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ABSTRACT
Testing with randomly generated inputs (fuzzing) has gained sig-
nificant traction due to its capacity to expose program vulnerabili-
ties automatically. Fuzz testing campaigns generate large amounts
of data, making them ideal for the application of machine learn-
ing (ML). Neural program smoothing, a specific family of ML-guided
fuzzers, aims to use a neural network as a smooth approximation
of the program target for new test case generation.

In this paper, we conduct the most extensive evaluation of neu-
ral program smoothing (NPS) fuzzers against standard gray-box
fuzzers (>11 CPU years and >5.5 GPU years), and make the follow-
ing contributions: (1) We find that the original performance claims
for NPS fuzzers do not hold; a gap we relate to fundamental, im-
plementation, and experimental limitations of prior works. (2) We
contribute the first in-depth analysis of the contribution of machine
learning and gradient-based mutations in NPS. (3) We implement
Neuzz++, which shows that addressing the practical limitations of
NPS fuzzers improves performance, but standard gray-box fuzzers
almost always surpass NPS-based fuzzers. (4) As a consequence, we
propose new guidelines targeted at benchmarking fuzzing based
on machine learning, and present a platform, MLFuzz, with GPU
access for easy and reproducible evaluation of ML-based fuzzers.
Neuzz++, MLFuzz, and all our data are public.

CCS CONCEPTS
• Security and privacy → Software security engineering; • Soft-
ware and its engineering → Software testing and debugging; •
Computing methodologies→ Neural networks.
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1 INTRODUCTION
In recent years, fuzzing—testing programs with millions of random,
automatically generated inputs—has become one of the preferred
methods for finding bugs and vulnerabilities in software, mainly
due to its speed, low setup efforts, and successful application in
the industry. Google’s OSSFuzz initiative [23], for instance, has
revealed thousands of bugs in open-source software.

Fueled by success stories of practical fuzzing, researchers are
constantly seeking ways to make fuzzers more efficient [28]. The
most popular approach is still coverage-guided fuzzing: generate
new test cases from prior ones using an evolutionary search that
optimizes code coverage through a fitness function. Techniques
used to enhance fuzzers include concolic execution [40, 48], or
static analysis [47]. Along them, machine learning methods have
increasingly been applied to different parts of the fuzzing loop in
academic research [7, 12, 16, 19, 35].

Fuzz testing generates significant amounts of data which make
a welcome input for machine learning. Moreover, obtaining labels
through feedback from the fuzzer or the program is most often fast
and cheap. Constructing a dataset for training machine learning
models is thus relatively straightforward in fuzzing. However, de-
spite their increased traction in the research community in the past
decade, ML-based fuzzers are not widely used in practice [33].

Recently, neural program smoothing [38, 39, 46] has been pro-
posed to approximate the tested program with a neural network.
The trained model learns to predict coverage from test cases, be-
ing additionally smooth and differentiable. These properties allow
computing gradients, which cannot readily be done on programs
directly. Test cases are mutated into new ones based on the pre-
dictions of the neural network using gradient descent. The use
of gradients allows to steer the mutations in the most relevant
directions, which have higher chances of reaching new coverage.
Despite promising significant performance gains, both in terms of
code coverage and number of bugs found, these methods are not
currently used by practitioners for testing real software.

Motivated by the applicability of neural program smoothing to
real-world fuzzing, we provide a systematic and thorough analysis
of NPS-guided fuzzing methods with the following contributions:

(1) We provide a critical analysis of NPS-guided fuzzing, un-
covering fundamental, conceptual and practical limitations
that were previously ignored. We show that neural network
performance does not translate to improved coverage, as the
model fails to capture rare edge coverage.

(2) We compare multiple NPS-guided fuzzers in an extensive
benchmark against AFL, AFL++, and the recent HavocMAB
on 23 target programs. NPS-guided fuzzers underperform re-
garding code coverage and bug finding, which is at odds with
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the results from the original papers. We explain this perfor-
mance gap by outdated or incorrect experimental practices
in prior work.

(3) We reimplement Neuzz as a custom mutator for AFL++ and
show that fixing practical limitations of NPS significantly
improves fuzzing performance. Nevertheless, we find that
neural program smoothing methods are outperformed by
state-of-the-art gray-box fuzzers, despite their use of addi-
tional computation resources.

(4) Based on our findings, we propose better-suited guidelines
for evaluating ML-enhanced fuzzing, and present MLFuzz,
the first fuzzing benchmarking framework with GPU sup-
port dedicated to ML-based fuzzing. MLFuzz allows for easy,
reproducible evaluation of fuzzers with or without machine
learning, similar to standard practices used by FuzzBench [33].

The remainder of the paper is structured as follows. Section 2
introduces prior work on coverage guided fuzzing and neural pro-
gram smoothing, before tackling our main analysis on limitations
of neural program smoothing in Section 3. Section 4 presents our
implementation of NPS fuzzing and the benchmarking platform.
Section 5 covers experiments, followed by new experimental guide-
lines in Section 6.We conclude this work in Section 7. All our results
and code are publicly available (Section 8).

2 BACKGROUND
Coverage-guided fuzzing. Coverage-guided fuzzers explore the

input space of a program starting from a few sample inputs called
seeds. They mutate the seeds into new test cases based on a fitness
criterion, which rewards reaching new code coverage obtained by
gray-box access through binary instrumentation. Test cases that
increase coverage are kept in the corpus to be evolved further. Over
time, the input corpus and the total code coverage grow. During
execution, the fuzzer checks the target program for unwanted be-
havior, notably crashes and hangs. Popular coverage-guided fuzzers
are American Fuzzy Lop (AFL) [49], its successor AFL++ [18], and
libFuzzer [30]. Alongside basic mutations, most gray-box fuzzers
use the havoc mutation strategy, where a fixed number of randomly
chosen atomic mutations are chained to a more complex muta-
tion [18]. Motivated by the success of havoc in modern fuzzers,
HavocMAB [45] was designed to implement the havoc strategy as a
two-layer multi-armed bandit [4]. Despite the trivial reward func-
tion used by the bandit, HavocMAB claims to significantly improve
code coverage over random havoc in extensive benchmarks.

Fuzzing with machine learning. ML has been applied to vari-
ous tasks in the fuzzing loop. Neural byte sieve [35] experiments
with multiple types of recurrent neural networks that learn to
predict optimal locations in the input files to perform mutations.
Angora [12] uses byte-level taint tracking and gradient descent
to mutate test cases towards new coverage. FuzzerGym [16] and
Böttinger et al. [7] formulate fuzzing as a reinforcement learning
problem that optimizes coverage. In parallel to mutation gener-
ation, machine learning is naturally fit for generating test cases
directly. Skyfire [42] learns probabilistic grammars for seed genera-
tion. Learn&Fuzz [19] uses a sequence-to-sequence model [41] to
implicitly learn a grammar to produce new test cases. GANFuzz [25]
uses generative adversarial networks (GANs) [20] to do the same for
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Figure 1: Neural program smoothing for fuzzing.

protocols. DeepFuzz [29] learns to generate valid C programs based
on a sequence-to-sequence model for compiler fuzz testing. The
application of ML to fuzzing is covered more extensively in [36, 44].

