𝑒𝑚A , e′, 128).
Moreover, we choose H ′ by extending H according to the
executed operation and such that H ′ (e) = b, H ′ (e′) = b

′,
H
′ (ej) = ej and H

′ (ej′) = ej′ for 1 ≤ 𝑗 ≤ 𝑚. Hence, we get
that I {sj}.𝜂 =H ′ I {sj}.𝜂. Therefore, we can conclude that
((𝜂′ [r0 ↦→ a], pc′), c[e′1, . . . , e

′
m]),Q𝜄×b ⊎ Q𝜄×b′ \ Q𝜄×b′′ ∼

H
′

((𝜙, 𝜂′ [r0 ↦→ a], pc′), c[e1′, . . . , em′]),Q𝜄×s⊎Q𝜄×s′ \Q𝜄×s′′,
Out(b, (e1, . . . , em)) =H ′ Out(e, (e1, . . . , em)), and In(b′, (e′1,
. . . , e′m)) =H ′ In(e′, (e1′, . . . , em′)).

• pc ∈ LN ∧ pc ∉ LL
Based on the mixed semantics of IML and BIR, Fig. 16, we

get that I {sj} = (𝜂′, pc′),Q𝜄×b and I {si}
𝑎𝜄×b−−−→→→

1
I {sj}. Since

I {si} ∼H
I {si}, we get that I {si}.pc ∈ LN . Based on the se-

mantics of IMLSB, Fig. 12, we find I {sj} = (𝜙 ′, 𝜂′, pc′),Q𝜄×s

that is in the transition relation I {si}−→→→1,H I {sj}.
Based on Lindner’s work [53] (see Property 1), there exist an
interpretation H

′ ⊇ H such that I {sj}.𝜂 =H ′ I {sj}.𝜂. There-
fore, we can conclude that (𝜂′, pc′),Q𝜄×b ∼

H
′ (𝜙 ′, 𝜂′, pc′),



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Faezeh Nasrabadi, Robert Künnemann, and Hamed Nemati

Q𝜄×s.

• pc ∈ LL
Based on the mixed semantics of IML and BIR, Fig. 16, we

get that I {sj} = (𝜂′, pc′),Q𝜄×b and I {si}
loop(t)
−−−−−−→→→+

1
I {sj} and

pc′ = exit (pc). Since I {si} ∼H
I {si}, we get that I {si}.pc ∈

LL . Based on the semantics of IMLSB, Fig. 12 and the com-
puted loop summary4, we find I {sj} = (𝜙 ′, 𝜂′, pc′), Q𝜄×s that

is in the transition relation I {si}
loop(t)
−−−−−−→→→+

1,H I {sj} such that
pc′ = exit (pc). Therefore, we get that both loops in I {sj}
and I {sj} terminate at the same position pc′.
Finally, for every BIR variable x and symbolic BIR variable
x that I {sj}.𝜂 [x] ≠ I {si}.𝜂 [x] and I {sj}.𝜂 [x] ≠ I {si}.𝜂 [x], we
choose H

′ by extending H according to the executed op-
eration such that H ′ (I {sj}.𝜂 [x]) = I {sj}.𝜂 [x]. Moreover, for
the symbolic counter t which represents the number of it-
erations of the loop in symbolic execution and the concrete
counter t, we have H ′ (t) = t. Therefore, we can conclude
that (𝜂′, pc′),Q𝜄×b ∼

H
′ (𝜙 ′, 𝜂′, pc′),Q𝜄×s and loop(t) =H ′

loop(t).

□

A.6 Security properties

Preliminaries. Trace property𝜓 is a polynomially decidable prefix-
closed set of event traces.

{t ∈ 𝜓 | ∀𝑖 ∈ N : t [..𝑖] ∈ 𝜓
=⇒ (∃ 𝑗 ∈ N : 𝑗 < 𝑖 ∧ t [.. 𝑗] ∈ 𝜓 ) }

Here, we use the following notation. Given a trace t = 𝑎0𝑎1 . . .
and index 𝑖 , we define t [𝑖] = 𝑎𝑖 and t [..𝑖] = 𝑎0𝑎1 . . . 𝑎𝑖 .

Theorem 8.3 (Translation preserves attacks). Given a BIR
program P, an IML process I , a security parameter 𝑛 ∈ N , a trace

property𝜓 and an upper bound 𝑘 ∈ N on the number of RNG steps

in 𝑇 𝜄×b (I {P}, 𝜂0 [RM ↦→ rm
k
, rk ↦→ 0]), we get that

insec(I {P}, 𝑛, 𝑘,𝜓 ) ≤ insec(I {LPM}, 𝑛,𝜓 ).

