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Over the past decade, a long line of research has investigated the distributed
complexity landscape of locally checkable labeling (LCL) problems on bounded-degree
graphs, culminating in an almost-complete classification on general graphs and a complete
classification on trees. The latter states that, on bounded-degree trees, any LCL problem
has deterministic worst-case time complexity O(1), Θ(log∗ n), Θ(log n), or Θ(n1/k) for
some positive integer k, and all of those complexity classes are nonempty. Moreover,
randomness helps only for (some) problems with deterministic worst-case complexity
Θ(log n), and if randomness helps (asymptotically), then it helps exponentially.

In this work, we study how many distributed rounds are needed on average per
node in order to solve an LCL problem on trees. We obtain a partial classification
of the deterministic node-averaged complexity landscape for LCL problems. As our
main result, we show that every problem with worst-case round complexity O(log n) has
deterministic node-averaged complexity O(log∗ n). We further establish bounds on the
node-averaged complexity of problems with worst-case complexity Θ(n1/k): we show

that all these problems have node-averaged complexity Ω̃(n1/(2k−1)), and that this lower
bound is tight for some problems.

1 Introduction

The family of locally checkable labeling (LCL) problems was introduced in the seminal work of Naor
and Stockmeyer [29] and since then, understanding the distributed complexity of computing LCLs
has been at the core of the research on distributed graph algorithms. Roughly speaking, LCLs are
labelings of the nodes or edges of a graph G = (V,E) with labels from a finite alphabet such that
some local, constant-radius condition holds at all the nodes. In the distributed context, G represents
a network and one typically assumes that the nodes of G can communicate over the edges of G in
synchronous rounds. If this communication is unrestricted, this is known as the LOCAL model of
computation and if messages must consist of O(log n) bits (where n is the number of nodes), it is
known as the CONGEST model. In our paper, we focus on the LOCAL model and we therefore do
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1



not explicitly analyze the required message sizes of our algorithms. We however believe that all our
algorithms can be made to work in the CONGEST model with minor modifications.

Often LCL problems are studied in the context of bounded-degree graphs. In this case, LCLs
include problems such as properly coloring the nodes of G with ∆ + 1 colors, where ∆ is the
maximum degree of G. Especially over the last decade, researchers have obtained a thorough
understanding of the complexity landscape of distributed LCL problems in general bounded-degree
graphs [19, 18, 23, 30, 11, 7] and also in more special graph families such as in particular in
bounded-degree trees [24, 12, 18, 19, 8, 16]. Most of this work focuses on the classic notion of
worst-case complexity: If all nodes start a computation at time 0 and communicate in synchronous
rounds, how many rounds are needed until all nodes have decided about their outputs. In some
case however, the worst-case round complexity might be determined by a small number of nodes
that require a lot of time to compute their outputs, while most of the nodes find their outputs
much faster. Consider for example the simple randomized (∆ + 1)-coloring algorithm where in
every step, every node picks a random available color and permanently keeps this color if there is
no conflict. It is not hard to show that in every step, every uncolored node becomes colored with
constant probability [25]. Hence, while we need Ω(log n) steps (and thus also Ω(log n) rounds) until
all nodes are colored, for each individual node, the expected time to become colored is constant
and consequently the time that nodes need on average to become colored is also constant w.h.p.
In some contexts (e.g., when considering the energy cost of a distributed algorithm), this average
completion time per node is more meaningful than the worst-case completion time and consequently,
researchers have recently showed interest in determining the node-averaged time complexity of
distributed graph algorithms [22, 14, 21, 10]. In the present paper, we continue this work and we
study the node-averaged complexity of LCL problems in bounded-degree trees. Before describing our
contributions, we first briefly summarize some of the relevant previous work.

Previous results on node-averaged complexity. The first paper that explicitly considered the
node-averaged complexity of distributed graph algorithms is by Feuilloley [22]. The paper mainly
considers LCL problems on paths and cycles (i.e., on graphs of maximum degree 2). It is known that
on paths and cycles, when considering the worst-case complexity of LCL problems, randomization
does not help and the only complexities that exist are O(1), Θ(log∗ n), and Θ(n) [29, 18, 19]. In
[22], it is shown that for deterministic algorithms, the worst-case complexity and the node-averaged
complexity of LCL problems on paths and cycles is the same. This for example implies that the
classic Ω(log∗ n) lower bound of [27] for coloring cycles with a constant number of colors also applies
to node-averaged complexity. While this is true for deterministic algorithms, it is also shown in
[22] that the randomized node-averaged complexity of 3-coloring paths and cycles is constant. As
sketched above and also explicitly proven in [14], the same is true for the more general problem
of computing a (∆ + 1)-coloring in arbitrary graphs. While the results of [22] imply results for
general LCLs on paths and cycles, the additional work on node-averaged complexity focused on
the complexity of specific graph problems, in particular on the complexity of well-studied classic
problems such as computing a maximal independent set (MIS) or a vertex coloring of the given
graph. Barenboim and Tzur [14] show that in graphs of small arboricity, some coloring problems
have a deterministic node-averaged complexity that is significantly smaller than the corresponding
worst-case complexity. For example, it is shown that if the arboricity is constant, an O(k)-vertex
coloring can be computed in node-averaged complexity O(log(k) n) for any fixed integer k ≥ 1,
where O(log(k) n) denotes the k times iterated logarithm of n. As one of the main results of
[10], it was shown that the MIS lower bound of [26] can be generalized to show that even with
randomization, computing an MIS on general (unbounded degree) graphs requires node-averaged
complexity Ω(

√
log n/ log log n). Hence, while the problem of coloring with (∆ + 1) colors and,
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as also shown in [10], the problem of computing a 2-ruling set have randomized algorithms with
constant node-averaged complexity, the same is not true for the problem of computing an MIS.

LCL complexity in bounded-degree trees. One of the goals of this paper is to make a
step beyond understanding individual problems and to start studying the landscape of possible
node-averaged complexities of general LCL problems. We do this by studying LCL problems
on bounded-degree trees, a graph family that we believe is relevant and that has recently been
studied intensively from a worst-case complexity point of view (e.g., [18, 19, 17, 12, 23, 30, 24]). In
bounded-degree trees, we know that for deterministic algorithms, exactly the following worst-case
complexities are possible: O(1), Θ(log∗ n), Θ(log n), and Θ(n1/k) for some fixed integer k ≥ 1.
It was shown in [24] (and earlier for a special subclass of LCLs in [12] and for paths in [29, 19])
that on bounded-degree trees, there are no deterministic or randomized asymptotically optimal
algorithms with a time complexity in the range ω(1) to o(log∗ n). Further, in [18], it was shown
that even for general bounded-degree graphs, there are no deterministic LCL complexities in the
range ω(log∗ n) to o(log n). Finally, it was shown in [19] that every LCL problem that requires
ω(log n) rounds on bounded-degree trees has a worst-case deterministic and randomized complexity
of the form Θ(n1/k) for some fixed integer k ≥ 1 (and all those complexities also exist). It is further
known that randomization can only help for LCL problems with a deterministic complexity of
Θ(log n). Those problems have a randomized complexity of either Θ(log n) or Θ(log log n) (and
both cases exist) [19, 17]. We discuss additional related work on the complexity landscape of LCLs
in Appendix A.

1.1 Our Contributions

As our main result, we show that the Θ(log n) complexity class vanishes when considering the
node-averaged complexity of LCLs on bounded-degree trees. More formally, we prove the following
theorem.

Theorem 1. Let Π be an LCL problem for which there is an O(log n)-round deterministic algorithm
on bounded-degree trees. Then, Π can be solved deterministically with node-averaged complexity
O(log∗ n) on bounded-degree trees.

A standard example for an LCL problem that requires Θ(log n) rounds deterministically is
the problem of 3-coloring a tree. So for 3-coloring Theorem 1 states that there is a deterministic
distributed 3-coloring algorithm, for bounded degree trees, with node-averaged complexity O(log∗ n)
rounds. Meaning that the average node terminates after O(log∗ n) rounds. Note that for 3-coloring
trees deterministically, this is tight. As shown in [22], 3-coloring has deterministic node-averaged
complexity Ω(log∗ n) even on paths. Below, we will use the 3-coloring problem as a simple example
to illustrate some of the challenges in obtaining the above theorem, but first we state the rest of our
results.

In addition to Theorem 1, we also investigate the node-averaged complexity of LCL problems
that require polynomial time in the worst case (i.e., time Θ(n1/k) for some integer k ≥ 1). We show
that for such problems, also the node-averaged complexity is polynomial. However at least in some
cases, it is possible to obtain a node-averaged complexity that is significantly below the worst-case
complexity. In [19], the hierarchical 21

2 -coloring problem with parameter k is defined as an example

problem with worst-case complexity Θ(n1/k). We show that the node-averaged complexity of this
LCL problem is significantly smaller.

Theorem 2. The deterministic node-averaged complexity of the hierarchical 21
2 -coloring problem

with parameter k is O(n1/(2k−1)).
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Finally, we show that for a problem with worst-case complexity Θ(n1/k), this is essentially
the best possible node-averaged complexity. Meaning that we also prove that our algorithm for
hierarchical 21

2 -coloring problems is optimal up to one log n factor.

Theorem 3. Let Π be an LCL problem with (deterministic or randomized) worst-case complexity

Ω(n1/k). Then, the randomized node-averaged complexity of Π is Ω(n1/(2k−1)/ log n).

Note that the algorithm of Theorem 2 is deterministic, and that the lower bound of Theorem 3
holds for randomized algorithms as well.

1.2 High-level Ideas and Challenges

We next discuss some of the ideas that lead to the known results about solving LCL problems on
bounded-degree trees and we highlight some of the challenges that one has to overcome and some of
the ideas we use to prove Theorems 1 to 3.

Rake-and-compress decomposition. We start by sketching a generic algorithm that can be
used to solve all LCL problems in bounded-degree trees. The generic algorithm can be used to
obtain algorithms with an asymptotically optimal worst-case complexity for all problems with
worst-case complexity Ω(log n). As a first step, the algorithm uses a technique that is known as
rake-and-compress [28] to partition the nodes of a given tree T = (V,E) into O(log n) layers such
that each layer is either a rake layer that consists of a set of independent nodes or it is a compress
layer that consists of a sufficiently separated set of paths. Every node in a rake layer has at most
one neighbor in a higher layer, and in each path of a compress layer, the two nodes at the end
have exactly one neighbor in a higher layer and the other nodes on the path have no neighbors in
a higher layer.1 Such a decomposition can be computed in an iterative process that produces the
layers in increasing order. Given some tree (or forest), a rake layer can be obtained by taking the
set of all leaf nodes2 and a compress layer can be created by the paths (or more precicely by the
inner part of the paths) induced by degree-2 nodes. It is not hard to show that when alternating
rake and compress layers, this process completes after creating O(log n) layers [28].

Applying the decomposition. As an example of how to use rake-and-compress to solve an LCL
problem, we look at the case of 3-coloring the nodes of a tree T . Given a decomposition into rake
and compress layers, this can be done in O(log n) rounds as follows. First, color each of the paths of
the compress layers with O(1) colors. This can be done in O(log∗ n) rounds. Then, the 3-coloring of
T is computed by starting at the highest layer of the decomposition. When processing a rake layer,
each node can just be colored with a color different from its (at most one) neighbor in a higher layer.
When processing a compress layer, we just have to 3-color the paths of the layer such that each
node at the end of a path picks a color that differs from the color of its neighbor in a higher layer.
Given the initial O(1)-coloring of the path, this can be done in constant time for each path. The
time to compute the coloring is therefore proportional to the number of layers and thus O(log n).
The generic algorithm for solving more general LCL problems is more involved, but still similar
at a high level. While creating the decomposition, for each node v, one can create a list of labels
that can be assigned to v such that the labeling of lower layer nodes that depend on v can still
be completed. The LCL problem needs to allow labelings that are flexible enough such that when
having long paths of nodes that each can be the root of an arbitrary subtree, the nodes of the path
can still be labeled efficiently (in constant time given an appropriate initial coloring of the path).

1The actual decomposition that we use is a bit more complicated and the formal definition (see Definition 6)
requires some additional details.

2When two degree-1 nodes are neigbors, one just takes one of the two nodes.
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Implementation with low node-averaged complexity. The main challenge when trying to
obtain an o(log n) node-averaged complexity is the following. The generic algorithm first computes
the decomposition and it then computes the labeling by starting with the nodes in the highest
layers. In the worst case, we therefore need Θ(log n) rounds before even the label of a single node
is determined. And moreover, most of the nodes are in the first few layers, which are labeled at
the very end of the algorithm. In order to obtain a low node-averaged complexity, we therefore
need to label most of the nodes already in the “bottom-up” phase when creating the rake and
compress layers. For some problems, this is challenging: for example, in the 3-coloring problem, if
we ever obtain a node with 3 neighbors of lower layers that have 3 different colors, then we cannot
complete the solution in any valid way. Hence, we have to label the nodes in such a way that the
“top-down” phase is still able to extend the partial labeling to a valid labeling of all the nodes. To
keep things simple, we here assume that the tree has diameter O(log n). In this case, it suffices to
create rake layers and we do not need compress layers. We further only look at the problem of
3-coloring the nodes of T . This problem is significantly easier to handle than general O(log n)-worst
case complexity LCL problems, the solution for 3-coloring however already requires some of the
ideas that we use in the general case.

Let us therefore assume that we have an O(log n)-diameter tree T with maximum degree
∆ = O(1). If we decompose by using only rake layers, we obtain O(log n) layers, where each layer is
an independent set of T and every node has exactly one neighbor in a higher layer, except for the
single node u that is in the top layer. We refer to u as the root node and for each node v, we refer
to the single neighbor w of v in a higher layer as the parent of v. Note that when assigning a color
to a node v in the top-down phase, only v’s parent has already been assigned a color. To complete
the top-down phase, it therefore suffices if every node v can choose its color from an arbitrary subset
Sv of size 2 of the colors. So if no nodes below v have already decided on a color, this will always
be possible. Hence, if we try to color some nodes already in the bottom-up phase, we have to make
sure that all the uncolored nodes still have at least two available colors. This is guaranteed as long
as every uncolored node has at most one colored neighbor.

When constructing the layering we therefore proceed as follows. We only color nodes that have
already been assigned to some rake layer. Whenever we decide to color a node v in the bottom-up
phase, we also directly color the whole subtree of v.3 The high-level idea of the algorithm to achieve
this is as follows. After each rake step, i.e., after each creation of a new layer, we check whether or
not there are some nodes that can be colored. Consider the situation after the tth rake step, let G(t)

be the set of nodes that have not been raked at that time (i.e., that have not been assigned to some
layer), and let R(t) be the set of nodes that have already been assigned to some layer. Note that if a
node u ∈ G(t) has some neighbor v ∈ R(t), then u will in the end be the unique neighbor of v in a
higher layer. We can therefore think of the nodes in G(t) as the roots of the already raked subtrees.
This is illustrated in Figure 1. After each rake step t, each node u ∈ G(t) tries to color some node at
distance 2 in its subtree.4 Node u chooses v∗ to be a node at distance 2 in its subtree such that the
subtree rooted at v∗ has the largest number of uncolored nodes among all nodes at distance 2 of u
in the subtree of u (observe that nodes can keep track of such numbers). If there are no colored
2-hop neigbors of v∗ outside the subtree of v∗ (i.e., no colored siblings of v∗), then u decides to color
v∗ and its complete subtree. Otherwise, no new nodes in u’s subtree are getting colored. If v∗ and
its subtree get colored, then a constant fraction of the uncolored nodes in u’s subtree get colored.
Otherwise, a sibling v′ of v∗ with a larger subtree has already been colored while u was the root of

3After coloring the root of a subtree, the coloring of the subtree can be done in parallel while proceedings with the
rest of the algorithm.

4By only coloring nodes at distance at least 2 from u, we make sure that neighbors of nodes that are not yet
layered remain uncolored.
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Figure 1: The graph G(t) of nodes that are not yet raked away is colored blue. The already raked away nodes
R(t) are colored green. The node u chooses v∗ since it has the largest subtree, colored in red, attached and
both v∗ as well as its entire subtree become colored.

the tree. Note that at this time, the subtree of v∗ was already in the same state and therefore v′

colored more nodes than v∗ does. One can use this to show that whenever the height of a raked
subtree increases, a constant fraction of the uncolored nodes gets colored. One can further show
that this suffices to show that over the whole tree, a constant fraction of the remaining nodes gets
colored every constant number of rounds and thus the node-averaged complexity is constant. The
algorithm and the analysis for the general family of LCLs for which Theorem 1 holds uses similar
basic ideas, dealing with the general case is however significantly more involved.

Improved upper bounds in the polynomial regime. We prove that the node-averaged
complexity of the hierarchical 21

2 -coloring problem with parameter k is O(n1/(2k−1)). In order to
give some intuition for this, we focus on the case k = 2 where the worst-case complexity is Θ(

√
n).

Instead of providing a formal definition of the problem, it is helpful to present the problem by
describing how a worst-case instance for the problem looks like, and how a solution in such an
instance looks like. A worst-case instance for this problem consists of a path P of length Θ(

√
n),

where to each node vj of P is attached a path Qj of length Θ(
√
n). We call the nodes of the

path P p-nodes and we call the nodes of a path Qj q-nodes. For each path Qj , the algorithm
has to decide to either 2-color it or to mark the whole path as decline. Then, the subpaths of P
induced by nodes that are neighbors of q-nodes that output decline need to be labeled with a proper
2-coloring. In particular, decline is not allowed on p-nodes. Let us now describe an algorithm with
optimal worst-case complexity for instances with a similar structure, but where the paths may
have different lengths. For q-nodes, the algorithm first checks if the length of the path containing
those nodes is O(

√
n) (note that, in order to perform this operation, the algorithm needs to know

n, and it is actually unknown whether an LCL problem can have Θ(
√
n) worst-case complexity

when n is unknown). In such a case, the algorithm is able to produce a proper 2-coloring of the
path. Otherwise, the path is marked as decline. Then, it is possible to prove that the subpaths of
P induced by nodes having q-node neighbors that output decline must be of length O(

√
n), and
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hence they can be properly 2-colored in O(
√
n) rounds. We observe that in the worst-case instance

described above, the majority of the nodes of the graph are q-nodes, and hence, from an average
point of view, it would be fine if p-nodes spend more time. In fact, it is possible to improve the
node-averaged complexity of the described algorithm by letting q-nodes run for at most O(n1/3)
rounds and p-nodes for at most O(n2/3) rounds. In this case, a worst-case instance contains a
path P of length O(n2/3) and all paths Qj are of length O(n1/3). We obtain that both the p-nodes
and the q-nodes contribute O(n4/3) to the sum of the running times, obtaining a node-averaged
complexity of O(n1/3).

Lower bounds in the polynomial regime. It is known by [16] that if an LCL problem Π has
worst-case complexity o(n1/k), then it can actually be solved in O(n1/(k+1)) rounds. The intuition
about what determines the exact value of k in the complexity of a problem is related to how many
compress layers of a rake-and-compress decomposition one can handle. In the example presented
above, namely 3-coloring, one can handle an arbitrary number of compress paths and that is the
reason why the problem can be solved in O(log n) rounds. In particular, no matter how many
rake or compress operations have been applied, we can handle any compress path by producing a
3-coloring on it and leaving the endpoints uncolored (such nodes can decide their color after their
higher layer neighbors picked a color), and this can be done fast. Not all problems are of this form,
that is, for some problems we cannot handle an arbitrary amount of compress paths: it is possible
to define problems in which different labels need to be used in compress paths of different layers
(hierarchical 21

2 coloring is indeed such a problem where in fact p-nodes are not allowed to output
decline). For such problems, it may not be possible at all to efficiently produce a valid labeling for
long compress paths of layers that are too high, say of layers strictly more than k. In order to solve
this issue, we can modify the generic algorithm sketched above by increasing the number of rake
operations that are performed between each pair of compress operations. When using Ω(n1/(k+1))
rake operations at the beginning and between any two compress operations, the total number of
compress layers is at most k. This however makes the algorithm slower, resulting in a complexity of
Θ(n1/(k+1)) (while 3-coloring has worst-case complexity Θ(logn)).