Neural program smoothing. Program smoothing [10, 11] was
initially introduced as a way to facilitate program analysis and
overcome the challenges introduced by program discontinuities.
Among the uses of machine learning in fuzzing, neural program
smoothing is one of the most recent and popular methods, due to
its great performance in the original studies. Neuzz [39] trains a
neural network to serve as a smooth approximation of the original
program in terms of code coverage (Figure 1). First, all test cases (2)
from the corpus (1) are executed on the instrumented program (3)
to obtain their individual code coverage (4), i.e. edge coverage from
afl-showmap. The respective pairs of test case and coverage are
then used to train a neural network (5), which learns to predict the
coverage for each test case. Being smooth and differentiable, the
neural network can be used for computing gradients, the values
of derivatives of the program w.r.t. its inputs. These indicate the
direction and rate of fastest increase in the function value and can
be used to flip specific edges in the bitmap from zero to one (6).
Each gradient corresponds to one byte in the input. The locations
with the highest gradient values are mutated (7) to propose new test
cases (8) that should reach the targeted regions of the code. This
idea is inspired by adversarial examples, more precisely FGSM [21],
where a change in the input in the direction of the sign of the
gradient is sufficient to change the model outcome.

MTFuzz [38] extends Neuzz with multitask learning [8]: the neu-
ral network is trained against three types of code coverage instead
of only edge coverage. Context-sensitive coverage [12, 43] distin-
guishes between distinct caller locations for the same covered edge,
while approach-sensitive coverage [2] introduces a third possible
value in the coverage bitmap reflecting when an edge was nearly
covered because the execution has reached a neighboring edge. The
three types of coverage help learn a joint embedding that is used to
determine interesting bytes for mutation in the test case. The bytes
are ranked using a saliency score, which is computed as the sum of
gradients for that byte in the learned embedding space. Each “hot
byte” is mutated by trying out all possible values, without further
relying on the gradients.
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PreFuzz [46] attempts to solve some limitations of Neuzz and
MTFuzz by extending Neuzz in two ways. The program instrumen-
tation is changed to include all neighboring edges of covered ones
in the bitmap. This information is used to probabilistically choose
which edge to target next for coverage, with the end goal of en-
couraging diversity in edge exploration. Additionally, the success
of havoc mutations [18] is leveraged: after the standard Neuzz mu-
tation, havoc is applied probabilistically to pre-defined segments of
bytes in the test case, according to their gradient value.

3 ANALYZING NEURAL PROGRAM
SMOOTHING

In this section, we provide our main analysis of neural program
smoothing, covering both the concepts behind NPS, as well as
existing fuzzer implementations. We tackle three orthogonal per-
spectives: (i) conceptual or fundamental, (ii) implementation and
usability, and (iii) experimental considerations.

3.1 Conceptual Limitations
(C1) Approximation errors of the neural network. Being an
empirical process, neural network training can suffer from errors
introduced in the training process by, e.g., limited training data
and training time, or sensitivity to hyperparameters. Even in the
ideal case, being a smooth approximation, the NPS model will always
differ from the actual program exactly at the most interesting points,
i.e., discontinuities, branches, and jumps. This approximation error
is intrinsic to a smoothing approach and, at the same time, what
allows NPS methods to use gradients and numeric optimization
towards producing new inputs.

(C2) Capacity to reach targeted edges. Arguably, the most
salient research question to elucidate about neural program smooth-
ing is whether the gradient-guided mutation can indeed reach the
targeted edges. As NPS is based on multiple components (Figure 1),
the overall performance of the fuzzer critically depends on the
effectiveness of its individual components:

(1) The prediction accuracy of the neural network (5);
(2) The capacity of the gradient-based mutations (7) to achieve

the expected new coverage on the target program.
The experiments we perform later in the paper show that the

machine learning component as used by neural program smoothing
has impaired performance. To the best of our knowledge, prior NPS
studies have not assessed what the model was learning and whether
it was reaching its objective.

(C3) Incomplete coverage bitmaps. Another central limita-
tion of neural program smoothing that we uncover relates to the
incompleteness of the coverage bitmaps that the neural network re-
ceives. All NPS fuzzers retrieve covered edges through afl-showmap,
which only reports the edge IDs that are reached. When the cover-
age information from all seeds is put together for the overall bitmap
used for training the neural network, it thus only contains edges
that were reached at least once by any of the seeds. As such, unseen
edges are not part of the bitmap and cannot be explicitly targeted
and discovered by the model. In practice, if the neural network does
discover new edges, it is rather inadvertently due to randomness.
While having access to only an incomplete coverage bitmap is a
conceptual limitation, it can be addressed on an implementation

level. It is sufficient to change the instrumentation of the program
to include uncovered edges to overcome this issue. Among existing
NPS fuzzers, PreFuzz is the only one that considers information
about neighbors of reached edges in the coverage bitmap, albeit
not motivated by the limitation we uncover. Their goal is rather to
be able to choose the next edge to target in a probabilistic fashion,
depending on the degree of coverage of each edge and its neighbors.

The fundamental limitations uncovered in this section, while
some easier to solve than others, are what we see as main obstacle in
the adoption of NPS-based fuzzing in practice. As will be confirmed
in Section 5, the experiments are consistent with these limitations.

3.2 Implementation and Usability Limitations
We now turn to practical aspects that make existing approaches
to neural program smoothing inconvenient to use, such that an
independent evaluation requires major effort and code rewriting.

(I1) Use of outdated components. Existing implementations
of neural program smoothing [38, 39, 46], alongwithHavocMAB [45]
are implemented as extensions of AFL instead of using the more re-
cent, more performant AFL++ as base. Moreover, their dependency
on outdated Python, TensorFlow and PyTorch versions impacts
usability. For the purpose of experiments, we have patched the code
and updated the dependencies of all these fuzzers, as even for the
most recent ones, some of their used libraries were already not
available at the time of their publication.

(I2) Difficulty in building targets. Prior NPS studies provided
the binaries used in their own research, ensuring reproducibility.
However, for a fuzzer to be practical, it is advisable to rather pro-
vide instructions on how to build new programs for its use. This
is especially important when the fuzzer uses custom target instru-
mentation. MTFuzz [38], for instance, compiles a target program in
five different ways due to the introduction of three additional types
of instrumentation. For this reason, we exclude MTFuzz from our
empirical study as not being practical for real-world fuzzing. More-
over, we argue that the three types of coverage used by MTFuzz
are to a large extent redundant (conceptual limitation) and could
be grouped into a unified coverage, thus reducing the build effort
for this fuzzer.