Proof. Throughout the following proof, we use the following
property of sums: if 𝜁 : 𝐴 → 𝐵 is an injection, then

∑
𝑎∈𝐴 𝑓 (𝜁 (𝑎)) ≤∑

𝑏∈𝐵 𝑓 (𝑏). Recall also that, if 𝜁 : 𝐴 → 𝐵 is injective, then 𝜁 |𝐴′ is in-
jective for any𝐴′. Also, for brevity, let𝑇 𝜄×s = 𝑇 𝜄×s (I {P}, 𝜂

0
[RM ↦→

rm
k
, rk ↦→ 0]) and 𝑇 𝜄×b = 𝑇 𝜄×b (I {P}, 𝜂0 [RM ↦→ rm

k
, rk ↦→ 0]) in

the follow up.

insec(I {LPM}, 𝑛,𝜓 )
Def. 8.2
=

∑︁
t∈T (I {LPM},𝑛)∩𝜓¬

pr (t)

4Note that the concrete BIR uses unrolling for loops, while our symbolic execution,
SBIR, uses the loop summary to handle bounded loops.

Note that 𝑅𝜄×s ∼
H ,𝑘,L·M R implies H (𝑡 𝜄×s) ∈ 𝜓¬ ⇔ t ∈ 𝜓¬

Lem. A.4,Lem. A.2
≥

∑︁
𝑡𝜄×s∈𝑇 𝜄×s
H :rml→BS

𝑘
𝑛

s.t. ∃H ′ . H ′ |rm
l
=H

∧H ′ (𝑡𝜄×s ) ∈𝜓¬
∧rng (𝑡𝜄×s )=𝑙

2−𝑛𝑙pr (𝑡 𝜄×s)

Let 𝑘 be the maximal 𝑙 in the sum. We extend the range of H , which
increases the range of the sum by 2𝑛 (𝑘−𝑙 ) :

=
∑︁

𝑡𝜄×s∈𝑇 𝜄×s
H :rmk→BS

𝑘
𝑛

s.t. ∃H ′ . H ′ |rm
l
=H |rm

l

∧H ′ (𝑡𝜄×s ) ∈𝜓¬
∧rng (𝑡𝜄×s )=𝑙

2−𝑛𝑙

2𝑛 (𝑘−𝑙 )︸   ︷︷   ︸
=2−𝑛𝑘

·pr (𝑡 𝜄×s)

Lem. A.3
=

∑︁
𝑡𝜄×s∈𝑇 𝜄×s
H :rmk→BS

𝑘
𝑛

s.t. ∃H ′ .H ′ |rm
k
=H

∧H ′ (𝑡𝜄×s ) ∈𝜓¬

2−𝑛𝑘pr (𝑡 𝜄×s)

=2−𝑛𝑘 ·
∑︁

𝑡𝜄×s∈𝑇 𝜄×s
H :rmk→BS

𝑘
𝑛

s.t. ∃H ′ .H ′ |rm
k
=H

∧H ′ (𝑡𝜄×s ) ∈𝜓¬

pr (𝑡 𝜄×s)

Note that 𝑅𝜄×b ∼
H ,𝑘

𝑅𝜄×s implies H (𝑡 𝜄×s) ∈ 𝜓¬ ⇔ 𝑡 𝜄×b ∈ 𝜓¬
Lem. A.5

≥ 2−𝑛𝑘 ·
∑︁

rmk∈BS𝑘𝑛
𝑡 𝜄×b∈𝑇 𝜄×b∩𝜓¬

pr (𝑡 𝜄×b)

Def. 8.1
= insec(I {P}, 𝑛, 𝑘,𝜓 )

□

A.6.1 Lemmas required to prove Thm. 8.3.

Lemma A.1 (trace contains randomness). For a BIR program

P, an IML process I , any upper bound 𝑘 ∈ N on the number of

RNG steps, all IML traces R ∈ R𝜄 (I {LPM}), all interpretations H
and H

′
, and all mixed IML and symbolic execution traces 𝑅𝜄×s ∈

R𝜄×s (I {P}, 𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0]) with 𝑑 the number of RNG

steps in 𝑅𝜄×s such that rm
d
be the first 𝑑 random symbolic values in

RM and 𝑑 ≤ 𝑘 , then,
𝑅𝜄×s ∼

H ,𝑘,L·M R ∧ 𝑅𝜄×s ∼
H
′,𝑘,L·M R =⇒ H |rmd

= H
′ |rmd

Proof. Since the relation 𝑅𝜄×s ∼
H ,𝑘,L·M R holds, we know that

𝑅𝜄×s = I {s0}
𝑎𝜄×s1−−−−→→→

p1,H . . .
𝑎𝜄×s𝑖−−−−→→→

pi,H I {si}
Fr(x1 )−−−−−→→→

1,H I {si+1}
𝑎𝜄×s𝑖+2−−−−→→→

pi+2,H . . .
𝑎𝜄×s𝑗−−−−→→→

pj,H I {sj}
Fr(xd )−−−−−→→→

1,H I {sj+1}
𝑎𝜄×s𝑗+2−−−−→→→

pj+2,H . . .

