
Jack-in-the-box: An Empirical Study of JavaScript Bundling on
the Web and its Security Implications

Jeremy Rack

michael.rack@cispa.de

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

Cristian-Alexandru Staicu

staicu@cispa.de

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

ABSTRACT
In recent years, we have seen an increased interest in studying

the software supply chain of user-facing applications to uncover

problematic third-party dependencies. Prior work shows that web

applications often rely on outdated or vulnerable third-party code.

Moreover, real-world supply chain attacks show that dependencies

can also be used to deliver malicious code, e.g., for carrying crypto-

mining operations. Nonetheless, existing measurement studies in

this domain neglect an important software engineering practice:

developers often merge together third-party code into a single file

called bundle, which they then deliver from their own servers, mak-

ing it appear as first-party code. Bundlers like Webpack or Rollup

are popular open-source projects with tens of thousand of GitHub

stars, suggesting that this technology is widely-used by developers.

Ignoring bundling may result in underestimating the complexity of

modern software supply chains.

In this work, we aim to address these methodological shortcom-

ings of prior work. To this end, we propose a novel methodology

for automatically detecting bundles, and partially reverse engineer

them. Using this methodology, we conduct the first large-scale em-

pirical study of bundled code on the web and examine its security

implications. We provide evidence about the high prevalence of

bundles, which are contained in 40% of all websites, and the average

website includes more than one bundle. Following our methodology,

we reidentify 1 051 vulnerabilities originating from 33 vulnerable

npm packages, included in bundled code. Among the vulnerabilities,

we find 17 critical and 59 high severity ones, which might enable

malicious actors to execute attacks such as arbitrary code execution.

Analyzing the low-rated libraries included in bundles, we discover

10 security holding packages, which suggest that supply-chain at-

tacks affecting bundles are not only possible, but they are already

happening.

CCS CONCEPTS
• Security and privacy→Web application security; Software
reverse engineering; • Software and its engineering→ Software
libraries and repositories.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00

https://doi.org/10.1145/3576915.3623140

KEYWORDS
software supply chain security, bundles, dependencies, JavaScript

1 INTRODUCTION
Recent high-profile security incidents show that both malicious

(SolarWinds) and vulnerable (Log4Shell) dependencies can com-

promise the security and privacy of real-world applications. In

response, practitioners proposed various techniques for reasoning

about problematic dependencies, e.g., software composition anal-

ysis or software bill of materials. These approaches aim to make

the reliance on third-party code more transparent. However, de-

tecting all such dependencies is difficult, especially when dealing

with closed-source applications.

In the context of web applications, dependencies on the client-

side were extensively studied by researchers to identify potential

security and privacy risks. Prior measurement studies [19, 31] often

distinguish between first-party and third-party script inclusions to

identify risks posed by external code. While useful, this approach

misclassifies third-party code that developers serve from their own

domains. To deal with this problem, Lauinger et al. [23] propose

both static and dynamic analysis to precisely reidentify versions of

popular libraries with known vulnerabilities.

All these studies ignore bundling, an emerging software engineer-

ing practice. To simplify the handling of dependencies in client-side

JavaScript code, developers use specialized tools called bundlers.

These tools merge different resources, often JavaScript files, into

one or more output files, called bundles, which can be directly in-

cluded in the web application. Thus, the generated bundles reflect

all the included dependencies of an application and should, there-

fore, be considered when analyzing the software supply chain of

web applications. An alternative way to think about bundles is

as a mechanism for web applications to consume npm packages

on the client-side. While convenient, such a mechanism exposes

users of websites to the plethora of risks known to plague npm

packages [52]. To the best of our knowledge, there is no prior work

to explore this risk.

In this paper, we study the role of JavaScript bundles on the web

and their potential effect on the security and privacy of websites.

Concretely, we aim to detect if vulnerable or outright malicious code

is included in popular websites via bundles. Two important chal-

lenges to be addressed by the study are how to detect bundles auto-

matically and how to reverse engineer them to extract information

about the bundled code. The main culprit for this difficulty is the

fact that code transformations applied during the bundling process

make the reversing process difficult. Prior work [23] uses mainly

two methods to detect vulnerable libraries in websites: (i) Dynamic

analysis that calls specific methods of a target library registered in

https://doi.org/10.1145/3576915.3623140

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rack et al.

the global scope and observes the responses, (ii) Static analysis that

compares certain features in the source code with the features in all

publicly available versions of a target library. In the context of bun-

dles, (i) is infeasible, because the libraries are not registered within

the global scope. While (ii) is possible, we first need to compart-

mentalize the bundle by isolating the code of the included libraries

from each other.

We propose a four-steps methodology to address these chal-

lenges and to study the prevalence of bundles. We first collect

unique features in the output of popular bundlers to identify them

as producers of candidate JavaScript files. Afterward, we use these

fingerprints in a large-scale crawl to identify bundled code and save

all detected bundles in a local database. Next, we investigate the

reversibility of bundled code and use this acquired knowledge to

design a reversing suite that extracts information about included

libraries from a bundle. This enables us to quantify common charac-

teristics of bundled code, e.g., number of included libraries. Finally,

we gather intelligence about the security posture and reputation

of the detected libraries to understand the security implications of

consuming bundled code.

Concretely, our study answers the following research questions:

RQ1: How prevalent are bundles in real-world websites? We detect

1 086 368 bundles by crawling the Top1M Tranco list [34]. We show

that bundles are very prevalent on the web by detecting at least one

bundle on 40% of all crawled websites. Furthermore, we observe

that Webpack is by far the most popular bundler, which is in line

with its popularity on npm.
RQ2:What information can be recovered by reverse engineering

bundles? Out of the collected bundles, we were able to extract

all included libraries from 89 845 due to the presence of source

maps, and another 257 due to a certain build option that was used.

In addition to this, we compartmentalize 285 580 bundles into a

module list and for another 84 920 we further derive a dependency

graph between compartments. These results confirm that a great

portion of bundles is indeed reversible. Studying bundled code, we

notice significant differences between first-party and third-party

bundles, starting with the fact that third-party bundles are much

more common than first-party bundles. In contrast to this, first-

party bundles contain more third-party libraries and include over

three times as many unique npm packages as third-party bundles.

RQ3: Which third-party libraries are contained in real-world bun-
dles? Do any of them contain known vulnerabilities or other prob-
lematic code? Investigating the exact libraries included in bundles,

we show that there are specific libraries that appear disproportion-

ately more in third-party bundles, e.g., the library bowser, which
performs browser/platform/engine detection, might be used for

compromizing users’ privacy. We speculate that third-party bun-

dles contain more tracking and advertisement functionality. Ad-

ditionally, we discover 33 vulnerable npm packages included 1 051

times in bundled code. Among these vulnerabilities, there are 17

labeled critical and 59 labeled high severity, possibly exposing web

applications to, e.g., arbitrary code execution. Additionally, we find

that bundles sometimes include obscure npm packages that appear

unmaintained, and we even identify ten security holding packages

in real-world bundles. Since these packages were labeled as such in

response to previous attacks and their publicly-accessible releases

do not contain any JavaScript code, we conclude that real-world

bundles were already affected by supply chain attacks.

Our results show that the software supply chains of web appli-

cations are much more complex than previously believed. Modern

websites often consume npm packages via bundles, delivering both

vulnerable and malicious code to their users. Moreover, the line

between first-party and third-party code is very blurry, since bun-

dles often contain mixed-origin code. In such conditions, blocking

unwanted code, e.g., tracking scripts, is very difficult without break-

ing the benign functionality of websites. Overall, our work aims

to raise awareness about an important development practice with

deep implications for security and privacy studies of the web.

In summary, this paper contributes the following:

• The first large-scale empirical study of bundled code on the

web. Additionally, we shed light on how npm packages are

consumed on the client-side of web applications.

• An automated methodology for identifying and partially

reverse engineering bundles. We explore different analysis

techniques that can be used in the reversing process.

• Evidence that real-world bundles include vulnerable or even

malicious code.

2 A PRIMER ON JAVASCRIPT BUNDLERS AND
THEIR REVERSIBILITY

This section gives an overview of the JavaScript bundling process

and the information about the original code that is still preserved

in this process. We remind the reader that we aim to automatically

detect bundles and reverse engineer them as much as possible.

2.1 Bundlers propose a paradigm shift
Traditionally, JavaScript libraries are consumed on the client-side

using a <script> tag for each entry. The libraries can be delivered

either from first- or third-party domains, and they usually register a

handle in the global scope to make themselves accessible for all the

code running in the same origin. For example, jQuery registers $

and Rambda 𝑅 in the global scope. Prior to the adoption of bundlers,

web developers had to manually manage these dependencies: The

order in which the libraries are loaded on a website is significant,

as many libraries depend on each other and, therefore, have to be

loaded in the correct order. Moreover, Patra et al. [33] identify name

clashes in the global scope, when loading multiple libraries, which

can lead to serious software quality problems in websites.