(I3) Use of magic numbers. The magic numbers programming
antipattern [31] is frequently encountered in the implementations
of neural program smoothing-based fuzzers. These values and other
algorithmic changes are not mentioned in the original papers where
eachNPS fuzzer is introduced. It is thus difficult to establishwhether
the performance of each method is strictly linked to its proposed al-
gorithm or rather to the implementation tweaks. E.g., the maximum
number of mutation guiding gradients per seed is set to 500; this
value is not a parameter of the algorithm presented in the paper.

Our findings above show that the effort to set up existing NPS
fuzzers and build targets for them is significantly higher than for
standard gray-box fuzzers, such as AFL and its variants, or libFuzzer.
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3.3 Evaluation Limitations
In this section, we highlight flaws and limitations of previous ex-
perimental evaluations of NPS fuzzers and HavocMAB, which have
led to unrealistic performance claims.

(E1) Experimental protocol. The more recent NPS publica-
tions [38, 46] lack of comparisons with recent gray-box fuzzers, such
as AFL++ and libFuzzer—fuzzers that were available and confirmed
as state-of-the-art long before their publication. HavocMAB [45] has
included Neuzz and MTFuzz in their evaluation alongside AFL++.
However, we find that they use the same binary target for both
AFL and AFL++, instead of building the program separately for
AFL++. AFL++ runs on AFL instrumented binaries, but not effi-
ciently. Moreover, the size of the coverage bitmap is usually larger
for AFL++ than with AFL instrumentation; hence, code coverage
as measured by the fuzzers is not directly comparable. This makes
the conclusions in the HavocMAB evaluation [45] questionable.

(E2) Fuzzer configuration for speed.We note that prior stud-
ies benchmarkingNPSmethods compile their targets using afl-gcc,
which results in slower targets and thus impacts fuzzing speed. The
AFL++ documentation recommends using preferably afl-clang-fast
or afl-clang-lto [17]. Additionally, AFL-based fuzzers have mul-
tiple options for transferring fuzz data to the program. The most
basic is to have AFL write test cases to file, and the target program
executed with command line options to process the file as input.
The more sophisticated and recommended persistent mode uses
a fuzzing harness that repeatedly fetches fuzz data from AFL via
shared memory and executes the function with the test data as in-
put without restarting the whole program. “All professional fuzzing
uses this mode”, according to the AFL++ manual [5]. Depending
on the target, the persistent mode can increase the throughput by
2–20× [18]. Previous neural smoothing papers seem to run all exper-
iments by feeding inputs via files, which should considerably slow
down all fuzzers. This is consistent with their results, where the
more modern AFL++ consistently performs worse than AFL in the
HavocMAB study [45], and the targets are printed with command
line arguments in the original Neuzz paper [39]. We conjecture that
this tips the scale in favor of ML-based fuzzers, which are them-
selves orders of magnitude slower than modern fuzzers [16]. This
statement is validated experimentally in Section 5.7.

4 IMPLEMENTING NEUZZ++ AND MLFUZZ
In this section, we introduceNeuzz++, our implementation of neural
program smoothing that aims to solve some limitations identified in
Section 3, as well as the new experimental platform for evaluating
ML-based fuzzers.

Neuzz++. We implement a variation of Neuzz as a custom muta-
tor for AFL++, which we name Neuzz++ (see Figure 2). This allows
our method to leverage most AFL++ features, like its standard muta-
tions and power schedule. More importantly, it allows for machine
learning-produced test cases and randomly mutated ones to evolve
from each other. We choose AFL++ as base for our implementation
for its state-of-the-art performance, thus addressing Issue I1. Being
a custommutator, Neuzz++ is modular, easy to build, and integrated
with a default AFL++ installation.

In practice, Neuzz++ consists of two parts: the main AFL++ pro-
cess with the custom mutator implemented in C, and a Python
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Figure 2: Operation mode of previous NPS-guided fuzzers
and our Neuzz++.

extension that is called for machine learning operations. The two
processes communicate using named pipes. We set a minimum
requirement ofT test cases in the corpus for the custom mutator to
run. These are used to train the neural network for the first time; the
model is retrained at most every hour if at least ten new test cases
have been added to the corpus1. This allows to refine the model
over time with new coverage information from recent test cases.
In practice, we use T = 200; this value is tuned experimentally and
aims to strike the balance across all targets between fuzzing with
machine learning as early as possible, while waiting for enough data
to be available for model training. Intuitively, a larger dataset pro-
duces a better performing model. afl-showmap is used to extract
the coverage bitmap. We introduce a coverage caching mechanism
for model retraining which ensures that coverage is computed only
for new test cases that were produced since last model training.
Each time the C custom mutator is called by AFL++, it waits for
the Python component to compute and send the gradients of the
test case. Based on these, the mutations are computed by the C
mutator and returned to AFL++. In contrast to Neuzz, the gradients
are not precomputed per test case, they are not saved to disk, the
neural network is kept in memory, and the gradients are computed
only on demand. These optimizations minimize the time spent on
ML-related computations, keeping more time for fuzzing.

The neural network is a multi-layer perceptron (MLP) with the
same structure as Neuzz (one hidden layer, 4096 neurons). As shown
in the PreFuzz paper [46], we also found that different neural net-
work architectures do not improve fuzzing performance. In contrast
to NPS fuzzers, we keep 10% of the test cases as validation set for
evaluating the performance of the model. We use the Adam opti-
mizer [26], a learning rate of 10−4, and cosine decay with restarts.

It is easy to parallelize model training and the main AFL++ rou-
tine for improved fuzzing effectiveness when testing real targets.
However, for experimental evaluation, we choose to have AFL++
wait for the neural network to train, similarly to previous imple-
mentations of neural program smoothing fuzzers. This allows for
fair experimental comparison and computation resource allocation.

The original Neuzz implementation applies four different muta-
tion patterns on each byte selected according to the highest ranking
gradients: incrementing the byte value until 255, decrementing the
byte value down to 0, inserting a randomly sized chunk at the byte

1Neuzz and PreFuzz solve this issue by running AFL for the first hour of fuzzing, then
use the collected data for model training (Figure 2).
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location, and deleting a randomly sized chunk starting at the given
byte location. We apply the same mutation pattern for Neuzz++.

MLFuzz. MLFuzz serves as a benchmarking framework for build-
ing test targets, running fuzzing trials in an isolated environment,
and analyzing the findings. Its main features are:

• Test targets from Google Fuzzer Test Suite [22] are com-
piled with the recommended and most recent compiler of
the appropriate fuzzer; the build scripts are made available
(addressing Issue I2 and issue E2).

• Targets are compiled with AddressSanitizer [37] to detect
memory errors.

• Six fuzzers are currently included in MLFuzz: AFL v2.57b,
AFL++ v3.15a, HavocMAB, Neuzz, PreFuzz and our Neuzz++.

• The implementation is containerized via Docker [32]. Python
dependency specification is handled via virtual environ-
ments and Poetry [15].

• Each fuzzing trial runs on one dedicated CPU and optionally
one GPU for fuzzers that support it.