−→→→
pm,H I {sm} where 𝑎𝜄×s

𝑖
does not come from a RNG(𝑛) call and

x1, . . . , xd = rm
d
and R = s0

a1−−→→→
p1
. . .

ai−→→→
pi
si

fr (b1 )−−−−−→→→ 1

2
n

si+1 . . .
aj−→→→

pj
sj

fr (bd )−−−−−→→→ 1

2
n

sj+1 . . .−→→→pm
sm. For all 0 < 𝑖 ≤ 𝑑 , then, bi =

H (xi) (1). Since 𝑅𝜄×s ∼
H
′,𝑘,L·M R, for the random symbolic values

x1, . . . , xd, we get that bi = H
′ (xi) for 0 < 𝑖 ≤ 𝑑 (2). From (1) and

(2), we conclude that H |rmd
= H

′ |rmd
.

□
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Lemma A.2. For a BIR program P, an IML process I , any upper

bound 𝑘 ∈ N on the number of RNG steps, a security parameter 𝑛 ∈
N , all IML traces R ∈ R𝜄 (I {LPM}), all interpretations H , all mixed

IML and symbolic execution traces 𝑅𝜄×s ∈ R𝜄×s (I {P}, 𝜂
0
[RM ↦→

rm
k
, rk ↦→ 0]), if 𝑅𝜄×s ∼

H ,𝑘,L·M R , then, the number of Inew steps in

R and the number of RNG plus the number of INew steps in 𝑅𝜄×s are

equal. Moreover, pr (tr (R)) = pr (tr (𝑅𝜄×s)) · 2−𝑛 ·rng (𝑅𝜄×s ) .

Proof. Since 𝑅𝜄×s ∼
H ,𝑘,L·M R, we know that Fr(xi) or fr (b) steps

in 𝑅𝜄×s maps to fr (H (xi)) or fr (b) steps in R, respectively, for 𝑖 ≤
rng(𝑅𝜄×s). The first statement is as follows:

Based on the rule INew in the operational semantics of IML out-
put processes [2, p. 23], we get that the probability of generating the
random number b based on the IML transition relation (i.e. −→→→ 1

2
n

semantics) with respect to security parameter 𝑛 is 1
2𝑛 . Therefore,

the fr (b) step has the probability 1
2𝑛 in both 𝑅𝜄×s and R. Hence, for

fr (b) steps, we have pr (tr (R)) = pr (tr (𝑅𝜄×s)).
Based on the rule RNG(𝑛) in the semantics of IMLSB, Fig. 12, we

get that the probability of generating the symbolic random number
x based on the mixed IML and symbolic transition relation (i.e.,
−→→→

1,H semantics) with respect to security parameter 𝑛 is 1 but we
translate Fr(x) to fr (H (x)) using interpretation H which have the
probability 1 · 1

2𝑛 . The number of Fr(x) steps in 𝑅𝜄×s are rng(𝑅𝜄×s),
hence, the probability of Fr(x) steps is pr (tr (𝑅𝜄×s)) · 2−𝑛 ·rng (𝑅𝜄×s ) .

Therefore, we can conclude that pr (tr (R)) = pr (tr (𝑅𝜄×s)) ·
2−𝑛 ·rng (𝑅

𝜄×s ) .
□

Lemma A.3 (extra randomness). For a BIR program P, an IML

process I , any upper bound 𝑘 ∈ N on the number of RNG steps,

a security parameter 𝑛 ∈ N , all IML traces R ∈ R𝜄 (I {LPM}), all
interpretationsH , all mixed IML and symbolic execution traces 𝑅𝜄×s ∈
R𝜄×s (I {P}, 𝜂

0
[RM ↦→ rm

k
, rk ↦→ 0]) with 𝑘 = rng(𝑅𝜄×s), and for

any 𝑙 ≥ 𝑘 , if 𝑅𝜄×s ∼
H ,𝑘,L·M R , then, for all H

′
with dom(H ′) ⊆

rm
l
\ rm

k
, we have, 𝑅𝜄×s ∼

H
′ |rm

k
,𝑘,L·M R.