Bundlers propose a radically different way of managing depen-

dencies, enabling a new way of writing code for the client-side:

developers write their JavaScript code using the modern JavaScript

module systems (CommonJS, AMD, or ES6) and import all the func-

tionality they need from such modules, e.g., contained in npm pack-

ages. The bundler then merges the developer’s code with the rele-

vant part of the imported dependencies, producing a self-contained

JavaScript file called bundle, which can be directly loaded on the

client-side. It is worth noting that such bundles preserve the order

in which libraries are loaded in the developers’ code and they do not

necessary rely on the global scope for registering and consuming

library code. Instead, they emulate modern JavaScript module sys-

tems, allowing for safer library consumption. Moreover, bundlers

provide optimization features that increase the performance of a

Jack-in-the-box: An Empirical Study of JavaScript Bundling on the Web and its Security Implications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

1 (window.webpackJsonp=window.webpackJsonp ||[]).push ([[80] ,{

2 maj8:function(e,t,n){"use strict";/* object -assign , (c) Sindre Sorhus , @license MIT */ var r=Object.

getOwnPropertySymbols ,i=Object.prototype.hasOwnProperty ,o=Object.prototype.propertyIsEnumerable;function a(e){if(
null==e)throw new TypeError("Object.assign cannot be called with null or undefined");return Object(e)}...},

3 ZK3j:function(e,t,n){"use strict";var r=n("Y4pH"),i=n("qW1w");function o(e,t){return 55296==(64512&e.charCodeAt(t))&&(!(

t<0||t+1>=e.length)&&56320==(64512&e.charCodeAt(t+1)))}function a(e){return(e>>>24|e> > >8&65280|e < <8&16711680|(255&e
) <<24) >>>0}function s(e){return 1===e.length?"0"+e:e}t.toHex=function(e){for(var t="",n=0;n<e.length;n++)t+=s(e[n].

toString (16));return t},t.rotr32=function(e,t){return e>>>t|e<<32-t}},

4 xy6B:function(e,t,n){"use strict";var r=n("ZK3j").rotr32;function i(e,t,n){return e&t^~e&n}function o(e,t,n){return e&t^

e&n^t&n}function a(e,t,n){return e^t^n}t.ft_1=function(e,t,n,r){return 0===e?i(t,n,r):1===e||3===e?a(t,n,r):2===e?o

(t,n,r):void 0},t.s1_256=function(e){return r(e,6)^r(e,11)^r(e,25)},t.g0_256=function(e){return r(e,7)^r(e,18)^e

>>>3},t.g1_256=function(e){return r(e,17)^r(e,19)^e>>>10}}

5 });

Figure 1: A simplified version of a real-world bundle from nytimes.com. With dashed lines we highlight the compartments and
with the arrow we show a direct dependency between the last two compartments.

website. Typical optimization goals for a website are: (i) reducing

the initial load time, (ii) minimizing the number of necessary re-

quests, and (iii) keeping the size of client-side code as small as

possible. Let us consider a real-world example bundle to illustrate

how code from different origins is mixed into a single bundle and

what information is still available about the original code.

In Figure 1, we show a simplified, tiny fragment from a bundle

from The New York Times’ front page, available at the time of

writing at https://www.nytimes.com/vi-assets/static-assets/main-

888077be14ed646513fa.js. The original bundle has more than 1.45

megabytes of minified code JavaScript code that is hard to inter-

pret manually. Moreover, many editors that we tried to use for its

inspection crash when loading or searching inside the bundle.

The reversing pipeline we propose in Section 3 identifies three

compartments in this example. They represent individual JavaScript

files on the developer’s machine, which were processed by the

bundler. These compartments may originate from different libraries,

but they can also correspond to a single, larger library. Our pipeline

can also identify a dependency relation between compartments:

the third compartment directly imports the second one to use the

method rotr32. Moreover, by carefully inspecting the first compart-

ment, we notice that there are important clues that can shed light

on the code’s provenance. For example, the comment in line 2 and

the literal "Object.assign cannot be called with null or
undefined" strongly suggest that the bundle includes a minified

version of the index.js file in the object-assign npm package.

It is worth reflecting on the complexity of this supply chain: (1)

object-assign’s maintainer committed this code on GitHub and

further published it on npm, (2) the developers of nytimes.com

downloaded the npm package and bundled it together with other

code into a large bundle of code, (3) readers of nytimes.com down-

load the bundle and execute it inside their browser. Considering

these complexities and the plethora of security problems in npm

packages, we argue once again that it is important to perform a

measurement study of bundled code to see if these risks propagate

to the client side. We now proceed to discuss different aspects of

the bundling process that enable our measurement methodology.

2.2 Support for JS modules and packages
One of our goals is to reidentify npm packages in real-world bundles.

To avoid confusion between different terms, we start by clarifying

our terminology. An npm package is a folder or file that has an

associated package.json file, which describes it. These packages

can be uploaded to the npm registry. An npm module is any file

that is located in the node_modules folder of a project and can be

imported in the developer’s code. We call a module a root module if
it is not imported by any other module and is thus, directly included

in the code via, e.g., a require or import function call. It is thereby

one root node in the dependency graph. We call a module a sub
module if it is imported by a root module. We use libraries as a

synonym for npm packages. If we know the names of all modules,

and thus, can ensure that the code corresponds to a particular npm

package, we also use root module as a synonym for library.

Currently, the two most popular module systems for JavaScript

are CommonJS, inwhich dependencies are loaded using the require
function, and ES6 modules, in which dependencies are loaded us-

ing import statements. All the bundles we analyzed in this study

support both these modules systems.

1 (() => {

2 var cjs_modules = {[number:cjs_module #]*}

3 // Webpack "Require" function

4 function f(n){...}

5 // Webpack helper functions

6 [Helper Functions #]*

7 (() => {[ES6_modules #]*, entryPoint #})();

8 })();

Listing 1: The structure of a typical bundle

Listing 1 shows the structure of a typical Webpack bundle, which

is representative for all the considered bundlers. The example bun-

dle contains both CommonJS and ES6 modules. To improve read-

ability, we use placeholders denoted by a pound (#), and an asterisk

(*) to express that the enclosed expression is present zero or more

times. The code starts with an immediately invoked function expres-

sion (IIFE) that wraps the entire bundled code. This is a very typical

feature of bundled code and is used by all bundlers we investigated

to avoid polluting the global scope. In line two, a variable is de-

clared and initialized with a JavaScript object. This object contains

a property for each CommonJS module in the bundle, where each

key is a random number and the value is the code of the module.

This particular listing of modules is very common for bundled code.

Then, after some boilerplate code from the bundler itself, another

IIFE is visible in line seven. The body of the IIFE is comprised of a

list of all ES6 modules and the entry point of the bundle, consisting

https://www.nytimes.com/vi-assets/static-assets/main-888077be14ed646513fa.js
https://www.nytimes.com/vi-assets/static-assets/main-888077be14ed646513fa.js
https://github.com/sindresorhus/object-assign/blob/main/index.js

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rack et al.

of first-party code written by developers. This structure can vary

based on additional resource types included, e.g., CSS files, but its

general structure is a clear indicator for a Webpack bundle. Other

bundlers use a similar structure, but different in subtle ways that

we can use to detect the tool that produced the bundle.

Considering the rigid structure of the bundles, we find that the

most effective way to identify the bundler in use is to create finger-

prints of the code that the bundler adds to almost every bundle. We

refer to this code as bundler boilerplate code. This code can have

different use cases, one of which is to emulate Node’s CommonJS
module system. Most bundles are intended to run in the browser,

but this module system is not supported natively by browsers.

Hence, every JavaScript bundler that supports CommonJS modules

somehow emulates this module system to ensure that modules

can import their dependencies via the require function. CommonJS
modules are still very prevalent in the JavaScript space, thus, the

code to handle them is equally likely to be found in bundles. For

example, in the case of Webpack, a custom require function is used,

called "__webpack _require __".

1 function __webpack_require__(moduleId) {

2 var cachedModule = __webpack_module_cache__[moduleId];

3 if (cachedModule !== undefined) {

4 return cachedModule.exports;

5 }

6 var module = __webpack_module_cache__[moduleId] = {

7 exports: {}

8 };

9 t__webpack_modules__[moduleId](module , module.exports ,

__webpack_require__);

10 return module.exports;

11 }

Listing 2: Webpack require function

We show the code for this Webpack require function in List-

ing 2, while the minified version of the same function is visible in

Listing 3. Revisiting the motivating example, one can observe that

this minified require function is invoked both in the second and

the third compartment to load dependencies.

1 function n(e) {

2 var o = r[e];

3 if (void 0 !== o) return o.exports;

4 var u = r[e] = {

5 exports: {}

6 };

7 return t[e](u, u.exports , n), u.exports

8 }

Listing 3: Webpack require function minified

The fact that these functions appear at a similar position in

the code makes it trivial to detect their usages. Other bundlers,

such as Parcel have a different require emulation function called

parcelRequire. We note that even after minification, the name of the

function is still preserved and can be used to detect a Parcel bundle.

2.3 Module names and minification
Minification is an important code transformation step performed

during the bundling process, which aims to reduce the code size of

the produced code. Depending on the minifier in use and its config-

uration options, the minification process substitutes all identifier

names with very short random names to reduce the page load time.

Minification is non-reversible in the sense that we cannot recover

the original identifiers from the transformed code, making the re-

verse engineering process difficult. However, most string literals or

builtin invocations are not affected by minification, which means

that they can be used in the reversing phase of the bundles.

In some configuration of the bundlers, the names of the modules

are included in each compartment and are not affected by minifica-

tion. For example, in the case of Webpack, to explicitly include the

module names into the bundle, the module_id option needs to be

set to “name”. This is the default case if the mode configuration op-

tion is set to “development”. In such a case, identifying the included

library is trivial, since the module names almost always uniquely

identify the associated library. One might expect that minification

has an effect on the module names included in a bundle because

it substitutes identifiers with short character sequences. However,

this is not the case since module names are included as literals,

hence are not affected by minification. In contrast, the “production”

mode sets this option to “deterministic”, which results in the module

names being substituted by random numbers. By default, Wepback

runs in production mode, which implies that minification is enabled

and that the module names are not included in the bundle. However,

our empirical evidence shows that some developers actively change

the default mode and enable the module_id option.