• All supported fuzzers have been modified to accept seeding
of their random number generator for reproducible results.

• For all fuzzers, coverage is measured by replaying the corpus
at the end of a run. We use binaries instrumented with AFL
to ensure we do not disadvantage the AFL-based fuzzers,
and afl-showmap from AFL++, since it has a larger bitmap
with less hash collisions.

• Test cases are transmitted to fuzzers via shared memory,
with the option to switch to slow transmission of test cases
via the file system (addresses Issue E2).

5 EXPERIMENTS
This section introduces our experiments and practical analysis,
complementing the main findings from previous sections. After
presenting our setup (Section 5.1), we assess the performance of
the components of NPS-based fuzzers in Section 5.2. We compare
our Neuzz++ to prior neural program smoothing fuzzers and stan-
dard gray-box fuzzers in an extensive benchmark in Section 5.3.
Sections 5.4 to 5.6 explore the added benefit of machine learning to
NPS fuzzers, while Section 5.7 sheds light on experimental protocol
differences with previous NPS publications and their impact on
fuzzing results. Finally, we report bugs found in Section 5.8.

5.1 Experimental Setup
All experiments are performed on a server running Ubuntu 20.04
with four Nvidia Titan Xp GPUs. Our study includes the six fuzzers
fromMLFuzz: AFL andAFL++ as standard gray-box fuzzers, HavocMAB
as recent fuzzer claiming state-of-the-art performance, and NPS
fuzzers Neuzz, PreFuzz, and our own Neuzz++. We use the origi-
nal implementation and parameters provided by the authors for
all baselines, except when stated otherwise. We patch the code of
Neuzz and PreFuzz to port them to Python 3.8.1, CUDA 11.5, Tensor-
Flow 2.9.1 [1] and PyTorch 1.4 [34], as the original implementations
are based on outdated libraries that are not available anymore or
incompatible with our hardware.

We choose Google Fuzzer Test Suite [22] and FuzzBench [33] as
standard, extensive benchmarks for our experimental evaluation.
Wemake use of 23 targets, summarized in Table 1. These are selected

Table 1: Target programs from Google Fuzzer Test Suite [22]
and FuzzBench [33].

Target Format Seedsa LOCb

Source: Fuzzer Test Suite

boringssl-2016-02-12 SSL private key 107 102793
freetype2-2017 TTF, OTF, WOFF 2 95576c
guetzli-2017-3-30 JPEG 2 6045
harfbuzz-1.3.2 TTF, OTF, TTC 58 21413
json-2017-02-12 JSON 1 23328
lcms-2017-03-21 ICC profile 1 33920
libarchive-2017-01-04 archive formats 1 141563
libjpeg-turbo-07-2017 JPEG 1 35922
libpng-1.2.56 PNG 1 24621
libxml2-v2.9.2 XML 0 203166
openssl-1.0.2d DER certificate 0 262547
pcre2-10.00 PERL regex 0 67333
proj4-2017-08-14 custom 44 6156
re2-2014-12-09 custom 0 21398
sqlite-2016-11-14 custom 0 122271
vorbis-2017-12-11 OGG 1 17584
woff2-2016-05-06 WOFF 62 2948

Source: FuzzBench

bloaty ELF, Mach-O, etc. 94 690642
curl comms. formats 41 153882
libpcap PCAP 1287 56663
openh264 H.264 174 97352
stb image formats 467 71707
zlib zlib compressed 1 30860
aTargets that do not have seeds use the default from Fuzzbench.
bRetrieved with cloc [14].

for being accessible, having dependencies available on Ubuntu 20.04,
and being non-trivial to cover through fuzz testing. Note that we
only include targets from FuzzBench if they are not already included
in Fuzzer Test Suite. All results are reported for 24 hours of fuzzing.
We repeat each experiment 30 times to account for randomness,
unless stated otherwise. Each standard gray-box fuzzer is bound to
one CPU core, while NPS fuzzers are allotted one CPU and one GPU
per trial. The main metrics used for evaluation are code coverage
and number of bugs found. For code coverage, we use edge coverage
as defined by the AFL family of fuzzers. However, we emphasize
that AFL and AFL++ compute edge coverage differently. In order to
avoid the measuring errors introduced when ignoring this aspect,
we count coverage by replaying the corpus using afl-showmap
from AFL++ on the same binary, independently of which fuzzer
was used in the experiment. The setup we use fixes all experimental
limitations we highlighted in Section 3.3 (Issues E1 and E2).

5.2 Performance of Machine Learning Models
Wenow investigate the quality of coverage predictions by the neural
network and gradient-based mutations, in relation to concerns
about the fundamental principle of neural program smoothing
(Section 3.1). We tackle the following questions:

• Can the neural network learn to predict edge coverage?
• Can gradient-based mutations reach targeted edges?
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Figure 3: Predicted and actual edge coverage on libpng for the entire corpus. Top: ML-predicted coverage (pink) is trivial and
almost constant over test cases. When each edge is targeted by mutations, predicted coverage (orange) increases for certain
edges, but many code edges remain unattainable. Bottom: Coverage extracted with afl-showmap shows that all edges present
have been covered at least once by the corpus.

Table 2: Dataset properties and neural network evaluation.

Target %covered edges Acc Prec Recall F1 PR-AUC

bloaty 17.1% 0.53 0.17 0.18 0.17 0.15
boringssl 19.3% 0.90 0.18 0.17 0.17 0.20
curl 15.2% 0.89 0.15 0.15 0.15 0.23
freetype2 8.6% 0.89 0.09 0.09 0.09 0.10
guetzli 18.5% 0.84 0.18 0.18 0.18 0.19
harfbuzz 6.9% 0.93 0.07 0.07 0.07 0.07
json 12.7% 0.88 0.11 0.08 0.09 0.10
lcms 20.9% 0.84 0.19 0.19 0.19 0.21
libarchive 6.9% 0.94 0.07 0.06 0.06 0.07
libjpeg 17.8% 0.84 0.17 0.09 0.17 0.18
libpcap 6.4% 0.92 0.06 0.06 0.06 0.07
libpng 28.8% 0.86 0.28 0.27 0.27 0.29
libxml2 10.5% 0.92 0.10 0.09 0.09 0.11
openh264 21.4% 0.81 0.22 0.30 0.21 0.22
openssl 31.2% 0.79 0.30 0.30 0.29 0.31
pcre2 4.3% 0.96 0.04 0.03 0.03 0.04
proj4 8.2% 0.95 0.08 0.07 0.07 0.08
re2 16.2% 0.87 0.15 0.13 0.13 0.16
sqlite 16.3% 0.91 0.12 0.12 0.12 0.17
stb 6.0% 0.92 0.06 0.05 0.05 0.06
vorbis 29.6% 0.81 0.30 0.30 0.30 0.30
woff2 22.8% 0.85 0.22 0.22 0.21 0.13
zlib 16.1% 0.85 0.14 0.10 0.11 0.16

To this end, we propose quantitative and qualitative analyses of
the performance of the neural network in neural program smooth-
ing fuzzers. Without loss of generality, we investigate these based
on Neuzz++ as a proxy for all neural program smoothing fuzzers
included in our study. As all these methods use the same neural

network architecture, loss function, method of training, etc., it is to
be expected that their models will achieve the same performance
when trained on the same dataset. The results of the analyses can
be summarized as follows and are detailed subsequently:

• Table 2 quantifies the model performance for all targets in
terms of standard machine learning metrics;

• Figure 3 provides a qualitative analysis of model predictions
for a given target, opposing them to correct labels.