Proof. Since 𝑅𝜄×s ∼
H ,𝑘,L·M R, we know that the number of RNG

steps in 𝑅𝜄×s is rng(𝑅𝜄×s) ≤ 𝑘 . Based on the semantics of IMLSB,
Fig. 12, we know that random symbolic values xi ∈ rm

k
for 0 < 𝑖 ≤

𝑘 are used in RNG(𝑛) rule by order of 𝑖 . The random symbolic values
xj ∈ rm

l
for 𝑙 ≥ 𝑗 ≥ 𝑘 are not generated by RNG(𝑛) rule in Fig. 12.

Therefore, the random symbolic values xj ∈ rm
l
for 𝑙 ≥ 𝑗 ≥ 𝑘 are

not part of the mixed IML and symbolic state after RNG(𝑛) call.
Hence, we can conclude that modification of H does not affect trace
equivalence and we have 𝑅𝜄×s ∼

H
′,𝑘,L·M R such that H ⊆ H

′ and
dom(H ′) ⊆ rm

l
\ rm

k
.

□

Lemma A.4 (Injective Event Trace Inclusion (IML)). For a
BIR program P, an IML process I , any security parameter 𝑛 ∈ N ,

an upper bound on the number of nonces 𝑘 ∈ N , and for 𝑇 𝜄×s =

𝑇 𝜄×s (I {P}, 𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0]), there is an injective function 𝜁

from {(
𝑡 𝜄×s ∈ 𝑇 𝜄×s,

H : rm
k
→ BS

𝑘
𝑛

) ����� rng(𝑡 𝜄×s) = 𝑘 ∧
∃H ′ . H ′ |rmk

= H

}

to T (I {LPM}, 𝑛) such that

𝜁 (𝑡 𝜄×s,H ) = t =⇒
©«
∃H ′, 𝑅𝜄×s, R.

𝑅𝜄×s ∼
H
′,𝑘,L·M R ∧

tr (𝑅𝜄×s) = 𝑡 𝜄×s ∧ tr (R) = t

ª®®®¬
Proof. From the skolemization of Thm. 7.3, we define 𝜁 ′ : R𝜄×s×

H → R𝜄 such that 𝜁 ′ (𝑅𝜄×s,H ′) = R implies 𝑅𝜄×s ∼
H
′,𝑘,L·M R.

We define 𝜁 : 𝑇 𝜄×s × H → T such that 𝜁 (𝑡 𝜄×s,H ) = t. Hence,
we choose arbitrary 𝑅𝜄×s and H

′ such that tr (𝑅𝜄×s) = 𝑡 𝜄×s and
tr (𝜁 ′ (𝑅𝜄×s,H ′)) = tr (R) = t.

Then, we prove the function 𝜁 is injective by contradiction
and assume for arbitrary 𝑡 𝜄×s, 𝑡 𝜄×s′, H , and H

′ such that 𝑡 𝜄×s ≠

𝑡 𝜄×s′ ∨ H ≠ H
′, we have 𝜁 (𝑡 𝜄×s,H ) = t = 𝜁 (𝑡 𝜄×s′,H ′). Therefore,

H (𝑡 𝜄×s) = H
′ (𝑡 𝜄×s′) and for any event 𝑎𝜄×s where 𝑡 𝜄×s and 𝑡 𝜄×s′

are different, we have H (𝑎𝜄×s) = H
′ (𝑎𝜄×s′). Hence, there exist two

cases:
(1) 𝑎𝜄×s ≠ 𝑎𝜄×s′

(a) H = H
′: We assume that there exists a symbolic value d

such that H (Ev(d)) ≠ H (Fr(d)). Based on 𝑅𝜄×s ∼
H ,𝑘,L·M R,

we have ev(H (d)) ∈ t at the position 𝑗 and Ev(d) ∈ 𝑡 𝜄×s
at the same position 𝑗 . Similarly, we have fr (H (d)) ∈ t

at the position 𝑗 and Fr(d) ∈ 𝑡 𝜄×s′ at the same position
𝑗 . Hence, we get that we have two different t (i.e., at the
position 𝑗 ). Since 𝑎𝜄×s ≠ 𝑎𝜄×s′ gives a contradiction, we
deduce that 𝑎𝜄×s = 𝑎𝜄×s′.

(b) H ≠ H
′: We assume that there exists a symbolic value d

such that H (Ev(d)) ≠ H
′ (Fr(d)). Based on 𝑅𝜄×s ∼

H ,𝑘,L·M R,
we have ev(H (d)) ∈ t at the position 𝑗 and Ev(d) ∈ 𝑡 𝜄×s
at the same position 𝑗 . Based on 𝑅𝜄×s′ ∼

H
′,𝑘,L·M R, we have

fr (H ′ (d)) ∈ t at the position 𝑗 and Fr(d) ∈ 𝑡 𝜄×s′ at the
same position 𝑗 . Hence, we get that we have two different
t (i.e., at the position 𝑗 ). Since 𝑎𝜄×s ≠ 𝑎𝜄×s′ gives a contra-
diction, we deduce that 𝑎𝜄×s = 𝑎𝜄×s′.