2.4 Source maps
After the bundled JavaScript code of a web application is minified

for optimization purposes, debugging the web application becomes

inconvenient, due to identifier names being stripped. To revert this

step, developers use source maps, which map the minified source

code to its original counterpart. This mapping is parsed by the

browser, which then allows smooth debugging of the application,

as if it would be its original source code.

Having access to source maps exposes the original source code

faithfully. In the case of a bundle, a source map gives insight into

the list of modules that are included in the bundle, including their

respective module names and original source code. Some source

maps do not include the source code for each module, but the list

of module names is still preserved. In both cases, we can extract

the module names from the source map.

There are different ways to include source maps into the bundle:

(1) Eval: The eval option is a development option that improves

build and rebuild times while separating and naming the

bundled modules for ease of debugging. It can also be used

in combination with source maps, where the source code is

included after each module.

(2) Inline: The source map is appended to the source file itself,

sometimes encoded with base64.

(3) Reference: A reference to the source map file is included at

the end of the file in the form of a comment. We can further

distinguish between cheap source maps and typical source

maps. Cheap source maps do not map to the original code,

but to the transpiled, not yet minified code.

In our work, we focus on inline and external non-eval source
maps. Webpack does not recommend eval for production or devel-
opment mode. Moreover, during our initial experiments, we have

not found many usages of eval source maps.

Jack-in-the-box: An Empirical Study of JavaScript Bundling on the Web and its Security Implications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

2.5 Relevant information preserved in bundles
Considering all the information presented in this section, when

analyzing JavaScript bundles, we are interested in extracting the

following information:

(1) The compartmentalization of a bundle, i.e., splitting the

source code to separate the included modules from each

other, and thereby, assigning each module to its transformed

code. This is essential for any further analysis and helps us

understand how many modules are contained in a bundle.

(2) The import relationship between the detected modules is

useful to group the related modules together. We can further

leverage this information to infer the number of rootmodules

in a bundle, which is a useful approximation for the number

of imported libraries in a website.

(3) The module names are the most valuable property for our

research because they associate a name to all the detected

compartments of a bundle. We can use this information to

precisely identify the included libraries. As we have seen,

we can obtain module names either from the compartments

themselves, when certain build options are used, or from the

associated source maps.

(4) High-entropy literals that survived the minification pro-

cess and are present in specific compartments can uniquely

identify a specific version of a library.

Let us now proceed to describe our methodology that aims to use

this information to reidentify problematic code inside bundles.

3 METHODOLOGY
In Figure 2 we show our measurement methodology, consisting

of four steps. In the first step, we infer fingerprints (1) for each
bundler from a sample set of generated bundles. We apply the

fingerprints to decide which bundler was used to produce a given

bundle. Afterward, we conduct a large-scale crawl (2) of the web,
where we apply the fingerprints to all loaded JavaScript files. Each

of the identified bundles is processed by a reversing suite (3) to
extract information about the libraries included in the bundle. Lastly,

we analyze the security (4) of the identified libraries. Below, we

provide details about each of these steps.

3.1 Infer bundler fingerprints from samples
We start this phase by generating several bundles, using the most

popular bundlers used by developers. To this end, we develop a sam-

ple web application and bundle it using different build options, re-

source types, and resources. We then analyze the generated samples

to infer certain code snippets that each of the considered bundlers

include in the generated code. As discussed in Section 2.2, these

code snippets are often helper functions or boilerplate code that

emulates JavaScript module systems. Our objective in this step is

to generate a set of bundles that is as diverse as possible, to ensure

that the produced fingerprints cover most developers’ use cases

and that our fingerprints are stable across different build options.

The entry point of our sample web application imports five

of the most popular JavaScript libraries: jquery, momentjs, uuid,
underscore, and lodash. It is important to note that to avoid these

resources from being deleted as a consequence of the performed

optimizations, we have to reference them in the entry point. For this

purpose, we add some code that exercises some of their methods.

We first manually study all the available build options of the

considered bundles and try it ourselves to see how it affects the

output bundle. For each bundle, we then create a list of relevant

build options that affect the structure of the bundle and we exhaus-

tively explore each of them. The different build options available

can be separated into two different categories:

• Fully inclusive: they can be used in combination with any

other option.

• Group inclusive: the option belongs to a group of which only

one can be set at a time.

Our pipeline takes care of these constraints and alternating be-

tween different combinations of build options, it outputs all the

possible bundles that can be producedwith each bundler, the sample

application, and the relevant build options. The generated bundles

serve as a test bed for our bundle detector: Since we pose the ground

truth for each entry, we ensure that our pipeline correctly identifies

the right tool in every case.

By manually analyzing the generated samples, we are able to ex-

tract fingerprints that are unique to each of the considered JavaScript

bundlers, across the configuration options. Each of the considered

fingerprint consists of several highly-specific lines of code, contain-

ing high-entropy identifiers or literals. Hence, we believe that the

existence of false positives in our results is very unlikely, i.e., the

chance that code that is not produce by bundles includes such code

snippets is negligible. It is worth mentioning that since our sam-

ples include both minified and non-minified samples, the produced

fingerprints support both these cases. Moreover, when producing

fingerprints we ensure that they are not impacted by the non-

deterministic transformations of the used minifier. The produced

fingerprints serve as the basis for constructing the bundle detec-

tor, which we use for classifying JavaScript files in the crawling

step. Considering how easy it is to generate new samples using

off-the-shelf bundles, one can avoid the manual effort in this phase

by training a machine learning classifier, in the style of Skolka et

al. [40]. Nonetheless, we believe that the current fingerprints-based

solution suffices for a first study in this domain, and we leave this

opportunity for future work to explore.

3.2 Crawling phase
In this phase, we conduct a large-scale crawl of most popular web-

sites on the internet. On every page visit, we intercept both loaded

first- and third-party JavaScript files and use the fingerprints ob-

tained in the previous step to detect bundled code. Concretely, we

visit the landing page of each website using a headless browser

and wait for six seconds for the scripts to load. We then parse each

intercepted script into an abstract syntactic tree and attempt to

locate each fingerprint inside the tree, using sub-tree matching.

In case of a match, the corresponding JavaScript bundle is saved

in a database for further study. Considering our straight-forward

crawling strategy, i.e., only consider landing pages and no attempt

to bypass login pages, our prevalence results should be considered

a lower-bound for the actual usage of bundlers on the web.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rack et al.

Figure 2: Our methodology for collecting JavaScript bundles from the web and reverse engineering them to obtain information
about the provenance of the bundled code.

3.3 Reversing phase
The reversing suite extracts information about the included libraries,

for each intercepted bundle. We describe the reversing process in

Algorithm 1. The output of this algorithm is either (i) a compart-

ments list, each corresponding to a module in the bundled code,

(ii) a dependency graph (with or without module names for com-

partments), (iii) a list of libraries included in the bundle (with or

without exact version), or (iv) nothing in case the bundle could not

be parsed by our analysis pipeline. The algorithm consists of four

steps, each building on the previous ones: extracting compartments

(lines 1-4), building the compartments dependency graph (lines

5-16), identify embedded libraries (lines 17-27), and pinpoint the

exact library version (lines 28-33). After each step, the algorithm

may halt with only partial information about the bundle. Since this

information suffices for answering our research questions, we leave

for future work to fully reverse the majority of real-world bundles.

Below, we describe in detail the four steps of the reversing phase.

In Step 1, we construct a compartment list, i.e., an array of uniden-

tified modules where each compartment is represented by a number

assigned to its source code. This step is bundler-specific in the sense

that each bundler has a slightly different structure for aggregating

the consumed code. Nonetheless, for all the analyzed bundlers, the

compartments can be deterministicaly extracted using a simple

AST-based static analysis. At this point in the reversing process,

we do not know the name of the modules, nor do we know their

import relationships.
Once we extract a module list, we further build a dependency

graph (Step 2) from it. To this end, we need to first identify the emu-

lated require function, which is included by each of the considered
bundlers, as discussed in Section 2.2. We then locate each call site

of this function and extract the literal used as argument. This literal

allows us to locate the target compartment the require statement

refers to. By relating the encompassing compartments with the

required ones, we can construct the compartment graph, which

represents the import relationship between modules. As noted in

Section 2.5, we call each compartment that no other compartment

imports a root compartment, and we note that such compartments

usually correspond to an entry point in a dependent library.

In Step 3, we aim to infer the exact module names for each root

compartment. We first check if a source map is available and if so,

we download the source map and extract the module names, and if

available, their code from the source map. Our analysis supports

two types of source map inclusions
1
: directly included in the bundle

(inlined) and external ones linked with a comment placed inside

the bundle. Furthermore, we support both source maps that include

the original code verbatim, but also lighter source maps that only

include module names, paths, and line numbers. Upon successful

retrieval of the source map, we group the modules by the library

they belong to. This relationship is visible in the module names.