In other words, for some LCL problems, compress paths are something that is difficult to handle,
and the number of compress layers that we can recursively handle is what determines the complexity
of a problem. If we can handle an arbitrary amount of compress layers, then the problem can
be solved in O(log n) rounds, but if we can handle only a constant amount of compress layers,
say k, then the complexity of the problem is Θ(n1/(k+1)). In [16] it is proved that, if a problem
has complexity o(n1/k), then it is possible to handle k compress layers, implying a complexity
of O(n1/(k+1)). We show that the same can be obtained by starting from an algorithm A with

node-averaged complexity o(n1/(2k−1)/ log n), implying that if a problem has complexity Ω(n1/k),

then it cannot have node-averaged complexity o(n1/(2k−1)/ log n), since otherwise it would imply
that the problem can actually be solved in O(n1/(k+1)) rounds in the worst case, which then leads
to a contradiction. Starting from an algorithm that only has guarantees on its node-averaged
complexity instead of on its worst-case complexity introduces many additional challenges that we
need to tackle. For example, in [16] it is argued that an o(n1/k)-rounds algorithm can never see
both the endpoints of a carefully crafted path that is too long. This kind of reasoning, that is very
common when we deal with worst-case complexity, does not work for node-averaged complexity.

2 Road Map

The remainder of the paper is organized as follows.
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Preliminaries. We start, in Section 3, by providing some definitions. In particular, we define the
class of problems that we consider, and the notion of node-averaged complexity.

Locally checkable labelings. We continue, in Section 4, by providing an overview of what is
known about solving LCL problems on trees of bounded degree. We present a generic algorithm
that is known to be able to solve all LCLs, that has optimal worst-case complexity whenever the
considered problem has worst-case complexity Ω(log n). The content of this section is heavily based
on existing results.

A fast algorithm for problems with intermediate complexity. In Section 5, we present an
algorithm with node-averaged complexity O(log∗ n), that is able to solve all problems that have
O(log n) worst-case complexity. This algorithm is based on the one presented in Section 4, but we
need to tackle many challenges in order to improve its node-averaged complexity.

A fast algorithm for some problems with polynomial complexity. In Section 6 we consider
a class of problems, called hierarchical 21

2 coloring, that are parametrized by an integer k. For these

problems it is known that their worst-case complexity is Θ(n1/k). We show that these problems can

be solved with node-averaged complexity O(n1/(2k−1)).

A lower bounds for problems with polynomial complexity. It is known that all LCL
problems on trees either have worst-case complexity O(log n), or Θ(n1/k) for some integer k ≥ 1.
While we show in Section 5 that the worst-case complexity class O(log n) becomes O(log∗ n) for
node-averaged complexity, in Section 7 we show that all problems that have polynomial worst-case
complexity also have polynomial node-averaged complexity. In particular, we show that if a problem
has worst-case complexity Θ(n1/k), then it has node-averaged complexity Ω(n1/(2k−1)/ log n).

Open questions In Section 8, we provide some open questions.

More on LCLs In Appendix A, we provide additional related work about LCLs.

An algorithm for solving all LCLs in O(D) rounds. In Appendix B, we show a simple
bandwidth-efficient algorithm that solves all LCL problems in O(D) rounds, where D is the diameter
of the graph, and then we give some intuition on the challenges that one needs to tackle in order to
improve its complexity. The content of this section can be useful to better understand Section 4.

Different ways to define LCLs. In Appendix C, we provide different definitions of LCLs, and we
prove that the notion that we study (called black-white formalism) is equivalent, for node-averaged
complexity, to the standard one studied in the literature (this was previously known only for the
case of worst-case complexity).

3 Preliminaries

LCLs in the black-white formalism. We start by defining the class of problems that we consider,
called LCLs in the black-white formalism. We show in Lemma 45 that on trees, studying this class
of problems is equivalent to studying LCLs as they are usually defined in the literature. A problem
Π described in the black-white formalism is a tuple (Σin,Σout, CW , CB), where:

� Σin and Σout are finite sets of labels.

� CW and CB are both multisets of pairs, where each pair (ℓin, ℓout) is in Σin × Σout.

Solving a problem Π on a graph G means that:
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� G = (W ∪B,E) is a graph that is properly 2-colored, and in particular each node v ∈W is
labeled c(v) = W , and each node v ∈ B is labeled c(v) = B.

� To each edge e ∈ E is assigned a label i(e) ∈ Σin.

� The task is to assign a label o(e) ∈ Σout to each edge e ∈ E such that, for each node v ∈W
(resp. v ∈ B) it holds that the multiset of incident input-output pairs is in CW (resp. in CB).

Note that when expressing a given LCL problem on a tree T in the black-white formalism, we
often have to modify the tree T as follows. We subdivide every edge e of T by inserting one node in
the middle of the edge. Each edge is then split into two “half-edges” and the new tree is trivially
properly 2-colored (say the original nodes of T are the black nodes and the newly inserted nodes for
each edge of T are the white nodes).

Node-averaged complexity. We define the notion of node-averaged complexity as in [10]. Let
A be an algorithm that solves a problem Π. Assume A is run on a given graph G = (V,E). Let
v ∈ V . We define TG

v (A) to be the number of rounds after which v terminates when running A.
The node-averaged complexity of an algorithm A on a family of graphs G is defined as follows.

AVGV (A) := max
G∈G

1

|V |
· E

 ∑
v∈V (G)

TG
v (A)

 = max
G∈G

1

|V |
·

∑
v∈V (G)

E
[
TG
v (A)

]
The complexity of Π is defined as the lowest complexity of all the algorithms that solve Π.

4 Locally Checkable Labelings

In this section we introduce a class of problems called Locally Checkable Labelings (LCLs) and we
summarize known results about the worst-case complexity of LCLs in the case in which we restrict
the family of considered graphs to be trees of bounded degree. We first provide an overview of what
are the possible complexities of LCLs on trees, and then we describe a generic method that can be
used to solve some of these problems optimally.

4.1 Introduction

LCLs have been extensively studied on trees of bounded degree and we know that in this family
of graphs, these problems can only have the deterministic complexities O(1), Θ(log∗ n), Θ(log n),
and Θ(n1/k) for any k ∈ N [19, 16, 8, 6, 3]. Moreover, we know that randomness may only help
for problems with deterministic complexity Θ(log n). Finally, we know that for problems with
deterministic complexity Ω(log n), given the description of an LCL problem, we can automatically
determine its time complexity. These decidability results have first been shown in two important
papers [19, 16], which we summarize in the rest of the section.

On a high level, these decidability results have been proven as follows: first, there is a generic
method to solve all problems, based on a procedure called rake-and-compress ; then, it is shown that
this method has optimal time complexity, meaning that if this method is not able to provide a fast
algorithm, then the problem cannot be solved fast with any other algorithm. In Appendix B, we
present the procedure for a simplified setting in which we aim at solving a restricted set of problems
in O(D) rounds. There, we also explain which challenges one needs to tackle in order to improve
the running time.
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4.2 A Generic Way to Solve All LCLs

In this section we present known results about solvability of LCLs. The content of this section
is heavily based on results presented in [19, 16, 9], that provide a generic method that is able
to solve any (solvable) LCL. This method has an optimal worst-case complexity for all problems
that require Ω(log n) worst-case rounds in the deterministic setting. In later sections, we will use
some ingredients that we present in this section, in order to provide algorithms that have faster
node-averaged complexity. We follow a similar route of [9]: in order to keep our proofs more
accessible we prove our statements for LCLs expressed in the black-white formalism (which is
simpler to deal with than standard LCLs as they are usually defined in the literature). In Lemma 45
we prove that on trees, for any standard LCL, we can define an LCL in the black-white formalism
that has the same asymptotic node-averaged complexity as the original one, implying that our
results hold for all standard LCLs as well.

Classes. A summary of the generic algorithm for solving any LCL in O(D) rounds presented in
Appendix B is the following: nodes of degree 1 are recursively removed from the tree; at each step,
nodes that become leaves compute the set of labels that can be put on the edge connecting them
with the rest of the tree, in a way that the labeling in their removed subtree can be completed in a
valid manner; once all edges get a set assigned, it is possible to pick a valid labeling for all the edges
by processing nodes in reverse order.

The set computed by a node essentially behaves as an interface between the remaining tree
and the part of the tree that got removed, in the sense that it is not important what is the actual
subtree, and the only thing that matters is the content of the set. Informally, we call this set the
class of the subtree. In order to obtain algorithms that are faster than O(D) rounds, in the removal
process it is required to handle also nodes of degree 2, and this is what complicates the formal
definition of class.

While the following definition is generic (in order to minimize repetition), it may help the reader
to check Figure 2, which shows the two possible cases in which the definition will be applied.

Definition 4 ([9]). Assume we are given an LCL Π = (Σin,Σout, CW , CB) in the black-white
formalism. Consider a tree G = (V,E), and a connected subtree H = (VH , EH) of G. Assume
that the edges connecting nodes in VH to nodes in V \ VH are split into two parts, Fincoming and
Foutgoing, that are called, respectively, the set of incoming and outgoing edges. Assume also that
for each edge e ∈ Fincoming is assigned a set Le ⊆ Σout. This set is called the label-set of e. Let
Lincoming = (Le)e∈Fincoming . A feasible labeling of H w.r.t. Fincoming, Foutgoing, and Lincoming is a
tuple (Loutgoing, Lincoming, LH) where:

� Lincoming is a labeling (le)e∈Fincoming of Fincoming satisfying le ∈ (Lincoming)e for all e ∈ Fincoming,

� Loutgoing is a labeling (le)e∈Foutgoing of Foutgoing satisfying le ∈ Σout for all e ∈ Foutgoing,

� LH is a labeling (le)e∈EH
of EH satisfying le ∈ Σout for all e ∈ EH ,

� the output labeling of the edges incident to nodes of H given by Loutgoing, Lincoming, and LH

is such that all node constraints of each node v ∈ VH are satisfied.

Also, we define the following:

� a class is a set of feasible labelings,

� a maximal class is the unique inclusion maximal class, that is, it is the set of all feasible
labelings,

10



Figure 2: The figure illustrates the two cases of the label-set computation, where it is assumed that the
incoming edges have already a label-set assigned and the goal is to assign a label-set to the outgoing edges;
the left side depicts the case of a single node, the right side shows the case of a short path.

� an independent class is a class A such that for any
(
Loutgoing, Lincoming, LH

)
∈ A and(

L′
outgoing, L

′
incoming, L

′
H

)
∈ A the following holds. Let L′′

outgoing be an arbitrary combination of
Loutgoing and L′

outgoing, that is, L
′′
outgoing = (le)e∈Foutgoing where le ∈ {(Loutgoing)e, (L

′
outgoing)e}.

There must exist some L′′
incoming and L′′

H satisfying
(
L′′
outgoing, L

′′
incoming, L

′′
H

)
∈ A.

Note that the maximal class with regard to some given Π, H, Fincoming, Foutgoing, and Lincoming,
is unique. In contrast, there may be different ways (or none) to restrict a maximal class to a
(nonempty) independent class.

Computing label-sets. We will use Definition 4 for two specific types of graphs H: either single
nodes, or short paths. In each of these cases we will need to compute a label-set for each outgoing
edge. We now describe the two cases in detail, and we provide a way to compute the label-sets.
The cases are shown in Figure 2.

Definition 5 (label-set computation). Assume we are given some function fΠ,k (to be specified
later). We define a function g(v) that can be used to compute label-sets for the outgoing edges as a
function of H, Π, Fincoming, Foutgoing, Lincoming, and fΠ,k, for two specific types of graphs H.

� Single nodes: the graph H consists of a single node v that has a single outgoing edge e, and
hence Foutgoing = {e}. All the other edges (which might be 0) are incoming, and for each of
them we are given a label-set (where Lincoming represents this assignment). We assign, to the
outgoing edge, the label-set g(v), that consists of the set of labels that we can assign to the
outgoing edge, such that we can pick a label for each incoming edge in a valid manner. More
in detail, let B be the maximal class of H w.r.t. Π, Fincoming, Foutgoing, and Lincoming. Then,
we denote g(v) =

⋃
(Loutgoing,Lincoming,LH)∈B{(Loutgoing)e}. We have g(v) ⊆ Σout. Observe that

each node v can compute g(v) if it is given the value of g(u) (that is, the label-set of the edge
{u, v}) for each incoming edge {v, u}.

� Short paths: the graph H is a path of length between ℓ and 2ℓ, for some ℓ = O(1) that
depends solely on Π and the target running time. The endpoints of the path are v1 and
v2. The outgoing edges are Foutgoing = {e1, e2}, where e1 (resp. e2) is the outgoing edge
incident to v1 (resp. v2). Let B be the maximal class of H. We assume to be given a function
fΠ,k, that depends solely on Π and some parameter k (that, in turn, depends on the target
running time), that maps a class B into an independent class B′ = fΠ,k(B). For i ∈ {1, 2},
let g(vi) =

⋃
(Loutgoing,Lincoming,LH)∈B′{(Loutgoing)ei}. We have g(vi) ⊆ Σout. The label-set of

e1 (resp. e2) is g(v1) (resp. g(v2)). Observe that the values of g(vi), for i ∈ {1, 2}, can be
computed given H and Lincoming.

Tree decompositions. All problems with worst-case complexity O(log n) or O(n1/k) for any k ∈ N
can be solved by following a generic algorithm [19, 16, 9]. This algorithm decomposes the tree
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into layers by iteratively removing nodes in a rake-and-compress manner [28] (and then uses the
computed decomposition to solve the given problem).

We first define the decomposition that the algorithm uses and then elaborate on how fast (and
how) it can be computed.

Definition 6 ((γ, ℓ, L)-decomposition). Given three integers γ, ℓ, L, a (γ, ℓ, L)-decomposition is a
partition of V (G) into 2L− 1 layers V R

1 = (V R
1,1, . . . , V

R
1,γ), . . . , V

R
L = (V R

L,1, . . . , V
R
L,γ), V

C
1 , . . . , V C

L−1

such that the following hold.

1. Compress layers: The connected components of each G[V C
i ] are paths of length in [ℓ, 2ℓ], the

endpoints have exactly one neighbor in a higher layer, and all other nodes do not have any
neighbor in a higher layer.

2. Rake layers: The diameter of the connected components in G[V R
i ] is O(γ), and for each

connected component at most one node has a neighbor in a higher layer.

3. The connected components of each sublayer G[V R
i,j ] consist of isolated nodes. Each node in a

sublayer V R
i,j has at most one neighbor in a higher layer or sublayer.

In the following, for completeness, we provide an algorithm of [19, 16] that shows how to compute
a (γ, ℓ, L)-decomposition where, at the end, each node knows the layer that it belongs to.

1. Iteratively do the following, until the obtained graph is empty, starting with i = 1:

(a) Iteratively, perform γ rake operations. For each 1 ≤ j ≤ γ, the jth rake operation consists
of removing all nodes that have degree 1 in the graph induced by the remaining nodes
and putting them into the preliminary set WR

i,j . For technical reasons, if two adjacent
nodes have degree 1, the rake operation only removes one of them, chosen arbitrarily.

(b) Perform one compress operation, that is, remove all nodes of degree 2 that, in the graph
induced by the remaining nodes, are contained in paths of length at least ℓ where each
node of the path has degree exactly 2. Put the removed nodes into the preliminary set
WC

i .

(c) i← i+ 1.

2. Observe that, for all i, WC
i is a collection of paths of length at least ℓ. Split long paths into

shorter paths as follows. Compute, for each WC
i , an independent set Ii ⊂WC

i of nodes that
satisfies two properties: no endpoint of any path in WC

i is contained in Ii, and the maximal
connected components of the graph obtained by removing the nodes in Ii from WC

i are paths
of length between ℓ and 2ℓ. For each i, we promote the nodes in Ii to the next rake layer, that
is, we define V C

i as WC
i \ Ii, V R

i+1 as WR
i+1 ∪ Ii, and V R

i+1,1 as WR
i+1,1 ∪ Ii. We denote with L

the largest index i such that V R
i ∪ V C

i−1 ̸= ∅.

The following lemma provides upper bounds for the deterministic worst-case complexity of
computing a (γ, ℓ, L)-decomposition using the algorithm of [19, 16].

Lemma 7 ([19, 16]). Assume ℓ = O(1). Then the following hold.

� For any positive integer k and γ = n1/k(ℓ/2)1−1/k, a (γ, ℓ, k)-decomposition can be computed
in O(k · n1/k) rounds.

� For γ = 1 and L = O(log n), a (γ, ℓ, L)-decomposition can be computed in O(log n) rounds.
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The generic algorithm with optimal worst-case complexity. We now explain the algorithm
due to [19, 16, 9] that is able to solve any LCL Π with worst-case complexity Θ(log n) or Θ(n1/k)
asymptotically optimally. The initial objective is to compute a (γ, ℓ, L)-decomposition; however,
first we need to determine suitable parameters γ, ℓ, and L. To this end, we begin by determining
the worst-case time complexity of the given problem Π, which, by [19, 16], can be computed in finite
time solely as a function of Π. Then, as a function of the target time complexity, we can determine
γ and ℓ: if the target time complexity is O(log n), then γ = 1, and then ℓ can be computed as a
function of Π; otherwise, if the target time complexity is O(n1/k), then we can first compute ℓ as a
function of Π and k, and then set γ = n1/k(ℓ/2)1−1/k. By Lemma 7, we get that if in the former
case we set L = k, and in the latter case we set L = O(log n), then a (γ, ℓ, L)-decomposition can be
computed within a running time that matches the target complexity. In [19, 16] it is shown how to
determine the value of ℓ in each case.

After computing a (γ, ℓ, L)-decomposition with the determined parameters, the decomposition
is used to propagate label-sets up through the layers. The goal is to iteratively assign label-sets
to edges, in a way that, when we handle nodes in layer i, all their edges connected to nodes of
layers < i have already a label-set assigned. As a last step of the generic algorithm, we will use the
label-sets to pick a valid solution, by propagating labels through the layers in reverse order.

We first explain the procedure that computes a label-set for all edges of the graph by going up
through the layers of the computed (γ, ℓ, L)-decomposition. This procedure uses Definition 5, and
hence it requires to be given a function fΠ,k (if the target runtime is O(log n), then let k = ∞).
This function, as shown in [19, 16, 9], can be computed solely as a function of Π and the target
time complexity (also, similarly as for ℓ, this function does not depend on n).

� For j = 1, . . . , γ, by Definition 6, we have that the graph induced by V R
i,j is composed of

isolated nodes. Each node v ∈ V R
i,j waits until all its neighbors z in lower layers have assigned

a label-set to the edge {v, z}. We are now in the first case of Definition 5. Hence, v computes
g(v), the label-set of the edge connecting v to its only neighbor w in upper layers, if it exists,
and sends this label-set to w.

