
Hardware-Software Codesign for Mitigating Spectre
Nicholas Mosier, Kate Eselius, Hamed Nemati*, John Mitchell, Caroline Trippel

Stanford University, *CISPA Helmholtz Center for Information Security

{nmosier,keselius,hnnemati,jcm,trippel}@stanford.edu

1 Introduction
Transient execution attacks break secure programming para-

digms (e.g., constant-time, or CT, programming [2, 3, 4, 27,

33, 46, 14, 26, 37, 1, 12, 10, 13, 41], sandbox isolation [16, 28,

34, 20]) by steering secrets towards the sensitive operands

of (transient) transmitters
1
that leak them [21, 23]. These

attacks leverage two high-level mechanisms for creating

transient execution2 at runtime on modern processors: (i)

faulting instructions, and (ii) control- or data-flowmispredic-
tions. These mechanisms give rise to Meltdown attacks and
Spectre attacks, respectively [6].

Spectre attacks [21, 22, 17, 15, 8] (our focus) are character-

ized according to distinct sources of control- and data-flow

(mis)prediction on modern processors, called speculation
primitives [25, 6]. Predictions introduce speculative execution,
which may turn out to be sequential (when predictions are

correct) or transient (when predictions are incorrect). On

modern processors, there are five well-documented specula-

tion primitives: conditional branch prediction (PHT) [21], in-

direct branch prediction (BTB) [21], return address prediction

(RSB) [22], store-to-load forwarding prediction (STL) [17],

and predictive store forwarding (PSF) [9, 15, 30].

The Spectre Mitigation Challenge. Comprehensively

mitigating Spectre leakage of program secrets is hard, and

doing so while preserving performance is even harder.

Prior work has proposed a variety of software mitiga-
tions targeting existing hardware [7, 38, 28, 18, 39, 40, 34,

20]; however, none of these are comprehensive for any threat

model. To our knowledge, only one mitigation is known to

be widely deployed in practice: retpoline [38, 35], for Spectre-

BTB. However, retpoline has been shown to introduce other

(non-BTB) Spectre vulnerabilities [43].

Existing hardware mitigations for Spectre fall into two

categories: (i) comprehensive hardware mitigations and (ii)

hardware speculation controls. Comprehensive hardware

mitigations to Spectre attacks require little to no software

cooperation [11, 45, 24, 31, 36, 44, 42]. Yet, they have not been

deployed in practice, likely due to the complexity of the mi-

croarchitectural changes they require. Hardware speculation

controls, exposed by hardware vendors like Intel and AMD,

support per-process disabling of (a few) particular specula-

tion primitives in software. For example, SSBD, PSFD, and

IPRED_DIS [19] controls disable STL, PSF, BTB, respectively.

1Transmitters are unsafe instructions, whose execution creates operand-

dependent hardware resource usage.

2
I.e., execution of instructions that are never architecturally committed [6].

Yet, they are rarely enabled, likely due to their high perfor-

mance overhead; the Linux kernel leaves them disabled by

default. Besides, they do not offer comprehensive Spectre

protections.

Notably, even if hardware speculation controls are com-

bined with software mitigations for speculation primitives

which cannot be disabled (i.e., for PHT), a comprehensive

Spectre attack mitigation is still not achieved (due to RSB).

Our Vision. Our view is that a comprehensive, efficient,

and low-complexity mitigation for Spectre attacks requires

engaging in software-compiler-hardware co-design. Our goal
is to develop such a co-designedmitigation that can bewidely

deployed in security-critical applications like the Linux ker-

nel or OpenSSL with little to no performance overhead.

2 Software-Compiler-Hardware Co-Design
In this talk, we will first discuss the inherent trade-offs that

arise whenmitigating Spectre attacks exclusively in software

or hardware (summarized here).

2.1 Mitigating Spectre in Software
Advantages.Mitigating Spectre in software has two distinct

advantages.

First, software mitigations are more easily tailored to an

application-level threat model. For example, one software

mitigation may be tailored to prevent an untrusted sandboxed
program from transiently accessing and leaking secrets out-

side its sandbox. Another may be tailored to prevent a trusted
CT program from transiently leaking any secrets it processes.