• Lastly, Figure 3 also assesses the capacity of the neural net-
work to reach edges through gradient-based mutations.

ML performance metrics. To assess one factor of difficulty of
the machine learning task, we evaluate dataset imbalance for the
training corpus. This measures the percentage of the positive class
(covered edges, in our case the minority) in the coverage bitmap of
the training set. Recall that the bitmap is produced by afl-showmap
and accounts for the coverage obtained by the corpus before train-
ing; the coverage was not necessarily achieved based on a neural
network, but rather by AFL++ mutations. Note that this value is
averaged across test cases and edges; rare edges might have much
smaller coverage ratios, resulting in more difficulty in training an
accurate model for those edges. When facing class imbalance, the
model tends to prefer the majority class, thus making wrong pre-
dictions. For this reason, the performance of the neural network is
assessed using precision, recall, F1-score, and precision-recall (PR)
trade-off as performance metrics for the neural network. Accu-
racy is also computed for completeness, but keep in mind that
this metric is misleading for imbalanced datasets2. We measure

2One can trivially predict all-zeros (no coverage) and obtain very high accuracy.
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the area-under-the-curve (AUC) of the PR metric to evaluate all
the operational points of the neural network. Similar to accuracy,
PR-AUC saturates at one, but is more sensitive to wrong predic-
tions in the positive class. The learning setup of neural program
smoothing is a multi-label binary classification task, i.e., for each
test case, multiple binary predictions are made, one per edge; in
consequence, the metrics are computed for each edge in the bitmap
independently, then averaged over all edges, and finally averaged
over trial repetitions.

Table 2 reports the model performance metrics, along with the
percentage of the positive class in the dataset as imbalance metric.
All model metrics are computed on a 10% holdout set of test cases
that were not used for training. As Neuzz++ retrains the model
multiple times, all measurements are performed on the last trained
neural network using the state of the corpus at that time. The
precision, recall, F1-score, and PR-AUC values in Table 2 indicate
that the neural network has low performance. These metrics are
particularly low when the class imbalance is stronger, i.e., for small
values of “%covered edges”. The dataset imbalance is quite extreme
for seven targets, where the positive class represents less than 10%
of the dataset, making predictions particularly difficult.

To provide an intuition into what the neural network learns,
we design a qualitative evaluation of its predicted coverage. This
experiment uses the target libpng and the test cases generated in
a 24-hours run of Neuzz++. Figure 3 shows two coverage plots
for this target for the entire corpus, where each “column” in the
plot represents one test case, while each “row” is a program edge.
We compare the coverage predicted by a trained ML model for
the same test cases and edges (Figure 3 top) to the true coverage
extracted with afl-showmap (bottom). The bottom plot is the cov-
erage bitmap extracted with afl-showmap for the corpus and used
for model training by Neuzz, PreFuzz, and Neuzz++. A reduction
(deduplication) operation is applied to it, which for libpng reduces
the number of edges from 900 to the 293 present in the plot; this
operation also explains any visual artifacts present in the image,
as the edges are reordered. The pink areas of the two plots differ
significantly, with the model predictions being almost constant over
all test cases: the model only predicts trivial coverage and fails to
capture rare edges. While this is a consequence of the difficulty
of the machine learning tasks (small dataset, class imbalance, too
few samples w.r.t. the size of the test cases and bitmaps, see Ta-
ble 2), it results in large approximation errors in the neural network,
as outlined in Issue C1. Moreover, recall that Neuzz, PreFuzz and
Neuzz++ use the sameMLmodel type and structure, with minor dif-
ferences in the training procedure and similar model performance.
Our findings thus extend to all NPS methods.

Finally, we investigate the effectiveness of gradient-based mu-
tations as essential component of NPS fuzzers. In the same setup
on libpng from the previous section, we apply Neuzz++ mutations
to the corpus generated by a 24-hours fuzzing run as follows. For
each edge in the bitmap, we consider the case when it is explicitly
targeted and generate all mutations with a maximum number of
iterations in the mutation strategy. Figure 3 (top) plots the predicted
coverage for each test case and edge before the mutations, as well
as the increment of coverage after mutation. Each edge (row) is
considered covered by one test case (column) if at least one of the
few thousand mutations generated to target it reaches the code

location. The results represent coverage estimated by the MLmodel,
not run on the program. However, the coverage the model predicts
is an optimistic estimate of the one actually achieved on the target,
as the model dictated the mutations. Note that the mutations are
generated in the same way for Neuzz, PreFuzz and Neuzz++; our
analysis thus applies to all methods and targets.

Figure 3 (top) indicates that some locations are more readily
reachable through mutations. The harder to reach edges overall
match the rarer edges of the corpus, as measured by afl-showmap
in the bottom plot. Most importantly, none of the edges targeted
or covered by the mutations in the top plot represent new coverage.
Recall that, by NPS methods’ design, a code edge is only present in
the bitmap only if it has already been covered by the initial corpus
used for training (Issue C3). This becomes evident in the bottom
plot of Figure 3: all edges have been covered by at least one test
case. As will be shown later, this fundamental flaw of NPS methods
translates to a limited practical capacity of reaching new coverage.

The model predicts trivial edge coverage (Issue C1), and
gradient mutations cannot target new edges (Issue C3).

5.3 Comparing Code Coverage
We present the main experiment comparing the achieved code
coverage of available neural program smoothing approaches to
AFL, AFL++ and the recent HavocMAB in Table 3 (average coverage)
and Figure 4 (coverage over time). This experiment alone requires
a total computation time of over 11 CPU years and 5.5 GPU years.

Overall, AFL++ obtains the best performance on ten targets,
followed by HavocMAB with eight targets, and Neuzz++ on par
with AFL, winning two targets each. In view of AFL++ performance
w.r.t. AFL, it is clear that not including AFL++ as a baseline in all
prior neural program smoothing works leads to overly optimistic
conclusions about their capacities. After AFL++, HavocMAB is the
second most performant fuzzer in terms of code coverage. However,
we find that it does not reach the expected ranking advertised in
the HavocMAB paper [45].

We observe that Neuzz and PreFuzz are never in the top two
fuzzers. Moreover, although they were designed to improve AFL
performance, their coverage is in most cases lower than that of
AFL. AFL wins on 20 out of 23 targets over Neuzz, and 18 out of 23
over PreFuzz. PreFuzz outperforms Neuzz on most targets, however
this difference is significant only on six targets (see confidence
intervals in Figure 4). This finding is also at odds with original
PreFuzz results [46], where the performance gap is significantly
wider. Section 5.7 is dedicated to further explaining the difference
in performance with the initial papers. Neuzz++ obtains higher
coverage than Neuzz and PreFuzz on 21 programs, proving that our
improvements over these methods are effective.