� Nodes in V C
i , by Definition 6, form paths of length between ℓ and 2ℓ. For each of these paths,

nodes wait until a label-set has been computed for each edge connecting them to lower layers.
We are now in the second case of Definition 5. Hence, the endpoints of the path can compute
the label-sets for the edges connecting them to their neighbor in upper layers. Each endpoint
sends its computed label-set to its higher-layer neighbor.

Now we explain how, in the last step of the generic algorithm, we use the computed label-sets to
determine the final output labels by going through the layers of the computed decomposition in
reverse order (i.e., from larger to smaller index). Observe that it may happen that rake nodes do
not have any outgoing edge. In this case, a node considers its maximal class B (that is guaranteed
to be non-empty), takes an arbitrary element ((), Lincoming, ()) from B, and uses Lincoming to assign
a label to each incoming edge. Then, we process the rest of the graph as follows.

� Each rake node, once a label l for its outgoing edge is assigned, considers its maximal class
B, picks an arbitrary element (Loutgoing, Lincoming, ()) compatible with l from B, and uses
Lincoming to assign a label to each incoming edge, where compatible with l means that Loutgoing

assigns l to the outgoing edge.

� Similarly, each short path, once a label is assigned to the edges outgoing from the endpoints,
can pick a valid assignment for each internal and incoming edge.
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This concludes the description of the generic algorithm. We note that the generic algorithm does not
require a specific (γ, ℓ, L)-decomposition—any (γ, ℓ, L)-decomposition (for the parameters γ, ℓ, L
determined in the beginning of the generic algorithm) works. We will make use of this fact when
designing algorithms with a good node-averaged complexity in Section 5.

We now define a total order on the layers of a (γ, ℓ, L)-decomposition in the natural way. This
will be useful in the design of our algorithm in Section 5.

Definition 8 (layer ordering). We define the following total order on the (sub)layers of a (γ, ℓ, L)-
decomposition.

� V R
i,j < V R

i′,j′ iff i < i′ ∨ (i = i′ ∧ j < j′)

� V R
i,j < V C

i

� V C
i < V R

i+1,j

Accordingly, we will use terms such as “lower layer” to refer to a layer that appears earlier in the
total order than some considered other layer.

For the interested reader, in Section 7.1, we provide some more intuition about the function
fΠ,k, and about how the existence of this function is related with the complexity of a problem.

5 Algorithm for Intermediate Worst-Case Complexity Problems

In this section, we provide an algorithm with node-averaged complexity O(log∗ n) on bounded-degree
trees for all LCLs that can be solved in worst-case complexity O(log n) on bounded-degree trees.
The high-level idea of our algorithm is similar to the strategy in the generic algorithm of Section 4.2:
compute a (γ, ℓ, L)-decomposition, propagate types up through the layers, and then propagate
a choice of labels through the layers in reverse order. Importantly, in order to obtain a good
node-averaged complexity, we will not wait for the decomposition to be completely computed, but
instead we show that we can allow a sufficient amount of nodes to terminate early. A crucial
ingredient for achieving this is identifying some nodes with nice properties which we promote to
be a local maximum (that is, nodes that have a layer number that is strictly higher than all their
neighbors), allowing it and many other nodes to terminate.

However this approach requires us to find a suitable (γ, ℓ, L)-decomposition that in particular
guarantees that sufficiently many nodes become local maxima. Observe that the standard decom-
position algorithm may not guarantee this property: in a balanced binary tree for example, only
the root would become a local maximum. To achieve the required property we will compute an
altered decomposition that in some sense leaves a bit of extra space between two compress layers.
We will use this extra space to insert new compress paths creating local maxima. Here we need to
take special care that such a promotion is possible while guaranteeing that at the end we still have
a valid (γ, ℓ, L)-decomposition.

As this part is quite long and it is possible to get lost in the details, we next provide an overview
of the structure of this section.

� Section 5.1: The Decomposition Algorithm

– Stating a centralized version of the algorithm. Definitions 9 to 11

– Proving that it computes a valid (γ, ℓ, L)-decomposition and thereby proving correctness.
Definitions 12 and 13 and Lemma 14
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– Proving that we need O(log n) iterations. Lemmas 15 and 16 and Corollary 17

� Section 5.2: Local Maxima and Bounding Quality

– Decomposing the tree into subtrees. Definitions 18 and 19 and Lemma 21

– The promotion creates local maxima and they account for a large amount of quality.
Lemmas 22 to 26

– Upper bounding the quality of a free node. Lemmas 27 to 29.

� Section 5.3: Distributed Algorithm and Node Averaged Complexity

– The distributed implementation and the round complexity of an iteration. Lemma 30

– Proving O(log∗ n) node-averaged complexity. Lemmas 31, 33 and 34 and Corollary 32

5.1 The Decomposition Algorithm

Our algorithm still does rake and compress each iteration and we will assign layers for a decomposition
along the way. Clearly during the execution of the algorithm we will not yet have a complete
(γ, ℓ, L)-decomposition. Say we only have layers up until the i-th layer, V R

1 , . . . , V R
i and V C

1 , . . . , V C
i ,

that already satisfy the definition of a (γ, ℓ, L)-decomposition. The definitions we provide already
apply to graphs with a partial decomposition, i.e., a partial assignment of nodes to layers of the
form V R

i,j and V C
i (for some positive integers i, j). A bit later we give a formal definition of a partial

decomposition. For now we start by distinguishing between nodes that have already been assigned
a layer and those that have not.

Definition 9 (free and assigned nodes). We call a node that has not been assigned to a layer a free
node. A node that has been assigned to a layer is called assigned.

Let G denote our input tree and assume that a subset of nodes has already been assigned to
some layers. Let G′ denote the subgraph of G induced by all assigned nodes. View Figure 3 for the
general picture that should be kept in mind for the rest of this section.
We now define two notions that will be crucial for our approach. Recall that we have a total
ordering on the layers of a decomposition due to Definition 8 (that naturally extends to partial
decompositions).

Definition 10 (local maximum). A local maximum is an assigned node v ∈ V (G′) with the following
two properties:

1. Node v and all of its neighbors are assigned, i.e., they are all contained in V (G′).

2. For each neighbor w of v, the layer of w is strictly smaller than the layer of v.

In our algorithm, we will artificially promote some nodes to a higher layer in order to produce
local maxima. The second notion allows to measure how efficient a node would be as a local
maximum. The quality of a node v is the number of nodes that are depending only on v to pick its
label so they can pick their labels. So if v terminates and chooses an output all of these nodes can
also terminate.

To keep track of this, we will additionally assume that (some of the) edges of the input graph
can be oriented see Figure 4. Then our algorithm will orient the edges in such a manner that any
node u will have an oriented path from v to u if and only if u will be able to terminate if v does.
In practice this means if u is raked away we orient the single edge from u’s parent towards itself
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Figure 3: A picture during the execution of a rake and compress like algorithm. We have in blue the graph of
remaining free nodes. All of the already assigned nodes are hanging in subtrees from the nodes of G \G′.
The compress paths are not part of any subtrees and connect the components of free nodes. Also the set
Ck(v) is exactly the nodes at distance k from v that are in the tree hanging from v.

and orienting the ends of compress paths inwards. If an edge is not explicitly oriented it is not
considered oriented at all. For some given v this orientation now defines H(v) a subgraph of nodes
that can be reached over oriented paths. This graph is then exactly all of the nodes that are only
waiting for v to choose an output and hence these could all terminate if v became a local maximum.

Definition 11 (quality). For any node v ∈ V (G), let H(v) denote the set of all nodes w that can
be reached from v via a path (v = v0, v1, . . . , vj = w) such that the following hold:

1. The edge {vi−1, vi} is oriented from vi−1 to vi, for each 1 ≤ i ≤ j.

2. All nodes on the subpath from v1 to w are assigned, i.e., they are all contained in V (G′).

3. The layer of vi is smaller than or equal to the layer of vi−1, for each 2 ≤ i ≤ j, and if v0 is
assigned, then the layer of v1 is smaller than or equal to the layer of v0.

If v is a local maximum, or a descendant of a local maximum, then the quality q(v) := 0. Otherwise
the quality q(v) of a node v is the number of nodes in H(v), i.e., q(v) := |H(v)|.

We chose the name quality, since we will later decide on which nodes to fix by trying to maximize
this quantity. We will later also see that the sum over the quality of all free nodes are exactly all of
the nodes that are yet to terminate. So by giving an upper bound on

∑
v∈G\G′ q(v) we will be able

to argue about the progress of our algorithm.
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Figure 4: Illustrating the quality of a node. v and v′ are free nodes inside of G \ G′. H(v) (respectively
H(v′)) are all nodes inside the green cone attached to v (v′) and the green nodes in the compress path. u
and u′ are local maxima, so because of point 3 in Definition 11 they and the red trees hanging from them do
not contribute to H(v) (respectively H(v′).

The algorithm. We give two versions of the algorithm first. Algorithm 1 provides an informal
writeup of the highlevel idea and then Algorithm 2 gives all the details. In previous work the rake
and compress procedure is done by performing rakes first and then compresses after the rakes are
done. We need to change the ordering, but to still get the same guarantees, we start with a round
of γ rakes. Then in each iteration we first perform a modified compress operation. Instead of taking
paths that are as short as possible, we make sure we have some extra slack at the end of each
compress path. This is to ensure that compress paths are always far enough away from nodes that
we want to promote. We then make sure that all of these slack nodes are raked away nicely, by
performing a set of γ rakes right after our modified compress procedure.

Now we are ready for the part where we actually promote some nodes to be local maxima, based
on the following definition. For each node v ∈ V (G), let Ck(v) denote the set of assigned nodes w
that have distance exactly k from v and for which all internal nodes of the unique path from v to w
are assigned as well, i.e.,

Ck(v) = {w ∈ V (G′) | dist(v, w) = k, x ∈ V (G′) for all x ̸= v on the path from v to w}.

Refer to Figure 3 for an example. We determine the node that we want to promote by choosing the
node v∗ that has the highest quality among nodes in Cb(r). This ensures that a lot of nodes can
terminate early. We are however not always able to promote v∗, but we will later see, that when we
are not able to, then this is because we have very recently been successful in promoting another
close-by node. One important thing to note is that our algorithm proceeds with only even iteration
numbers. This is because in a single iteration we modify layers with three different indexes. For
each iteration i (where i is an even number), we further define sets G(i) and G(i+1) to differentiate
between two points during the execution of iteration i of the algorithm. The details of the algorithm
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Algorithm 1: Compute Decomposition Informal

Input: G = (V,E),Π
1 compute ℓ from Π
2 b← ℓ+ 2
3 γ ← ℓ+ 3
4 Perform γ orienting Rakes
5 for O(log n) times (until every node is assigned to a layer) do
6 for each long enough path do
7 Ignore the first and last γ nodes ▷ Will be raked away.
8 Perform normal compress on the truncated path
9 Orient the ends inwards

10 Perform γ orienting Rakes ▷ Thereby raking away the slack from compress
11 for each free node r do
12 v∗ is the child at distance b with the largest quality
13 if The path from r to v∗ does not intersect with any compress path then
14 Promote v∗ into a local maximum by turning the path from r to v∗ into a

compress path

are given as pseudocode in Algorithm 2. Note that Algorithm 2 provides a description of the steps
of the algorithm without specifying how the algorithm is implemented in a distributed manner. We
will take care of the latter in Section 5.3.

During the analysis of the algorithm, we often talk about different parts of the algorithm and
reference certain times during the execution. To make this a bit more formal, we introduce static
points.

Definition 12. We call a point in time during the execution of Algorithm 2 that is not inside an
inner for-loop5 a static point (in time).

We can use this definition to now prove that at any static point t our algorithm has a valid
partial decomposition. For this we extend the definition of a (γ, ℓ, L)-decomposition to graphs
where only a subset of the nodes have been assigned to layers. It is almost an exact restatement of
Definition 6, with the subtle difference being that we only care about a subset V ′ ⊆ V (G) of nodes.
As a reminder we state the entire definition again.

Definition 13 (partial (γ, ℓ, L)-decomposition). A partial (γ, ℓ, L)-decomposition of a graph G
is a partition of some subset V ′ ⊆ V (G) into 2L − 1 layers V R

1 = (V R
1,1, . . . , V

R
1,γ), . . . , V

R
L =

(V R
L,1, . . . , V

R
L,γ), V

C
1 , . . . , V C

L−1 such that the following hold.

1. Compress layers: The connected components of each G[V C
i ] are paths of length in [ℓ, 2ℓ], the

endpoints have exactly one neighbor that is in a higher layer or free, and all other nodes do
not have any neighbor that is in a higher layer or free.

2. Rake layers: The diameter of the connected components in G[V R
i ] is O(γ), and for each

connected component at most one node has a neighbor that is in a higher layer or free.

3. The connected components of each sublayer G[V R
i,j ] consist of isolated nodes. Each node in a

sublayer V R
i,j has at most one neighbor in a higher layer or sublayer.

5Inner for-loops refers to the for loops in Lines 12, 22, and 26.
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Algorithm 2: Compute Decomposition

Input: G = (V,E),Π
1 compute ℓ from Π
2 b← ℓ+ 2
3 γ ← ℓ+ 3

4 G(0) ← G

5 N (0) = ∅
6 for j = 1 to γ do
7 add every node of degree 0 or 1 in the graph induced by the free nodes to V R

1,j

8 if the degree was 1, have each such node orient its unique incident edge in that graph
towards itself

9 G(1) ← G \ V R
1

10 i← 2
11 for O(log n) times (until every node is assigned to a layer) do
12 for each maximal path P consisting of nodes of degree exactly 2 in the graph induced by

the free nodes do
13 if |V (P )| ≥ 4ℓ+ 9 then
14 P ′ ← the subpath of P consisting of all nodes that have distance at least ℓ+ 3

from both endpoints of P
15 compute a subset Z ⊆ V (P ′) such that no two nodes in Z are adjacent, no

endpoint of P ′ is in Z, and every maximal subpath of P consisting only of nodes
in V (P ′) \ Z has length in [ℓ, 2ℓ]

16 add every node in V (P ′) \ Z to V C
i−1

17 add every node in Z to V R
i,1

18 let P ′ = (v0, . . . , vw, . . . , vy, . . . vj), and let vw ∈ Z be the first node on P ′ that is
in Z and vy ∈ Z the last.

19 orient the edges in the path (v0, . . . , vw−1) from v0 towards vw−1

20 orient the edges in the path (vy+1, . . . , vs) from vs towards vy+1

21 N (i) ← N (i−2) ∪ {vw, vw+1, . . . , vy−1, vy} ▷ add all nodes that have no edge
oriented towards them

22 for j = 1 to γ do
23 add every node of degree 1 in the graph induced by the free nodes to V R

i,j

24 have each such node orient its unique incident edge in that graph towards itself

25 G(i) ← G \
(⋃

1≤a≤i V
R
a ∪

⋃
1≤a≤i−1 V

C
a

)
▷ all free nodes

26 for each node r ∈ G(i) do
27 v∗ ← argmaxv∈Cb(r)

q(v) ▷ breaking ties arbitrarily

28 P ′′ ← the path from v∗ to r
29 if no node in V (P ′′) is currently assigned to a layer of the form V C

a for some
1 ≤ a ≤ i− 1 then

30 remove every node in V (P ′′) \ {v∗, r} from the layer it is currently assigned to
and add it to V C

i

31 remove v∗ from the layer it is currently assigned to and add it to V R
i+1,1

32 mark v∗ as promoted

33 G(i+1) ← G \
(⋃

1≤a≤i+1 V
R
a ∪

⋃
1≤a≤i V

C
a

)
▷ all free nodes

34 i← i+ 2
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We note that at all times V R
i is to be understood as the union of all nodes in the layers V R

i,j , i.e.,

V R
i :=

⋃
1≤j≤γ

V R
i,j .

We now prove that during our algorithm we really have a valid partial decomposition.

Lemma 14. Consider any static point t in time during the execution of Algorithm 2, and let i be
the iteration in which t occurs, where we set i to 2 if t occurs before the first execution of Line 11.
Then the partial assignment of nodes to layers at time t forms a partial (γ, ℓ, i+ 1)-decomposition.

Proof. We prove the lemma by induction in all static points t in time. For the base case observe
that the statement trivially hold at the start of the algorithm (where all layers are empty sets). For
the induction step, assume that the lemma statement holds at some static point t in time. We will
show that it then also holds at the next static point in time, which we will call t′.

If the changes to the decomposition between time t and t′ are given by Line 7, by Lines 16
and 17, or by Line 23, then the lemma statement at time t′ follows in a straightforward way from
the design of the algorithm and the induction hypothesis.

Hence, consider the (only other) case that the change to the assignment of the nodes to layers
between times t and t′ is due to Lines 30 and 31. From the design of Lines 30 and 31 and the
fact that, before the execution of Line 30, nodes have only been added to lower layers than V C

i , it
follows that all nodes who are added to V C

i during the execution of Line 30 satisfy Property 1 in
Definition 13 at time t′. Similarly, node v∗ added to layer V R

i+1,1 (or rather its connected components

in V R
i+1, resp. V

R
i+1,1) satisfies Properties 2 and 3 of Definition 13 at time t′, as it has only neighbors

of lower layers. It remains to show that the properties of Definition 13 also (continue to) hold at
time t′ for all layers that are lower than V C

i .
To this end, consider the path P ′′ from v∗ to r (that the behavior of Algorithm 2 between time t

and t′ depends on). By the induction hypothesis, each node in V (P ′′)\{r} has at most one neighbor
at time t that is in a higher layer or free, and no node assigned to a layer of the form V R

a for some a
has a neighbor in the same layer. Since r is free (while all other nodes in P ′′ are not free, due to the
definition of Cb(r), which Line 27 depends on) and no node in V (P ′′) \ {r} is assigned to a layer
of the form V C

a (due to the condition in Line 29), it follows that the layers of the nodes increase
strictly from v∗ to the last node of P ′′ before r. This implies that, at time t, each node that is not
free but has a neighbor in P ′′ \ {r} while not being contained in P ′′ itself is assigned to a strictly
lower layer than the aforementioned neighbor, due to Definition 13 and the induction hypothesis.
Since this fact also holds at time t′ (as each node in P ′′ is assigned to a higher layer at time t′ than
at time t) and P ′′ does not contain any node assigned to a layer of the form V C

a at time t (due to
the condition in Line 29), it follows that the properties of Definition 13 continue to hold at time t′

for all layers lower than V C
i (where we use that they hold at time t due to the induction hypothesis).

This concludes the induction.
As the highest layer at time t is V R

i+1, the lemma statement follows.

Next we argue that our algorithm behaves in a similar way to a normal rake and compress
algorithm. We use the following lemma.

Lemma 15 ([16]). Given a tree with n nodes, by performing α rakes6 and 1 compress7 with minimum
path length β, the number of remaining nodes is at most β

2αn.

6A rake operation is the removal of all nodes of degree 0 or 1.
7A compress operation consists of the removal of all paths of nodes of degree exactly 2, that are of length at least β.
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Now to show that our algorithm fulfills the conditions for this lemma every few iterations.

Lemma 16. There exists some constant 0 < ε < 1 such that, for any even positive integer i ≥ 10,
the number of free nodes after iteration i of Algorithm 2 is at most nεi.

