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ABSTRACT
This paper is the first attempt at providing a holistic view of the

Chrome Web Store (CWS). We leverage historical data provided

by ChromeStats to study global trends in the CWS and security

implications. We first highlight the extremely short life cycles of
extensions: roughly 60% of extensions stay in the CWS for one year.

Second, we define and show that Security-Noteworthy Extensions
(SNE) are a significant issue: they pervade the CWS for years and

affect almost 350 million users. Third, we identify clusters of ex-
tensions with a similar code base. We discuss how code similarity

techniques could be used to flag suspicious extensions. By develop-

ing an approach to extract URLs from extensions’ comments, we

show that extensions reuse code snippets from public repositories

or forums, leading to the propagation of dated code and vulnera-

bilities. Finally, we underline a critical lack of maintenance in the
CWS: 60% of the extensions in the CWS have never been updated;

half of the extensions known to be vulnerable are still in the CWS

and still vulnerable 2 years after disclosure; a third of extensions

use vulnerable library versions. We believe that these issues should

be widely known in order to pave the way for a more secure CWS.

CCS CONCEPTS
• Security and privacy → Web application security; Browser
security.

KEYWORDS
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1 INTRODUCTION
Browser extensions provide additional functionality and customiza-

tion for browsers. The most popular desktop browser Chrome (with

a market share of 66% [70]) has almost 125k extensions, totaling

over 1.6 billion active users [6]. Unfortunately, due to their often
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specialized or privileged capabilities, browser extensions can ei-

ther be a tool or a target for attackers. Specifically, attackers are

developing malicious extensions to, e.g., spread malware via malver-

tising [1], track users [72], spy on users [14], or steal credentials and

other sensitive information [22]. At the same time, other extensions

have inherently benign functionalities but contain vulnerabilities
which, if exploited, lead to, e.g., universal cross-site scripting or

leaking of sensitive user data [41, 64, 74]. Finally, merely using

extensions (independent of whether they have any known flaws)

represents a privacy risk for Web users. For example, it is possible

to infer the set of extensions a user has installed, by observing

side effects some extensions induce (browser extension fingerprint-

ing) [50, 59, 60, 62, 63, 67, 69]. This enables an attacker to track users

across websites or infer sensitive information about them [46].

To mitigate these issues, browser vendors review extensions

prior to publication, e.g., Google engineers vet extensions before

their deployment in the ChromeWeb Store (CWS) [32]. Despite this

vetting process and a decade of work on securing extensions, mali-

cious, vulnerable, and fingerprintable extensions are still found in

the CWS [41, 54]. We argue that a potential solution to this issue re-

quires a comprehensive understanding of the underlying ecosystem

of browser extensions. Indeed, and perhaps surprisingly, very little

is currently known about what lies in browser extension galleries.

This paper provides a holistic view of the browser extension

landscape within the CWS. We focus on the CWS because Chrome

is the most popular browser, and Chrome extensions are built using

the WebExtensions API–a cross-browser technology compatible

with Firefox, Opera, Microsoft Edge, etc [56].

We begin our analyses by investigating overall trends in the

CWS, along with potential security problems that could arise from

having such a big and diverse code base. We first highlight un-

expected volatility in terms of extensions in the CWS, e.g., only

60% of extensions are available for one year. Second, we define and

investigate “Security-Noteworthy Extensions” (SNE): we analyze

malware-containing, policy-violating, and vulnerable extensions.

We find that these SNE are a significant problem: over 346 million

users installed a SNE in the last 3 years (280M malware, 63M policy

violation, and 3M vulnerable). In addition, these extensions are stay-

ing in the CWS for years, making thorough vetting of extensions

and notification of impacted users all the more critical. Third, we

uncover thousands of clusters of similar extensions, and we show

that investigating extension codes for similarities may enable us to

identify unknown SNE. Subsequently, we develop an approach to

extract URLs from extensions’ comments and attribute instances of

code reuse to these cited URLs. We show concrete evidence that ex-

tensions reuse code from public repositories or forums directly, and

we exemplify how code reuse leads to the propagation of vulnerabil-

ities. Fourth, we show that extensions are globally not maintained:

60% of the extensions in the CWS have never been updated. This has
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direct security consequences, e.g., half of the vulnerable extensions

discovered in 2021 [41] are still in the CWS and still vulnerable

in 2023. Equally worrisome is the fact that developers continue

to use deprecated tools, even when (more) secure alternatives are

available. For example, a third of extensions use JavaScript libraries

with known vulnerabilities, impacting almost 500 million users.

To sum up, our paper makes the following contributions:

• We analyze overall trends in the CWS and highlight the excep-

tionally short life cycles of extensions;
• We define and investigate “Security-Noteworthy Extensions“ (SNE).
We show that these are a significant issue, affecting hundreds of

millions of users and staying in the CWS for years;

• We discover clusters of extensions with a similar code base and
highlight security implications;

• We characterize a critical lack of maintenance in the CWS and

discuss the pervasiveness of vulnerable extensions in the CWS.

We are confident that our findings will guide future research and

pave the way for a more secure CWS.

2 BACKGROUND: BROWSER EXTENSIONS
Browser extensions are third-party programs that users can install

to extend and customize their browser functionality by, e.g., adding

ad-blocking capabilities or checking grammar. In this section, we

first give an overview of extension architecture and permission

system. Then, we describe the main components of extensions.

Overview— Browser extensions are zipped bundles of, e.g., HTML,

JavaScript, or CSS files, stored in CRX files. Every extension requires

a JSON-formatted file, named manifest.json [26], which speci-

fies important information such as the extension’s most important

components and the extension’s permissions. In fact, to use most

Chrome APIs, e.g., activeTab, downloads, or storage, an exten-

sionmust declare the corresponding permissions in its manifest [24].