For instance, let us consider the case of a bundle that includes

the method isEmpty from the lodash library. The name of the

isEmpty module is included as "/node_modules/lodash/isEmpty.js"

in the source map, which reveals its relation to the lodash library,

allowing our pipeline to conclude that the bundle contains this

library. However, if no source map is available, for each module

in the already detected module list, we extract its module id. As

discussed in Section 2.3, in certain cases, the module names are

included in the bundles as module ids. Our pipeline, thus, decides if

the extracted module ids are short randomly generated identifiers,

1
https://webpack.js.org/configuration/devtool/

https://webpack.js.org/configuration/devtool/

Jack-in-the-box: An Empirical Study of JavaScript Bundling on the Web and its Security Implications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

or full-fledged module names, containing their relative paths in

the enclosing dependent library. If the latter is the case, this allows

our approach to label the constructed dependency graph with the

correct module names, obtaining the same result as in the case

when source maps are available.

Algorithm 1 Reversing algorithm

Input: Bundle under study B
Output: Compartments 𝐶 , compartments graph 𝐺 , included

libraries 𝐿, included library versions 𝑉

Step 1
1: 𝐶 ← ∅
2: while 𝐶𝑖 ← MatchNewCompartment(B) do
3: 𝐶 ← 𝐶 ∪𝐶𝑖
4: end while

Step 2
5: req← GetRequireFunction(B)
6: if !req then
7: return 𝐶 ⊲ Extraction of the compartments only

8: end if
9: 𝐸 ← ∅
10: for 𝑐𝑖 ∈ 𝐶 do
11: while 𝑟𝑖 ← GetInvocationOfRequire(𝑐𝑖) do
12: 𝑐 𝑗 ← GetTargetCompartment(𝑟𝑖)
13: 𝐸 ← 𝐸 ∪ {𝑐𝑖 → 𝑐 𝑗 }
14: end while
15: end for
16: 𝐺 ← ⟨𝐶, 𝐸⟩

Step 3
17: 𝑃 ← ∅
18: if ModuleIdsEnabled(B) then
19: for 𝑐𝑖 ∈ 𝐶 do
20: 𝑚𝑖 ← GetModuleId(𝑐𝑖)
21: 𝑃 ← 𝑃 ∪ {TrimPackageName(𝑚𝑖)}
22: end for
23: end if
24: if SourceMapAvailable(B) then
25: 𝑆 ← RetrieveSourceMap(B)
26: 𝑃 ← ExtractPackageNamesFromSourceMap(S)
27: end if
28: 𝑉 ← ∅

Step 4
29: for 𝑟𝑖 ∈ 𝐶 do ⊲ Only iterate through root compartments

30: 𝜎 ← ExtractSignature(𝑟𝑖)
31: 𝑣𝑖 ← MatchSignature(𝜎)
32: 𝑉 ← 𝑉 ∪ {𝑣𝑖 }
33: end for
34: if 𝑉 ≠ ∅ then
35: return 𝑉 ⊲ Extraction of included library versions

36: end if
37: if 𝐿 ≠ ∅ then
38: return 𝐿 ⊲ Extraction of included library list only

39: end if
40: return G ⊲ Extraction of the compartments graph only

In Step 4, we pinpoint not only the names of included libraries,

but also their respective versions. At this point of our reversing

suite, we are left with a dependency graph with named or unnamed

modules. To identify the exact version of a library, we propose using

static analysis to extract certain features (string literals, occurrences

of certain keywords like “this”, builtin calls, usage of class attribute)

that remain untouched by the bundling process, as discussed in Sec-

tion 2.3. We download each version of the target library from npm,
bundle it, and extract these feature, persisting them in a database.

First, for each of the unnamed root modules identified earlier, we

extract the features from all its sub-modules, aggregate them, and

compare the resulting set with the ones saved in the database to

compute a similarity score. We apply a certain threshold (80%) to

the score to declare the compared modules as similar to a particular
version. This yields a range of potential versions, which we fur-

ther decrease by applying a unique feature analysis. This analysis

involves comparing the feature groups of each candidate version

to identify features unique to that particular version or a smaller

version range. Lastly, we search for these unique features in the

module we are assessing to further reduce the number of possible

versions.

We note that our reversing algorithm does not support the usage

of submodules, so we only report complete inclusions of libraries.

That is, if a bundle only includes a submodule from a library, e.g.,

lodash/isEqual, we do not count this as an inclusion of the encom-

pasing library. That is because this would require a more precise

downstream security analysis that locates the vulnerabilities we

aim to reidentify, in the affected submodule. Since we are not aware

of any vulnerability database that provides this data, we decided to

adopt a conservative, coarse-grained library identificaiton.

3.4 Security analysis
To determine the security posture of bundles, we perform a soft-

ware composition analysis at bundle level, for bundles for which we

could identify their composing libraries. More specifically, we aim

to reidentify known vulnerabilities or malicious code inside bun-

dles, and to analyze the reputation of each detected bundled library.

To this end, we leverage publicly available vulnerability databases

to reidentify problematic code. These databases associate npm pack-

ages with their known vulnerabilities, a set of affected versions,

and a severity score for each vulnerability. For cases when we can

precisely identify the bundled version for a particular package, we

verify if this version is affected by any vulnerability. Otherwise, we

take a conservative approach and only report packages for which

there are vulnerabilities known that affect all their versions. To

evaluate the reputation of the found libraries, we use npms2, an
open-source API that exposes the official analyzer used by npm

internally
3
. npms assigns to each package a score between 0 and

100, using multiple signals: quality, maintenance, and popularity.

This score is used to sort the search results on npmjs.com, hence,

we believe it is a reliable score that reflects the community’s percep-

tion of reputation. After obtaining this score, we manually inspect

low-reputation packages for potential security risks.

2
https://npms.io/

3
https://docs.npmjs.com/searching-for-and-choosing-packages-to-download

https://npms.io/
https://docs.npmjs.com/searching-for-and-choosing-packages-to-download

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rack et al.

4 RESULTS
In this section, we present and discuss the results we collected for

each research question, together with details about our setup.

4.1 Experimental setup
In our study, we consider the five most popular bundlers at the time

of writing, namely, Webpack, Browserify, Rollup, Parcel, and

Esbuild. We create a total of 36 fingerprints to identify the bundles

created using different configurations of these tools. There are other

JavaScript bundlers available, however, these have either not gained

much popularity or internally use one of these five bundlers for the

bundling process. For the reversing process, we focus on Webpack,

as it is by far the most popular bundler, according to our prevalence

results in Section 4.2. For the library version detection we aim

to identify lodash, as it is a representative popular library with

multiple known vulnerabilities.

To assist the replication of our study and to foster future work in

this domain, we open source our measurement framework, contain-

ing the inferred fingerprints, the crawling scripts, and the detection

and reversing pipeline:

https://github.com/zenoj/BundlerStudy

We crawl the Tranco Top1M list [34] from 10
th

of May 2022,

on the same day. We use pupeteer with Chrome as the headless

browser, and its plugin puppeteer-extra-plugin-stealth for

avoiding bot detection. Out of the target onemillionwebsites, a total

of 155 698 (15,56%) websites do not load any JavaScript programs,

hence have no bundles either. We consider them as “unresponsive”

and exclude them from our study.

We use Snyk
4
as vulnerability database. We run all our exper-

iments on a server with 64 Intel Xeon E5-4650L@2.60GHz CPU

cores, 768GB of memory, running on Debian GNU/Linux 10.

4.2 RQ1: How prevalent are bundles in
real-world web applications?

To measure the prevalence of bundlers, we first examine how many

bundles are included on websites and which bundler is the most

popular. In total, we detect 1 086 368 bundles, on the crawled web-

sites. Figure 3 shows the average percentage of websites that use

bundles over the crawled website ranges. For instance, over the

most popular 50K websites, we see that an average of about 47%

of websites use bundles. Moreover, we see a correlation between

the decrease in this average and the rank of the websites. This is

especially visible for the first 280K websites where the decrease

is most dramatic. We believe this is mostly due to the decreasing

number of third-party bundles, as discussed below in Figure 5. Over-

all, around two out of five websites load at least one bundle on a

site visit, which underlines the high prevalence of bundles on the

web. Nonetheless, some websites include much more than that,

e.g., gameskeys.net includes 55 bundles on its landing page. At a

closer inspection, most of these bundles come from the domain

kumo.network-n.com, which is flagged as suspicious by certain

4
https://snyk.io/vuln/npm:npm

malware scanning services
5
or it is included in blocklists

6
. This

suggests that bundles might be abused for delivering malicious

code, possibly due to the limited analysis support for reasoning

about bundled code.

Figure 3: The prevalence of bundles

Figure 4: The prevalence of bundlers

Next, we show in Figure 4, which tools generated the detected

bundles. In the most popular 100K websites, we found an average

1.27 (Webpack), 0.11 (Browserify), 0.05 (Rollup), 0.008 (Parcel),

and 0.009 (Esbuild) bundles per website. We observe that the vast

majority are Webpack bundles, followed by a fraction of Browser-

ify, and some Rollup bundles. The quantity of Esbuild and Parcel

is so small that their relevance is almost negligible. This result is in

line with the download trends on npm. These results further show
the high relevance of JavaScript bundlers on the modern web.