Proof. In our algorithm, the minimum path length is β = 4ℓ + 9, but not all of these nodes are
immediately put into a compress layer. Instead we leave γ nodes at both ends. However all of these
nodes that were left are immediately raked away in Line 22. So for every even i all nodes in paths
of length at least β are assigned a layer and therefore a compress is performed. Moreover, for every
even i, γ rakes are performed. This implies that for every iteration 10i + j (j ∈ {0, 2, 4, 6}), we
perform γ rakes, for a total of 4γ = 4ℓ + 12 rakes, and then, in iteration 10i + 8, we perform a
compress operation. Hence, by Lemma 15, the number of nodes that we have at iteration 10(i+ 1)
are at most b

8γ ≤ 1/2 times the number of nodes that we have at iteration 10i. Hence, at iteration i,

for i integer multiple of 10, we get that the number of remaining nodes is at most n/2i. In order to
obtain a smooth progression, we pick ε = 1

20√2
. Observe that, for all i ≥ 10, nϵi ≥ n/2i, and hence

the claim follows.

As a result of this Lemma 16 we immediately get that we will be done in at most O(log n)
rounds and because of Lemma 14 we also get that we will have a complete (γ, ℓ, L)-decomposition
at the end.

Corollary 17. The decomposition (i.e., the assignment of nodes to layers) produced by Algorithm 2
is a (γ, ℓ, L)-decomposition, where γ and ℓ are the parameters from Algorithm 2 and L is a suitably
chosen value from O(log n).

In Section 5.3 we will then show that local maxima allow us to have nodes terminate early, such
that we will obtain a good node-averaged complexity at the end. In the next section our main goal
is to prove that enough of these local maxima actually exist and are nicely distributed in the graph.

5.2 Local Maxima and Bounding Quality

We will first see that during the execution of our algorithm we can actually decompose the graph
into two parts. First the free nodes and all already raked nodes hanging from them and second the
nodes that are in compress paths who also have raked nodes hanging from them see Figure 3 from
before. In compress paths there already are natural local maxima just from the way the original
decomposition algorithm works. These local maxima are sufficient to have all of the compress path
terminate, except for the very ends. These ends are oriented such that they are charged to the
quality of some remaining free node. We will see that by summing over the quality of all free nodes
we get exactly all of these nodes that are not yet descendant of a local maximum.

We start with the following definitions with regards to the orientation of the nodes. Intuitively
nodes are oriented, such that if a node is raked away, the edge is oriented from a parent towards
the just removed node and the ends of compress paths are oriented inwards. This is illustrated in
Figure 5. Let i be some arbitrary even positive integer, and consider the input tree G together with
the partial assignment of nodes to layers obtained after Line 25 and the corresponding set G(i) in
iteration i. Again, let G′ denote the subgraph of G consisting of all nodes that have already been
assigned a layer. We can express G′ = G\G(i).

Definition 18 (child, parent, descendant, ancestor, orphan). For any edge {w,w′} oriented from
w to w′, we call w′ a child of w and w the parent of w′. For any oriented path (w, . . . , w′) that is
consistently oriented from w to w′, we call w′ a descendant of w and w an ancestor of w′. We call a
node with no edges oriented towards itself an orphan.
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vw vy

Figure 5: An example of how edges are oriented. The two nodes at the top are free nodes and they are
connected by a compress path. The nodes inside of the respective trees are oriented from the root towards
the leaves. The ends of the compress path are oriented inwards, however the middle part of the compress
path is not oriented in any way, as illustrated at the innermost nodes, the incident edges of which are no
longer oriented.

We give one of the most important definitions, that of a subtree of assigned nodes. We illustrate
how they exist in relation to G(i) in Figure 6.

Tu Tv

Gi

u v

Figure 6: The graph induced by G(i) is not necessarily connected, it might happen that some two nodes
u ∈ G(i) and v ∈ G(i) are both having a subtree of assigned nodes hanging from them. In this illustration we
name them Tu and Tv respectively. These trees are then connected by a compress path.

Definition 19 (subtree of assigned nodes). For any node v ∈ V (G) and any positive integer i,
the subtree of assigned nodes T (i)(v) denotes the set that contains v and all nodes w that can be
reached from v via a path (v = v0, v1, . . . , vj = w) with the following property: at the time during
the execution of Algorithm 2 when G(i) is defined (i.e., Line 25 for even i, Line 9 for i = 1, and
Line 33 for larger odd i), the edge {va−1, va} is oriented from va−1 to va, for each 1 ≤ a ≤ j.

We denote by h(i)(v) the height of T (i)(v), formally

h(i)(v) = max{dist(v, u)}u∈T (i)(v).

To make the definition of T (i)(v) a bit clearer, we are going to make some small observations
about these trees.

Observation 20. The following hold:

1. Orientations of the edges are only set once and then will not be changed anymore. This
holds true simply because edges are only oriented when a node is first assigned a layer and
not when layers are changed later. Additionally each node only ever orients one edge toward
itself. For an illustration of the orientation refer to Figure 5
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2. Compress Paths: For a path P ′ that is handled in the loop of Line 12, only the first and last
few nodes of the path are oriented. As a result the nodes between the first and last nodes vw
and vy only have incident edges that are oriented away from them (and unoriented incident
edges). Therefore all of the nodes on the unique path vw, . . . , vy are orphans.

3. Promoted Compress Paths: For a path that has its layers changed inside of the if statement
in Line 29, the orientation stays unchanged.

4. The Set N (i) defined in Line 21 only contains nodes that have no edge oriented towards them.

We now show how we can express the entire input graph G in terms of these trees. For this we
will make use of the sets N (i) which contain all of the nodes that were assigned during the compress
procedure. Intuitively any node that is already assigned a label has to hang in some subtree of
assigned nodes. By taking a union over all of the subtrees hanging from G(i) and N (i) we will cover
the entire tree. Also note that in Algorithm 2, N (i) is technically only defined for even values of i.
We additionally define N (i+1) = N (i) (for even i) such that we do not have to worry about only
referring to the correct set.

Lemma 21. For each positive integer i, the following holds:

V (G) =

 ⋃
v∈G(i)

T (i)(v)

 ∪
 ⋃

v∈N(i)

T (i)(v)


Furthermore the two big unions are disjoint.

Proof. We call a node v an orphan if it has no edge oriented towards it. Now any node that has
an edge oriented towards it, is clearly hanging in a tree rooted at an orphan node. So as long as
we have all trees of nodes that are orphans, we cover the entirety of V (G). The only nodes that
are orphans are the nodes of G(i) and the nodes in N (i), since all other nodes had an edge oriented
towards them, when they were assigned to a layer.
Since v is in its own subtree of assigned nodes we trivially get that all nodes of G(i) are in⋃

v∈G(i) T (i)(v). And the same way we get that also all nodes of N are in
⋃

v∈N(i) T (i)(v).

We see that the two are disjoint, because G(i) and N (i) are disjoint. Furthermore any node has at
most one edge oriented towards itself and it therefore also only belongs to one subtree of assigned
nodes, rooted at an orphan.

Notice that for each of these subtrees of assigned nodes, the quality of the root counts exactly
how many nodes in this tree still need to terminate. So by giving a good upper bound on the quality
of nodes in G(i) we will be able to show that in each iteration a constant fraction of the remaining
nodes terminate.

Creating Local maxima For the next lemmas, we narrow down our view to some concrete
iteration i and will hence drop some of the (i) in the exponents. We prove that if the statement in
Line 29 is true and we promote v∗ to layer V R

i+1,1 we get that v∗ will indeed be a local maximum.

Lemma 22. After v∗ is put into V R
i+1,1 by Line 31, v∗ will be a local maximum. Additionally for

any node u that is a local maximum, u will always stay a local maximum and none of the nodes in
its assigned subtree T (i)(u) will change their layer during the rest of the algorithm.
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Proof. First, we show that v∗ actually becomes a local maximum when it is put into V R
i+1,1. Since v

∗

was already in some layer beforehand, clearly all of its children must also have been assigned nodes
at that point in time. Furthermore, v∗ is assigned to layer V R

i+1,1 which no other node is assigned to
yet and is clearly the highest layer up until this point. So v∗ will be in a higher layer than all of it’s
children. That just leaves the parent p of v∗, but p must be an assigned node on the path to the
root node r and therefore is assigned layer V C

i , which implies that v∗ becomes a local maximum.
Now we prove that any node u that is a local maximum, will remain a local maximum. The only
way that it can happen that u stops being a local maximum, is if one of its neighbors gets assigned
a new layer. The only lines in the algorithm that assign new layers to already assigned nodes are
Lines 30 and 31. But the quality of q(i)(u) = 0, due to it being a local maximum and also the quality
of all of the nodes in T (i)(u) will be 0. So they will never be chosen as a node to be promoted. So
now the only possible case is that the parent node p of u gets promoted. For this we make a case
distinction between the different ways u might have become a local maximum. There are three ways
how this could have happened.

1. u was promoted in Line 31, then its parent p was changed into a compress layer. Therefore if
there was an attempt to promote p, the condition in Line 29 would not hold. So p cannot be
promoted.

2. u became a local maximum by being part of Z during the compress step, then u has no parent
p

3. u was a node of degree 0 before it was removed, but then also u does not have a parent.

When we encounter such local maxima during the analysis of our algorithm we will have to
make the distinction whether or not they became local maxima in Line 31 or Line 17. The next
lemma will help us make that distinction.

Lemma 23. When a node v becomes a local maximum in Line 17 of iteration i, then it has distance
at least γ + 1 from any node in G(i) as defined in Line 25. Additionally, all nodes that are assigned
to V C

i−1 in Line 16 have distance at least γ + 1 from any node in G(i).

Proof. For v to be assigned to V R
i,1 it has to be in P ′. Any node in P ′ has distance at least ℓ+ 3

from the endpoints of P . After all nodes of P ′ have been assigned either to layer V R
i,1 or to layer

V C
i−1, P \ P ′ will consist of two disjoint paths of length ℓ+ 2 each. Now both of these paths are

going to be raked away completely in the γ = ℓ+ 3 rakes performed in line 22. As a result any node
that is in P ′ will have at least such a path of ℓ+ 3 = γ raked nodes between itself and any node
that is free after Line 25. As those latter nodes precisely form G(i), the first statement in the lemma
follows. The second statement follows by the same argument.

Additionally we will need this small lemma to argue about the orientation of the paths to our
promoted nodes.

Lemma 24. For all iterations i, if there exists a Path P of nodes that have a layer assigned from a
free node r to a node v that was already assigned a layer and this path has length at most b then v
is a descendant of r.
Additionally if a node v∗ is promoted in line 31, both it and the entire path P ′′ are descendants of r.
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Proof. Remember that an orphan is a node that has no edge oriented towards it and only free nodes
and nodes in N (i) are orphans. Let v be a node that was already assigned a layer and let P be a
path from r to v of length at most b. We need to show, that all edges are oriented from r to v. By
Lemma 23 we get that none of these nodes were assigned a layer inside the compress loop in line 12.
As a result all of them must have been assigned a layer at line 8, or line 24. An edge oriented in any
of these lines is always oriented towards a free node and therefore towards an orphan. As a result
all of the edges in P must have some orientation.
Clearly every node that is not an orphan has a path that is oriented from an orphan to itself, since
orientations are only ever made towards orphans. Then since r is an orphan, {r, v0} must therefore
be oriented towards v0.
Now assume for contradiction that the edges inside P are not oriented from r to v, then there must
exist a first edge {vj , vj+1} that is oriented in the other direction, so from vj+1 to vj . But now vj+1

would have to edges oriented away from it, which cannot happen. The fact that the unique path
r, v0, . . . , vb−1, v

∗ is oriented from r to v∗ follows trivially.

Notice that there is a case distinction in Line 29; we use the above two lemmas to prove that
if the statement in Line 29 is true and we promote v∗ to layer V R

i+1,1 we get that q(v∗) will be a
large part of q(r). Thereby showing that with each promotion we reduce the quality by a constant
fraction. Recall the definitions of the quality q(v) of a node v and H(v), provided in Definition 11.

Lemma 25. If the condition in Line 29 holds and v∗ is promoted, then q(v∗) ≥ q(r)
2∆b when Line 29

is evaluated.

Proof. The statement follows from the fact that

q(r) ≤ ∆b +
∑

v∈Cb(r)

q(v)

Now this is true, because we can separate H(r) into the nodes that are close and those that are far.
Concretely a node u is close, if the path to r is strictly less than b. In this case we get by Lemma 24
that all of these close nodes are actually descendants of r. But only ∆b such nodes can exist. A
node u is far, if the path to r is at least b nodes long, at which point it has to pass through one
of the nodes v ∈ Cb(r). Now since u ∈ H(r) the unique path from r to u satisfies the criteria for
u to be in H(r), then the subpath from w to u must also satisify these criteria and u is therefore
included in q(w). We then get

q(r) ≤ ∆b +
∑

v∈Cb(r)

q(v) ≤ ∆b + |Cb(r)| · q(v∗) ≤ ∆b +∆bq(v∗) ≤ 2∆bq(v∗).

As a result u ∈ H(v) and therefore u is accounted for in q(v). The second inequality comes from
the fact v∗ has the highest quality among nodes in Cb(r).

However the condition in Line 29 may not hold in every iteration. So if it does not hold, we
show that there must exist some node x promoted (earlier) in Line 32 that is close to v∗.

Lemma 26. If the condition in Line 29 does not hold, then there exists a promoted node x at
distance at most 2b− 1 from r, such that q(x) ≥ q(v∗)

2∆b immediately before x was promoted.

Proof. As the intuition of this proof is a lot easier to grasp visually we have provided a sketch of
this scenario in Figure 7. Consider the path P ′′ from r to v∗. Since the condition in Line 29 is not
true, some node u ∈ V (P ′′) \ {r} must already be in a compress layer (i.e., a layer of the form V C

a ),
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Figure 7: v∗ cannot be fixed, because x is already fixed. u is the common ancestor and rx was root, when x
was fixed. Clearly the way m is chosen, Cm(v∗) is a subset of Cb(u)

with dist(u, v∗) < b. By Lemma 23 and the fact that γ = b+ 1, we have that this compress node u
must have been added as the result of Line 30, hence there must also be a node x that was actually
promoted in Line 31. Now because of Lemma 24 u is an ancestor of both v∗ and x. Then we have
that dist(u, x) ≤ b and dist(u, v∗) < b. Now let rx be the node that was the free node which decided
to promote x, so dist(rx, x) = b, then dist(rx, v

∗) < b. Now define m = d(rx, x)− d(rx, v
∗) < b, then

we get that Cm(v∗) ⊂ Cb(rx) and since x was the choice of rx, we get that

∀v∈Cm(v∗) q(v) ≤ q(x)

Now to bound q(v∗)

q(v∗) ≤ ∆m +
∑

v∈Cm(v∗)

q(v) ≤ ∆b +∆bq(x) ≤ 2∆bq(x)

Upperbounding the quality of a free node
The next lemma will be the main technical result that shows that enough nodes are in subtrees
of local maxima. We will show this implicitly by upperbounding the quality of the remaining free
nodes. However we will have to introduce some more notation. We are partitioning each assigned

subtree T (i)(v) into α =
⌈
h(i)(v)+1

b

⌉
subsets S

(i)
0 (v), . . . , S

(i)
α−1(v), where, for each 0 ≤ j ≤ α− 1,

S
(i)
j (v) := {u ∈ T (i)(v) | b · j ≤ dist(u, v) < b · (j + 1)}.

So every b layers of the tree are grouped into one such set. This is illustrated in Figure 8.
Clearly, ⋃

0≤j≤α−1

S
(i)
j (v) = T (i)(v).
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. . .h(i)(r)

Cb(r)

T(i)(r)
Figure 8: A tree rooted at r is split into the different layer sets S0, . . . , Sα. Since r in included in S0 the
union of those layer sets will form the entire tree.

One useful equality following from these definitions is⋃
v∈Cb(r)

S
(i)
j (v) = S

(i)
j+1(r),

which holds for any assigned node r and any 1 ≤ j ≤ α− 1 =
⌈
h(i)(r)+1

b

⌉
.

For convenience, we also formally define S
(i)
j (v) for indices that are larger than α− 1: we set

S
(i)
j (v) := ∅ for all j ≥ α.
Now we are ready to give the main result about the quality of free nodes. Essentially we want

to look at assigned subtrees that are hanging from free nodes. The main intuition is that the deeper
layers contain more nodes and also contain more local maximums. This is simply as a result of
them being in the removed part for more iterations. So if we were able to proof that for each layer

j it was true, that only λj |S(i)
j | nodes remain in that layer for some constant fraction λ, then this

would be enough for constant node averaged complexity. However such a statement is simply not
true. This is because nodes are chosen based on their quality and this might result in some layers
that have almost no nodes fixed. But then this implies that these layers are very sparse. What we
will instead be able to show is that in each subtree of assigned nodes the number of remaining nodes
(or equivalently the quality of the root) satisfy an inequality that expresses almost the same thing.

Lemma 27. There exists a constant 0 < λ < 1 (that only depends on Π and ∆) such that for
all even positive integers i, the following inequality holds at the end of iteration i, for all nodes
r ∈ G(i+1):

q(i+1)(r) ≤
⌈(h(i+1)(r)+1)/b⌉−1∑

j=0

λj |Si+1
j (r)|

One big problem in the proof of Lemma 27 is that the statement holds for free nodes only and
as we will see in the following lemma it is not so easy to get a statement about already assigned
nodes from it. First we need to show that in each iteration trees don’t grow too much. Notice the
(G(i+1) \G(i+3)) is the set of nodes that gets removed in the next iteration.
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Lemma 28. For any free node w for all even iterations i > 1. For all nodes v ∈ (G(i+1) \G(i+3))∩
T (i+3)(w), v has distance less than 3b from w.

Proof. Let R(i+3) := G(i+1) \G(i+3) be the set of all nodes that were first assigned a layer in iteration
i+ 2. Let v ∈ R(i+3) ∩ T (i+3)(w). As a result there must be an oriented path from w to v. Since v
was free before iteration i+ 2 and therefore was also an orphan at that point in time, such a path
must consist completely of nodes in R(i+3). Hence, by giving an upper bound on the longest such
oriented path in R(i+3), we can prove the lemma.

At the beginning of iteration i+ 2 all nodes in R(i+3) are free. Edges are only oriented in Lines
8, 19, 20 and 24. Since Line 8 only happens before iteration 2, it does not affect R(i+3). After
Line 19 and 20 the longest oriented path in R(k+3) has length at most the length of one of those
paths mentioned in these lines. Since components in V (P ′) \ Z have length in [ℓ, 2ℓ] these paths
have at most length 2ℓ. So after these lines any oriented path consisting of nodes from R(i+3) has
length at most 2ℓ. What remains is Line 24. Consider some oriented path of nodes of R(i+3) of
length at most 2ℓ. In each execution of Line 24 we extend this path by at most 1. So after the γ
iterations of this line, the longest oriented path consisting of nodes from R(i+3) has length at most
2ℓ+ γ = 2ℓ+ ℓ+ 3 = 3ℓ+ 3 < 3ℓ+ 6 = 3b.

Ok now we are ready to bound the quality of an already assigned node. In the proof Lemma 27
we will do an inductive argument so for now lets assume it already is true. Intuitively what we will
do is ignore all of the nodes that were added in the last iteration (corresponding to the first three
layer sets) and then get a bound on everything underneath by applying Lemma 27.

Lemma 29. Suppose Lemma 27 holds. Suppose w is some already assigned node during iteration i.
Let k be the last iteration in which w was still a free node. Then

q(i+1)(w) ≤ q(k+3)(w)

≤ |S(k+3)
0 (w)|+ |S(k+3)

1 (w)|+ |S(k+3)
2 (w)|+

⌈(h(k+3)(w)+1)/b⌉−1∑
j=3

λj−3|S(k+3)
j (w)|.