(2) H ≠ H
′ ∧ 𝑎𝜄×s = 𝑎𝜄×s′

(a) 𝑎𝜄×s is a Fr(·) event: We assume that there exists a ran-
dom symbolic value xi ∈ rm

k
for 0 < 𝑖 ≤ 𝑘 such that

H (Fr(xi)) ≠ H
′ (Fr(xi)). Based on 𝑅𝜄×s ∼H ,𝑘,L·M R, we have

fr (H (xi)) ∈ t at the position 𝑗 and Fr(xi) ∈ 𝑡 𝜄×s at the same
position 𝑗 . Similarly, for 𝑡 𝜄×s′ and H

′ and the same posi-
tion 𝑗 . Therefore, H (xi) = H

′ (xi). Hence, from xi ∈ rm
k
,

we get that H (Fr(xi)) = H
′ (Fr(xi)). Since H ≠ H

′ gives a
contradiction, we deduce that H = H

′.

(b) 𝑎𝜄×s is a Ev(·) event: We assume that there exists a sym-
bolic value d such that H (Ev(d)) ≠ H

′ (Ev(d)). Based on
𝑅𝜄×s ∼

H ,𝑘,L·M R, we have ev(H (d)) ∈ t at the position 𝑗 and
Ev(d) ∈ 𝑡 𝜄×s at the same position 𝑗 . Similarly, for 𝑡 𝜄×s′ and
H
′ and the same position 𝑗 . Because we generate symbolic

values in a canonical form, H (d) = H
′ (d). Therefore, we

get that H (Ev(d)) = H
′ (Ev(d)). Since H ≠ H

′ gives a
contradiction, we deduce that H = H

′.
Therefore, we can conclude that the function 𝜁 is injective.

□
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Lemma A.5 (Injective Event Trace Inclusion (symbolic ex-
ecution)). For a BIR program P, an IML process I , any security

parameter 𝑛 ∈ N , an upper bound on the number of nonces 𝑘 ∈ N ,

and for 𝑇 𝜄×b = 𝑇 𝜄×b (I {P}, 𝜂0 [RM ↦→ rm
k
, rk ↦→ 0]), there is an

injective function 𝜁 from

{(𝑡 𝜄×b, rm
k
) | rm

k
∈ BS

𝑘
𝑛 ∧

𝑡 𝜄×b ∈ 𝑇 𝜄×b (I {P}, 𝜂0 [RM ↦→ rm
k
, rk ↦→ 0])}

to {(
𝑡 𝜄×s ∈ 𝑇 𝜄×s,

H : rm
k
→ BS

𝑘
𝑛

) ����� s.t. ∃H ′ .H ′ |rmk
= H

}
such that

𝜁 (𝑡 𝜄×b, rm
k
) = (𝑡 𝜄×s,H )

=⇒
(
pr (𝑡 𝜄×b) · 2−𝑛 ·𝑘 = pr (𝑡 𝜄×s) · 2−𝑛 ·𝑘 ∧
tr (𝑅𝜄×b) = 𝑡 𝜄×b ∧ tr (𝑅𝜄×s) = 𝑡 𝜄×s

)
Proof. From the skolemization of Thm. 7.6, we define 𝜁 ′ : R𝜄×b×

BS
𝑘
𝑛 → R𝜄×s × H such that 𝜁 ′ (𝑅𝜄×b, rm

k
) = (𝑅𝜄×s,H ) implies

𝑅𝜄×b ∼
H ,𝑘

𝑅𝜄×s. We define 𝜁 : 𝑇 𝜄×b × BS
𝑘
𝑛 → 𝑇 𝜄×s × H such that

𝜁 (𝑡 𝜄×b, rm
k
) = (𝑡 𝜄×s,H ). Hence, we choose arbitrary 𝑅𝜄×b and rm

k

such that tr (𝑅𝜄×b) = 𝑡 𝜄×b and tr (𝜁 ′ (𝑅𝜄×b, rm
k
)) = tr (𝑅𝜄×s,H ) = 𝑡 𝜄×s.