Such application-specific threat model information is lost

when programs are compiled to run on commodity hardware.

Second, software mitigations can in theory (with knowl-

edge of hardware speculation primitives) perform static pro-
gram analyses to identify values that may be secret exclu-
sively during transient execution. They can further identify

transmitters whose operands are dependent on (and thus

may leak) transiently secret values. Thus, software has the

opportunity to insert fewer, more targeted mitigations than

hardware which cannot perform such analyses in advance.

Disadvantages. Unfortunately, the potential of software
mitigations are limited by two major factors.

First, most processors exhibit unconstrained speculative

control- and data-flow, which renders static software analy-

ses intractable for all Spectre variants except Spectre-PHT.

For example, unconstrained indirect branch and return ad-

dress prediction may direct speculative control-flow to any



Nicholas Mosier, Kate Eselius, Hamed Nemati*, John Mitchell, Caroline Trippel

program instruction or even to the middle of an instruc-

tion [5]. Newer Intel processors have introduced hardware

speculative control-flow restrictions via the Control-flow En-
forcement Technology (CET) extension [32]; new work [28,

29] uses Intel CET to provide the first non-naive software

mitigations for Spectre-BTB and -RSB. However, the only

way to restrict speculative data-flow on current hardware

is to disable data-flow speculation entirely via the SSBD

and PSFD speculation controls [19], which incurs significant

overhead for general purpose applications in our experience.

Second, only coarse-grainedmitigations aremade available

to software by hardware vendors: (i) the LFENCE serializa-

tion instruction, which requires that all prior instructions
commit before any subsequent instructions begin execution;

and (ii) speculation controls [19] which disable a particular

speculation primitive altogether. To achieve higher precision

than what existing ISA mitigations afford, some software

mitigations (e.g., SLH [7] for Spectre-PHT) resort to code

transformations which are less expensive than using ISAmit-

igations but still incur unacceptable performance overhead.

2.2 Mitigating Spectre in Hardware
Advantages. Hardware-based Spectre mitigations have two

key strengths.

First, hardware is fully aware of all aspects of a program’s

speculative execution behavior. Thus, it can selectively insert

mitigations exactly when particular runtime conditions are

satisfied. In contrast, software must conservatively assume
that undesirable runtime conditions will manifest in some
execution of a program due to limited precision of static

program analyses (e.g., memory alias analysis).

Second, hardware-based approaches can insert fine-grained
mitigations that stall the execution of individual instructions

(e.g., secret-dependent transmitters) rather than the entire

pipeline (like x86’s LFENCE). As a result, each dynamically

inserted hardware mitigation has a modest impact on the pro-

gram’s performance (unlike LFENCEs inserted by software).

Disadvantages. On the other hand, comprehensive hard-

ware mitigations to Spectre are largely software-unaware. As

a result, they must make conservative or unsound assump-

tions about the program that result in either high perfor-

mance overhead due to over-mitigation or incomplete secu-

rity guarantees, respectively. For example, due to the absence

of software hints, most existing hardware mitigations con-

servatively assume all (speculatively or non-speculatively)

accessed data is secret [44, 36, 31, 42, 24], and some unsoundly

(for some threat models) assume only speculatively accessed

data is secret [45]. Furthermore, since they are software-

unaware, these mitigations must implement dynamic analy-

ses like taint tracking that require complex design changes.

2.3 The Best of Both Worlds
Through studying existing Spectre attack mitigations, we

identify two core opportunities for co-design.

Hardware-Software.We identify a software-hardware

coordination bottleneck. First, hardware does not enable

software to communicate its precise mitigation requirements.

E.g., we find that speculative data-flow may only require

mitigation at runtime if the relevant load and store access

(logically) distinct stack frames. Second, hardware cannot

offload program analyses to software, rendering it unable to

leverage important program metadata (e.g., security types).