To increase confidence in the measurements reported in this sec-

tion, the two authors of this paper manually inspected 100 detected

bundles, 20 for each bundler. The raters agree that none of the

analyzed samples are in fact false positives, i.e., they all represent

real-world bundles. Thus, these results support the assertion that

5
http://any.run/report/9450c116014894fc766697192e9b0c05002affe39782da6dc27a3a6f9b7540fa/

ce0d6648-0cd1-41f8-9753-c98a2489503b

6
https://github.com/NethServer/dns-community-blacklist/blob/master/adguarddns.

dns

https://github.com/zenoj/BundlerStudy
gameskeys.net
kumo.network-n.com
https://snyk.io/vuln/npm:npm
http://any.run/report/9450c116014894fc766697192e9b0c05002affe39782da6dc27a3a6f9b7540fa/ce0d6648-0cd1-41f8-9753-c98a2489503b
http://any.run/report/9450c116014894fc766697192e9b0c05002affe39782da6dc27a3a6f9b7540fa/ce0d6648-0cd1-41f8-9753-c98a2489503b
https://github.com/NethServer/dns-community-blacklist/blob/master/adguarddns.dns
https://github.com/NethServer/dns-community-blacklist/blob/master/adguarddns.dns

Jack-in-the-box: An Empirical Study of JavaScript Bundling on the Web and its Security Implications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

the highly-specific fingerprints employed by our approach are very

unlikely to produce false positives.

Figure 5 illustrates the average number of bundles originating

from first-party or third-party, over the whole scanned website

range. We can see that in the first 50 000 domains the average

is about 1.25 bundles for the third-party, while the first-party is

at around 0.46 bundles per domain. In general, we can see that

there are a lot more third-party than first-party bundles. Even

more interesting is the development of the graphs with decreasing

rank. While the blue line, representing the number of first-party

bundles, stays relatively constant between approximately 0.5 and

0.35, the number of third-party bundles declines to less than half of

its starting value. This shows that bundlers are predominantly used

for third-party scripts and that the decrease in third-party bundles

is responsible for the overall decrease in bundles’ prevalence in

lower-ranked websites.

Figure 5: The origin of bundles

In contrast, the bundles’ size behaves the opposite way. On one

hand, the average first-party bundle size diminishes from 210 kB in

popular websites to almost half this value in lowest-ranked ones. On

the other hand, the third-party bundles’ size stays steadily between

180 kB and 160 kB. This might indicate that higher-ranked websites

bundle more self-written code than lower-ranked websites.

4.3 RQ2: To what degree can bundles be reverse
engineered?

We start by investigating the number of accessible source maps,

which we remind the reader provide a transparent view inside the

associated bundle. Figure 6 shows the relationship between the

number of Webpack bundles and their number of accessible source

maps. The graph indicates that source maps are quite common,

given that between every eighth and every tenth bundle includes

an accessible source map that exposes the entire source code of the

bundle. This finding has strong security implications: The preva-

lence of source maps enables us to examine third-party dependen-

cies of about 80K websites. As discussed in Section 4.4, some of

these dependencies have known vulnerabilities that might render

the website vulnerable to attacks.

Altogether, we were able to parse and further investigate 46.84%

of all foundWebpack bundles, as shown in Figure 7. From 62.70% of

Figure 6: The prevalence of source maps

these, we can build a module list, from 18.64% we can further infer a

dependency tree. We can fully reverse 18.63% of these due to acces-

sible source maps and less than 0.03% due to the module_id build

option. For the most popular 100k websites, out of approximately

126K bundles, about 12K have accessible source maps, from another

12K we can extract a dependency tree without module names, and

from around 70K we can pull a list of modules without module

names. Moreover, module ids are very rarely used, as they are not

even visible in the graph. Altogether we are able to parse and to

some extent reverse around half (47,35%) of all detected webpack

bundles. This is an important result that reflects the effectiveness of

our analysis approach, and further implies that reversing bundles

is feasible.

Additionally, we precisely identify the exact lodash version in

299 bundles: 281 bundles with 4.17.21, 15 with 4.17.20, and one each

for 4.17.16, 4.17.15, and 4.17.10, respectively. This shows that most

developers bundle the most recent version of popular libraries.

Figure 7: Reversibility of bundles. The bar labeled reversible
is the sum of all other reversing methods that are placed to
the left of it in each data point.

Below, we show some representative examples of bundles re-

versed engineered using our pipeline. We use the treemap graphical
representation to visualize the diversity of the code that was merged

into the bundle. In the case of module lists, the visualization looks

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rack et al.

Figure 8: An opaque view of the compartments of a bundle
captured on purefishing.jp.

as depicted in Figure 8. Every compartment represents a module,

while the reserved space for each compartment is an indicator

of its size. In total, we count 79 compartments with the biggest

module jquery having a size of 280 kB, while the smallest module

core-js/internals/hidden-keys.js measures only 21 B. In the

case of this particular bundle, we are also able to build a dependency

tree and label the included libraries correctly, due to an accessible

source map. This is shown in Figure 9. For this reason, we can

further group the code by first-party and third-party. We decided to

combine the first-party modules into one compartment, as we are

more interested in the third-party components. The comparison

between Figure 8 and Figure 9 shows howmultiple components can

be merged using their dependency relationships. After the merging

process, we can see that there are in fact only seven third-party

libraries included in the bundle. Moreover, we note that this bundle

includes significantly more third-party than first-party code.

Figure 9: A transparent view of the libraries included in a
bundle from purefishing.jp, whose compartments are shown
in Figure 8.

This is not the case for all bundles: A bundle we captured on

obo.de includes 17 third-party libraries, and a significant amount of

first-party code, which represents two-thirds of the entire bundle.

There are also more scattered bundles containing possibly hundreds

of modules as visible in Figure 10. Merging the modules that belong

to the same library (Figure 11), the same bundle (Figure 10) looks a

lot different, showing the importance of grouping related modules

together when trying to identify bigger code chunks like libraries.

4.4 RQ3: Which libraries are included in
bundles? Are they security relevant?

In this section, we thoroughly inspect bundled libraries detected

inside bundles, and attempt to study their security implications.

Figure 10: An opaque view of the compartments of a bundle
captured on readshop.nl.

Figure 11: A transparent view of the libraries included in a
bundle from readshop.nl, whose compartments are shown
in Figure 10.

Bundle analysis. The relationship between the number of in-

cluded third-party libraries and the scanned website ranges is de-

picted in Figure 12. First-party bundles include six third-party li-

braries on average over the first 100K websites, while third-party

bundles include only 3.4 in the same range. Overall, the average

bundle contains between three and six third-party libraries with

first-party bundles containing significantly more than third-party

ones. This high number of third-party code supports the importance

of bundlers for supply-chain security.

Figure 12: The number of third-party libraries

Included libraries. Our results show that about 8.3% of all bundles

can be reversed due to accessible source maps and another 0.01% of

bundles because the module _id build option is enabled. This leaves

us with 8.3% bundles that we can assess regarding their security

purefishing.jp
purefishing.jp
obo.de
readshop.nl
readshop.nl

Jack-in-the-box: An Empirical Study of JavaScript Bundling on the Web and its Security Implications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

posture. Altogether, we find 7 821 unique npm packages included

in bundled code. Furthermore, we find 6 778 different third-party

libraries in first-party bundles, whereas only 4 156 in third-party

bundles. These results are in line with our earlier observations

that first-party bundles include more different libraries per bundle,

which leads to a more diverse bundle composition, even though

there are twice as many third-party bundles.

Most bundled libraries. Figure 13 shows the ten most frequently

included libraries in all bundles. tslib is the most popular among

bundled libraries with 14 270 usages, which is not surprising con-

sidering the recent interest in gradual typing for JavaScript. A

particularly interesting result, though, is the high prevalence of

the library bowser, which performs browser’s version detection. It

appears in 10 520 third-party bundles, but in less than 1 000 first-

party ones. This suggests that many third-party bundles include

tracking code that might harm the privacy of the users. However,

we note that there are many benign uses of the bowser library, such
as specializing a given web page for a particular device or operating

system. Another library with disproportionate usages in third-party

bundles is jsonp, which suggests that third-party bundles actively

attempt to perform cross-domain requests. On the contrary, around

89.4% of the usages of the lazysizes library can be attributed

to first-party bundles. This library is a “SEO friendly lazy loader

for images”, which suggests that developers often bundle code for

improving the performance of their website.

Figure 13: Top10 bundled libraries

Vulnerability assessment. Figure 1 summarizes the number of

known vulnerabilities we reidentified in bundled libraries, grouped

by vulnerability class. In total, we find 33 npm packages with known

security issues that lead to 1 051 vulnerabilities in bundles. Out of

these, 773 are low severity, 202 are of medium severity, 59 are of

high severity, and 17 are classified as critical vulnerabilities. These
vulnerabilities include: arbitrary code execution, prototype pollution,
and cross-site-scripting. Additionally, three lodash versions (4.17.5,

4.17.10, 4.17.16) we identified in one bundle each contain known

prototype pollution vulnerabilities. This shows that bundled code

contains JavaScript libraries with known vulnerabilities that might

have a severe impact on the security of the application that relies

on it.

One year after our initial study, on 9
th

of August 2023, we revis-

ited all the 1 051 affected bundles and observe that only 673 are still

Class

Affected

Packages

Occurrences in Bundles

XSS 13 151 (M:128, H:8, C:15)

ReDoS 8 48 (M:37, H:11)

Prototype Pollution 4 36 (M:5, H:31)

Information Exposure 1 1 (L:1)

Improper Input Validation 2 10 (M: 8, C:2)

Command Injection 1 3 (H:3)

Arbitrary Code Execution 1 3 (H:3)

DoS 1 3 (H:3)

Insecure Credential Storage 1 12 (L:12)

HTML Injection 1 24 (M:24)

Insufficient Input Validation 1 760 (L:760)

Total 33 1051

Table 1: Vulnerabilities found in bundles. In paranthesis we
show the severity of the reidentified vulnerabilities: low (L),
medium (M), high (H), or critical (C).

available. Only 110 still have accessible source maps and 32 are still

flagged by our approach as being vulnerable. Ten of these bundles

are third-party, while the others are first party. We manually con-

firmed that all these bundles include an unpatched, vulnerable npm

package. Finally, we reported these findings to the affected websites.