Then, we prove the function 𝜁 is injective by contradiction
and assume for arbitrary 𝑡 𝜄×b, 𝑡 𝜄×b′, rm

k
, and rm

′
k
such that 𝑡 𝜄×b ≠

𝑡 𝜄×b
′ ∨ rm

k
≠ rm

′
k
, we have 𝜁 (𝑡 𝜄×b, rm

k
) = (𝑡 𝜄×s,H ) = 𝜁 (𝑡 𝜄×b′, rm′

k
).

Therefore, we get that (𝑡 𝜄×b, rm
k
) = H (𝑡 𝜄×s) = (𝑡 𝜄×b′, rm′

k
). Hence,

there exist two cases:
(1) rm

k
≠ rm

′
k

We assume that there exists a random value xi ∈ rm
k
and

a random value xi′ ∈ rm
′
k
for 0 < 𝑖 ≤ 𝑘 such that xi ≠ xi

′.
Based on𝑅𝜄×b ∼

H ,𝑘
𝑅𝜄×s, we have Fr(xi) ∈ 𝑡 𝜄×s at the position

𝑗 and Fr(xi) ∈ 𝑡 𝜄×b at the same position 𝑗 such thatH (xi) = xi .
Based on 𝑅𝜄×b′ ∼

H ,𝑘
𝑅𝜄×s, we have Fr(xi) ∈ 𝑡 𝜄×s at the posi-

tion 𝑗 and Fr(xi′) ∈ 𝑡 𝜄×b′ at the same position 𝑗 such that
H (xi) = xi

′. Therefore, we get that xi = H (xi) = xi
′. Since

rm
k
≠ rm

′
k
gives a contradiction, we deduce that rm

k
= rm

′
k
.

(2) 𝑡 𝜄×b ≠ 𝑡 𝜄×b′ ∧ rm
k
= rm

′
k

Let 𝑎𝜄×b and 𝑎𝜄×b′ be the earliest mixed IML and BIR events
where 𝑡 𝜄×b and 𝑡 𝜄×b′ are different. Based on 𝑅𝜄×b ∼

H ,𝑘
𝑅𝜄×s, we

have 𝑎𝜄×s ∈ 𝑡 𝜄×s at the position 𝑗 and 𝑎𝜄×b ∈ 𝑡 𝜄×b at the same
position 𝑗 such thatH (𝑎𝜄×s) = 𝑎𝜄×b. Based on 𝑅𝜄×b′ ∼

H ,𝑘
𝑅𝜄×s,

we have 𝑎𝜄×s ∈ 𝑡 𝜄×s at the position 𝑗 and 𝑎𝜄×b′ ∈ 𝑡 𝜄×b′ at the
same position 𝑗 such that H (𝑎𝜄×s) = 𝑎𝜄×b

′. Therefore, we
get that 𝑎𝜄×b = H (𝑎𝜄×s) = 𝑎𝜄×b

′. Since 𝑡 𝜄×b ≠ 𝑡 𝜄×b
′ gives a

contradiction, we deduce that 𝑡 𝜄×b = 𝑡 𝜄×b′.
Therefore, we can conclude that the function 𝜁 is injective. Since

𝑅𝜄×b ∼
H ,𝑘

𝑅𝜄×s, we know that Fr(xi) or fr (b) steps in 𝑅𝜄×s maps to
Fr(H (xi)) or fr (b) steps in 𝑅𝜄×b, respectively, for 𝑖 ≤ 𝑘 . The first
statement is as follows:

Based on the rule INew in the operational semantics of IML out-
put processes [2, p. 23], we get that the probability of generating the
random number b based on the IML transition relation (i.e. −→→→ 1

2
n

semantics) with respect to security parameter 𝑛 is 1
2𝑛 . Therefore,

the fr (b) step has the probability 1
2𝑛 in both 𝑡 𝜄×b and 𝑡 𝜄×s. Hence,

for fr (·) steps, we have pr (𝑡 𝜄×b) = pr (𝑡 𝜄×s).

Based on the rule RNG(𝑛) in the semantics of IMLSB, Fig. 12, we
get that the probability of generating the symbolic random number
x based on the mixed IML and symbolic transition relation (i.e.,
−→→→

1,H semantics) with respect to security parameter 𝑛 is 1 but
we map Fr(x) to Fr(H (x)) using interpretation H which have the
probability 1 · 1

2𝑛 . The number of Fr(x) steps in 𝑡 𝜄×s are 𝑘 , hence,
the probability of Fr(x) steps is pr (𝑡 𝜄×s) · 2−𝑛 ·𝑘 .