Software-Compiler. We also observe that the widely-

deployed CT programming approach (in particular) permits

code patterns that make efficient mitigations of Spectre in

software impractical. This issue represents a lack of coordi-

nation between software and compilers. We will elaborate

on the details of this programming contract problem in our

talk and our proposed (more performant) solution.

3 A Comprehensive and Verified Spectre
Attack Mitigation

Our talkwill pitch a software-compiler-hardware co-designed

Spectre mitigation that is comprehensive, proven-correct,

and widely deployable at a low cost in security-critical ap-

plications.

Preliminary Work. As a first step, we have developed
Serberus, a comprehensive and proven-correct Spectre miti-

gation for CT code that targets existing hardware. Serberus

is based on the following.

First, we define an operational semantics, ASP, that encodes
all (sequential and transient) control- and data-flow that a

program may exhibit when it runs on a CET-enabled Intel

microarchitecture. Second, we propose static constant-time
(CTS) programming, a strengthening of CT programming

that enables efficient software mitigations of Spectre. Third,

with the support of ASP and CTS programming, we propose

Serberus, the first (proven-correct) mitigation to harden CT

code (satisfying CTS) against all Spectre attacks exploiting:

PHT, BTB, RSB, STL, and/or PSF.

Next Steps. Serberus excels at mitigating constant-time

code (e.g., crypto libraries), producing more performant and

secure code than other state-of-the-art software mitigations.

These performance benefits do not carry over to other appli-

cation domains, however, like the Linux kernel. To improve

Serberus’s performance, we are exploring the following.

First, the overwhelming majority of Serberus’s mitiga-

tion overhead comes from the coarse-grained ISAmitigations

it inserts. We are exploring how to overcome this problem

with fine-grained ISA mitigations that require minimal mi-

croarchitectural modifications. Second, while our hardware

model ASP features low-cost control-flow restrictions, re-

alizing our model in existing hardware requires disabling

predictive store forwarding (PSF), which otherwise intro-

duces unconstrained speculative data-flow into the program.

We are currently exploring lower-cost alternatives for selec-

tively restricting such data-flow in hardware.



Hardware-Software Codesign for Mitigating Spectre

References
[1] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and

Byoungyoung Lee. 2018. Obliviate: a data oblivious filesystem for

intel sgx. In Network and Distributed System Security Symposium.

[2] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David

Pichardie. 2014. System-level non-interference for constant-time

cryptography. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security.

[3] Daniel J. Bernstein. 2006. Curve25519: new diffie-hellman speed

records. In Public Key Cryptography - PKC 2006. Moti Yung, Yevgeniy

Dodis, Aggelos Kiayias, and Tal Malkin, (Eds.)

[4] Daniel J. Bernstein. 2005. The poly1305-aes message-authentication

code. In Fast Software Encryption. Henri Gilbert and Helena Hand-

schuh, (Eds.)

[5] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M. Koruyeh, Nael Abu-

Ghazaleh, Chengyu Song, and Mathias Payer. 2020. SpecROP: specu-

lative exploitation of ROP chains. In 23rd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2020).

[6] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-

jamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,

and Daniel Gruss. 2019. A systematic evaluation of transient exe-

cution attacks and defenses. In 28th USENIX Security Symposium
(USENIX Security 19), 249–266.

[7] Chandler Carruth. 2020. Cryptographic software in a post-spectre

world. talk at the real world crypto symposium. https://chandlerc
.blog/talks/2020_post_spectre_crypto/post_spectre_crypto.html.
Accessed October 2022. (2020).

[8] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen,

Deian Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-time

foundations for the new spectre era. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation.

[9] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and

Deian Stefan. 2022. Sok: practical foundations for software spectre

defenses. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
666–680.

[10] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer,

Yunlu Huang, Ranjit Jhala, and Deian Stefan. 2017. Fact: a flexible,

constant-time programming language. In 2017 IEEE Cybersecurity
Development (SecDev). IEEE, 69–76.

[11] Rutvik Choudhary, Jiyong Yu, Christopher Fletcher, and Adam Mor-

rison. 2021. Speculative privacy tracking (spt): leaking informa-

tion from speculative execution without compromising privacy. In

MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture.