There are three versions of the manifest [33]. Manifest V1 has been

deprecated since 2012. Manifest V2, while deprecated, is still used

by almost 62% of extensions as of July 2023[5]. It is currently un-

clear when Chrome will stop providing support for this version, as

the deadline has been extended several times [27]. Manifest V3 was

released in November 2020 to improve the security, privacy, and

performance of Chrome extensions [25]. For example, manifest V3

prevents extensions from downloading external resources; instead,

all resources must be bundled within the extension package.

Main Components — The source code of browser extensions is

split into several components, which are specified in the extension

manifest file. The core logic of an extension is implemented through

service workers (background scripts for manifest V2 extensions),

which run independently of the lifetime of a web page and do not

need any user interactions [34]. An extension can inject content
scripts to run in the context of web pages, similarly to the scripts

web pages directly load. While content scripts can use standard

DOM APIs to read and modify web pages, they live in an “isolated

world” to avoid conflicting with variables defined in web pages [29].

An extension can propose UI or option pages to enable users to

customize their extension’s behavior [31]. Finally, an extension

can exposeWeb Accessible Resources (WARs), i.e., files that can be

accessed by web pages or other extensions.

Category

# extensions

– metadata collected

# extensions

– code collected
When collected

SNE 26,014 16,377

- Malware containing 10,426 6,587 July 5, 2020 – May 1, 2023

- Privacy violating 15,404 9,638 July 5, 2020 – May 1, 2023

- Vulnerable 184 152 March 16, 2021

Benign extensions 226,762 92,482 July 5, 2020 – May 1, 2023

Table 1: SNE and likely-benign extensions collected

3 EXTENSION COLLECTION AND ANALYSIS
To study global trends in the CWS and corresponding security im-

plications, we first need to collect a comprehensive set of extensions.

Since Google does not archive browser extensions that used to be

in the CWS but are now deleted, we use ChromeStats [6] to collect

historical data. We focus on likely-benign (i.e., not currently known

to have any security or privacy issues) and security-noteworthy

extensions (SNE): malware-containing, privacy-violating, and vul-

nerable extensions. In this section, we first discuss the collection of

our datasets and then analyze overall trends in the CWS. Finally,

we dissect the life cycles of extensions in the CWS.

3.1 Extension Collection
ChromeStats — ChromeStats [6] provides historical data since

July 5, 2020 for browser extensions that are or were in the CWS.

ChromeStats developers designed a crawler to automatically collect

extensions and extract their metadata from the CWS once a day.

Besides the source code, they also archive, e.g., extension id, name,

category, last update, number of users, or permission information.

To conduct longitudinal experiments and study global trends in the

CWS, we collected all extensions from the CWS between July 5,

2020 and February 14, 2023. In this setting, we do not discriminate

between benign and security-noteworthy extensions but consider

all available extensions, independently of their intent.

Security-Noteworthy Extensions (SNE) — The CWS contains

what we call “security-noteworthy extensions” (SNE). We define

SNE as extensions known to either:

• containmalware: such extensions aim to, e.g., steal user-sensitive

data, track users, spy on them, or propagate malware [14, 22, 72];

• violate the CWS policies: all extensions submitted to the CWS

have to comply with the developer program policies [23, 28];

• contain vulnerabilities: if exploited, such vulnerabilities could

lead to, e.g., universal XSS or user data exfiltration [41, 64, 74].

From ChromeStats, we extract a list of extensions that were re-

moved from the CWS for containing malware or violating policies

(such extensions were analyzed and flagged accordingly by Google

engineers). We collected malware-containing and privacy-violating

extensions that were removed from the CWS between July 5, 2020

and May 1, 2023. To retrieve known vulnerable extensions, we con-

tacted Fass et al. [41] who designed an advanced data flow analysis

technique to automatically uncover vulnerabilities originating from

PostMessages exchanged between web pages and browser exten-

sions. We got access to their dataset of 184 vulnerable extensions

(including the corresponding versions), which they collected on

March 16, 2021. To have a point of comparison, we also take the set

of all 226,762 benign extensions that appeared in the CWS between
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July 5, 2020 and May 1, 2023. In this paper, we use the term benign
extensions to refer to extensions that are not known to be SNE. As

summarized in Table 1 (columns 1, 2, and 4), we retrieved metadata

for 10,426 malware-containing extensions, 15,404 policy-violating,

184 vulnerable, and 226,762 benign extensions.

Extension Unpacking — We used the ChromeStats API to down-

load the source code of extensions, in the format of CRX files. As

highlighted in Table 1 (column 3), we could download the source

code of 16,377 out of 26,014 SNE (the rest was not available for

download on ChromeStats). Given the large size of the benign ex-

tension set, we chose to only download benign extensions from

2023. After downloading the extensions, we unpacked the corre-

sponding CRX files [16] to extract content scripts and service work-

ers / background scripts. We chose to compile all content scripts

and all background scripts into a single content and background

file, respectively, similarly to prior work [41].

3.2 Overall Trends
As of February 2023, there are 124,094 extensions in the CWS.

We first discuss what users install extensions for, as well as the

evolution of the number of active users and extensions over time.

What do Users Install Extensions for? — As a proxy to investi-

gate what users install extensions for, we consider the categories of

the most popular extensions. In the CWS, extensions are organized

into categories which users can search through. The most popular

category is “Productivity” with a share of 41%. “Productivity” con-

tains a wide variety of extensions from translation tools to personal

dashboards to PDF generators. Of the 10 extensions with the high-

est number of active users (over 10M; as of July 2023), 9 are from the

“Productivity” category; among these, 5 are content blockers (e.g.,

“AdBlock”, “Adblock for Youtube”, or “AdGuard”), 1 enables web

page layout customization (“Tampermonkey”), 1 performs gram-

mar checks (“Grammarly”), 1 offers translation options (“Google

Translate”), and 1 adds PDF editing capabilities (“Adobe Acrobat”).

The 10
th
extension is from the “Shopping” category (“honey”); it

looks for and applies digital coupons while shopping online.