Based on the rule normal in the mixed semantics of IML and
BIR Fig. 16 and Sec. 4, we get that the probability of generating
the random number x based on the mixed IML and BIR transition
relation (i.e., −→→→

1
semantics) with respect to security parameter 𝑛

is 1 but we extracting x from the random memory RM with length
𝑛 which have the probability 1 · 1

2𝑛 . The number of Fr(x) steps in
𝑡 𝜄×b are 𝑘 , hence, the probability of Fr(x) steps is pr (𝑡 𝜄×b) · 2−𝑛·𝑘 .

Therefore, we can conclude that pr (𝑡 𝜄×b) ·2−𝑛 ·𝑘 = pr (𝑡 𝜄×s) ·2−𝑛·𝑘 .
□

A.7 Extension for Multi-Programs

In this section, we extend our results for multiple programs by
establishing theorems A.6 to A.8. Given an IML process I and im-
plementations P1, ..., Pm of protocol participants in BIR, we denote
I {P1, ..., Pm} which parties running in parallel with an IML attacker
and communicate through a channel. For P1, ..., Pm which are sym-
bolically executed and translated into IML processes LP1M, ..., LPmM,
the IML process I {LP1M, ..., LPmM} describes the parallel composition
of𝑚 parties in the presence of an attacker. The following theorem
indicates that IMLSB and IML preserve the simulation relation for
𝑚 programs.

Theorem A.6 (IMLSB-IML Trace Inclusion∗). Let P1, ..., Pm be

BIR programs, I be an IML process and 𝑘 ∈ N is any upper bound

on RNG steps, then, for all mixed IML and symb. execution traces

𝑅𝜄×s ∈ R𝜄×s (I {P1, ..., Pm}, 𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0]) such that

rng(𝑅𝜄×s) ≤ 𝑘 , there exist an IML trace R ∈ R𝜄 (I {LP1M, ..., LPmM})
and an interpretation H such that 𝑅𝜄×s ∼

H ,L.M,𝑘 R.

Proof. By Thm. 7.3, for each 0 < 𝑖 ≤ 𝑚, we have that for all
mixed IML and symb. execution traces𝑅𝜄×s

𝑖
∈ R𝜄×s

𝑖
(I {Pi}, 𝜂0 [RM ↦→

rm
k
, rk ↦→ 0]), exist an IML trace Ri ∈ R𝜄

i (I {LPiM}) and an inter-
pretation H𝑖 s.t. 𝑅𝜄×s𝑖

∼
H𝑖 ,L.M,𝑘

Ri . Then, we can conclude that for all
mixed IML and symb. execution traces 𝑅𝜄×s ∈ R𝜄×s (I {P1, ..., Pm},
𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0]), there exist an IML trace R ∈ R𝜄 (I {LP1M, ...,

LPmM}) and a H such that 𝑅𝜄×s ∼
H ,L.M,𝑘 R and H𝑖 ⊆ H for 0 < 𝑖 ≤

𝑚. □

Thm. A.6 proves that the IML model resulting from the trans-
lation of𝑚 programs covers all behaviors in the mixed IML and
symbolic execution semantics. To ensure that the extracted IML

model for𝑚 protocol parties preserves the semantics of their im-
plementations in binary, we have to show Thm. A.7.

Theorem A.7 (IMLB-IMLSB Trace Inclusion∗). Let P1, ..., Pm
be BIR programs, I be an IML process and 𝑘 ∈ N is any upper

bound on RNG steps, then, for all mixed IML and BIR traces 𝑅𝜄×b ∈
R𝜄×b (I {P1, ..., Pm}, 𝜂0 [RM ↦→ rm

k
, rk ↦→ 0]) such that rng(𝑅𝜄×b) ≤

𝑘 , there exist a mixed IML and SBIR trace 𝑅𝜄×s ∈ R𝜄×s (I {P1, ..., Pm},
𝜂
0
[RM ↦→ rm

k
, rk ↦→ 0]) and an H such that 𝑅𝜄×b ∼

H ,𝑘
𝑅𝜄×s.
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Proof. By Thm. 7.6, for each 0 < 𝑖 ≤ 𝑚, we have for all
mixed IML and BIR traces 𝑅𝜄×b

𝑖
∈ R𝜄×b

𝑖
(I {Pi}, 𝜂0 [RM ↦→ rm

k
, rk ↦→

0]), there is a mixed IML and symbolic execution trace 𝑅𝜄×s
𝑖

∈
R𝜄×s
𝑖

(I {Pi}, 𝜂0 [RM ↦→ rm
k
, rk ↦→ 0]), and an interpretation H𝑖

such that 𝑅𝜄×b
𝑖

∼
H𝑖 ,𝑘

𝑅𝜄×s
𝑖

. Then, we can conclude that for all mixed
IML and BIR traces 𝑅𝜄×b ∈ R𝜄×b (I {P1, ..., Pm}, 𝜂0 [RM ↦→ rm

k
, rk ↦→

0]), there exist a mixed IML and symbolic execution trace 𝑅𝜄×s ∈
R𝜄×s (I {P1, ..., Pm}, 𝜂