[12] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn

De Sutter. 2009. Practical mitigations for timing-based side-channel

attacks on modern x86 processors. In 2009 30th IEEE Symposium on
Security and Privacy.

[13] Sushant Dinesh, Grant Garrett-Grossman, andChristopherW. Fletcher.

2022. SynthCT: towards portable constant-time code. In NDSS.
[14] Saba Eskandarian and Matei Zaharia. 2019. Oblidb: oblivious query

processing for secure databases. Proc. VLDB Endow.
[15] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre:

breaking and fixing microarchitectural vulnerabilities by formal anal-

ysis. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security.

[16] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021.

Hardware-software contracts for secure speculation. In 2021 IEEE
Symposium on Security and Privacy.

[17] Jann Horn. 2018. Speculative execution, variant 4: speculative store

bypass. https://bugs.chromium.org/p/project-zero/issues/detail?id
=1528. (2018).

[18] Intel. 2018. Analysis of Speculative Execution Side Channels. https:
//newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative-Execution-Side-Channels.pdf. (2018).

[19] Intel. 2022. CPUID Enumeration and Architectural MSRs. https://w
ww.intel.com/content/www/us/en/developer/articles/technical/sof
tware-security-guidance/technical-documentation/cpuid-enumer
ation-and-architectural-msrs.html. (2022).

[20] Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J Peter

Brady, Sergey Bratus, and Sean W Smith. 2020. Ghostbusting: miti-

gating spectre with intraprocess memory isolation. In Proceedings of
the 7th Symposium on Hot Topics in the Science of Security, 1–11.

[21] Paul Kocher et al. 2018. Spectre attacks: exploiting speculative exe-

cution. CoRR, abs/1801.01203. https://arxiv.org/abs/1801.01203.
[22] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu

Song, and Nael B. Abu-Ghazaleh. 2018. Spectre returns! Speculation

attacks using the return stack buffer. 12th USENIX Workshop on
Offensive Technologies (WOOT).

[23] Moritz Lipp et al. 2018. Meltdown. CoRR, abs/1801.01207. https://arx
iv.org/abs/1801.01207.

[24] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish

Narayanasamy, and Baris Kasikci. 2021. Dolma: securing speculation

with the principle of transient non-observability. In USENIX Security
Symposium, 1397–1414.

[25] Matt Miller. 2018. Mitigating speculative execution side channel

hardware vulnerabilities. https://tinyurl.com/23xy63dt. (2018).
[26] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa,

and Raluca Ada Popa. 2018. Oblix: an efficient oblivious search index.

In 2018 IEEE Symposium on Security and Privacy (SP).
[27] David Molnar, Matt Piotrowski, David Schultz, and David Wagner.

2006. The program counter security model: automatic detection and

removal of control-flow side channel attacks. In Information Security
and Cryptology - ICISC 2005. Dong HoWon and Seungjoo Kim, (Eds.)

[28] ShravanNarayan et al. 2021. Swivel: hardeningWebAssembly against

spectre. In 30th USENIX Security Symposium (USENIX Security 21).
[29] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein.

2022. Revizor: testing black-box cpus against speculation contracts.

In ASPLOS ’22: 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Lau-
sanne, Switzerland, 28 February 2022 - 4 March 2022, 226–239. doi:
10.1145/3503222.3507729.

[30] Hernán Ponce-de-León and Johannes Kinder. 2022. Cats vs. spectre:

an axiomatic approach to modeling speculative execution attacks.

In Proceedings of the 43rd IEEE Symposium on Security and Privacy.
[31] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,

Florian Kargl, and Daniel Gruss. 2020. Context: a generic approach

for mitigating spectre. In Network and Distributed System Security
Symposium.

[32] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Secu-

rity analysis of processor instruction set architecture for enforcing

control-flow integrity. In Proceedings of the 8th International Work-
shop on Hardware and Architectural Support for Security and Privacy
(HASP ’19) Article 8. Association for ComputingMachinery, Phoenix,

AZ, USA, 11 pages. isbn: 9781450372268. doi: 10.1145/3337167.3337
175.