Number of Users— We now examine the evolution of the number

of extension users over time. The user count was scraped using

the CWS API [37]. This API provides exact user counts for all

extensions, except for extensions with over 10 million users, which

are just listed as having 10,000,000+ users. According to our email

exchange with Chrome Web Store Developer Support, the “number

of users” displayed on the CWS for a given extension corresponds to

“the number of Chromes with the extension installed that are active

and checking in to [their] update servers over the previous seven

days only, not for all time. It is not equal to the sum of historic

installs minus the sum of historic uninstalls”. For instance, this

means that if a user with an extension installed did not turn on

their computer for a month, they would not be counted as an active

user for that month. Given this definition, we can therefore expect

fluctuations in the number of active users over time. We observe in

Figure 1 (green curve) that the number of extension users largely

fluctuates over time. The exact reasons for this phenomenon are

currently unclear, but we can make some observations. Overall, we

see a large drop in the number of users during the holiday seasons

Figure 1: Number of extensions (blue) in the CWS on a given
date and weekly average of the number of active users across
all extensions (green) between July 2020 and February 2023–
The black vertical line denotes the announcement of Manifest V3

on Chromium Blog on December 9, 2020

(the last two weeks of December and the first week of January),

which can be explained by people not using Chrome for over seven

days as they spend time away fromwork.We also observe an overall

dip in the number of users during the summer months, which could

be caused by increased travel and idle school devices.

Takeaway There is unexpected volatility in the number of active

users in the CWS. We caution researchers to not overly emphasize

precise user counts when measuring the impact of work. We also

recommend developers take this into account when reporting or

comparing user counts over time.

Regarding the average number of users per extension, we find

that the vast majority of extensions have a small user base: 64.22%

of extensions have less than 100 users and 17.51% have between

100–1k users. The higher the user count, the fewer extensions there

are: 9.70% of extensions have 1k–10k users, 4.17% 10k–100k, 1.13%

100k–1M, and 0.27% over 1M. Overall, extensions with a large user

base are the exception rather than the rule. This is problematic

from a privacy perspective, as the crowd anonymity of extensions

with few users is very small, which can ease user tracking and

deanonymization if those extensions can be fingerprinted [46].

Number of Extensions — As shown in Figure 1 (blue curve),

the number of extensions is decreasing over time; notably with

an initial 157k extensions in July 2020 vs. 124k in February 2023.

We observe a large drop in the number of extensions in December

2020–likely related to Chrome’s November 9
th
announcement of

Manifest V3 [36] (vertical black line). Note that there were some

(now resolved) bugs in the ChromeStats crawler when the develop-

ers released it in July 2020–as evidenced by some isolated points in

the first 6 months of release and confirmed by the developers.

We observe that, on average, 3,775 extensions are removed from

the CWS every month and another 2,687 are added. This informa-

tion leads us to believe that, depending on the point in time of

measurement, researchers may analyze different extensions; thus

report on different results.
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Figure 2: Percentage of extensions still in the CWS on the 𝑥 th

month after having been added–We compute this for extensions

first added between January–December 2021 and still in the CWS

on the 𝑥 th following month(s), where 𝑥 ∈ ⟦1, 12⟧

Takeaway Every month thousands of extensions are added or

removed from the CWS. Given those fluctuations, we encourage

researchers to investigate multiple points in time and evaluate the

reproducibility of their findings before generalizing their claims.

3.3 Extension Life Cycle
Very little is currently known about the lifetimes of extensions in

the CWS. It is important to investigate, as it sets guidelines for how

long study results are valid. Analyses should be run regularly to

ensure that research results reflect the current state of the CWS.

We study extension life cycles by computing the percentage of

extensions that remain in the CWS after a given number of months.

To obtain a full year of data, we perform this analysis on extensions

that were added to the CWS between January and December 2021,

and we compute the percentage of those extensions that were still

in the CWS after 𝑥 ∈ ⟦1, 12⟧ months. Figure 2 represents the

percentage of extensions still in the CWS on the 𝑥 th month after

having been added, with 𝑥 ∈ ⟦1, 12⟧. For example, we consider

extensions first added in January 2021 and still in the CWS in

February 2021 (𝑥 = 1), March (𝑥 = 2), [...], and January 2022 (𝑥 = 12).

At the same time, we also study extensions first added in February

2021 and still in the CWS in March 2021 (𝑥 = 1), April (𝑥 = 2), [...],

and February 2022 (𝑥 = 12). We iterate this process till December

2021 (extensions added to the CWS) and calculate how many were

in the CWS after 1–12 months (i.e., from January 2022 to December

2022). This way, we have 12 data points for each 12 𝑥 values (x-

axis), which we represent with a box plot. As shown in Figure 2,

we find that after 𝑥 = 12 months, only 51.86–62.98% of extensions

are still available in the CWS (median of 60.39%). Even after 𝑥 = 3

months, we observe a drop, with only 78–86.75% of the extensions

still available in the CWS (median of 84.11%).

Intuitively, we expect extensions with a larger user base to re-

main in the CWS for a longer period, as it takes time to build up a

large user base, i.e., developers are more likely to continue maintain-

ing those extensions. In Figure 3, we show the average percentage

of extensions still in the CWS on the 𝑥 th month after having been

added, grouped by last recorded extension user count (i.e., so that

extension groupings do not change over time). We see that, on

0-100
100-1,000
1K-10K 
10K-100K
100K-1M
1M-10M+

Figure 3: Average percentage of extensions still in the CWS
on the 𝑥 th month after having been added, grouped by an
extension last recorded user count

average, 94.91% of the most popular extensions (1M–10M+ users)

stay in the CWS for at least a year. However, for the rest of the

extension groupings, there is no clear trend. For example, the two

groups with the highest percentage of extensions remaining after

one year are extensions with less than 100 users (62.31%) and 100k–

1M users (62.5%). Upon further investigation, we find that there are

numerous instances of popular extensions appearing in the CWS,

being removed, then reappearing in the CWS. This pattern can

be observed for extensions violating the CWS policies: they are

removed by Google but can be submitted again after the violation

has been fixed [35]. In addition, there may be larger variability in

the higher user count categories due to different sample sizes; e.g.,

19,528 extensions have 100 users or less
1
vs. 272 have 100k–1M

users and 59 have 1M–10M+ users.