Targets libarchive, libxml2, proj4, and woff2 exhibit the most
variability among fuzzers. Neuzz and PreFuzz exhibit large standard
deviation on woff2, where coverage varies depending if the fuzzers
reach plateau or not. For the other targets, it seems AFL-based
fuzzers do not perform as well as AFL++-based ones.

Overall, AFL++ achieves the highest code coverage. Among
NPS fuzzers, Neuzz++ achieves the highest code coverage.
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Table 3: Average edge coverage and standard deviation over 30 runs.
Best value in bold, second best underlined.

Target AFL AFL++ HavocMAB Neuzz PreFuzz Neuzz++

bloaty 14220±49 15607±100 15240±194 12518±790 12936±319 15296±196
boringssl 2936±34 2940±34 2956±1 2863±14 2867±21 2930±32
curl 13002±1103 13398±1376 14121±324 8999±211 9048±218 11260±1401
freetype2 10722±126 11090±104 11408±95 8569±281 8870±386 10960±138
guetzli 7306±21 6772±9 7398±29 7099±26 7141±45 6702±7
harfbuzz 12056±137 11887±137 11953±146 10672±110 10875±102 11654±65
json 2033±5 2018±11 2036±0 1974±79 1970±86 2032±12
lcms 2483±198 1904±441 2423±277 1593±372 1876±433 1809±455
libarchive 3708±383 5281±207 4970±153 3729±289 3718±225 5246±204
libjpeg 2685±82 3058±161 2980±192 2647±5 2664±60 2892±189
libpcap 2203±219 3733±115 2833±243 1859±358 1875±373 3529±155
libpng 1234±7 1235±3 1240±2 1220±6 1219±7 1241±3
libxml2 4857±286 9155±989 5416±273 4895±403 4853±271 7306±1191
openh264 13381±341 15234±15 14902±109 14135±241 14537±142 15126±80
openssl 1891±6 1899±1 1894±4 1878±7 1884±8 1886±8
pcre2 7797±142 7960±142 8076±98 7555±76 7575±77 7763±67
proj4 1837±1621 5585±101 4190±741 1526±514 1849±392 4550±78
re2 6680±52 6717±7 6777±26 6497±162 6547±110 6731±30
sqlite 2004±154 2123±12 2121±0 1982±158 2025±146 2125±16
stb 3305±109 3390±11 3413±20 3286±18 3315±14 3380±14
vorbis 2317±6 2348±4 2342±19 2186±29 2181±40 2311±38
woff2 3305±3 3472±34 3418±36 2080±667 1650±893 3062±530
zlib 615±12 623±6 620±5 592±10 595±12 620±3

Table 4: Average edge coverage of ML
component over 30 runs.

Neuzz PreFuzz Neuzz++

292±206 666±593 261±166
0±2 0±0 11±19

141±182 153±88 534±245
635±225 865±255 429±130
28±11 69±35 32±13
161±52 377±145 345±163
2±3 21±46 216±86
61±210 344±415 8±23
105±97 101±124 1136±206
4±5 6±6 103±35
43±27 59±41 1608±289
2±3 1±2 105±31
52±46 74±32 950±215

1846±290 2248±284 148±67
6±7 6±6 91±70
0±2 13±9 1396±160

186±242 145±204 197±82
25±93 24±75 660±209
0±0 0±0 94±129

122±77 150±82 77±13
186±21 186±42 16±11

5±16 14±49 39±21
9±9 10±8 24±14

5.4 Code Coverage from Machine Learning
After presenting total coverage for 24-hour runs in Table 3, we
now measure how much of the total coverage can be attributed
to the machine learning component for each NPS fuzzer. On one
hand, the goal is to discount the coverage produced strictly by AFL
in the first hour of Neuzz and PreFuzz runs (recall that they use
AFL for data collection, see Figure 2) and only measure the NPS
fuzzers’ contribution. On the other hand, we wish to do the same for
Neuzz++, and separate its contribution from that of the base fuzzer
AFL++. As Neuzz++ is a custommutator for AFL++, its seeds usually
alternate with regular AFL++ seeds. To this end, we measure edge
coverage by corpus replaying, this time only taking into account
the seeds obtained by Neuzz, PreFuzz and Neuzz++, respectively.
For Neuzz and PreFuzz, this is equivalent to excluding the first hour
of coverage, as done by the original authors. In practice, this will
include ML-based mutations, but also other hard-coded mutations
that the methods apply, such as havoc in the case of PreFuzz. Table 4
summarizes the comparison of edge coverage obtained by the ML
components of Neuzz, PreFuzz, and Neuzz++. Program names are
aligned with Table 3.

Neuzz++ obtains the highest coverage in 14 over 23 targets,
with values at least one order of magnitude higher than Neuzz
and PreFuzz. Nevertheless, even on targets where Neuzz++ does
not obtain the highest ML coverage (e.g., freetype2, harfbuzz), the
overall Neuzz++ edge coverage (Table 3) is higher than that of
Neuzz and PreFuzz, with the latter two obtaining lower coverage
than their base fuzzer AFL. The added value of Neuzz and PreFuzz
is low in nine, respectively five targets, with coverage close to zero.
In these cases, Neuzz and PreFuzz do not achieve (almost) any
coverage past the first hour of fuzzing with AFL (see also Figure 4).

This reinforces our previous conclusion that the time spent using
Neuzz and PreFuzzmight be better spent applying the AFL or AFL++
mutation strategy. Moreover, the Neuzz++ results suggest that it
might benefit from the alternation between ML-guided mutations
and standard AFL++ ones. We explore this last point with additional
analyses in Section 5.5.

For most programs, the time budget spent on Neuzz or
PreFuzz is better spent on standard gray-box fuzzing.

5.5 Quality of Machine Learning Test Cases
We now aim to assess the quality of the test cases found by the
machine learning component of Neuzz++. We do so with two anal-
yses: we investigate (i) the inclusion of ML-generated inputs in the
AFL++ power schedule for further mutation, and (ii) the rarity of
code edges found through machine learning-based mutations.

First, Table 5 presents statistics regarding ML-produced test
cases for each target averaged over all trials. The column “%ML
seeds” shows the overall percentage of inputs produced through
ML mutations. Out of these, “%MLcov+” discover new coverage
(relative percentage). Finally, “%derived” is the total percentage of
the corpus produced by direct mutations of ML-based inputs. We
find that the ratio of machine learning inputs varies significantly
across targets, representing up to a third of the corpus. ML test cases
seem to be most impactful for finding new coverage on programs
where they represent a low percentage of the corpus. On average,
each ML test case is mutated at least once successfully, generating
new test cases that are kept by Neuzz++ in the corpus.
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Figure 4: Average edge coverage over time with 95% confi-
dence interval.