Proof. Critically we have to specify in which iteration k we apply Lemma 27, in which w was still
a free node. The problem is that if we derive some bound on q(k+1)(w) for some iteration k in
which w was still free, then in iteration8 k + 2 some neighbor v of w might be raked away and
T (k+1)(v) might become part of T (k+3)(w). As a result T (k+3)(w) might be larger than T (k+1)(w)
and therefore invalidate our bound on q(k+1)(w), since q(k+3)(w) > q(k+1)(w) might be true. The
solution to this is the fact that once w is assigned a layer, the subtree of assigned nodes hanging
from w can no longer grow9 and therefore the quality of w can no longer increase. As a result a
bound on the quality that holds when w is assigned a layer, will always stay true afterwards. So we
choose k to be last iteration in which w was still a free node and show that in that last iteration the
quality didn’t grow too much.

If w is assigned in iteration k = 2 or before, then by Lemma 28 the subtree hanging from w
must be of height strictly less than 3b. Therefore the quality is bounded by

q(i+1)(w) = |S(i+1)
0 (w)|+ |S(i+1)

1 (w)|+ |S(i+1)
2 (w)|.

8Remember that iteration k + 2 is the iteration following iteration k, because iterations go in increments of 2.
9This is true, because w will no longer be a free node and edges are only ever oriented from free nodes towards

nodes that were just assigned a layer, so no new paths from w to other nodes can be created, after w was assigned a
layer.
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As this is a stronger statement than what we will derive later, we can freely assume that w was not
assigned in the first iteration. Let iteration k be the last iteration such that w was a free node at
the end of iteration k. This in particular implies that k ≤ i− 2 and that w is assigned a layer in
iteration k + 2 ≤ i. So if we give a bound on q(k+3)(w) then this bound still holds in iteration i, i.e.,
for q(i+1)(w). (Note that, once a node w is assigned, the definition of q(w) ensures that the quality
of w cannot increase since the reassignments of assigned nodes to new layers in Algorithm 2 always
assign the nodes to higher layers than used before.)

To give a bound on q(k+3)(w) we first need to understand how T (k+3)(w) looks like. Clearly
T (k+1)(w) ⊆ T (k+3)(w), but there might also be some additional nodes that were free nodes after
iteration k that now have joined w’s subtree of assigned nodes. These nodes then also come with
their own subtrees. As a result these nodes would now also be in T (k+3)(w). Let us call the set of
these nodes

V (k+1)
w := {v ∈ G(k+1) | v ∈ T (k+3)(w)}.

We note that v ∈ T (k+3)(w) implies v /∈ G(k+3), just from the definition of subtrees of assigned
nodes. Now we can express T (k+3)(w) via

T (k+3)(w) = T (k+1)(w) ∪
⋃

v∈V (k+1)
w

T (k+1)(v).

Since all v ∈ V
(k+1)
w are also contained in G(k+1) we can apply Lemma 27 and we have

q(k+1)(v) ≤
⌈(h(k+1)(v)+1)/b⌉−1∑

j=0

λj |Sj(v)|.

To make things precise we need to relate the height of these trees rooted at such a v to the height
of the tree of w. Notice that for any node u ∈ T (k+1)(v) its distance to w is exactly its distance to
v plus the distance from v to w, i.e.,

dist(u,w) = dist(u, v) + dist(v, w).

By using Lemma 28 we get that for any node v ∈ V
(k+1)
w the distance to w is less than 3b. As a

result, we get that for any node u ∈ T (k+1)(v) for any v ∈ V
(k+1)
w

dist(u,w) = dist(u, v) + dist(v, w) ≤ dist(u, v) + 3b.

If u was in S
(k+1)
j (v) and the distance from v to w were actually exactly 3b, then u would be in

S
(k+3)
j−3 (w). Now since

q(k+1)(v) ≤
⌈(h(k+1)(v)+1)/b⌉−1∑

j=0

λj |S(k+1)
j (v)|

and
T (k+3)(w) = T (k+1)(w) ∪

⋃
v∈V (k+1)

w

T (k+1)(v),

we get that

q(k+3)(w) ≤ q(k+1)(w) +
∑

v∈V (k+1)
w

q(k+1)(v)
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≤
⌈(h(k+1)(w)+1)/b⌉−1∑

j=0

λj |S(k+1)
j (w)|+

∑
v∈V (k+1)

w

⌈(h(k+1)(v)+1)/b⌉−1∑
j=0

λj |S(k+1)
j (v)|

Now again we look at S
(k+1)
j (v) for some arbitrary j. We already know that only λj of all of

these nodes contribute to q(k+3)(w). We now want to express them with respect to the layers

S
(k+3)
0 (w), . . .

We want to relate everything to the layer sets of w

q(k+3)(w) ≤
⌈(h(k+1)(w)+1)/b⌉−1∑

j=0

λj |S(k+1)
j (w)|+

∑
v∈V (k+1)

w

⌈(h(k+1)(v)+1)/b⌉−1∑
j=0

λj |S(k+1)
j (v)|

≤ |S(k+3)
0 (w)|+ |S(k+3)

1 (w)|+ |S(k+3)
2 (w)|+

⌈(h(k+3)(w)+1)/b⌉−1∑
j=3

λj−3|S(k+3)
j (w)|.

We argue that the second inequality holds. For any node u ∈ S
(k+1)
j (v), we get that its distance

from w is at most 3b larger than its distance to v. So the farthest layer S
(k+3)
0 (w), . . . it could be in

would be S
(k+3)
j+3 (w) so if we only want to show that an λj fraction of nodes in S

(k+3)
j+3

10 contribute

to the quality of q(k+3)(w) we can simply assume the worst case and say that v has this distance
3b from w. Because if the distance was smaller, it would only mean that some of the nodes from

S
(k+1)
j (v) end up in layers before S

(k+3)
j+3 and hence have a bigger coefficient.

So now, as we argued before, since this bound holds in iteration k + 2 in which w was already
assigned a layer, this bound will also hold for later iterations. So we get

q(i+1)(w) ≤ q(k+3)(w)

≤ |S(k+3)
0 (w)|+ |S(k+3)

1 (w)|+ |S(k+3)
2 (w)|+

⌈(h(k+3)(w)+1)/b⌉−1∑
j=3

λj−3|S(k+3)
j (w)|.

Proof of Lemma 27. We will prove the claim by induction on h(i+1)(r), the height of the assigned
subtree T (i+1)(r).
Base Case: 0 ≤ h(r) < b. For h(r) < b, the set S0(r) is just the entire tree T (r), so the statement
is trivially true for any 0 < λ < 1.
Induction step: Now we want to prove the statement for some tree with height h(i+1)(r), so let
the statement be true for all trees that have height at most h(i+1)(r)− b.

We will use the induction hypothesis on all of the nodes in Cb(r). Notice that this is valid, since
their heights can be at most h(r)− b. Let w ∈ Cb(r) be one such node. By invoking Lemma 29 we
get

q(i+1)(w) ≤ q(k+3)(w)

≤ |S(k+3)
0 (w)|+ |S(k+3)

1 (w)|+ |S(k+3)
2 (w)|+

⌈(h(k+3)(w)+1)/b⌉−1∑
j=3

λj−3|S(k+3)
j (w)|.

10respectively a λj−3 fraction of nodes in S
(k+3)
j
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We note that this is not a cyclic argumentation, as by the inductive hypothesis Lemma 27 already

holds for w and all nodes in its subtree (Critically all of the nodes in the set V
(k+1)
w ). We get such a

bound for every node w ∈ Cb(r). To keep things clearer we will refer to the iteration k which we
used for the induction hypothesis as kw for a specific w, as these iterations might be different for
different w. So for every w ∈ Cb(r) we get

q(i+1)(w) ≤ q(kw+3)(w)

≤ |S(kw+3)
0 (w)|+ |S(kw+3)

1 (w)|+ |S(kw+3)
2 (w)|+

⌈(h(kw+3)(w)+1)/b⌉−1∑
j=3

λj−3|S(kw+3)
j (w)|

=
2∑

j=0

|S(kw+3)
j (w)|+

⌈(h(kw+3)(w)+1)/b⌉−1∑
j=3

λj−3|S(kw+3)
j (w)|

Critically, we get bounds on their quality during iteration kw + 2 in which they were just assigned a
layer, which must have happened before any node was promoted in Line 32. As a result, we get that
no node that was at distance 2b− 1 from r that was promoted, is accounted for in these bounds on
the qualities. This is because the nodes we have used the induction hypothesis on are at distance
exactly b from r and at the point at which they were free nodes, they had only promoted nodes at
distance exactly b from themselves, so of distance strictly larger than 2b− 1 with respect to r. And
at the point in time at which our bounds on q(i+1)(w) were derived, we did not yet consider any
node being promoted in iteration kw + 2. We will denote by q′(r) the quality of r at this point in
time, i.e., at a point in time before considering any node at distance 2b− 1 from r as promoted. We
get

q′(r) ≤ |S(i+1)
0 (r)|+

∑
w∈Cb(r)

q(kw+3)(w)

≤ |S(i+1)
0 (r)|+

∑
w∈Cb(r)

 2∑
j=0

|S(kw+3)
j (w)|+

⌈(h(kw+3)(w)+1)/b⌉−1∑
j=3

λj−3|S(kw+3)
j (w)|

 .

Since S
(kw+3)
j (w) will not change anymore, the set is equal to the set S

(i+1)
j (w). By then also

observing the fact that ⋃
w∈Cb(r)

S
(i+1)
j (w) = S

(i+1)
j+1 (r),

we obtain

q′(r) ≤
3∑

j=0

|S(i+1)
j (r)|+

⌈(h(i+1)(r)+1)/b⌉−1∑
j=4

λj−4|S(i+1)
j (r)|.

Again this holds before any node at distance 2b − 1 from r was promoted. Now we have to
differentiate between two cases: either the v∗ computed by r was promoted or not. If v∗ is promoted,
we get by Lemma 25 that q′(v∗) is some constant fraction of q′(r). Now since node v∗ is at distance
exactly b to r, the nodes that account for q′(v∗) are not yet included in the bounds on q′(r), hence
q(r) = q′(r)− q′(v∗). In the other case, where the condition to promote v∗ does not hold, we get by
Lemma 26 that some x exists such that q′(x) is a constant fraction of q′(v∗) and, by extension, also
a constant fraction of q′(r). Furthermore Lemma 26 gives us that this x must be in the first 2b− 1
layers and therefore also q(r) ≤ q′(r)− q′(x) would hold.
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By Lemmas 25 and 26 we know that the fraction of q′(r) that will be subtracted is smaller in the
second case, where we just have that some x exists, that was promoted. So w.l.o.g. we can just
consider the second case. By Lemmas 25 and 26 we obtain

q′(x) ≥ q′(v∗)

2∆b
≥ q′(r)

4∆2b
,

which implies

q(i+1)(r) ≤ q′(r)− q′(x) ≤ q′(r)− q′(r)

4∆2b
= (1− 1

4∆2b
)q′(r).

By choosing λ4 = (1− 1
4∆2b ), we obtain

q(i+1)(r) ≤ (1− 1

4∆2l
)q′(r)

= λ4

 3∑
j=0

|S(i+1)
j (r)|+

⌈(h(i+1)(r)+1)/b⌉−1∑
j=4

λj−4|S(i+1)
j (r)|.



≤
⌈(h(i+1)(r)+1)/b⌉−1∑

j=0

λj |S(i+1)
j (r)|.

5.3 Distributed Algorithm and Node Averaged Complexity

In this section, we will describe how we implement Algorithm 2 in a distributed manner and how
we will use it to design an algorithm A that solves the given LCL problem Π, and we will prove an
upper bound of O(log∗ n) for the node-averaged complexity of the latter algorithm. We start by
describing our distributed implementation of Algorithm 2. For the remainder of the section, set
s := 10ℓ.

Distributed implementation. The computation of ℓ from Π in Line 1 of Algorithm 2 can be
performed by every node without any communication. Next, the nodes compute a distance-s coloring
with a constant number of colors. Since ∆ and ℓ are constant, this can be done in worst-case
complexity O(log∗ n), e.g., by computing a (∆(Gs) + 1)-coloring of the power graph Gs, using the
algorithm of Barenboim, Elkin and Kuhn [13] (that computes a (∆ + 1)-coloring in O(log∗ n+∆)
rounds). Then, the nodes execute Lines 6–8, which they can do by executing γ rounds of a simple rake
operation (including orienting edges if required). It remains to consider the for loop in Lines 11–34.

The computation of the subset Z in Line 15 can be performed in a constant number of rounds
by iterating through the color classes of the computed distance coloring and in each iteration adding
a node to Z if it does not cut off a subpath of P ′ of length < ℓ (which can be determined in ℓ rounds
per iteration). Note that no path of length 2ℓ+ 1 can remain in the graph induced by V (P ′) \ Z
since the middle node of this path would have been added to Z during the iteration of its color
class. Analogously, no path of length > 2ℓ+ 1 can remain after the computation of Z.

As additionally each of the γ rake operations (Line 23) can be performed in 1 round, all other
operations require only seeing up to distance linear in |P ′|, b, or |P ′′| (which are all constants), and
the nodes and paths in Lines 12 and 26, respectively, can be processed in parallel, we obtain the
following lemma.
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Lemma 30. Assume a distance-s coloring with a constant number of colors is given. Then iteration
i of Algorithm 2 can be executed in a constant number of rounds, for each even positive integer i.

Note that a node can determine in constant time whether it should take part in a certain
operation as this only depends on the node’s constant-hop neighborhood.

Next we will describe our algorithm A for solving a given LCL problem Π.

Algorithm for Π. In order to describe our algorithm A for solving Π with a small node-average
complexity, we first describe an algorithm A′ that is not optimized for the node-averaged setting
and then explain how to tweak A′ to obtain A.

Algorithm A′ proceeds as follows. Use Algorithm 2 to compute a (γ, ℓ, L)-decomposition, where
the values of γ and ℓ depend on Π, and L ∈ O(log n) (due to Corollary 17). Then execute the
generic algorithm from Section 4.2 using the computed (γ, ℓ, L)-decomposition. As explained in
Section 4.2, the generic algorithm produces a correct output for Π given any (γ, ℓ, L)-decomposition.

In order to turn A′ into an algorithm A with small node-averaged complexity, we simply let
each node start executing the steps in the generic algorithm as soon as the partial decomposition
computed so far by Algorithm 2 provides all necessary information. Additionally, when having
determined the output labels for all incident edges, each node immediately terminates.

From the description of the generic algorithm provided in Section 4.2, it follows precisely what
information a node needs in order to execute the two steps in the generic algorithm: choosing
label-sets for incident edges and choosing labels for incident edges. In particular, the description of
the generic algorithm implies the following:

1. Consider a layer computed in the (γ, ℓ, L)-decomposition. At most 2ℓ + 1 rounds after all
nodes in all smaller layers (according to the total order given in Definition 8) have chosen
label-sets for all incident edges (or earlier), all nodes in the considered layer know the label-set
for each incident edge. If there is no smaller layer, all nodes in the considered layer know their
label-sets after the first round.

2. If a node is a local maximum and knows its incident label-sets, it can immediately output
labels for all incident edges. If a node is in a rake layer (i.e., in a layer of the form V R

i,j) and
knows its incident label-sets, then it can output labels for all of its incident (so far unlabeled)
edges one round after all incident edges of its parent (if it has one) have an output label. If a
node is in a compress layer (i.e., in a layer of the form V C

i ) and each node in its path P in
the layer knows its incident label-sets, then each node in the path can output labels for all of
their incident (so far unlabeled) edges 2ℓ+ 1 rounds after all incident edges of the parents of
the two endpoints of the path (if they have one) have an output label.

These two properties enable us to prove the following lemma.

Lemma 31. Assume a distance-s coloring with a constant number of colors is given. Then there
exists an integer constant t such that the following holds: if a node v becomes a local maximum in
iteration i of Algorithm 2, then the entire tree T (i)(v) will have terminated after ti rounds in A.

Proof. Let v be a node that becomes a local maximum in iteration i of Algorithm 2. As the design of
Algorithm 2 guarantees that there are at most 2iγ layers below the layer v is assigned to, Property 1
in the above discussion implies that v knows the label-sets for its incident edges latest after round
5iγℓ, and in turn Property 2 together with Lemma 22 implies that after another at most 5iγℓ rounds
all nodes in T (i)(v) have chosen output labels for their incident edges and terminated. Now, set t to
be the sum of 10γℓ and the constant from Lemma 30.
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To make the runtime analysis a bit cleaner, we are going to mark all nodes in T (i)(v), once v
becomes a local maximum. We emphasize that this is solely for the purpose of the analysis and this
does not change the algorithm at all. More specifically, once any node v becomes a local maximum,
all of the nodes in T (i)(v) become marked instantly (in 0 rounds). We obtain the following corollary
from Lemma 31.

Corollary 32. Assume a distance-s coloring with a constant number of colors is given. If a node v
becomes marked in iteration i, then v will have terminated in round ti, where t is the constant from
Lemma 31.

Now we use this result to prove that a large amount of nodes are in subtrees of local maxima
after a reasonable amount of time. This will be sufficient to prove that the node-averaged complexity
is constant, without the time for the input coloring.

Lemma 33. There exists a constant 0 < σ < 1, such that for every iteration i ≥ 10 of Algorithm 2
at most 2∆bnσi nodes are not marked.

Proof. Let F be the set of all marked nodes after iteration i. We want to upper bound the size of
V \ F . By Lemma 21, we get a decomposition of V (G) into

V (G) =

 ⋃
v∈G(i+1)

T (i+1)(v)

 ∪
 ⋃

v∈N(i+1)

T (i+1)(v)

 .

For simplicity, we will define the left part as Ri and the right part as Ci, i.e.,

Ri :=
⋃

v∈G(i+1)

T (i+1)(v), Ci :=
⋃

v∈N(i+1)

T (i+1)(v).

We obtain that
V \ F = (Ri ∪ Ci) \ F = (Ci \ F ) ∪ (Ri \ F ).

So we now need to bound the size of these two sets. To bound the size of Ci \ F , we observe that
since all nodes in N (i+1) are marked in iteration i, all nodes in Ci will be marked. So Ci \ F = ∅
and we obtain

|Ci \ F | = 0.

For the nodes in Ri we will have to put a bit more effort into it. If we look at a tree T (i+1)(r) without
any of the already marked nodes, we obtain exactly H(v) from Definition 11. This is because any
marked node is in a descendant of some local maximum. Therefore such a node cannot be reached
by a path that satisfies the requirements for H(v). So we get that |T (i+1)(r) \ F | = q(i+1)(r), which
implies

|Ri \ F | = |
⋃

r∈G(i+1)

(
T (i+1)(r) \ F

)
| =

∑
r∈G(i+1)

q(i+1)(r).

Now by applying Lemma 27, we get that

|Ri \ F | =
∑

r∈G(i+1)

q(i+1)(r) ≤
⌈(h(i+1)(r)+1)/b⌉−1∑

j=0

λj |S(i+1)
j (r)|
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By noticing that Sj(r) is empty for jb > h(i+1)(r) + 1 and defining h = max{h(i+1)(r) | r ∈ G(i+1)}
we can reformulate the expression as

∑
r∈G(i+1)

⌈(h(i+1)(r)+1)/b⌉−1∑
j=0

λj |Sj(r)| =
∑

r∈G(i+1)

⌈(h+1)/b⌉−1∑
j=0

λj |Sj(r)|.