On one hand, these results show that bundles evolve significantly

over time and that developers tend to patch the vulnerabilities in

their bundles. On the other hand, there are still bundles affected by

vulnerabilities published more than 10 years ago.

Let us now proceed to show how such a long-known vulnera-

bility can compromise the security of the embedding website. Let

us consider the website https://www.gob.pe/, the official digital

platform of the Republic of Peru. This website includes the npm

package awesomplete via the bundle https://www.gob.pe/packs/js/

application_base-d54f73c7964935d9242f.js. This package is known

to be affected by a HTML input injection
7
. The package provides

auto-complete functionality for HTML input fields, by accepting a

list of texts to complete the input towards. The vulnerability report

states that awesomplete contains a XSS gadget that takes parts of

the input list and renders it into the DOM without sanitization.

We note that the threat model of this vulnerability is very strong,

assuming that attackers can control the auto-complete suggestions.

By running code in the context of the page, we can verify that

indeed the website includes the handle Awesomplete in the global

scope, registered by the problematic npm package. Let us now add

a malicious auto-complete option to the main search field on the

page:

1 new Awesomplete($("#input -search -home -gobpe")[0], {

2 minChars: 1,

3 list: ["Fox: blah "]

4 });

Subsequently, if the user types into the input field the word

“Fox”, the XSS gadget from the awesomplete package get triggered,
and the alert is shown. This confirms that the problematic code is

7
https://security.snyk.io/vuln/SNYK-JS-AWESOMPLETE-174474

https://www.gob.pe/
https://www.gob.pe/packs/js/application_base-d54f73c7964935d9242f.js
https://www.gob.pe/packs/js/application_base-d54f73c7964935d9242f.js
https://security.snyk.io/vuln/SNYK-JS-AWESOMPLETE-174474

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rack et al.

indeed present on the website. However, in this demonstration, we

assume attackers can get control over the input list to the package,

an assumption we could not fullfill under a traditional web attacker

model. Nonetheless, we note that attackers can attempt to leverage

other vulnerabilities to take control of that input. For example, if we

assume a prototype pollution vulnerability, an attacker can pollute

the Object.prototype.list property and hijack inputs for call

sites for which no list is provided as input.

The example above shows that vulnerabilities in bundles are

indeed present on the affected website, but that triggering themmay

prove difficult and require a deep understanding of the embedding

website and its threat model.

Lowest-rated packages. To investigate the reputation of bundled

code, we fetch the statistics from npm for each package andmanually

analyze the 100 lowest-rated bundled npm packages. Overall we find
that the average npm package score of all bundles is 0.577, while the
average score of the 100 least rated libraries is 0.179. We analyze

packages that originate from the same library together to avoid

redundancy. This leaves us with 76 out of 100 packages, which in

total are included 472 times in the examined bundles. Furthermore,

these packages have an average weekly download count of 105

and were, on average, last published 3.45 years ago. However, 43

(56.58%) of them are downloaded even less than once per day. In

addition to that, we find five (6.58%) officially deprecated packages.

Because of this label, we recommend that developers should look for

alternatives for this packages, and the research community should

consider developing automatic approaches to assist this migration.

Studying the low-rated packages even more closely, we find

ten (13.16%) security holding packages. These are placeholders for

packages that were removed by npm due to containing malicious

code. All of these ten packages are still downloaded on a daily basis,

which indicates that some of the victims are still unaware that they

might have included a malicious package in the past. However,

these placeholder packages do not contain any JavaScript code, but

only a readme file saying that nobody should use the package. All

the releases of these packages containing actual (malicious) code

were removed from the npm repository immediately after detection.

Hence, since we have concrete evidence that the JavaScript code

of these packages is contained in real-world bundles, but none of

the public releases contain any JavaScript code, we conclude that

the bundles might actually include the malicious version. However,

pursuing this hypothesis further is extremely difficult, as it requires

us to safely execute the affected bundles and uncover or at least

judge the malicious behavior contained in these packages. Public

advisories for npm do not include any information about what type

of malicious action a flagged package performs. Thus, we leave for

future work to further track the effect of supply chain attacks on

real-world bundles.

5 DISCUSSION
In this section, we discuss the impact and limitations of our mea-

surements study and suggest next steps for future work.

Results’ impact and possible methodology improvements. Our re-
sults show that developers carelessly consume npm packages on

the front-end, sometimes depending on vulnerable or malicious

code. Since this code ultimately runs inside the JavaScript sandbox,

its security impact is limited to XSS-like attacks. However, consid-

ering that a single package compromise can affect thousands of

websites and the million of users using them, such an attack would

have devastating consequences, e.g., attackers can harvest creden-

tials or steal cookies at scale. Moreover, we find that security- and

privacy-relevant, third-party packages are often bundled together

with first-party code. This suggests that script-level blocking is not

effective when privacy-sensitive libraries like bower are included in
bundles. Future work should present more sophisticated techniques

to deal with this reality.

While our methodology shows the feasibility of reverse engineer-

ing bundles, the number of bundles completely analyzed with our

pipeline is relatively low. This is because we use relatively simple

analysis techniques that aim to show that reversing of real-world

bundles is possible and that security-relevant code is present in such

bundles. Nonetheless, future work should explore more advanced

program analysis techniques like dynamic analysis of bundles or

machine learning-based reverse engineering.

Finally, our measurements correspond to a particular moment in

time and do not provide insights into the evolution of bundles. Fu-

ture work should explore how often bundles’ composition changes

and how fast vulnerability fixes are adopted.

Inaccuracies in bundles detection. While both false positives and

false negatives are possible in our measurement setup, we took

several measures to decrease both these inaccuracies. First, it is

very unlikely that our highly-specific fingerprints with tens or

hundreds of code tokens would flag scripts that are not bundles as

such. To provide additional evidence that false positives are rare,

we perform a manual analysis of 100 flagged bundles and find zero

false positives. To reduce false negatives, we consider a wide variety

of tools, with different configuration options. Nonetheless, we do

not support every single legacy version of the considered bundlers

or custom plugins available for them. Hence, we advise the reader

to consider our prevalence results as a lower bound for the actual

bundlers usage in the wild.

Crawling considerations. Performing a large-scale crawl poses

great challenges. An important limitation is bot detection measures

enforced by websites. Website administrators do not want to waste

bandwidth on bots such as our crawler because it is not in their busi-

ness interest. To mitigate the misuse of the website they implement

bot detection heuristics that flag and ultimately block traffic orig-

inating from sources that “behave” differently than benign users.

There are already complete third-party solutions available for this

purpose, which monitor traffic across websites and put IP addresses

on a blocklist on bot suspicion. As the presented crawl was per-

formed from a single IP address, these blocking solutions are quite

effective against crawlers like ours. We suspect that many of the

unresponsive websites are actually behaving like this because the

website refuses to answer with a legitimate request to our crawler.

Related work [51] identifies a disparity in loaded resources be-

tween a user and a crawler visiting the samewebsite. This difference

is visible in the number of loaded third-party scripts, which might

impact a crawl like ours. We acknowledge that our measurements

might suffer from this effect and thus, we advise the reader once

again to consider our findings in Section 4.2 as a lower bound for

Jack-in-the-box: An Empirical Study of JavaScript Bundling on the Web and its Security Implications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

the actual prevalence of bundles. There might be other causes for

under-estimating the usage of bundles in the wild, e.g., our crawl

is limited to the landing page and does not explore the deep func-

tionality of websites.

Vulnerability disclosure. Our results are in line with previous

work on vulnerable library detection [5, 12, 23], in the sense that

we show that vulnerable code is present on websites, but we do

not show that it can actually be exploited for nefarious purposes.

Considering the challenges posed by large-scale notification cam-

paigns [45, 46] and the cost-benefits of such endeavor in our specific

case, we decided not to disclose our findings to all the affected web-

sites. While we strongly believe that the problematic dependencies

should be updated as soon as possible, we think that without pre-

senting a concrete payload and the harm it might cause, notifying all

the websites that include a problematic bundle would do more harm

than good. Nonetheless, to test if website maintainers are inter-

ested in such reports, we report the 32 bundles for which we could

manually verify the presence of the problematic code. Nonetheless,

at the time of writing, several weeks after these reports, none of

the website maintainers responded to our disclosure.

Potential solutions for improving bundles security. To reduce the

security impact of bundles usage, we recommend a couple of actions

to be taken by the research and development community. First, we

recommend that bundlers include a software composition analysis

at bundling time, to alert the users about problematic packages

that are about to be bundled. This approach would decrease the

chance of creating new bundles with legacy vulnerable code, but it

cannot serve as a reactive measure for when new vulnerabilities

are discovered. To that end, we recommend that researchers build

a bundlers observatory that aims to regularly verify packages in-

cluded in bundles on popular websites. Companies specializing in

software supply chain assurance, e.g., Snyk or Chainguard, may

want to move into this space to provide their clients with a more

comprehensive view of their dependencies. Nonetheless, all these

solutions lack a holistic view of the bundles usage, so we also advo-

cate for program analysis tools that can address this shortcoming.