Takeaway Surprisingly, we observe that extensions have a very

short life cycle in the CWS, e.g., only 51.86–62.98% of extensions

are still available after one year. We also observe instances of

popular extensions that are added to the CWS, removed, and

re-added; likely due to policy violations and subsequent fixes.

Thus, analyses on the CWS should be run regularly to ensure that

research results reflect the current state of the CWS.

4 SECURITY-NOTEWORTHY EXTENSIONS
Previously, we focused on overall trends in the CWS, independently

of whether the extensions were benign or security noteworthy. We

now dive into the differences between benign, malware-containing,

policy-violating, and vulnerable extensions. Specifically, we com-

pare the number of days in the CWS, user counts, extension ratings,

developer patterns, and permissions of these 4 groups of extensions.

4.1 Number of Days in the CWS
We first analyze the average number of days a benign extension

vs. a SNE stays in the CWS. For every malware-containing and

policy-violating extension, we count the number of days between

the date of its last update and the date of its removal. For vulnerable

extensions, we count the number of days the reported vulnerable

1
Note that we conducted this analysis on extensions added between January and

December 2021, not on our full extension dataset.
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Figure 4: Number of days a benign, malware-containing,
policy-violating, or vulnerable extension stays in the CWS–
The blue line denotes the means and the red one the median

versions stayed in the CWS (as of May 1, 2023). Of course, it is

possible that an extension had security or privacy issues before the
last update or continues to be vulnerable even after being updated.

We acknowledge that our observations are a lower bound of the

number of days SNE stay in the CWS. As shown in Figure 4, SNE

stay in the CWS for an average of 380 days (malware containing)

to 1,248 days (vulnerable). This is extremely problematic, as such

extensions put the security and privacy of their users at risk for
years. Interestingly, benign extensions tend to stay in the CWS for

less time than vulnerable extensions (1,152 days, with a median of

780 days vs. 1,213 for vulnerable extensions). While the sample sizes

are different (226,762 benign vs. 184 vulnerable extensions), there

are more fluctuations within benign extensions. Equally worrisome

are some outliers. In particular, we found one malware-containing

extension that stayed in the CWS for 3,105 days (8.5 years!). This

extension, “TeleApp”, was last updated on December 13, 2013 and

was found to contain malware on June 14, 2022. Similarly, the

extension “No More Holidays” was last updated on May 17, 2012

and was found to have a policy violation only on March 9, 2023

(after almost 11 years in the CWS!).

Takeaway Security-noteworthy extensions stay in the CWS for
years, meaning that their user base can stay at risk for years. It is
currently unclear why such extensions are not immediately de-

tected by Chrome’s vetting system and why SNE stay in the CWS

for years even after disclosure (e.g., case of vulnerable extensions).

4.2 Number of Users
Next, we investigate how large the user bases of SNE are. To this

end, we consider the number of users they had when removed from

the CWS or, if not yet removed, May 1, 2023 (when we conducted

this analysis). As a comparison, we also consider the last recorded

number of users for benign extensions. We represent the number of

users of benign extensions and SNE in Figure 5. As expected, the me-

dian number of users is very low: between 18 (policy-violating and

benign extensions) and 140 (vulnerable extensions); remember that

65% of extensions have less than 100 users (Section 3.2). However,

there are some outliers with extremely large user bases so that, on

Figure 5: Number of userswith a benign,malware-containing,
policy-violating, or vulnerable extension installed–The blue
tick denotes the means and the red line the median

average, benign extensions have 11k users, policy-violating 4k, vul-

nerable 16k, and malware-containing extensions 27k. For example,

the extension “Casino Volcano” had 8.58M users and was ranked

number five in the “Social and Communication” category until it

was removed on July 20, 2020 for policy violations. Quite worrisome

is the fact that 25% of malware-containing extensions have over 5k

users (vs. a 75
th
percentile of 220 for benign extensions).

In total, we collected the metadata of over 26k SNE (Table 1).

Overall, we observe that over 346 million users installed at least

one SNE in the last three years: 280M users installed malware-

containing extensions, 63.3M policy-violating, and 2.9M vulnerable

extensions.
2
We assume that those users are unaware of using SNE.

Given both the extremely large number of impacted users and the

fact that SNE stay in the CWS for years, SNE are a major problem

and need to be removed as quickly as possible from the CWS. While

Google engineers seem to be looking for malware-containing or

policy-violating extensions through their review process [32] (with

more or less success); to the best of our knowledge, they currently

cannot detect vulnerable extensions [41, 74]. Future work would

be beneficial in this area to further secure the CWS.

TakeawayOver 346 million users installed a SNE in the last 3 years.
Given that SNE tend to stay in the CWS for years, it is critical to
improve the detection of SNE and notify impacted users.