0
[RM ↦→ rm

k
, rk ↦→ 0]) and an interpretation

H such that 𝑅𝜄×b ∼
H ,𝑘

𝑅𝜄×s and H𝑖 ⊆ H for 0 < 𝑖 ≤ 𝑚. □

Thm. A.7 states that symbolically executed BIR programs P1, ...,
Pm preserve all behaviors of the same programs in the concrete ex-
ecution for an appropriately chosen interpretation and random
memory. In the following, we measure the success probability
of the attacker for BIR programs in IMLB execution semantics
I {P1, ..., Pm} and extracted IML process I {LP1M, ..., LPmM}. Then we
show by Thm. A.8 that I {P1, ..., Pm} is at least as secure as I {LP1M, ...,
LPmM} with respect to any trace property𝜓 , security parameter 𝑛
and upper bound 𝑘 on the number of RNG steps.

Theorem A.8 (Translation preserves attacks∗). Given an

IML process I , BIR programs P1, ..., Pm, a security parameter 𝑛 ∈ N ,

a trace property 𝜓 and an upper bound 𝑘 ∈ N on the number of

RNG steps in 𝑇 𝜄×b (I {P1, ..., Pm}, 𝜂0 [RM ↦→ rm
k
, rk ↦→ 0]), we get

that insec(I {P1, ..., Pm}, 𝑛, 𝑘,𝜓 ) ≤ insec(I {LP1M, ..., LPmM}, 𝑛,𝜓 )

Proof. The insecurity of I {LP1M, ..., LPmM} w.r.t.𝜓 is as follows:
insec(I {LP1M, ..., LPmM}, 𝑛,𝜓 )

=
∑︁

t∈T (I {LP1M,...,LPmM},𝑛)∩𝜓¬

pr (t)

Note that by Thm. A.6, we have 𝑅𝜄×s ∼
H ,𝑘,L·M R which implies

H (𝑡 𝜄×s) ∈ 𝜓¬ ⇔ t ∈ 𝜓¬
=

∑︁
0<𝑖≤𝑚

∑︁
ti∈

T i ( (I {LPiM},𝑛)∩𝜓¬

pr (ti)

Def. 8.2
=

∑︁
0<𝑖≤𝑚

insec(I {LPiM}, 𝑛,𝜓 )

Thm. 8.3
≥

∑︁
0<𝑖≤𝑚

insec(I {Pi}, 𝑛, 𝑘,𝜓 )

Def. 8.1
=

∑︁
0<𝑖≤𝑚

2−𝑛 ·𝑘 ·
∑︁

rmk∈BS𝑘𝑛
𝑡 𝜄×b
𝑖

∈𝜓¬∩
𝑇 𝜄×b
𝑖

(I {Pi },𝜂0 [RM ↦→rmk,rk ↦→0] )

pr (𝑡 𝜄×b𝑖 )

Note that by Thm. A.7, we have 𝑅𝜄×b ∼
H ,𝑘

𝑅𝜄×s which implies
H (𝑡 𝜄×s) ∈ 𝜓¬ ⇔ 𝑡 𝜄×b ∈ 𝜓¬

= 2−𝑛𝑘 ·
∑︁

rmk∈BS𝑘𝑛
𝑡 𝜄×b∈𝑇 𝜄×b∩𝜓¬

pr (𝑡 𝜄×b)

= insec(I {P1, ..., Pm}, 𝑛, 𝑘,𝜓 )
□


	Abstract
	1 Introduction
	2 Related Work
	2.1 Verified crypto protocols' implementation

	3 Background
	3.1 HolBA framework & Vanilla symbolic exec.
	3.2 Csec-modex toolchain & RoyalBlueIML

	4 BIR with cryptography
	5 Crypto-aware Symbolic Execution
	6 Model Extraction
	6.1 CryptoBap vs. Csec-modex RoyalBlueIML models

	7 Soundness of CryptoBAP's Approach
	7.1 Soundness of translation into  RoyalBlueIML
	7.2 Soundness of Symbolic Execution

	8 Security properties
	9 Evaluation
	10 Concluding Remarks
	References
	A Appendix
	A.1 RoyalBlueIML Semantics
	A.2 Loop Summarization Example
	A.3 RoyalBlueIMLblackB Semantics
	A.4 Soundness of Translation into  RoyalBlueIML 
	A.5 Soundness of Symbolic Execution
	A.6 Security properties
	A.7 Extension for Multi-Programs