Such tools should give insights into how the independent compart-

ments into the bundle interact with the DOM, with each other, and

with security-relevant web APIs.

6 RELATEDWORK
In this section we survey the closest related work, insisting on

JavaScript security, empirical studies of the web, and software sup-

ply chain security.

JavaScript bundlers. Despite being used since 2013, the research

community did not study in detail JavaScript bundlers, specifically

with respect to security. Laurila [24] discuss software engineering

use cases for different bundling software. Their analysis shows

that Webpack sets itself apart through its popularity and flexibility,

while Rollup is the most lightweight and Parcel the easiest to con-

figure. A very common feature that all popular bundlers provide

is solving scope conflicts between the identifiers introduced by

different JavaScript libraries. Patra et al. [33] studied this problem

and implemented a solution to solve it. Nonetheless, none of this

work aims to identify known vulnerabilities in real-world bundles.

Transformed code. Bundlers often apply code transformations

during the bundling process thus, the code they produce can be

considered transformed. Skolka et al. [40] and Moog et al. [29]

study two types of transformed code: minification and obfusca-

tion. Minification is natively supported by most bundlers, thus, a

very common transformation applied to bundled code. Moog et al.

discover that 90% of the websites in the Alexa Top10K contain at

least one transformed script. They further state that applying code

transformations does not imply malicious intent and that benign

code transformation techniques exist. These findings are in line

with the results of Skolka et al., although they find that a much

smaller percentage of scripts (38.5%) are transformed. Skolka et al.

also investigate the hidden behavior of obfuscated code and show

that such code tends to access privacy-sensitive APIs. This effort is

related to our intention of finding hidden third-party libraries in

bundles and evaluating their impact on security and privacy.

Reidentifying vulnerable dependencies. The closest related work

to ours is by Lauinger et al. [23] who investigate if real-world web-

sites include vulnerable libraries. They find that approximately 37%

of websites include at least one vulnerable JavaScript library. In

the case of bundles, the results appear less alarming, with only a

fraction of bundles containing known vulnerabilities. As discussed

in the introduction, in contrast to our methodology, the library

detection techniques proposed by Lauinger et al. cannot handle

bundled code. Beyond the web domain, Backes et al. [5] build li-

brary profiles using class hierarchies to identify vulnerable libraries

in popular Android apps. Fischer et al. [16] measure that more than

a million mobile apps use insecure code snippets copied from Stack

Overflow. Furthermore, Derr et al. [12] show that outdated libraries

in Android applications can be easily updated, without having to

deal with breaking changes. Wang et al. [49] present a technique

for identifying vulnerable code inside binaries by matching fine-

grained memory layouts between the vulnerable code and target

binaries. Duan et al. [14] advocates for automatically removing

vulnerable code from binaries. Recent work by Azad et al. [4] and

Koishybayev et al. [21] propose software debloating as a mean

to reduce the attack surface of web applications by removing un-

used, vulnerable code. While related, none of this work deals with

vulnerable code inside bundles. Nonetheless, while advocating for

code-centric approaches for analyzing and updating problematic

dependencies, Ponta et al. [35] identify and tackle the widely-used

practice of re-bundling library code in Java applications. While

related, this development practice is significantly different than

JavaScript bundling, where specialized tools are used to recombine

multiple files from different parties into a single bundle.

Researchers also studied how vulnerable dependencies evolve

and how they are perceived by developers. Decan et al. [11] find that

on average, it takes more than a month until newly-introduced vul-

nerabilities are discovered, but more than a year to be removed from

dependant projects. By interviewing 25 developers, Pashchenko et

al. [32] find that developers often rely on popularity in detriment

of security posture when selecting potential dependencies and they

are reluctant to update to newer versions of their dependencies due

to breaking changes. These results may affect the composition and

evolution of bundles, which future work should further study.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Rack et al.

Npm security. A plethora of related work aims to identify secu-

rity risks in npm packages. Zimmermann et al. [52] show that due

to the tightly-interconnected nature of this ecosystem, vulnerabili-

ties and risks can easily propagate to tens of dependant packages.

Abdalkareem et al. [1] find that developers often rely on trivial

packages, which leads to an over-fragmentation of the ecosystem

and an amplification of the security risks. Staicu et al. [43] show that

injection vulnerabilities are prevalent in npm packages and propose

a hybrid program analysis technique for preventing exploitation.

Moreover, Brown et al. [7] and Staicu et al. [44] show that low-level

code also poses a significant risk to the ecosystem. Davis et al. [10]

and Staicu et al. [42] study ReDoS vulnerabilities, an availability

problem caused by the slow matching algorithms implemented in

the JavaScript engines. Moreover, they show that ReDoS vulnerabil-

ities in packages can be exploited against popular web sites. Xiao

et al. [50] introduce hidden property abuse, a serialization-related

problem in which attacker-controlled values are carelessly copied

inside properties of internal objects. They show that this technique

can be used to mount powerful injection attacks or authentica-

tion bypass. Similarly, Shcherbakov et al. [38] show that prototype

pollution vulnerabilities can be leveraged for remote code execu-

tion against open-source web applications. Li et al. [26] propose a

sophisticated static program analysis for detecting prototype pollu-

tions, which they then generalize as a general-purpose vulnerability

detection framework for npm packages [27]. Chinthanet et al. [9]

discuss the challenges encountered when trying to build a general-

purpose vulnerability detection tool for Node.js. Finally, Bhuiyan

et al. [6] propose a data set of vulnerabilities with exploits to foster

tool development in this domain.

In response to a series of supply chain attacks against npm, Duan

et al. [13] rigorously study the indicators for possibly-malicious

packages, and propose a hybrid program analysis technique for

finding zero-day attacks. They uncover more than 300 unknown

supply chain attacks for which CVE numbers were later assigned.

Typosquatting is a type of supply-chain attack that tries to trick

users into downloading a malicious package. To this end, the at-

tacker uploads a malicious package that is spelled almost identically

as a popular benign package. Taylor et al. [47] proposes using lexical

similarity for detecting typosquating. In contrast, Garrett et al. [17]

detect malicious packages by inspecting package releases for newly

introduced security-related functions or packages. Finally, Ferreira

et al. [15] and Vasilakis et al. [48] advocate for mitigating supply

chain attacks by enforcing a permission system for packages. The

permission system only grants a package the minimal required

permissions that it needs to function. Nonetheless, AlHamdan and

Staicu [3] show that language-based sandboxes are easily bypass-

able in JavaScript and should not be used to confine untrusted code.

As we show in this work, supply chain attacks may affect bundled

code as well, thus, future work should investigate the feasibility of

mitigating such attacks in production websites.

Measurement studies of web security and privacy. Empirical stud-

ies of the web aimed at understanding the prevalence of security

problems or the adoption of security mechanisms is a well-studied

research area. There are large-scale measurements studies of the

web that aim to understand: the prevalence of XSS vulnerabili-

ties [25] or cross-site leaks [36], the inconsistent deployment of

security mechanisms [37], the insecure usage of post messages [41],

the likelihood of cookie hijacking [39], the prevalence of browser

fingerprinting [2, 22] or cryptomining [20], the adoption of new

technologies like WebSockets [30] and WebAssembly [18] or of

security mechanisms like CSP [8, 28]. To the best of our knowl-

edge, no prior work studies the prevalence and impact of JavaScript

bundling on the web.

7 CONCLUSION
In our work, we conduct a large-scale empirical analysis of bundled

code. We explore different characteristics of bundles and assess

their posture with regards to software supply chain security. The

results show the high prevalence of bundles in the web ecosystem,

as more than 40% of all websites load at least one bundle, and

the average number of bundles is more than one per website. We

find that third-party bundles are more frequent, but contain a less

diverse set of libraries than first-party bundles.

Analyzing the security of bundles, we detect 33 unique vulnera-

ble npm packages, which account for a total of 1 051 vulnerabilities

in bundled code. Out of these vulnerabilities, 17 are labeled as crit-

ical and 59 are of high severity. Through manual analysis of the

100 lowest-rated npm packages included in bundles, we discover

five deprecated and ten security holding packages, which act as a

placeholder for packages that were removed from the npm registry

because they contain malicious code. These findings indicate that

bundled code is vulnerable to supply-chain attacks and that bundles

might have already been the targeted by such attacks.

Overall, our results show that bundles hold precious information

for security analysts, which future work onweb application security

must take into account. Considering the plethora of risks in the npm

ecosystem, we warn about the possibility of complex supply chain

attacks, in which attackers compromise a single popular package

to attack multiple target websites that include this package via

bundles.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments,

which helped us significantly improve the manuscript. We also

thank Ben Stock for his early feedback on this work.

REFERENCES
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case Study

on npm. In Joint Meeting on Foundations of Software Engineering (ESEC/FSE).
[2] Gunes Acar, Marc Juárez, Nick Nikiforakis, Claudia Díaz, Seda F. Gürses, Frank

Piessens, and Bart Preneel. 2013. FPDetective: dusting the web for fingerprinters.

In Conference on Computer and Communications Security (CCS).
[3] Abdullah Alhamdan and Cristian-Alexandru Staicu. 2023. SandDriller: A Fully-

Automated Approach for Testing Language-Based JavaScript Sandboxes. In

USENIX Security Symposium.

[4] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is more:

quantifying the security benefits of debloating web applications. In USENIX
Security Symposium.

[5] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable Third-Party Library

Detection in Android and its Security Applications. In Conference on Computer
and Communications Security (CCS).