4.3 Extension Ratings
Given that SNE are only moderately removed from the CWS and

that this process can take up years, we now investigate if users

themselves are able to flag SNE, e.g., by giving such extensions a

low rating. On the CWS, extension users can rate extensions from

1 (lowest score) to 5 (highest score); extensions with no ratings are

given a score of 0. First, we observe that a large number of exten-

sions have no ratings: 58.63% of policy-violating extensions have

no ratings, 52.12% for malware, 47.32% for vulnerable, and 31.52%

for benign extensions. Of the extensions that do have a rating, we

2
Note that we know the number of users for each extension, but we cannot deduplicate

the total number of users, in case one user has several SNE installed; so this number

does not represent unique users.
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Figure 6: Average number of benign extensions or SNE pub-
lished by a developer with at least one of these extensions–
E.g., a developer with 1 malware-containing extension in the CWS

(y-axis) publishes on average 3.6 benign, 4.9 malware-containing,

1.4 policy-violating, and 0.00093 vulnerable extensions (x-axis)

do not observe a significant difference in scores between these four

groups: the benign and policy-violation sets have a median of 5,

4.997 for malware, and 4.571 for vulnerable. Overall, users do not

give SNE lower ratings, suggesting that users may not be aware that

such extensions are dangerous. Of course, it is also possible that

bots are giving fake reviews and high ratings to those extensions.

However, considering that half of SNE have no reviews, it seems

that the use of fake reviews is not widespread in this case.

Takeaway Users do not give SNE lower ratings. This makes thor-

ough vetting and review of extensions all the more critical.

4.4 Extension Developers
Next, we focus on the developers designing the SNE that are or were

in the CWS. Interestingly, we found numerous cases of developers

publishing both SNE and benign extensions. In Figure 6, we repre-

sent the number of benign, malware-containing, policy-violating,

and vulnerable extensions (x-axis) published by a developer already

having one such extension in the CWS (y-axis). For example, a de-

veloper having published 1 malicious extension (y-axis) publishes

on average 3.6 benign, 4.9 malware-containing, 1.4 policy-violating,

and 0.00093 vulnerable extensions. We also found instances of de-

velopers having many malicious extensions. For example, the de-

veloper “http://newtabexperience.com” has had 1,041 extensions

removed for containing malware and 9 for policy violations (as of

May 1, 2023, this developer still has 434 extensions in the CWS).

Overall, we observe that developers with at least one SNE tend to

publish more SNE than developers with one benign extension. In

particular, developers publishing malware-containing extensions

publish almost 5 of those, on average, whereas other developers

publish less than 1. In other words, it is quite unlikely that a devel-

oper having published at least one benign extension will publish a

SNE. There are some exceptions, though. For example, the devel-

oper “New Tab” has 1,041 benign extensions in the CWS but also 2

SNE (1 malicious and 1 policy-violating extension). On the contrary,

a developer having a malware-containing or privacy-violating ex-

tension will likely publish another one of those. Overall, there are

Figure 7: Number of API-based (permissions), host-based
(urls), and total (sum of APIs and hosts) permissions of be-
nign, malware, privacy-violating, and vulnerable extensions

30 developers with over 100 malware-containing extensions each;

and 28 developers each of them with over 100 extensions removed

for violating the CWS policies. We assume that such developers

multiply their SNE to try to infect or harm as many users as possible,

for their own profit. Therefore, extensions by developers known

to have created a SNE may require further scrutiny. The trend is

different for vulnerable extensions, though. Such developers do

not seem to publish more malware-containing or privacy-violating

extensions than benign developers, but they tend to publish more

vulnerable extensions. So, contrary to the other SNE, it seems that

developers publishing vulnerable extensions arewell intentioned but
make mistakes in their implementation, leading to vulnerabilities.

Takeaway Developers having published a SNE are more likely

to publish SNE than developers having published a benign exten-

sion. We endorse flagging and further scrutinizing the extensions

submitted to the CWS by developers with known SNE.

4.5 Extension Permissions
Finally, we compare the permissions a SNE vs. benign extension

request. In fact, the requested permissions will determine the capa-

bilities of an extension, i.e., the attack surface for SNE. We collected

permissions by parsing each extension’s manifest.json file. For
manifest V3, permissions are broken up into permissions (APIs such
as storage or cookies) and host permissions (URLs or URL pat-

terns that an extension wants to make requests to). For manifest V2,

these two categories are combined. For consistency with manifest

V3, we separate APIs from host permissions.

First, we look at the number of permissions each extension re-

quires (Figure 7). As expected, SNE require more permissions than

benign extensions. For API-based permissions, malware-containing

and vulnerable extensions use a median of 4 permissions vs. 2 for

policy-violating and 1 for benign extensions. We observe a similar

trend for host permissions. If we look at the third quartile, 25% of

malware-containing extensions list 198 URLs; 3 for policy-violating,

2 for vulnerable, and 1 for benign extensions. Ultimately, the more

permissions an extension has, the larger the attack surface is.

Next, we dive into the specific API and host permissions exten-

sions need. Interestingly, and perhaps surprisingly, both benign
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Rank Benign Malware Policy violation Vulnerable

1 <all_urls> *://www.google.com.kh/* *://www.google.com.kh/* http://*/*

2 https://*/* *://mail.google.com/* *://mail.google.com/* https://*/*

3 http://*/* *://www.google.com/* *://www.google.com/* <all_urls>

4 *://*/* *://www.google.com.au/* *://www.google.ps/* chrome://favicon/

5 http://*/ *://www.google.us/* *://www.google.co.zw/* *://*.fliptab.io/*

6 https://*/ *://www.google.nl/* *://www.google.co.zm/* *://*/*

7 chrome://favicon/ *://www.google.ca/* *://www.google.co.za/* https://*/

8 https://ajax.googleapis.com/ *://www.google.dk/* *://www.google.ws/* http://*/

9 https://image.lovelytab.com *://www.google.co.jp/* *://www.google.vu/* *://127.0.0.1/*

10 https://v2.lovelytab.com/ *://www.google.no/* *://www.google.com.vn/* *://localhost/*

Table 2: Top 10 host-based permissions for benign and SNE

extensions and SNE seem to more or less use the same APIs (see a

list of the top 10 API-based permissions in Table 5 in the Appendix).

The only notable exception is topSites (permission allowing an

extension to access a user’s most visited sites), ranking 2 for mali-

cious extensions (4,026 extensions) but not in the top 10 in any of

the other groups. This number is likely influenced by the numerous

malware-containing extensions that replace a user’s homepage on

new tabs, which requires this topSites permission to operate.