[33] Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan.

2017. Sgx-bigmatrix: a practical encrypted data analytic framework

with trusted processors. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security.

[34] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. 2019. Re-

stricting control flow during speculative execution with venkman.

arXiv preprint arXiv:1903.10651.
[35] Ben Treynor Sloss. 2018. Protecting our google cloud customers from

new vulnerabilities without impacting performance. https://www
.blog.google/products/google-cloud/protecting-our-google-cloud-

https://chandlerc.blog/talks/2020_post_spectre_crypto/post_spectre_crypto.html
https://chandlerc.blog/talks/2020_post_spectre_crypto/post_spectre_crypto.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01207
https://tinyurl.com/23xy63dt
https://doi.org/10.1145/3503222.3507729
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/3337167.3337175
https://www.blog.google/products/google-cloud/protecting-our-google-cloud-customers-new-vulnerabilities-without-impacting-performance/
https://www.blog.google/products/google-cloud/protecting-our-google-cloud-customers-new-vulnerabilities-without-impacting-performance/
https://www.blog.google/products/google-cloud/protecting-our-google-cloud-customers-new-vulnerabilities-without-impacting-performance/


Nicholas Mosier, Kate Eselius, Hamed Nemati*, John Mitchell, Caroline Trippel

customers-new-vulnerabilities-without-impacting-performance/.
(2018).

[36] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019.

Context-sensitive fencing: securing speculative execution via mi-

crocode customization. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems.

[37] Shruti Tople and Prateek Saxena. 2017. On the trade-offs in oblivious

execution techniques. In Detection of Intrusions and Malware, and
Vulnerability Assessment. Michalis Polychronakis and Michael Meier,

(Eds.)

[38] Paul Turner. 2018. Retpoline: a software construct for preventing

branch-target-injection. https://support.google.com/faqs/answer/76
25886. Accessed October 2022. (2018).

[39] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay

Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian

Stefan. 2021. Automatically eliminating speculative leaks from cryp-

tographic code with blade. Proc. ACM Program. Lang.
[40] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika

Mitra, and Abhik Roychoudhury. 2019. Oo7: low-overhead defense

against spectre attacks via program analysis. IEEE Transactions on
Software Engineering, 47, 11, 2504–2519.

[41] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and

Deian Stefan. 2019. Ct-wasm: type-driven secure cryptography for

the web ecosystem. Proceedings of the ACM on Programming Lan-
guages, 3, POPL, 1–29.

[42] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and Baris

Kasikci. 2019. Nda: preventing speculative execution attacks at their

source. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 572–586.

[43] JohannesWikner and Kaveh Razavi. 2022. RETBLEED: arbitrary spec-

ulative code execution with return instructions. In 31st USENIX Secu-
rity Symposium (USENIX Security 22). USENIX Association, Boston,

MA, (Aug. 2022), 3825–3842. isbn: 978-1-939133-31-1. https://www
.usenix.org/conference/usenixsecurity22/presentation/wikner.

[44] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, AdamMorrison, Christo-

pher Fletcher, and Josep Torrellas. 2018. Invisispec: making specula-

tive execution invisible in the cache hierarchy. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 428–441.

[45] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Tor-

rellas, and Christopher W. Fletcher. 2019. Speculative taint tracking

(stt): a comprehensive protection for speculatively accessed data. In

Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture.

[46] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,

Joseph E. Gonzalez, and Ion Stoica. 2017. Opaque: an oblivious and

encrypted distributed analytics platform. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).

https://www.blog.google/products/google-cloud/protecting-our-google-cloud-customers-new-vulnerabilities-without-impacting-performance/
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner

	1 Introduction
	2 Software-Compiler-Hardware Co-Design
	2.1 Mitigating Spectre in Software
	2.2 Mitigating Spectre in Hardware
	2.3 The Best of Both Worlds

	3 A Comprehensive and Verified Spectre Attack Mitigation