Observe that the maximum height h is upper bounded by 10iγ (as, e.g., follows from the proof
of Lemma 28) which is in turn upper bounded by ti where t is the constant from Lemma 31 and
Corollary 32. Hence, we obtain

∑
r∈G(i+1)

⌈(h+1)/b⌉−1∑
j=0

λj |Sj(r)| ≤
∑

r∈G(i+1)

⌈(ti+1)/b⌉−1∑
j=0

λj |Sj(r)|.

By splitting at some β fraction of the height, which we will fix later, we obtain

∑
r∈G(i+1)

⌈(ti+1)/b⌉−1∑
j=0

λj |Sj(r)| ≤
∑

r∈G(i+1)

⌊βti/b⌋∑
j=0

λj |Sj(r)|+
⌈(ti+1)/b⌉−1∑
j=⌈βti/b⌉

λj |Sj(r)|



≤
∑

r∈G(i+1)

⌊βti/b⌋∑
j=0

1 · |Sj(r)|+
⌈(ti+1)/b⌉−1∑
j=⌈βti/b⌉

λ⌈βti/b⌉|Sj(r)|

 .

Now we want to upper bound the number of nodes that are in the first sum. To this end, we
notice that in a tree of height βti there can be at most ∆βti nodes. Furthermore, |G(i+1)| ≤ nεi by
Lemma 16, which implies

∑
r∈G(i+1)

⌊βti/b⌋∑
j=0

|Sj(r)| ≤
∑

r∈G(i+1)

∆βti+b ≤ |G(i+1)|∆βti+b

≤ nεi∆βti+b = ∆bn · exp (i (βt ln(∆)− ln(1/ε)))

Now by choosing β = ln(1/ε)
2t ln(∆) , we obtain

∆bn · exp (i (βt ln(∆)− ln(1/ε))) = ∆bn · exp
(
−i · 1

2
· ln(1/ε)

)
= ∆bn ·

(√
ε
)i
.

So the bound we get is ∑
r∈G(i+1)

⌊βti/b⌋∑
j=0

|Sj(r)| ≤ ∆bn ·
(√

ε
)i
.

Now to bound the size of the second sum, we observe that

∑
r∈G(i+1)

⌈(ti+1)/b⌉−1∑
j=⌈βti/b⌉

λ⌈βti/b⌉|Sj(r)| = λ⌈βti/b⌉ ·
∑

r∈G(i+1)

⌈(ti+1)/b⌉−1∑
j=⌈βti/b⌉

|Sj(r)| ≤ n ·
(
λβt/b

)i
.

Combining the two obtained inequalities yields

|Ri \ F | ≤
∑

r∈G(i+1)

⌊βti/b⌋∑
j=1

|Sj(r)|+
⌈(ti+1)/b⌉−1∑
j=⌈βti/b⌉

λ⌈βti/b⌉|Sj(r)|

 ≤ ∆bn ·
(√

ε
)i
+ n ·

(
λβt/b

)i
.
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It follows that

|V \ F | = |(Ri ∪ Ci) \ F | = |((Ci \ F ) ∪ (Ri \ F )| ≤ 0 + ∆bn ·
(√

ε
)i
+ n ·

(
λβγ/l

)i
.

By choosing σ = max{λβγ/l,
√
ε}, we obtain

|V \ F | ≤ 2∆bnσi

We obtain the following lemma.

Lemma 34. On average, nodes become marked in O(1) iterations.

Proof. By Lemma 33, we get that for each (even) iteration i > 10, only 2∆bnσi nodes are not
marked. Note that the number of iterations of a node v is therefore at most 5 plus the total number
of even iterations i > 10 in which that node has not terminated. We can therefore upper bound
the total number of iterations of all nodes as 5n plus the sum over 2∆bn · σi for all even i > 10.
This sum can be upper bounded by summing over both the even and odd i and to get the average
number of iterations per node we divide by n. We therefore get an upper bound of

5 +
1

n

∞∑
i=12

2∆bn · σi ≤ 5 + 2∆b
∞∑
i=1

σi = 5 +
2∆b

1− σ
∈ O(1).

on the average number of iterations per node.

Then using this lemma together with Corollary 32 we get that an average node terminates
after a constant number of rounds. However, we still have to pay for the input distance coloring
which takes O(log∗ n), as discussed in the beginning of the section. So by first computing this input
coloring and then running the algorithm, we obtain a total node-averaged complexity of O(log∗ n),
proving Theorem 1.

6 Improved Algorithms in the Polynomial Regime

In this section we show that, for infinitely many LCL problems with polynomial worst-case complexity,
we can improve their node-averaged complexity. More precisely, in this section we show that, for
a class of problems with worst-case complexity Θ(n1/k), we can provide an algorithm with node-

averaged complexity O(n1/(2k−1)). As we show in Section 7, this complexity is almost tight, since

for all problems with worst-case complexity Θ(n1/k) we can show a lower bound of Ω̃(n1/(2k−1)).

6.1 The Hierarchical 21
2
-Coloring Problems

We now define a class of problems, already presented in [19], called hierarchical 21
2 -coloring, that is

parametrized by an integer k ∈ Z+. It has been shown in [19] that the problem with parameter k
has worst-case complexity Θ(n1/k). We now give a formal definition of this class of problems and
then we provide some intuition.

The set of input labels is Σin = ∅. The set of output labels contains four possible labels, that is,
Σout = {W,B,E,D}, and these labels stand for white, black, exempt, and decline. Each node has a
level in {1, . . . , k + 1}, that can be computed in constant time, and the constraints of the nodes
depend on the level that they have. The level of a node is computed as follows.
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1. Let i← 1.

2. Let Vi be the set of nodes of degree at most 2 in the remaining tree. Nodes in Vi are of level i.
Nodes in Vi are removed from the tree.

3. Let i← i+ 1. If i ≤ k, continue from step 2.

4. Remaining nodes are of level k + 1.

Each node must output a single label in Σout, and based on their level, they must satisfy the
following local constraints.

� No node of level 1 can be labeled E.

� All nodes of level k + 1 must be labeled E.

� Any node of level 2 ≤ i ≤ k is labeled E iff it is adjacent to a lower level node labeled W , B,
or E.

� Any node of level 1 ≤ i ≤ k that is labeled W (resp. B) has no neighbors of level i labeled B
(resp. W ) or D. In other words, W and B are colors, and nodes of the same color cannot be
neighbors in the same level.

� Nodes of level k cannot be labeled D.

This problem can be expressed as a standard LCL (a type of LCLs defined in Appendix C) by
setting the checkability radius r to be O(k), since in O(k) rounds a node can determine its level
and hence which constraints apply.

Some intuition on these problems. In order to have a bit of intuition on this class of problems,
let us consider the case when k = 2, for which the worst-case complexity is Θ(

√
n). Let us focus

on nodes of levels 1 and 2 (note that these are the only nodes that matter, since nodes of level 3
will blindly output E). Notice that, by the definition of the level of a node, nodes of the same level
form paths. Let Q be a path of level-1 nodes. By the definition of the LCL problems described
above, Q must either be 2-colored by using the labels W and B, or all nodes in Q must be labeled
D. Now consider a path P of level-2 nodes. By the definition of the LCL problems, a node in P
must be labeled E if and only if it has a level-1 neighbor labeled with W or B. On the other hand,
the subpaths of P induced by nodes having a level-1 neighbor labeled D must be 2-colored by using
the labels W and B.

On the lower bound side, a worst-case instance for this LCL with parameter k = 2 consists of a
path P of length Θ(

√
n), where to each node vj of P is attached a path Qj of length Θ(

√
n). If

an algorithm performs a 2-coloring of any of the Qj paths, then it needs to spend Ω(
√
n) rounds.

Otherwise, if none of the Qj paths gets 2-colored, then any correct algorithm must 2-color P ,
spending Ω(

√
n) rounds.

On the upper bound side, this LCL with parameter k = 2 can be solved in O(
√
n) rounds in

the following way. First, level-1 nodes spend O(
√
n) rounds to check if the path that they are in

has length O(
√
n): if yes, then the path gets 2-colored with labels W and B; if no, the path gets

labeled with D. If a level-2 node has a level-1 neighbor that is colored (i.e., it is labeled W or B),
then it outputs E. Finally, it is possible to prove that the subpaths induced by nodes of level 2 that
have a level-1 neighbor labeled D must be of length O(

√
n), hence these subpaths can be 2-colored

in O(
√
n) rounds.
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6.2 Better Node-Averaged Complexity

We now show that, for the class of LCL problems described in Section 6.1, we can obtain a better
node-averaged complexity. The algorithm is similar to the one presented in [16] for the worst-case
complexity, but it is modified to obtain a better node-averaged complexity (in Section 7 we show
that this algorithm is tight up to a log n factor).

Theorem 35. The node-averaged complexity of the hierarchical 21
2 -coloring problem with parameter

k is O(n1/(2k−1)).

Proof. At first, all nodes spend O(1) rounds to compute their level. Nodes of level k + 1 output E.
Then, the algorithm proceeds in phases, for i in 1, . . . , k. In phase i, all nodes of level i get a label,
and hence let us assume that all nodes of levels 1, . . . , i− 1 already have a label, and let us focus on
level-i nodes.

Consider a node v of level i. Node v proceeds as follows. If v has a neighbor from lower levels
that is labeled W or B then v outputs E. Otherwise, v spends ti = c · γi rounds to check the length
of the path containing v induced by nodes of level i, for some constant c to be fixed later, and
γi = n2i−1/(2k−1). If this length is strictly larger than ti, then v outputs D. Otherwise, all nodes of
the path are able to see the whole path, and hence they can output a consistent 2-coloring by using
the labels W and B.

The above algorithm correctly solves the problem if we assume that no nodes in level k output
D. In the following we show that indeed nodes of level k do not output D, hence showing the
correctness of the algorithm, and then we prove a bound on the node-averaged complexity.

In order to do so, we first prove a useful statement. Let S be the set of nodes of level i that do
not directly output E at the beginning of phase i. It is possible to assign each node of level j < i to
exactly one node in S such that to each node in S are assigned Ω(n(2i−1−1)/(2k−1)) unique nodes of
lower layers. Let v be a node in S. Since v ∈ S, it means that v is connected to a path P of nodes of
level i− 1 of length strictly larger than ti−1, and hence all nodes in P are labeled D. Since, by the
definition of the levels, P has at most 2 nodes of higher levels connected to it, then we can charge
ti−1/2 unique nodes to v. By repeating this reasoning inductively, we obtain that for each node of
layer i that does not directly output E, we can assign at least the following amount of nodes:

i−1∏
j=1

tj/2 = Ω

i−1∏
j=1

γj

 = Ω(n
∑i−1

j=1 2
j−1/(2k−1)) = Ω(n(2i−1−1)/(2k−1)).

Hence, the number of nodes that participate in phase i is at most O(n1−(2i−1−1)/(2k−1)) =

O(n(2k−2i−1)/(2k−1)). This implies that in phase k the number of participating nodes is at most

O(n(2k−2k−1)/(2k−1)) = O(n2k−1/(2k−1)) = O(γk), where the hidden constant is inversely proportional
to c. Hence, by picking c large enough, we get that in tk rounds nodes of level k see the whole path
and thus no node of level k outputs D, proving the correctness of the algorithm.

The total time spent during phase i is bounded by

O(γi · n1−(2i−1−1)/(2k−1)) = O(n2i−1/(2k−1) · n1−(2i−1−1)/(2k−1)) = O(n1+1/(2k−1)).

Therefore, the average time spent in phase i is bounded by O(n1/(2k−1)). Since this is done for
i ∈ {1, . . . , k}, and since k = O(1), then the claim on the node-averaged complexity follows.
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7 Lower Bounds in the Polynomial Regime

In this section we show that any LCL problem that requires polynomial time for worst-case complexity
requires polynomial time also for node-averaged complexity. More precisely, we prove the following
theorem.

Theorem 36. Let Π be an LCL problem with worst-case complexity Ω(n1/k) in the LOCAL model.

The node-averaged complexity of Π in the LOCAL model is Ω(n1/(2k−1)/ log n).

In order to prove this theorem, we proceed as follows (throughout this section we will use notions
presented in Section 4.2). It is known by [16] that if an LCL problem Π has worst-case complexity
o(n1/k), then it can actually be solved in O(n1/(k+1)) rounds. This statement is proved by showing
that it is possible to use an algorithm (possibly randomized) running in o(n1/k) rounds to construct a
good function fΠ,k+1 (that is, a function fΠ,k+1 that, if used, never creates empty classes), implying
(as shown in Section 4.2) the existence of a deterministic algorithm that solves Π and has worst-case
complexity O(n1/(k+1)). In this section we show that it is possible to construct a good function

fΠ,k+1 by starting from an algorithm A with node-averaged complexity o(n1/(2k−1)/ log n). By

Section 4.2, this implies that if there exists an algorithm with o(n1/(2k−1)/ log n) node-averaged
complexity, then there exists an algorithm with worst-case complexity O(n1/(k+1)), implying that any

LCL with worst-case complexity Ω(n1/k) has node-averaged complexity at least Ω(n1/(2k−1)/ log n).
While we will use some ideas already presented in [16], handling an algorithm with only guarantees
on its node-averaged complexity arises many (new) issues that we need to tackle.

Our statement will be proved even for the case in which algorithm A satisfies the weakest
possible assumptions (i.e., the assumptions are so relaxed that they are satisfied by any deterministic
algorithm, any randomized Las Vegas algorithm, and any randomized Monte Carlo algorithm). The
assumptions are the following.

� We assume that A is a randomized algorithm that is only required to work when the unique
IDs of nodes are assigned at random, among all possible valid assignments.

� We assume that A is an algorithm that fails with probability at most 1/nc for any chosen
constant c ≥ 1.

� We assume that the bound on the node-averaged complexity of A holds with probability at
least 1− 1/nc for any chosen constant c ≥ 1.

However, in the following, we will assume that the bound on the node-averaged complexity of
A holds always. In fact, observe that we can always convert an algorithm with node-averaged
complexity T that holds with probability at least 1− 1/nc into an algorithm with node-averaged
complexity O(T ) that holds always, since, even for c = 1, we can safely assume that when the bound
does not hold (that happens with probability at most 1/n), the runtime is anyways bounded by n
(since everything can be solved in n rounds in the LOCAL model).

7.1 Good Functions

We now show how, in [19, 16], it is determined whether a good function exists. In the following, by
solver we mean the algorithm for solving an LCL given a decomposition, presented in Section 4.2.

The high level idea in [19, 16] is that, being that there are a finite amount of possible functions
(because the classes of Definition 4 have finite size, and because there is a finite amount of ways to
map maximal classes into independent ones), we can test them all by using a centralized algorithm
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that checks whether a function is good. The key question is how to test whether a function is good,
and, on a high level, this is done by constructing all possible label-sets that could possibly appear
while running the solver, which depend on the tested function. Crucially, this is a finite amount,
and there is a recursive procedure that can generate them.

What actually determines the complexity of a problem. We now provide some more intuition
about the function fΠ,k, and about how the existence of this function is related with the complexity
of a problem. In [19, 16] it is shown how to determine whether a good function exists (that is, a
function that never creates empty classes), and if it exists, how to construct it. Also, it is shown
that:

� If a problem is solvable in O(log n) rounds, then a good function fΠ,∞ exists.

� If a problem is solvable in o(n1/k), then a good function fΠ,k+1 exists.

This implies that, if a problem is solvable in O(log n) rounds, then we can automatically find a good
function that makes the generic algorithm work and solve the problem in O(log n) rounds, and if
a problem is solvable in o(n1/k), then we can automatically find a good function that makes the
generic algorithm work and solve the problem in O(n1/(k+1)) rounds. Also, given a problem Π, it is
possible to compute what is the optimal target complexity, that is, we can determine whether the
problem can be solved in O(log n) rounds, and if the answer is negative we can determine the best
integer k for which the problem can be solved in O(n1/k) rounds.

The intuition about what determines the existence of a good function fΠ,k is the following:
compress paths are something that is difficult to handle, because they require to restrict the label-sets
that we propagate up in order to make them “independent”. The number of compress layers that
we can recursively handle is what determines the complexity of a problem:

� If we can handle an arbitrary amount of compress layers, then we can construct a good
function fΠ,∞, and hence the problem can be solved in O(log n) rounds.

� If we can handle only a constant amount of compress layers, say k − 1, then a good function
fΠ,k exists, but fΠ,k+1 does not, and then the complexity of the problem is Θ(n1/k).

Testing procedure. We now present an algorithm that tests whether a function fΠ,k is good. We
call this algorithm testing procedure. The procedure depends not only on the function to be tested,
but also on a parameter ℓ that, in [19, 16], is shown that it can be determined solely as a function of
Π. We observe that this algorithm is well-defined also when k =∞, and in fact this algorithm can
be used also to determine whether a problem can be solved with O(log n) worst-case complexity.
The idea of the testing procedure is to keep track of all possible label-sets that one could possibly
obtain while running the solver. For each of these label-sets, we also keep track of a subtree (where
nodes are also marked with the layers of a decomposition) where, if we run the solver by using
the function that we are testing, we would obtain an edge with such a label-set. While this is not
necessary for testing a function, we will use these trees later for constructing a function given an
algorithm. We now formally describe the testing procedure and later we will give more intuition on
it.

1. Initialize S with all the possible values of the label-set g(v) of v (as defined in Definition 5)
that could be obtained when v is a leaf. Note that the possible values are a finite amount
that only depends on the amount of input labels of Π. Initialize R1 with one pair ((T̃ , v), L)
for each element L in S, where T̃ is a tree composed of 2 nodes {u, v} and 1 edge {u, v}, and
g(v) = L. Node v is marked as being a rake node of layer 1, while u is marked as being a
temporary node.
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2. For i = 1, . . . , k do the following. If, at any step, an empty label-set is obtained, then the
tested function is not good.

(a) Do the following in all possible ways: consider x arbitrary elements ((T̃j , vj), Lj) of Ri,
where 1 ≤ j ≤ x and 1 ≤ x ≤ ∆. Construct the tree T as the union of all trees T̃j , where
all the nodes vj (note that each node vj has degree 1) are identified as node v, which,
after this process, has degree x in T . Let Fincoming be the set of edges connected to v,
and let Lincoming be the label-set assignment given by the sets Lj . The node v is marked
as a rake node of layer i. If v has an empty maximal class w.r.t. Fincoming, Foutgoing = {},
and Lincoming, then the tested function is not good.

(b) Do the following in all possible ways: consider x arbitrary elements ((T̃j , vj), Lj) of Ri,
where 1 ≤ j ≤ x and 1 ≤ x ≤ ∆ − 1. Construct the tree T as the union of all trees
T̃j , where all the nodes vj are identified as node v. Attach an additional neighbor u to
v. Let Foutgoing = {{u, v}}. Let Fincoming be the set of edges connected to v, excluding
{u, v}, and let Lincoming be the label-set assignment given by the sets Lj . The node v is
marked as a rake node of layer i, while u is marked as a temporary node. Let L = g(v)
(as defined in Definition 5). If L is empty, then the function is not good.

(c) Repeat the previous two step until nothing new is added to Ri. This must happen, since
there are a finite amount of possible label-sets.

(d) If i = k, stop.