On the contrary, there are differences between the host permis-

sions required by each category of extensions, as illustrated in Ta-

ble 2. Firstly, all-encompassing URLs, e.g., “<all_urls>” or “http://*/*”,

are highly ranked in both benign and vulnerable extensions but not

in malware-containing nor policy-violating, which instead have a

lot of Google sub-domains. One reason for this may be that exten-

sions requesting powerful privileges, such as “<all_urls>”, require

in-depth review [32], which developers with malicious intent may

want to avoid. For example, we discovered a set of 1,130 SNE, 740

of which were removed for malware and 390 for policy violation;

all of them had a large list of Google sub-domains in their host

permissions. This exemplifies how large clusters of identical exten-

sions can skew results and demonstrates the need to account for

duplicated extensions when conducting analyses.

Takeaway SNE request more permissions than benign extensions,

likely because the more permissions an extension has, the larger

the attack surface is. While host-based permissions differ between

benign and malware-containing extensions, API permissions do

not enable to discriminate between benign and SNE.

5 CODE SIMILARITY AND SECURITY
Next, we show that analyzing extension codes for similarity could

be a useful tool for identifying SNE. Subsequently, we investigate

the sources of code similarities and exemplify how code reuse can

lead to the propagation of vulnerabilities.

5.1 Extensions with a Similar Code Base
Wefirst present our approach to detect clusters of similar extensions

and discuss some case studies.

5.1.1 Methodology. As described in Section 3.1, we downloaded

and unpacked our sets of malware-containing, policy-violating,

vulnerable, and benign extensions. For each extension, we extracted

their content and background scripts, as described previously. We

could successfully collect 108,859 extensions (92,482 benign, 6,587

malware-containing, 9,638 policy-violating, and 152 vulnerable). To

compare the source code of all these extensions with each other,

we compared all pairs of (content script, content script),
(background script, background script), and (background
script, content script).3 For all of the described pair types, we
performed an ssdeep fuzzy-hash-based clustering [12]. We chose

this similarity-hashing algorithm to identify clusters of similar
4

extension scripts. We cluster two extensions together if they have a

100% overlap either with their content script or background script.

5.1.2 Clusters of Similar Extensions. We compared the source code

of all 108,859 extensions we successfully collected. We found that

20,822 extensions contain a similar content or background script to

other extensions. We found a total of 3,270 clusters. The median

cluster size is 2 similar extensions, but the distribution is heavily

right-skewedwith amean of 7.32 extensions and amaximum cluster

size of 1,397 extensions. By manually analyzing extension source

code and CWS pages, we categorize our clusters into three types:

• Identical extensions: These extensions look the same and per-

form the same tasks; their description and images in the CWS

are similar. E.g., we observe instances of developers publishing a

new extension instead of pushing an update to an existing one.

Case study: We found 19 “Kobo Book” extensions (e.g., “Free

Kobo Books”, “Free Kobo Books Deluxe”, or “Free Kindle Religious

Books”). They all have identical background scripts as well as

identical screenshots and descriptions on their respective CWS

pages, but some have different names and developers.

• Extensions with a similar functionality: These extensions
have a similar functionality, but they may look different and have

a dissimilar page on the CWS. E.g., there are many home page

wallpaper extensions, where a developer publishes hundreds of

extensions with a different theme, such as cars or nature. The

source code for all of these extensions is the same, with a different

URL string in the code to select the specific image category.

Case study: 9 screenshotting extensions share an identical back-

ground script, e.g., “Xsnap”, “LTR Screenshot”, or “Computub

Screenshotter”. Although the extensions do similar actions, they

have very different UI and branding. The identical background

scripts contain code to receive a button click, take a screenshot,

and display it to the user.

• Extensionswith generic background scripts: Such extensions
perform very different functions but contain generic code, such

as receiving a message or sending a response, which could come

as part of an extension builder or sample code.

Case study:We found a cluster of 1,397 extensions with identical

background scripts, e.g., “Read a Newspaper” or “Goleferine”.

The background script for all of these extensions is a message

listener that sends the tab ID. These files are identical, down to

the comment “//example of using a message handler from the

inject scripts,” which makes it likely that all developers copied

the code from a Chrome tutorial or StackOverflow post.

3
We found clusters of similar (content script, background script). E.g., the background

script of “PodQueue” is similar to the content script of “Slack Beeegmojis”, as they

both use the webextension-polyfill class in their respective scripts.

4
We prefer the word similar to identical: while the majority of the scripts are identical

word for word, a few scripts have the same syntactic structure, but a few string

constants were changed. We hypothesize they were still clustered with a 100% overlap,

because ssdeep returns an integer between 0 (no match) and 100, and rounding up by

the algorithm probably gave a 100 score to nearly identical extensions.
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5.1.3 Suspicious Extension Clusters. Of the 3,270 clusters we iden-
tified previously, 2,296 contain only benign extensions, 321 only

SNE, and 653 both SNE and benign extensions. The fact that 321

clusters contain only SNE is a good indication that code similarity

could enable to quickly remove a full cluster once one of the exten-

sions in the cluster is found to be security critical; or at least to flag

the remaining extensions in the cluster for further analyses. In the

following, we focus in more detail, first on SNE clusters, and then

on clusters containing both SNE and benign extensions.

SNE Clusters — Regarding SNE clusters, 14 of those contain 100

or more SNE, with 2 clusters containing 863 SNE each. One of these

863-SNE clusters mainly contains new tab wallpaper extensions, i.e.,

when a user opens a new tab, such extensions redirect a user to a

custom Google search page with a different wallpaper image. These

wallpaper images can come in different themes, e.g., sports or anime,

which allows a developer to create hundreds of extensions with

the same code but different background images. Such extensions

include “Kpop Big BangWallpapers New Tab HD” and “Los Angeles

Clippers Wallpapers New Tab HD”. The majority of these new tab

extensions are by the developer “http://newtabexperience.com”,

although there are extensions by other developers in the cluster.