Table 5: Statistics for ML-generated test cases of Neuzz++.
“%ML seeds” and “%derived” are computed over the total size
of the corpus. “%MLcov+” is relative to “%ML seeds”.

Target %ML seeds %MLcov+ %derived

bloaty 4.72% 28.3% 8.78%
boringssl 27.7% 3.3% 27.5%
curl 18.6% 26.1% 33.1%
freetype2 2.2% 31.9% 3.8%
guetzli 9.9% 9.8% 13.8%
harfbuzz 6.6% 30.2% 15.2%
json 13.7% 37.3% 25.4%
lcms 1.6% 57.1% 1.1%
libarchive 18.3% 30.2% 34.9%
libjpeg 11.8% 10.7% 15.9%
libpcap 13.8% 40.0% 20.8%
libpng 19.6% 13.8% 41.0%
libxml2 15.1% 23.9% 30.1%
openh264 10.2% 8.0% 8.5%
openssl 30.6% 5.6% 28.7%
pcre2 18.3% 17.4% 29.88%
proj4 5.5% 49.7% 7.4%
re2 23.3% 22.8% 34.7%
sqlite 8.1% 20.2% 6.2%
stb 14.8% 15.3% 19.9%
vorbis 6.0% 8.3% 7.9%
woff2 3.8% 19.8% 5.2%
zlib 16.9% 20.7% 18.1%

The second analysis studies whether NPS fuzzers explore code
areas that are harder to reach by standard fuzzers. In that case,
neural program smoothing fuzzers could be used in an ensemble
of diverse fuzzers, opening the path for all fuzzers to rare parts of
the code [13]. To measure the rarity of edges reached by Neuzz++,
we compare the edge IDs that Neuzz++ and AFL++ reach on each
program, all trials joint. The edge IDs are obtained by replaying all
the test cases with afl-showmap.

We summarize the results in Table 6 as follows: Neuzz++ (de-
noted N+) reveals less than 0.5% additional edges that AFL++ (de-
noted A+) in 16 out of 23 targets. Neuzz++ does not find any such ex-
clusive edges for eight programs; it is most successful on lcms, with
8.2% exclusive edges. On the other hand, AFL++ finds up to 16.4% ex-
clusive edges, lacking exclusive edges on only two programs (json
and sqlite). We can therefore conclude that NPS-guided fuzzers
explore essentially the same code areas as traditional fuzzers.

NPS fuzzers find less rare edges than gray-box fuzzers.

5.6 NPS-based Fuzzing without GPUs
Due to their increased performance for linear algebra and data
throughput, GPUs are the de facto standard for machine learning.
All NPS methods studied in this paper leverage GPU access to train
machine learning models and compute gradients for test case mu-
tations. In practice, this means that they use more computational
resources than state-of-the-art gray-box fuzzers, and that practi-
tioners are required to invest in additional hardware. In this section,
we wish to assess the performance of NPS methods in the absence
of GPUs. Model training with only CPU access should be slower,
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Table 6: Reached edges for AFL++ (A+) and Neuzz++ (N+).

Target A+ N+ A+ ∪ N+ A+ \ N+ N+ \ A+

bloaty 5131 4926 5139 213 8
boringssl 1210 1208 1210 2 0
curl 6862 6656 6899 243 37
freetype2 6555 6292 6575 283
guetzli 2645 2624 2655 31 10
harfbuzz 5438 5081 5440 359 2
json 2036 2036 2036 0 0
lcms 935 1010 1019 9 84
libarchive 3622 3223 3649 426 27
libjpeg-turbo 1565 1539 1565 26 0
libpcap 2869 2628 2901 273 32
libpng 621 616 621 5 0
libxml2 5401 4856 5410 554 9
openh264 5849 5840 5851 11 2
openssl 812 811 812 1 0
pcre2 5548 5355 5577 222 29
proj4 2802 2343 2803 460 1
re2 2391 2426 2440 14 49
sqlite 950 950 950 0 0
stb 2012 2014 2021 7 9
vorbis 1142 1100 1142 42 0
woff2 1254 1268 1270 2 16
zlib 337 333 337 4 0

Table 7: Average edge coverage of NPS fuzzers with andwith-
out GPU access (10 runs).

Neuzz PreFuzz Neuzz++
Target CPU GPU CPU GPU CPU GPU

harfbuzz 10607 10677 10675 10897 11631 11664
libjpeg 2618 2647 2635 2688 2998 2892
sqlite 2017 1993 2049 2089 2121 2127
woff2 1919 1816 1702 954 3288 3389

but it should not impact the performance of the trained model. As
such, any loss in fuzzing performance comes from spending more
time training and less fuzzing. For this small experiment, we select
four targets that operate on a varied range of input formats for
diversity. We perform ten trials of all NPS fuzzers with and without
GPU access (Table 7).

Nine of twelve experiments obtain more code coverage when
training the model on GPU, which is to be expected. The exception
is PreFuzz on woff2, which is however aligned with this fuzzer’s
tendency of sometimes becoming stuck on this program (Table 3).
Overall, the fuzzing performance on GPU is marginally better, as
training times for NPS models are relatively short. The gap between
CPU and GPU seems tighter for Neuzz++, which we attribute to an
already optimized and short training procedure, which cannot be
much further improved by GPUs.

Using GPUs usually results in better coverage for
NPS fuzzers.

5.7 Impact of Test Case Transmission Method
In Issue E2, we underlined that NPS-guided fuzzers use files to trans-
fer test cases to the target program. We now show that test case

Table 8: Relative degradation of edge coverage not using per-
sistent mode (10 runs).

Target AFL AFL++ HavocMAB Neuzz PreFuzz Neuzz++

harfbuzz -8.9% -60.2% -2.9% -3.4% -2.6% -2.9%
libjpeg -2.8% -55.7% -5.9% -8.9% -7.7% -14.6%
sqlite 0.1% -57.4% -0.3% -4.9% -7.9% -1.7%
woff2 -34.5% -84.3% -40.4% -43.8% -46.8% -0.6%

transmission has a major impact on fuzzing performance for the
methods in [38, 39, 45, 46]. We note that AFL++ does not reach the
performance of its predecessor AFL by a margin in the HavocMAB
work [45]. This is inconsistent with several other large bench-
marks [3, 33], where AFL++ ranks among the top fuzzers. While
not using the persistence mode slows down all fuzzers, we expect
state-of-the-art gray-box fuzzers to be affected the most, i.e., they
would lose their competitive advantage of speed. This experiment
uses the same targets and setup as the previous section.