(e) Initialize Ci = ∅.
(f) Do the following in all possible ways: construct a graph starting from a path H of length

between ℓ and 2ℓ where we connect nodes of degree 1 to the nodes of H satisfying: (i)
all nodes in H have degree at most ∆; (ii) the two endpoints of H have an outgoing
edge that connects respectively to nodes u1 and u2 that are nodes of degree 1; (iii) all
the other edges connecting degree-1 nodes to the nodes of H are incoming for H. Next,
replace each incoming edge e and the node of degree 1 connected to it with a tree T̃ of a
pair ((T̃ , v), L) in Ri, by identifying v with the node of the path connected to e. Different
trees can be used for different edges. The nodes u1 and u2 are marked as temporary
nodes, while the nodes of the path are marked as compress nodes of layer i. Use the
function as described in Definition 5 to compute the label-sets L1 and L2 of the two
endpoints. If L1 or L2 is empty, then the function is not good. Otherwise, add the
pairs ((H,u1), L1) (resp. ((H,u2), L2)) to Ci if no pair with second element L1 (resp. L2)
is already present. The representative tree of P = (H,Fincoming, Foutgoing,Lincoming) is
defined as r(P ) = T .

(g) Set Ri+1 = Ri ∪ Ci. If Ri+1 = Ri, stop.

On a high level, the testing procedure does the following. Item 1 computes all possible label-sets
that we can get from leaf nodes; leaf nodes are then marked as rake nodes. Item 2a considers all
possible ways to assign a label-set to all the incident edges of a node v, and checks, for each case,
if there is a way for v to label its incident edges (with a label from the provided label-sets) such
that the constraints of node v are satisfied. Node v is marked as a rake node. Item 2b considers
all possible ways to assign a label-set to all but one incident edge of a node v; let e be the edge
that does not have a label-set assigned. Then, the label-set of e is computed as a function of all
the label-sets of the other edges incident to v, and then v is marked as a rake node. In Item 2c
the last two steps are repeated until no new label-sets are obtained. In other words, items 2a, 2b,
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Figure 9: An example of a tree generated by the testing procedure. Triangles marked Ri correspond to trees
of constant size containing only nodes marked rake of layer i. Paths marked Ci correspond to nodes marked
compress of layer i. At the end of each path, on the side not connected to a triangle, is connected a temporary
node, not shown in the picture. The top node of the triangle marked R3 may be a temporary node.

and 2c generate all possible label-sets that we can get by performing only rakes, that is, before
performing the first compress. Finally, Item 2f considers all possible label-sets that we can obtain
for the endpoints of a compress path. By repeating recursively the procedure interleaving between
rake and compress nodes, and by checking at any point that we do not get empty label-sets, we can
test whether a function is good or not. An example of a tree generated by this procedure is shown
in Figure 9.

It is possible to prove that the testing procedure generates exactly those label-sets that could
possibly be obtained by running the solver [19, 16]. Hence, if empty label-sets are never obtained,
then the function can indeed be used to solve a problem. Observe that it is possible to show that
all the edges of a generated tree can be oriented such that: all nodes have at most one outgoing
edge; any directed path contains layers in non-decreasing order. In a generic tree decomposition,
this may be false, but this is not an issue: the obtained label-sets, in this restricted set of cases, are
still all the possible ones that could be obtained on an arbitrary tree decomposition.

7.2 Some Useful Ingredients

Before defining the function fΠ,k+1 using algorithm A, we provide some ingredients that will later
be useful.

Pumping lemma for trees. In order to prove our statement, we will use a fundamental ingredient
provided in [19], that, informally, allows us to take a compress path of some class, and make the
path longer while preserving its class.

Lemma 37 (Pumping lemma for trees [19]). Assume we are given an LCL Π = (Σin,Σout, CW , CB)
in the black-white formalism. Let a compress path be a tuple (H,Fincoming, Foutgoing,Lincoming)
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satisfying the following:

� To each node vi of H are connected di neighbors, ui,1, . . . , ui,di. Fincoming is the set of edges
connecting the nodes of H with such neighbors.

� To each edge e of Fincoming is assigned a label-set Le ⊆ Σout. Lincoming = (Le)e∈Fincoming is this
assignment.

� To each endpoint of H is connected one additional neighbor. Foutgoing is the set containing the
two edges connecting the endpoints of H to such neighbors.

Let (H,Fincoming, Foutgoing,Lincoming) be a compress path where H has length x. Let w be an arbitrary
integer that is at least x. There exists a constant ℓ such that, if x ≥ ℓ, then it is possible to construct
a compress path (H ′, F ′

incoming, F
′
outgoing,L′incoming) satisfying the following:

� The length of H ′ is at least w and at most w + ℓ.

� The maximal class of H ′ w.r.t. Π, F ′
incoming, F

′
outgoing, and L′incoming is equal to the maximal

class of H w.r.t. Π, Fincoming, Foutgoing, and Lincoming.

� The set of label-sets contained in L′incoming is equal to the set of label-sets contained in Lincoming.

Pumping trees. Let T be a tree constructed in the testing procedure. Observe that, in this
tree, the nodes are either marked rake, compress, or temporary, and with a layer number. We
provide a procedure pump(w, T ) that modifies T to make all compress paths longer. In particular,
all compress paths of layer i will be of length between wi and wi + ℓ, where wi is defined to be
w2i−1/(2k−1). The procedure pump(w, T ) performs the following operation recursively, by starting
from compress layer i = 1 and going up, and by considering all compress paths present in T .

Let (H,Fincoming, Foutgoing,Lincoming) be a compress path induced by a connected component
of nodes marked as compress nodes of layer i. We apply Lemma 37 with parameter wi and get
(H ′, F ′

incoming, F
′
outgoing,L′incoming). We remove all the subtrees that are connected to H via edges

in Fincoming. We replace H with H ′. Let {u, v} be an edge in F ′
incoming, where u is the node of H ′.

Note that {u, v} has a label-set assigned according to L′incoming. For each edge {u, v} in F ′
incoming

(where u is the node of H ′) we attach a copy of one subtree that was connected to H satisfying that
the label-set assigned to the edge connecting the subtree to H is the same as the label-set of the
edge {u, v}. Note that this is possible since the set of the label-set in L′incoming is the same as the
set of the label-sets in Lincoming, and hence the label-set of {u, v} must be a label-set that occurs in
some edge in Fincoming that connects some subtree to a node of H.

Adding nodes. We now provide a procedure that takes in input a value n and a pumped tree of
at most n nodes, and adds nodes to the tree in order to make the amount of nodes to be exactly n.
The procedure add(n, T ) is defined as follows. Let j be the maximum compress layer index of the
nodes present in T . Let v be a temporary node of T that is connected to a node of compress layer j.
We attach a path to v in such a way that the number of nodes becomes exactly n.

Optimal form of an algorithm. It has been shown in [22] that any algorithm can be normalized
in a way that nodes do not spend useless rounds of computation. While such a result has been
proved on graphs with linearly bounded growth, it can be easily adapted, in the case of LCLs in the
black-white formalism, to be more general.

Lemma 38 ([22]). Let A be an algorithm that solves an LCL problem Π with node-averaged
complexity T . Then, if a node v runs for t rounds, either there exist at least t/2− 1 nodes in the
t/2-radius neighborhood of v that run for at least t/2 rounds, or v could terminate earlier.
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Proof Sketch. Suppose that in the t-radius neighborhood of v there are at most t/2− 2 nodes that
run for at least t/2 rounds. This means that the connected component C induced by v and nodes
that still have to terminate after t/2 rounds is of size strictly less than t/2, and that v in strictly
less than t rounds sees the state that all these nodes had at time t/2, and of their neighbors. We
show that this implies that v can terminate in strictly less than t rounds. Since C is surrounded by
nodes that already terminated, then v, solely as a function of its state, the state that the nodes of
C had at time t/2, and the output of the nodes connected to C, can simulate the execution of A for
all nodes of C without additional communication, and obtain an output for all the nodes in C, and
hence v can terminate in strictly less than t rounds.

In the following we will assume A to be an algorithm for Π that has been normalized according
to Lemma 38. We now show that a stronger notion of node-averaged complexity must hold for A,
namely that the expected running time of each node is bounded.

Lemma 39. Let A be an algorithm with node-averaged complexity at most c′ · n1/(2k−1)/ log n, and
let T = add(n,pump(w, T ′)), where T ′ is a tree that has been constructed by the testing procedure
and w = Θ(n).

Assume that A is run in T . Then, for each node v in a compress layer i it must hold that the
expected running time is at most c · n2i−1/(2k−1)/ log n, for some constant c directly proportional to
c′, and for all n ≥ n′ for some constant n′.

Proof. Assume that there exists a node v in a compress layer i with expected running time strictly
larger than t = c · n2i−1/(2k−1)/ log n, where the expectation is taken over all possible random
bit string assignments and all possible valid ID assignments to the nodes. Let B be the t-radius
neighborhood of v. Observe that, by construction (see Figure 9), this neighborhood contains

y = O(t ·
∏i−1

j=1 n
2j−1/(2k−1)) = O(n(2i−1)/(2k−1)/ log n) nodes. Moreover, for n large enough, this

neighborhood does not contain all nodes of T (n′ is chosen to be such value of n). This implies that
we can make x = Ω(n/y) copies of B and connect them in such a way that each copy of v has the
same view in the constructed tree T and in B. By using Lemma 38, we obtain that, by running A
on B, the sum of the expected running times is strictly larger than x · (t/2)(t/2− 1), that, for some
constant c′′, is at least,

c′′ · n · c2 · n2i/(2k−1)/ log2 n

c · n(2i−1)/(2k−1)/ log n
=

c′′ · c · n
log n

· n(2i−2i+1)/(2k−1) = c′′ · c · n · n1/(2k−1)/ log n.

This implies that the average running time is strictly larger than c′′ · c · n1/(2k−1)/ log n. By setting
c = c′/c′′, we get a contradiction on the assumption on the runtime of A.

7.3 The fΠ,k+1 Function Given A

Function definition. We now show how to define the function fΠ,k+1 by using the given algorithm

A that solves Π with node-averaged complexity o(n1/(2k−1)/ log n). Recall that the input of the
function fΠ,k+1 is a compress path P = (H,Fincoming, Foutgoing,Lincoming), and it is required to
produce an independent class for it. As a technicality, let us mention that, for each compress path
P , the representative tree r(P ) is well defined, since we can define fΠ,k+1 while being tested by the
testing procedure.

Let Nf be the maximum size of any graph obtained from the function pump as a function of the
parameter w when applied to the graphs constructed in the testing procedure with the function f .
Then, let N be the maximum value of Nf , taken over all possible functions f , again as a function of
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the parameter w. We are now ready to fix the value of the parameter w. We first pick w sufficiently
large such that the average running time of A is at most t = N1/(2k−1)/(α logN), for some constant
α to be fixed later. Such a value exists by the assumption on the node-averaged complexity of A.
Then, we update w = max{w, n′}, where n′ is the value in Lemma 39. Observe that by how the

graphs are constructed (see Figure 9), N = Θ(
∏k

i=1wi) = Θ(w
∑k

i=1 2
i−1/(2k−1)) = Θ(w), and hence

N ≤ γw for some constant γ > 0.
We define the function fΠ,k+1 on the input P = (H,Fincoming, Foutgoing,Lincoming) as follows.

First, construct the tree T = add(2|Σout|N + 1,pump(w, r(P ))), and let H ′ be the pumped path
corresponding to the nodes of H in T . Let v be the white node in the middle of the path H ′

(breaking ties arbitrarily), and let e be an arbitrary edge incident to v on H ′. Let i be the layer
number of v. We call this edge the designated edge of the path, and v the designated node of the
path. The goal is to run A on T and use its output on e to define the function fΠ,k+1. Observe
that the output of A, and its runtime, depend on the random bits (and the random ID assignment)
assigned to the nodes of T . Let B be the subset of random bits and ID assignments to the nodes of
T satisfying that, if we execute A on v, its running time is strictly less than wi/(β log n), for some
constant β to be fixed later. If β is small enough, then the set B cannot be empty, since otherwise,
by Lemma 39 and the Markov inequality, the node-averaged complexity would be too high. We
consider all such assignments, and we take the output o on e that appears more often (breaking ties
arbitrarily). Observe that this output appears with probability at least 1/|Σout|.

Let (H ′, F ′
incoming, F

′
outgoing,L′incoming) be the result of applying Lemma 37 on P with parameter

wi. For each endpoint u of H ′, we can compute a label-set as follows. Let u1 be the node, among
the endpoints of the designated edge e, that is closest to u, and let uz = u. Consider the subpath
u1, . . . , uz of H ′ induced by u1, uz, and the nodes in between. We define the label-set of e as
{o}. Then, we compute the label-set of each edge ei = {ui, ui+1}, for i = 1, . . . , z, by applying
Definition 5 as if the current node ui were to be a single rake node with outgoing edge ei, where ez
is defined to be the edge outgoing from u. Observe that the label-sets L1 and L2 of the endpoints
induce an independent class for H ′, because, for any choice (l1, l2) ∈ L1 × L2, by construction, we
can pick a feasible assignment for P . By Lemma 37, this independent class is valid also for H.

Function correctness. We need to show that the testing procedure succeeds when testing fΠ,k+1.
Assume for a contradiction that the testing procedure fails, meaning that at some point an empty
maximal class is obtained. Let T be the graph constructed by the testing procedure in which the
empty class is obtained. Let T ′ = pump(w, T ). Observe that T ′ contains at least one temporary
node (because, otherwise, T would not contain any compress path, meaning that the function fΠ,k+1

has not been used at all). Hence, we can construct T ′′ = add(2|Σout|N +1, T ′). Let L be the partial
labeling obtained by putting the most probable output (as previously defined) on each designated
edge of T ′′. We show that, if we run A on T ′′, there is non-zero probability of obtaining a correct
labeling for all nodes of the subtree T ′ that agrees with L, implying a contradiction on the fact that
the testing procedure fails.

Let S be the set of neighborhoods obtained by taking the radius-wi/(β log n) neighborhood of
each designated node of level i, for all i. We now use Lemma 39 to show that, with large enough
probability, it holds that any node of the graph, within its running time, is not able to communicate
with two nodes that are part of different neighborhoods of S.

Lemma 40. We can choose α (in the assumption on the runtime of A) so that, for any arbitrary
constant c, with probability at least 1− 1/nc, a node is able to communicate with the nodes of at
most one neighborhood of S.

Proof. We prove that, with high probability, a node at the beginning of a compress path P does
not communicate with the neighborhood of S containing the designated node of P . This implies
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the claim, since a node can reach one neighborhood of higher (or same) layers, but for all the
others it has to pass through one of the endpoints of the path containing the designated node of the
neighborhood (see Figure 9).

Consider a compress path P of level i. This path is of length at least wi. Let v be the designated
node of the path. Consider one of the two subpaths P ′ of P induced by nodes at distance strictly larger
than wi/(β logN) from v. Observe that P ′ has length at least wi/2−wi/(2β logN)−O(1) ≥ wi/4.
Hence, we can split P ′ into δ logN disjoint subpaths of length at least wi/(8δ logN), for any chosen
constant δ. For each subpath Pi, let vi be the central node of the path, breaking ties arbitrarily.

By applying Lemma 39, we get that the expected runtime of each node vi is at most t =
N2i−1/(2k−1)/(α′ logN), for some constant α′ directly proportional to α. The subpaths are of length
at least

wi/(8δ logN) = w2i−1/(2k−1)/(8δ logN) ≥ (N/γ)2
i−1/(2k−1)/(8δ logN).

Hence, we can choose α small enough, as a function of δ and γ, so that the expected runtime of the
nodes vi is less than 1/4 of the length of the subpaths. Observe that, by the Markov inequality,
the probability that a node vi runs for more than 1/2 of the length of the subpaths is at most 1/2,
and also observe that these events are independent for each vi. Finally, observe that, in order to be
possible for a node at the beginning of the path P to communicate with a node in the neighborhood
in S containing the designated node v, it must hold that all nodes vi run for strictly more than 1/2
of the length of the subpaths, and this happens with probability at most 1/2δ logN = 1/N δ.

Consider the following set of instances: start from T ′′ and, in each radius-wi/(β log n) neigh-
borhood of each designated node v of level i, for all i, assign to the nodes a random bit sequence
(and a random ID assignment) satisfying that the runtime of v is bounded by wi/(β log n). Observe
that this assignment forces the designated nodes to output the previously computed most probable
outputs. Complete the ID assignment randomly (by using IDs not already assigned and assigning a
different ID to each node). While the assigned IDs may repeat in the graph (and in particular two
different designated nodes may see the same ID within their runtime), we argue that it does not
actually matter. In fact, we claim that, if we run A on these instances with modified random bits and
IDs, the failure probability of A increases from p to at most |Σout|p+ 1/nc, for any chosen constant
c. The reason is that, by Lemma 40, for each node v it holds with probability at least 1− 1/nc that,
in its t-radius neighborhood, where t is the runtime of v, there is at most one neighborhood with
modified random bits, and the modified assignment provided to the neighborhood could happen
in T ′′ (in a real instance, with unmodified random bits, and a random valid ID assignment) with
probability at least 1/|Σout|. This implies that the failure probability of each node is bounded by
|Σout|/n+ 1/nc.

Hence, by a union bound, no node of T ′ fails with probability at most N(|Σout|/n+ 1/nc) ≤
2N |Σout|/n < 1. Hence, by the probabilistic method, there exists an assignment of output labels
that is valid for all the nodes of T ′.

8 Open Questions

We conclude with some open questions. We showed that all problems that have O(log n) worst-case
complexity can be solved with O(log∗ n) node-averaged complexity. We leave open to determine for
which problems this can be improved.

Open Problem 1. For which LCLs with O(log n) worst-case complexity can we obtain o(log∗ n)
node-averaged complexity?
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We showed that all problems that have worst-case complexity Θ(n1/k) must have node-averaged

complexity Ω(n1/(2k−1)/ log n). We conjecture that the log n factor is an artefact of our proof
technique and that it should not be there.

Open Problem 2. Can we prove a lower bound of Ω(n1/(2k−1)) rounds for the node-averaged complexity
of all problems with worst-case complexity Θ(n1/k)?

We showed that for some LCL problems that have worst-case complexity Θ(n1/k), we can provide

an algorithm with node-averaged complexity O(n1/(2k−1)). It is not clear if this can be done for all
problems with worst-case complexity Θ(n1/k).

Open Problem 3. Can we prove an upper bound of O(n1/(2k−1)) rounds for the node-averaged
complexity of all problems that have worst-case complexity Θ(n1/k)?

Open Problem 4. Can we prove a lower bound of Ω(n1/k) rounds for the node-averaged complexity
of some problems that have worst-case complexity Θ(n1/k)?
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Suomela. Efficient classification of locally checkable problems in regular trees. In Proc.
36th International Symposium on Distributed Computing,(DISC 2022), pages 8:1–8:19, 2022.
doi:10.4230/LIPIcs.DISC.2022.8.

[4] Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti,
and Jukka Suomela. Classification of distributed binary labeling problems. In Proc. 34th
International Symposium on Distributed Computing (DISC 2020), volume 179 of LIPIcs, pages
17:1–17:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.

DISC.2020.17.

[5] Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus, Dennis
Olivetti, and Jara Uitto. Exponential speedup over locality in MPC with optimal memory. In
36th International Symposium on Distributed Computing, (DISC 2022), pages 9:1–9:21, 2022.
doi:10.4230/LIPIcs.DISC.2022.9.

[6] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studený, Jukka Suomela, and Aleksandr
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Jukka Suomela. New classes of distributed time complexity. In Proc. 50th ACM Symposium on
Theory of Computing (STOC 2018), pages 1307–1318. ACM Press, 2018. arXiv:1711.01871,
doi:10.1145/3188745.3188860.

[12] Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of minimal
symmetry breaking in distributed computing. In Proc. 38th ACM Symposium on Principles of
Distributed Computing (PODC 2019), pages 369–378. ACM Press, 2019. arXiv:1811.01643,
doi:10.1145/3293611.3331605.