Across the board, new tab extensions are very common, as they can

be used to show users advertisements or distribute malware [53].

In fact, almost all of the extensions in this cluster were removed

from the CWS for containing malware on October 1–5, 2020.

SNE and Benign Extension Clusters — We now look at the

653 clusters containing both benign extensions and SNE. These

clusters total 10,678 extensions: 1,754 malware-containing, 3,370

policy-violating, 2 vulnerable, and 5,552 benign extensions.

One such cluster contains 9 screenshotting extensions that all

have the same background script. 3 / 9 extensions were removed for

policy violations months apart (January 20, February 11, and March

17, 2023), despite them having identical code and not receiving

any updates in this time span. As a result, we believe that the

CWS developer team is not using code similarity as part of their

review process to help detect suspicious extensions. With code

similarity-based approaches, once one extension in the cluster had

been found to be in violation of the CWS policies, the other 8

identical extensions could have been flagged for additional review,

allowing a faster removal of those policy-violating extensions.

Interestingly, we also found examples of truly benign extensions

sharing a cluster with SNE. For example, in a cluster of 9 extensions

(7 benign and 2 malicious), we see that “Keplr for cosmos: osmo-

sis,akt Wallet” is malicious but not “G-Eye”. Despite them having

identical code, they have different permissions: the benign extension

is missing the activeTab and scripting permissions. This makes

the “malicious” part in the benign extension dead-code for now

(due to the absence of the required permissions). In other words, a

simple permission change in the manifest.json file could make

the extension malicious. Unfortunately, both Fass et al. [41] and

Pantelaios et al. [57] reported examples of extensions turning vul-

nerable or malicious, respectively, after such an update. For these

reasons, we believe that the 5,552 “benign” extensions containing

identical code to known SNE should be flagged for additional review.

Maybe some of them are not security critical today, but they could

easily become so, and should thus be more closely monitored.

TakeawayWe uncovered thousands of clusters of similar exten-

sions. We found that 321 clusters contain only SNE, showing that

analyzing extension code for similarities could be a useful tool for

identifying SNE: once one extension in a cluster is found to be

security-critical, researchers or Google developers could flag the

remaining ones for additional screening. Flagged extensions could

then be run through more computationally and time-expensive

analyses, and should be more closely monitored.

5.2 Sources of Code Similarity
Interestingly, some of the similar extensions we found are written

by different developers.We observe that it is common for developers

to include URLs to reference the origin of a code snippet or give

credit to other authors [43]. As a best-effort strategy to understand

sources of code similarity, we scrape the comments from all of the

downloaded extension code (JavaScript files) and extract URL-like

strings. While sometimes the URLs are simply generic license files,

we find that in many cases links cited in commented code specify

the origin of the code, i.e., the reason for code similarity.

5.2.1 Methodology. For each extension, we extract the comments

from all of the JavaScript files using Esprima [7], a popular JavaScript

parser used by prior work [19, 38–42, 52, 55, 65, 66]. To conduct

a more fine-grained analysis, contrary to Section 5.1, we consider

all JavaScript files from an extension package independently (i.e.,

we do not merge all content scripts or background scripts). Then,

we use the get-urls library to search for and extract URLs from the

comments [9]. Since developers also use comments to temporarily

remove small sections of code, the get-urls library triggers false

positives (i.e., text being incorrectly flagged as URL). To eliminate

these false positives for our analysis, we filter for strings that con-

tain one of the top five most popular top-level domains: “.com”,

“.org”, “.ru”, “.net”, and “.uk” [3]. We also include “.io” and “.edu”.

5.2.2 Origins of Code Similarity. Overall, we collected over 8M

URLs embedded in comments, over 50k of which are unique (we list

the top 10 URLs appearing the most often in Table 6 in the Appen-

dix). These URLs belong to 18,551 unique second-level domains (we

list the 10 most popular second-level domains in Table 7 in the Ap-

pendix). As a best-effort strategy to understand to which categories

of websites these URLs point to, we manually inspected the top 100

most popular URLs. We find URLs primarily from the following

categories: licenses, code documentation, code repositories, forum

responses, corporate websites, and personal developer websites.

Overall, we collected 697 unique URLs that contain licenses, 3,036

from Stack Overflow, and 9,014 from GitHub repositories.

Next, we validate our assumption that identical URLs in code

commented blocks are an indicator of code similarity. To this end,

we leveraged the ssdeep library [12], as previously, to compute

the fuzzy hashes of all the files that contain a given URL in their

commented code, and we compared all the hashes. To be able to

manually verify our findings, we used this approach on a random

sample of 100 extensions, for each of the ten most popular URLs,

as listed in Table 3, columns 1 and 2. In column 3, we report the

proportion of extensions that have a unique file. For example, 45% of

the extensions listing the URL “http://apache.org/licenses/LICENSE-

2.0” do not have any files identical to any files from the other 99

http://apache.org/licenses/LICENSE-2.0
http://apache.org/licenses/LICENSE-2.0


What is in the Chrome Web Store? ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

extensions listing this URL. This result is not particularly surprising

as this URL refers to a license file, which can be applied to a variety

of different software and is, therefore, not a strong indication of

code similarity. On the contrary, for “http://extensionizr.com”, only

15% of the files referencing this URL have unique files not appearing

in any of the other 99 extensions. Overall, the results from Table 3

confirm the fact that extensions reuse code from public sources,

such as code documentation, code repositories, or forums. This is

bad practice, as code reuse multiplies the usage of dated code and

propagates vulnerabilities [58]. We give a specific example below.