[6] Masudul Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasilakis, Michael

Pradel, and Cristian-Alexandru Staicu. 2023. SecBench.js: An Executable Secu-

rity Benchmark Suite for Server-Side JavaScript. In International Conference on
Software Engineering (ICSE).

Jack-in-the-box: An Empirical Study of JavaScript Bundling on the Web and its Security Implications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[7] Fraser Brown, Shravan Narayan, Riad S. Wahby, Dawson R. Engler, Ranjit Jhala,

and Deian Stefan. 2017. Finding and Preventing Bugs in JavaScript Bindings. In

Symposium on Security and Privacy (S&P).
[8] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content Security

Problems?: Evaluating the Effectiveness of Content Security Policy in the Wild.

In Conference on Computer and Communications Security (CCS).
[9] Bodin Chinthanet, Serena Elisa Ponta, Henrik Plate, Antonino Sabetta,

Raula Gaikovina Kula, Takashi Ishio, and Kenichi Matsumoto. 2020. Code-Based

Vulnerability Detection in Node.js Applications: How far are we?. In International
Conference on Automated Software Engineering (ASE).

[10] James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee.

2018. The impact of regular expression denial of service (ReDoS) in practice:

an empirical study at the ecosystem scale. In Joint Meeting on Foundations of
Software Engineering (ESEC/FSE).

[11] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of

security vulnerabilities in the npm package dependency network. In International
Conference on Mining Software Repositories (MSR).

[12] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.

Keep me Updated: An Empirical Study of Third-Party Library Updatability on

Android. In Conference on Computer and Communications Security (CCS).
[13] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-

gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package

Managers for Interpreted Languages. In Network and Distributed System Security
Symposium (NDSS).

[14] Ruian Duan, Ashish Bijlani, Yang Ji, Omar Alrawi, Yiyuan Xiong, Moses Ike,

Brendan Saltaformaggio, and Wenke Lee. 2019. Automating Patching of Vul-

nerable Open-Source Software Versions in Application Binaries. In Network and
Distributed System Security Symposium (NDSS).

[15] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. 2021. Con-

taining malicious package updates in npm with a lightweight permission system.

In International Conference on Software Engineering (ICSE).
[16] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin

Acar,Michael Backes, and Sascha Fahl. 2017. StackOverflowConsideredHarmful?

The Impact of Copy&Paste on Android Application Security. In Symposium on
Security and Privacy (S&P).

[17] Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner.

2019. Detecting suspicious package updates. In International Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER).

[18] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of

Real-World WebAssembly Binaries: Security, Languages, Use Cases. In The World
Wide Web Conference (TheWebConf).

[19] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kâafar, Noha

Loizon, and Roya Ensafi. 2019. The Chain of Implicit Trust: An Analysis of

the Web Third-party Resources Loading. In The World Wide Web Conference
(TheWebConf).

[20] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew

Miller, Nikita Borisov, Manos Antonakakis, and Michael Bailey. 2019. Outguard:

Detecting In-Browser Covert Cryptocurrency Mining in the Wild. In The World
Wide Web Conference (TheWebConf).

[21] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing the

attack surface of Node.js applications. In International Symposium on Research in
Attacks, Intrusions and Defenses (RAID).

[22] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick

Nikiforakis. 2021. Fingerprinting in Style: Detecting Browser Extensions via

Injected Style Sheets. In USENIX Security Symposium.

[23] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo

Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the

Use of Outdated JavaScript Libraries on the Web. In Network and Distributed
System Security Symposium (NDSS).

[24] Sonja Laurila. 2020. Comparison of JavaScript Bundlers. (2020).

[25] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:

large-scale detection of DOM-based XSS. In Conference on Computer and Com-
munications Security (CCS).

[26] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting Node.js

Prototype Pollution Vulnerabilities via Object Lookup Analysis. In Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE).

[27] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2022. Mining Node.js

Vulnerabilities via Object Dependence Graph and Query. In USENIX Security
Symposium.

[28] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Nikiforakis. 2019. Time

Does Not Heal All Wounds: A Longitudinal Analysis of Security-Mechanism Sup-

port in Mobile Browsers. In Network and Distributed System Security Symposium,
(NDSS).

[29] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically

Detecting JavaScript Obfuscation and Minification Techniques in the Wild. In

Conference on Dependable Systems and Networks (DSN).

[30] Paul Murley, Zane Ma, Joshua Mason, Michael Bailey, and Amin Kharraz. 2021.

WebSocket Adoption and the Landscape of the Real-Time Web. In The World
Wide Web Conference (TheWebConf).

[31] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,

Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.

You are what you include: large-scale evaluation of remote javascript inclusions.

In Conference on Computer and Communications Security (CCS).
[32] Ivan Pashchenko, Duc Ly Vu, and Fabio Massacci. 2020. A Qualitative Study

of Dependency Management and Its Security Implications. In Conference on
Computer and Communications Security (CCS).

[33] Jibesh Patra, Pooja N. Dixit, and Michael Pradel. 2018. ConflictJS: finding and

understanding conflicts between JavaScript libraries. In International Conference
on Software Engineering (ICSE).

[34] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyn-

ski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Ranking

Hardened Against Manipulation. In Network and Distributed System Security
Symposium (NDSS).

[35] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2020. Detection, assess-

ment and mitigation of vulnerabilities in open source dependencies. Empirical
Software Engineering (ESE) (2020).

[36] Jannis Rautenstrauch, Giancarlo Pellegrino, and Ben Stock. 2023. The Leaky Web:

Automated Discovery of Cross-Site Information Leaks in Browsers and the Web.

In Symposium on Security and Privacy (S&P).
[37] Sebastian Roth, Stefano Calzavara, Moritz Wilhelm, Alvise Rabitti, and Ben Stock.

2022. The Security Lottery: Measuring Client-Side Web Security Inconsistencies.

In USENIX Security Symposium.

[38] Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. 2023. Silent

spring: Prototype pollution leads to remote code execution in Node.js. In USENIX
Security Symposium.

[39] Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. 2016. The

Cracked Cookie Jar: HTTP Cookie Hijacking and the Exposure of Private Infor-

mation. In IEEE Symposium on Security and Privacy (S&P).
[40] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. 2019. Anything

to hide? studying minified and obfuscated code in the web. In The World Wide
Web Conference (TheWebConf).

[41] Sooel Son and Vitaly Shmatikov. 2013. The Postman Always Rings Twice: Attack-

ing and Defending postMessage in HTML5 Websites. In Network and Distributed
System Security Symposium (NDSS).

[42] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study

of ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX Security
Symposium.

[43] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. SYNODE:

Understanding and Automatically Preventing Injection Attacks on NODE.JS. In

Network and Distributed System Security Symposium (NDSS).
[44] Cristian-Alexandru Staicu, Sazzadur Rahaman, Ágnes Kiss, and Michael Backes.

2023. Bilingual Problems: Studying the Security Risks Incurred by Native Exten-

sions in Scripting Languages. In USENIX Security Symposium.

[45] Ben Stock, Giancarlo Pellegrino, Frank Li, Michael Backes, and Christian Rossow.

2018. Didn’t You Hear Me? - Towards More Successful Web Vulnerability Notifi-

cations. In Network and Distributed System Security Symposium (NDSS).
[46] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael

Backes. 2016. Hey, You Have a Problem: On the Feasibility of Large-Scale Web

Vulnerability Notification. In USENIX Security Symposium.

[47] MatthewTaylor, Ruturaj KVaidya, DrewDavidson, LorenzoDeCarli, and Vaibhav

Rastogi. 2020. Spellbound: Defending against package typosquatting. arXiv
preprint arXiv:2003.03471 (2020).

[48] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos

Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Mir: Automated Quan-

tifiable Privilege Reduction Against Dynamic Library Compromise in JavaScript.

In Conference on Computer and Communications Security (CCS).
[49] Haijun Wang, Xiaofei Xie, Shang-Wei Lin, Yun Lin, Yuekang Li, Shengchao Qin,

Yang Liu, and Ting Liu. 2019. Locating vulnerabilities in binaries via mem-

ory layout recovering. In Joint Meeting on Foundations of Software Engineering
(ESEC/FSE).

[50] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, Hong Hu, Guofei

Gu, and Wenke Lee. 2021. Abusing Hidden Properties to Attack the Node.js

Ecosystem. In USENIX Security Symposium.

[51] David Zeber, Sarah Bird, Camila Oliveira,Walter Rudametkin, Ilana Segall, Fredrik

Wollsén, and Martin Lopatka. 2020. The representativeness of automated web

crawls as a surrogate for human browsing. In The World Wide Web Conference
(TheWebConf).

[52] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.

2019. Small world with high risks: A study of security threats in the npm

ecosystem. In USENIX Security Symposium.

	Abstract
	1 Introduction
	2 A primer on JavaScript bundlers and their reversibility
	2.1 Bundlers propose a paradigm shift
	2.2 Support for JS modules and packages
	2.3 Module names and minification
	2.4 Source maps
	2.5 Relevant information preserved in bundles

	3 Methodology
	3.1 Infer bundler fingerprints from samples
	3.2 Crawling phase
	3.3 Reversing phase
	3.4 Security analysis

	4 Results
	4.1 Experimental setup
	4.2 RQ1: How prevalent are bundles in real-world web applications?
	4.3 RQ2: To what degree can bundles be reverse engineered?
	4.4 RQ3: Which libraries are included in bundles? Are they security relevant?

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