Table 8 presents the performance difference when the persis-
tence mode is not used. This setup reproduces both the protocol and
results from HavocMAB [45], the only paper that compares NPS-
guided fuzzers against AFL++. As expected, coverage decreases
when passing inputs through files and restarting the program for
each test case. Most interestingly, AFL++ shows the largest slow-
downwith a consistent coverage loss over 50%, while the AFL-based
fuzzers mainly show single-digit percentage degradation. Conse-
quently, not using the recommended persistence mode can distort
the ranking of fuzzers in a benchmark. In our opinion, this set-
ting does not yield a fair or practically relevant comparison. Worth
mentioning here is that Neuzz++ can compensate the performance
loss of its base fuzzer AFL++, obtaining more coverage in absolute
values. As conjectured, results indicate that NPS-guided fuzzers
suffer less under slow operation than other fuzzers. Despite that,
we are still not able to reproduce the performance of Neuzz and
PreFuzz against AFL reported in the original papers.

AFL++ is most slowed down when not using
the persistent mode.

5.8 Bugs Found
The main goal of fuzzing is to find as many unique bugs as possible.
The default coverage-based crash identification mechanism of AFL
and AFL++ tends to overcount unique bugs [27]. To improve this
behavior, we apply a more precise stack trace-based deduplication
algorithm. We therefore execute each reported crashing input on
the target within GNU debugger (GDB) and retrieve all stack frame
addresses when the error occurs. This list of addresses then serves
as a unique identifier of the triggered bug. Note that deduplication
based on stack traces is ineffective when stack overflow errors
occur, because the stack frames are then corrupted.

Table 9 contains the number of crashes with unique stack trace
signatures across all trials for each target that reported any crashes.
Neuzz and PreFuzz find the lowest number of crashing inputs (none
for most targets), followed by AFL, their base fuzzer; HavocMAB
significantly improves over AFL. AFL++ is most successful in re-
vealing crashes, with most bugs found and all targets covered. In
summary, all NPS-based fuzzers find fewer crashing inputs than
the fuzzer they are based upon.
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Table 9: Bugs found after stack trace deduplication.

Target AFL AFL++ HavocMAB Neuzz PreFuzz Neuzz++

bloaty 1 1 2 0 0 1
guetzli 8 264 5 0 0 170
harfbuzz 0 355 1 0 0 12
json 20 11 22 18 16 10
lcms 0 16 0 0 0 8
libarchive 0 1 0 0 0 0
libxml2 0 648 1 0 0 289
openssl 138 1324 409 37 40 721
pcre2 87 4174 262 40 35 1371
re2 0 172 1 0 0 2
vorbis 0 2 1 0 0 0
woff2 20 361 671 1 1 172

NPS-guided fuzzers find fewer bugs than standard fuzzers.

6 BENCHMARKING ML-BASED FUZZERS
Fuzzer evaluation is an open research topic abundently studied in
recent works [3, 6, 27, 33]. A common guideline is that each fuzzer
must be tested on multiple programs, using multiple repetitions to
account for randomness. The recommended number of repetitions
revolves around 10–20 trials. Besides the average performance,
indicators of variability (i.e., confidence intervals, statistical tests)
are necessary to assess the significance of the results. The main
goal of fuzzers is to find bugs, which suggests that unique bugs
found in fixed time should be the evaluation metric. However, since
bugs are rather rare, the performance of fuzzers is often measured
in code coverage over time. This may be justified by observations
that more code coverage correlates with more bugs found [6]. To
complement these principles, we propose the following practices
when evaluating novel machine learning-based fuzzing methods:

(1) Analyze each new component in the fuzzing loop. Both
performance evaluations and ablation studies of ML models
are critical. Metrics specific to the task solved should be used
(e.g., accuracy, or precision and recall for classification, mean
absolute error or mean squared error for regression, etc.).
These complement the view on the overall system perfor-
mance, i.e., coverage or bugs found in the case of fuzzing. ML
evaluation should employ a validation set distinct from the
training data to avoid an overly optimistic estimates [24].

(2) Use state-of-the-art fuzzers and configurations as base-
lines. Lacking strong baselines prevents one from claiming
novel state-of-the-art accomplishments in terms of code cov-
erage and bugs found. All fuzzers in an experiment should
be configured for performance (e.g., appropriate compiler,
compilation options, harness, input feeding mode). We also
recommend introducing new scientific or technical contri-
butions based on recent fuzzers and evaluation platforms, as
opposed to their older counterparts.

(3) Use comparable metrics for fuzzing performance. As
not all fuzzers measure the same type of coverage, we en-
courage the use of one common evaluation metric between
multiple fuzzers. In practice, this is easiest done by replaying
the corpus at the end of a fuzzing trial, as implemented by
FuzzBench [3, 33] and MLFuzz.

(4) Repeat trials often enough to account for variance.We
propose to use 30 trials for fuzzing evaluation, resulting in

tight confidence intervals. This sample size is commonly
used in statistics and deemed sufficient for the central limit
theorem [9] to hold. As shown in Figure 4, ML-based fuzzers
can have higher coverage variability than gray-box fuzzers,
thus requiring more trials for stable baselining.

(5) Ensure reproducible results by fixing and serializing
parameters. While it is difficult to control all sources of
randomness when training MLmodels on GPUs, it remains a
good practice in both machine learning and software testing
to control possible sources of randomness by seeding random
number generators and reusing the same seeds. Experimen-
tal configurations and, in the case of ML, hyperparameters
should be documented for reproducibility.

(6) Ensure usability of proposed fuzzers. It should be pos-
sible to run a newly proposed fuzzer on programs outside
the original publication study. Providing a containerized en-
vironment can sustainably decrease setup efforts. We also
support integration of new fuzzers with existing benchmark-
ing platforms, such as FuzzBench and now MLFuzz.

7 CONCLUSION AND CONSEQUENCES
Neural program smoothing for fuzzing neither reaches its adver-
tised performance, nor does it surpass older fuzzing techniques that
are still state-of-the-art. In our in-depth analysis of NPS fuzzers,
we analyzed conceptual limitations of previously published ap-
proaches, as well as implementation and evaluation issues. Our
comprehensive benchmark showed that NPS-guided fuzzers were
by far unable to reach their stated performance. Addressing the
implementation issues did not suffice to outperform state-of-the-art
gray-box fuzzers. The reason for the limited fuzzing performance
lies in the difficulty of the machine learning task, which yields
trivial models on the data available during fuzzing.

To guide future fuzzing research and practical validation, we
developed improved experimental guidelines targeting fuzzing with
machine learning. Our MLFuzz framework for ML-based fuzzers
includes patched and containerized versions of the investigated
fuzzers to help with additional benchmarking. We encourage re-
searchers to perform ablation studies and provide deeper insights
into the components they introduce in fuzzing.

While we highlight fundamental limitations of neural program
smoothing, whether and how much this technique can enhance
fuzzing remains an open topic for future research. We hope that this
work contributes to fair and comprehensive evaluations of future
fuzzers, be they ML-based or not.

8 DATA AVAILABILITY
The open-source implementation of Neuzz++ and MLFuzz, the
evaluation setup, and raw results are available at

https://github.com/boschresearch/mlfuzz
https://github.com/boschresearch/neuzzplusplus.
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