[13] Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (∆ + 1)-coloring in linear (in
∆) time. SIAM J. on Computing, 43(1):72–95, 2015.

[14] Leonid Barenboim and Yaniv Tzur. Distributed symmetry-breaking with improved vertex-
averaged complexity. In Proc. 20th Int. Conf. on Distributed Computing and Networking
(ICDCN), pages 31–40, 2019.

[15] Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R. J.
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A Additional Related Work About LCLs

LCLs were introduced by Naor and Stockmeyer [29], but locally checkable problems were studied in
the distributed setting even before [1]. Since then, LCL problems have been studied a lot, and we
now known, for different possible topologies of graphs, what kind of worst-case complexities are
possible.

Paths and cycles. We know that in paths and cycles there are only three possible complexities:
O(1), Θ(log∗ n), Θ(n) [29, 18]. Moreover, we know that randomness does not help to solve problems
faster.

Trees. The possible deterministic complexities in trees are O(1), Θ(log∗ n), Θ(log n), and Θ(n1/k)
for all integer k ≥ 1; randomness either helps exponentially or not at all, and only for problems
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with deterministic complexity Θ(log n), that hence have randomized complexity either Θ(log n) or
Θ(log log n) [24, 12, 18, 19, 8, 16].

General graphs. In general graphs, some complexity gaps that hold in the case of trees still hold, but
now there are also many dense areas; while in trees randomness either helps exponentially or not at
all, there are cases on general graphs where randomness helps only polynomially [19, 18, 23, 30, 11, 7].

LCLs in other settings. On d-dimensional balanced toroidal grids, it is known that the only
possible complexities are O(1), O(log∗ n), and Θ(n1/d) (even by allowing randomness) [15].

For problems that, in the black-white formalism (as defined in Section 3), can be expressed by
using at most two labels, on regular trees the only possible deterministic complexities are O(1),
Θ(log n) and Θ(n), implying that any LCL with complexity Θ(log∗ n) needs to be expressed with at
least 3 labels [4].

It is known that any LCL on trees that can be solved in T rounds in the LOCAL model of
distributed computing can be solved in O(T ) rounds in the CONGEST model; it is also known that
this does not hold if we consider general graphs [9].

On rooted trees, it is known that all possible complexities are O(1), Θ(log∗ n), Θ(log n), Θ(n1/k)
for all integer k ≥ 1, but perhaps surprisingly, randomness never helps in solving problems faster [6].

LCLs have been studied also in other models of interest such as MPC [5].

Decidability. LCLs have been studied not only from a point of view of complexity theory.
Researchers tried also to address the following questions. Given a specific LCL, can we decide its
time complexity with a centralized algorithm? Is it possible to automate the design of algorithms
for solving LCLs?

In general, the complexity of an LCL is not decidable: even on unlabeled non-toroidal grid
graphs it is undecidable whether the complexity of an LCL is O(1) [29]. However, there are some
positive results in more restricted but still interesting settings.

On paths and cycles, it is possible to determine what is the time complexity of a given problem,
but it becomes EXPTIME-hard if some input is provided to the nodes [29, 15, 20, 2, 16].

In unlabeled toroidal grids, it is decidable whether the complexity of an LCL is O(1), but it is
undecidable whether its complexity is Θ(log∗ n) or Θ(n) [15].

On trees, given an LCL, it is possible to decide on which side of the gap ω(log n) – no(1) its
complexity lies. Moreover, it is decidable if an LCL has complexity Θ(n1/k) for some k, and it is also
possible to determine the exact value of k [19, 16], but the algorithm is very far from being practical.
However, if we restrict to regular trees with no inputs, then there is a practical polynomial-time
algorithm (in the size of the description of the LCL problem) for deciding if an LCL has complexity
Θ(n1/k) and determining the exact value of k [3]. Similarly, for rooted trees, there are efficient
algorithms for determining the optimal asymptotic complexity of a given LCL [6, 3]. On unrooted
regular trees with no input, if we restrict to problems that can be expressed by using at most two
labels in the black-white formalism, the deterministic complexity of a problem is decidable [4].

It is still an open question whether, on trees, we can obtain decidability for the lower complexities,
e.g., it is unknown whether we can decide if an LCL on trees can be solved in O(1) rounds or if it
requires Ω(log∗ n) rounds, and whether it can be solved in O(log∗ n) rounds or if it requires Ω(log n)
with deterministic algorithms.

B An Algorithm For Solving All LCLs in O(D) Rounds

In order to give more intuition about the generic method that can be used to solve LCL problems, we
repropose a simplified setting already presented in [9], where we restrict a bit the class of problems
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that we consider, as follows. We are given a tree of constant maximum degree, where to each edge is
assigned an input label that comes from a finite set, and the goal is to assign an output label to each
edge, also from a finite set, in such a way that, for each node, the multiset of incident input-output
pairs of labels is contained in a list of given allowed configurations (this list is the same for all
nodes). In other words, in this simplified setting, an LCL problem is described by providing a list
of allowed configurations C, that are multisets of input-output pairs of labels. We now describe a
procedure, already presented in [9], that solves any problem of this form in O(D) rounds, where D
is the diameter of the tree. The procedure works as follows:

1. Each leaf node v, as a function of the input label ℓi of its incident edge e and the list of allowed
configurations C, computes the set Sv of output labels ℓo satisfying that the multiset {(ℓi, ℓo)}
is in C, that is, v computes the set Sv of output labels ℓo that, if assigned to e, would make v
happy.

2. Each leaf v sends the set Sv to its neighbor.

3. Leaves are removed from the tree. Let L be the set of nodes that became leaves after the
removal operation. Each node v ∈ L proceeds as follows. Let u1, . . . , ud be the neighbors of v
that got removed in previous steps, let ℓi1 , . . . , ℓid be the input labels on the edges connecting
node v to the nodes u1, . . . , ud, and let ℓi be the input label connecting v to its neighbor that
is still present. Node v computes the set Sv of output labels ℓo satisfying that there exists a
choice (ℓo1 , . . . , ℓod) ∈ Su1 × . . .× Sud

such that the multiset {(ℓi, ℓo), (ℓi1 , ℓo1), . . . , (ℓid , ℓod)}
is in C. In other words, node v computes the set Sv of output labels for its remaining edge
satisfying that, even if the output from Sv is chosen adversarially, there is still a choice that v
can make, over the sets received from its removed neighbors, that would give an assignment of
labels that makes v happy. Then, node v sends Sv to its remaining neighbor.

4. Repeat step 3 until the graph is empty.

5. The last removed node chooses a label from each received set, in such a way that the resulting
multiset of input-output pairs of labels is a configuration in C. (It may happen that two
neighboring nodes get removed last, at the same time, but this case can be handled in a similar
way.)

6. Removed nodes are put back in reverse order. Observe that, when a node v is put back, the
output label ℓo of the edge connecting v to its only neighbor that is currently present has
already been assigned, and that this output label ℓo is in Sv. Node v picks a label from the
sets assigned to the edges connecting v to its other neighbors (that is, neighbors that are going
to be put back in the next step) in a way that is compatible with ℓo.

It is not difficult to see that this algorithm computes a correct solution for the problem, assuming
that the computed sets never become empty, that is, as long as, for each v ∈ V , Sv ̸= ∅. Also, it
is clear that the time complexity of this algorithm is O(D). It has been shown in [9] that, if it
happens that some node v gets Sv = ∅, then it means that the problem is unsolvable. Moreover, [9]
showed that by following this algorithm, we get a generic way to solve all problems in O(D) rounds
that is actually bandwidth efficient, since the sets that are sent at each step have constant size.

Improving the round complexity. The previously described procedure shows how to solve all
(solvable) problems in O(D) rounds, which is nice for the CONGEST model, but is a trivial result
in the LOCAL model. Moreover, the diameter D could be as high as Ω(n), and for some problems
this complexity may be suboptimal. Hence, in some cases we would like to obtain a faster algorithm,
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and this is what has been shown in [19, 16]. The idea of [19, 16] is that, if, instead of removing
only nodes of degree 1 at each step, we also sometimes remove nodes of degree 2 as well, then it
takes less steps to obtain an empty graph. One of the issues to handle when running this modified
procedure is that we now have to find a way to assign sets to nodes of degree 2, which may form
long paths, and this is the part that turns out to be quite challenging.

Restricting to a specific kind of LCLs. In order to prove our results, we use and extend ideas
presented in [19, 16, 9]. In particular, in [9] it has been shown that, in bounded-degree trees, if an
LCL problem has time complexity T in the LOCAL model, then it has time complexity O(T ) in
the CONGEST model, both for deterministic and randomized worst-case complexities. In order
to show this result, the authors of [9] not only extended the results of [19, 16], but also provided
a more accessible version of some of the proofs of [19, 16]. The reason why these proofs are more
accessible is that [9] does not show results for standard LCLs, but only for a restriction of those,
that are LCLs that can be expressed in a formalism called black-white. Importantly, the authors
also showed that, if we restrict to trees, for any standard LCL (LCLs as they are usually defined in
the literature), we can define an LCL in the black-white formalism that has the same complexity of
the original one, up to an additive constant. In other words, considering LCLs in the black-white
formalism is not really a restriction if the graph class we are working on is trees (in general graphs
this turns out to not be the case). In this paper, we follow a similar route of [9]: in order to keep our
proofs more accessible we prove our statements for LCLs expressed in the black-white formalism,
but we also prove that, for any standard LCL, we can define an LCL in the black-white formalism
that has the same node-averaged complexity of the original one, up to a multiplicative constant
factor, implying that our results hold for all LCLs as well. This equivalence is shown in Lemma 45.

C Different Ways to Define LCLs

In this section we prove an equivalence, for node-averaged complexity, between different definitions
of LCLs. We start by providing the standard definition of LCLs, that in the following we will call
standard LCLs.

Locally Checkable Labeling problems. An LCL problem Π is defined as a tuple (Σin,Σout, C, r),
where:

� Σin and Σout are finite sets of labels that represent the possible input and output labels.

� The parameter r ≥ 1 is an integer, and it represents the so-called checkability radius of the
LCL problem Π.

� C is a finite set of labeled graphs that represent allowed neighborhoods, and more precisely C
is a finite set of pairs (H, v), where:

– H = (VH , EH) is a graph, and v ∈ VH .

– The eccentricity of v in H is at most r.

– To each pair (v, e) ∈ VH × EH is assigned a label ℓin ∈ Σin and a label ℓout ∈ Σout.

Solving an LCL problem Π on a graph G = (V,E) means that:

� To each node-edge pair (v, e) ∈ V × E is assigned a label i(e) ∈ Σin.

� The task is to assign a label o(e) ∈ Σout to each node-edge pair (v, e) ∈ V ×E such that, for
each node v ∈ V , it holds that the (labeled) graph N r

v induced by v’s radius-r neighborhood
is in C, that is, N r

v is isomorphic to a (labeled) graph contained in C.
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Node-edge formalism. Using the black-white formalism (as defined in Section 3) requires the
graph to be properly 2-colored. We now describe a formalism, called node-edge, that does not have
this requirement. We will soon show an equivalence between the node-edge formalism and the black-
white formalism. A problem Π described in the node-edge formalism is a tuple (Σin,Σout, CN , CE),
where:

� Σin and Σout are finite sets of labels.

� CN and CE are both multisets of pairs, where each pair (ℓin, ℓout) is in Σin × Σout. The
multisets in CE have size exactly 2.

Solving a problem Π on a graph G means that:

� To each node-edge pair (v, e) ∈ V × E is assigned a label i(e) ∈ Σin.

� The task is to assign a label o(e) ∈ Σout to each node-edge pair (v, e) ∈ V ×E such that, for
each node v ∈ V (resp. each edge e ∈ E) it holds that the multiset of incident input-output
pairs is in CV (resp. in CE).

Equivalence between black-white and node-edge formalisms. Observe that, if we focus only
on what is a problem, and we forget about what it means to solve a problem, it is clear that the
node-edge formalism is a subcase of the more general black-white formalism. In fact, it is easy to see
that a problem Π in the node-edge formalism implicitly defines also a problem Π′ in the black-white
formalism, while a problem Π′ in the black-white formalism implicitly defines also a problem Π in
the node-edge formalism if it satisfies that CB contains only multisets of size exactly 2.

Moreover, it has been show in [9] that also the time complexities of Π and Π′ are related. In
fact, one can prove that, given an algorithm A for Π, we can define a new algorithm A′ for Π′ with
the same asymptotic worst-case round complexity, and vice versa.

We now describe the ideas that show that, given an algorithm A′ for Π′, we can use it to solve Π
(the other direction can be shown in a similar way). The idea is to simulate the algorithm for Π′ on a
virtual graph G′, defined as a function of the real graph G = (V,E) as follows. Let G′ = (W ∪B,E′),
where W = V , B = E, and we connect v ∈ V with e ∈ B if v ∈ e. In other words, original nodes
are white, and we add a black node in the middle of each original edge. Observe that, by solving Π′

on G′, and then mapping the output obtained for the edges of G′ to the node-edge pairs of G, we
also solve Π on G. Also, observe that simulating the execution of a T round algorithm for G′ only
costs T/2 +O(1) rounds on G.

Equivalence between standard LCLs and LCLs in the node-edge formalism. In [9] it has
been shown that, given a standard LCL Π on trees, it is possible to define a node-edge checkable
problem Π′ satisfying that, given a solution for Π, it is possible to spend O(1) rounds to solve Π′,
and vice versa.

Lemma 41 ([9]). For any LCL problem Π on trees with checkability radius r = O(1) we can define
a node-edge checkable problem Π′ that satisfies the following:

� There exists an O(1)-rounds algorithm that, given in input a solution for Π′, outputs a solution
for Π.

� There exists an O(1)-rounds algorithm that, given in input a solution for Π, outputs a solution
for Π′.
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By combining this lemma with the equivalence that we discussed before, we obtain that by
studying the worst-case complexity of LCL problems on trees in the black-white formalism is not a
restriction, and hence we get results that hold for LCLs in the more general form. Figure 10 shows
an example of an LCL problem defined in different formalisms. In the following we show a similar
statement for the node-averaged complexity of LCLs.

Equivalence between standard LCLs and black-white formalism for node-averaged
complexity. In order to prove that we can restrict to the black-white formalism also for the case of
node-averaged complexity, we first prove an equivalence between standard LCLs and the node-edge
formalism, and then we prove an equivalence between the node-edge formalism and the black-white
formalism.

In the case of worst case complexity, if we have an algorithm A1 that produce a result in T1

rounds, and we have a different algorithm A2 that takes the output of A1 in input and produces a
result in T2 rounds, then we can execute A2 after A1 and obtain a running time of T1 + T2. For
node-averaged complexity, unfortunately, the same does not hold. Nevertheless we can achieve
something similar.

Lemma 42. Suppose that we have an algorithm A1 with node-averaged complexity T1, and an
algorithm A2 with worst-case complexity T2. Consider the algorithm A3 obtained by combining A1

and A2, where nodes execute A2 only after all nodes in their T2 radius neighborhood terminated the
execution of A1. The node-averaged complexity of A3 is O(T1 ·∆T2).

Proof. We show a charging scheme that satisfies that the sum of the charges is an upper bound on
the sum of the running times of the nodes. For each node v of the graph, let t(v) be the last node
in the T2-radius neighborhood of v that terminates the execution of A1, break ties arbitrarily. We
charge the running time of v in A3 to t(v). Observe that each node is charged O(∆T2) times, and
that the sum of the running times in A1 of the nodes charged at least once is O(n · T1). Hence, the
sum of the charges, and the running times in A3, is O(n · T1 ·∆T2), implying that the node-averaged
complexity of A3 is O(T1 ·∆T2), as required.

We are now ready to prove an equivalence, for node-averaged complexity, between standard
LCLs and LCLs in the node-edge formalism.

Lemma 43. For any LCL problem Π on trees with checkability radius r and node-averaged complexity
T we can define a node-edge checkable problem Π′ with node-averaged complexity Θ(T ).

Proof. We apply Lemma 42 where T1 is the node-averaged complexity of the given LCL problem Π,
and T2 is the worst-case time complexity required to convert a solution for Π into a solution of its
equivalent node-edge checkable variant. By Lemma 41 we have that T2 = O(1). Since ∆ = O(1),
then the claim follows.

We now prove an equivalence, for node-averaged complexity, between LCLs in the node-edge
formalism and LCLs in the black-white formalism.

Lemma 44. For any node-edge checkable LCL problem Π on trees with node-averaged complexity T
we can define an LCL Π′ in the black-white formalism with node-averaged complexity Θ(T ).

Proof. Let Π = (Σin,Σout, CN , CE). We define Π′ = Π, that is, the input and output labels are
exactly the same, the white constraint of Π′ is CN , and the black constraint of Π′ is CE . Observe
that, while Π and Π′ are syntactically the same, an algorithm for Π is designed for working on a
tree with no 2-coloring given, and it needs to assign an output label to each node-edge pair, while
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Figure 10: a) In the maximal matching problem, a node is either matched or all its neighbors are matched.
This can be described as an LCL by letting each edge be either labeled {M,M} or {U,U}, and then listing
all possible valid radius-2 neighborhoods. b) The maximal matching problem encoded in the node-edge
formalism. One way is to require unmatched nodes to orient all their edges outgoing, and then require all
nodes with at least one incoming edge to be matched. These constraints can be given in the node-edge
formalism. c) The 2-colored graph in which the maximal matching problem has the same complexity as in
the node-edge setting.
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an algorithm for Π′ is designed for working on a tree that is properly 2-colored and where all black
nodes have degree 2, and it needs to assign an output label to each edge.

We first show that, given an algorithm A for solving Π with node-averaged complexity T , we
can design an algorithm A′ for solving Π′ with node-averaged complexity O(T ). The algorithm
A′ works as follows. White nodes simulate the execution of A, while black nodes relay messages
that are exchanged between white nodes. This algorithm clearly solves Π′. Each white node spends
exactly twice the running time of A, since each round of A is simulated with 2 rounds of A′ (it takes
2 rounds for white nodes to exchange messages). Observe that black nodes, in order to know their
output, need to wait that the two incident white neighbors terminate. Hence, we can charge their
running time to their slowest neighbor. Since each node is charged at most ∆ = O(1) times, then
we obtain that A′ has node-averaged complexity O(T ).

We now show that, given an algorithm A′ for solving Π′ with node-averaged complexity T , we
can design an algorithm A for solving Π with node-averaged complexity O(T ). The algorithm A
is defined as follows. Each edge of the tree is assigned to one incident node, arbitrarily. In the
algorithm A, the nodes pretend to be white nodes, and simulate the execution of A′. Moreover,
the nodes simulate, for each incident edge assigned to them, the execution of a black node, that is
connected to the two nodes incident to the edge. This algorithm clearly solves Π, and its running
time can be bounded as follows. The running time of each node is charged to its longest running
simulated (black or white) node. Observe that each simulated node is charged at most once, and
that the sum of the running times of the simulated nodes that have been charged at least once is
an upper bound on the sum of the running times in A. This amount is at most n · T , where n is
the size of the simulated graph. Since the number of nodes in the real graph and in the simulated
one is asymptotically the same, then we obtain that the node-averaged complexity of A is at most
O(T ).

By combining Lemma 43 and Lemma 44 we obtain that focusing on LCLs in the black-white
formalism is not a restriction, and that our results apply to standard LCLs as well. In particular,
we obtain the following.

Lemma 45. For any LCL problem Π on trees with checkability radius r and node-averaged complexity
T we can define an LCL Π′ in the black-white formalism with node-averaged complexity Θ(T ).
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