5.2.3 Security Implications. In this section, we illustrate the se-

curity implications of code reuse with one case study. We focus

on Extensionizr, an open-source project used for generating boil-

erplate for Chrome extensions [73]. As shown in Table 3, “http:

//extensionizr.com” is the fourth most frequent URL found in at

least one comment block of an extension. Despite Extensionizr be-

ing last updated in 2017 [8], 816 new extensions have been created

using this project between 2020 and 2023 (we plot the number of

extensions created each year between 2012–2023 using Extension-

izr in Figure 12 in the Appendix). Additionally, extensions created

with Extensionizr have the option of adding Angular.js or jQuery

as add-ons. However, since the project is not maintained, the only

options for adding these libraries are Angular.js version 1.0.6 and

jQuery version 2.0.0, both of which have known vulnerabilities [4].

To estimate a lower bound of the number of Extensionizr extensions

using a vulnerable library, we used RetireJS, an open-source tool to

detect known vulnerable libraries [10]. We found that 65.56% of the

Extensionizr generated extensions use the default and vulnerable

jQuery 2.0.0 and 79.66% Angular.js 1.0.6 (note that those vulnerable

libraries are not necessarily exploitable from the context of a web

application). This case study rather exemplifies the fact that code

reuse is a bad practice that can lead to dated code and vulnerabilities,

all the more when the third-party code is not maintained.

Takeaway We find that commented URLs in extension code can

indicate the origins of code similarity. Code reuse is a bad practice,

as it propagates the usage of dated code and vulnerabilities. For

instance, roughly 1,000 extensions use the open-source Extension-

izr project, 65–80% of which still use the default and vulnerable

library versions initially packaged with the tool, 6 years ago.

6 MAINTENANCE AND SECURITY
Previously, we showed that dated code propagates vulnerabilities.

We now investigate extension maintenance in the CWS and discuss

security implications. Specifically, we exemplify the prevalence of

outdated and vulnerable developer practices.

6.1 Extension Updates
First, we focus on extension updates. On average, 200–600 exten-

sions are updated every day (Figure 8). The number of updates

per day was mostly constant over the past two years. Interestingly,

there were no update spikes after any key releases about the man-

ifest V3 timeline. However, there are two outliers on April 19-20,

2022 where over 900 extensions were updated on each day. This cor-

relates with the release of the featured and verified badges, which

was reported by news outlets on April 19 and officially posted on

URL

# unique

extensions

% extensions

with a unique file

http://apache.org/licenses/LICENSE-2.0 2,622 45%

http://opensource.org/licenses/MIT 2,122 18%

http://opensource.org/licenses/mit-license.php 1,735 74%

http://extensionizr.com 1,651 15%

http://jquery.org/license 1,158 21%

http://underscorejs.org 854 12%

http://code.google.com/p/crypto-js 755 16%

http://code.google.com/p/crypto-js/wiki/License 754 20%

https://github.com/carhartl/jquery-cookie 722 15%

http://mozilla.org/MPL/2.0 712 35%

Table 3: Number of unique extensions a URL appears in and
percent of extensions with this URL that have unique files
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Figure 8: Number of extensions updated on a given day–The
red line represents the 7-day rolling average

Google’s blog on April 20 [48]. We assume that many developers

submitted updates to meet the requirements for the badges.

Surprisingly, the median number of updates an extension re-

ceives after a year in the CWS is 0, and the average is 0.16. So,

the majority of extensions do not seem particularly maintained

(even though some outliers have received over 25 updates). Of the

extensions in the CWS on February 14, 2023, 73,865 (59.5%) have

never been updated since they were added to the CWS. Interest-

ingly, those extensions tend to have fewer users (average of 1,974)

than extensions that have received updates (30,708 users).

To further quantify our claim about the lack of maintenance

in the CWS, we represent the number of extensions by time win-

dow of their most recent update in Figure 9 (as of February 14,

2023). As expected, the majority of extensions have not been up-

dated within the past year: almost 30k extensions have been last

updated 2–4 years ago, and over 40k more than 4 years ago. We

even observe over 5k extensions not having been updated within

the past decade! Overall, this raises concerns about compatibility

issues and potential security or privacy implications of unmain-

tained extensions. We give a specific example in Section 6.3, where

half of known vulnerable extensions have been unmaintained for

over 2 years. Nevertheless, we acknowledge that some extensions

may already have achieved their full functionality when being first

added to the CWS and may not need further updates. Still, Chrome

is releasing new APIs and features, such as Manifest V3, whose

benefits (also including security and privacy improvements [25])

those unmaintained extensions are missing out on.

http://extensionizr.com
http://extensionizr.com
http://extensionizr.com
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Figure 9: Number of extensions at their last update (as of

February 14, 2023)

TakeawayWe highlight a critical lack of maintenance in the CWS,

e.g., almost 60% of extensions have never received any updates.

Given the sensitive nature of extensions, this is problematic, as

such unmaintained extensions are missing out on security and

privacy improvements such as those offered by Manifest V3.

6.2 Manifest Versions
As discussed in Section 2, Chrome released manifest V3 in Novem-

ber 2020 and stopped accepting new manifest V2 extensions in

January 2022 [27]. However, as of February 2023, 74% of extensions

are still using manifest V2 (62% as of July 2023). This is especially

concerning as Chrome originally planned to force all manifest V2

extensions to set their visibility to unlisted or private in June 2023

and remove all manifest V2 extensions in January 2024, although

this is now under review and being postponed [27]. The purpose of

manifest V3 is to improve security, privacy, and performance [25].

For example, from a security perspective, extensions with manifest

V3 are no longer able to run arbitrary code in their highly-privileged

service worker environment. All code must be packaged within

the extension, unlike previously where extensions could download

and run external code [30]. In particular, it has been shown that

extensions running arbitrary code could lead to universal cross-site

scripting vulnerabilities [41, 64, 74]. These vulnerabilities (among

others) would be fixed if the extensions migrated to manifest V3.

While manifest V3 promises a higher security and privacy pos-

ture, transitioning from V2 to V3 is challenging. For example, the

transition requires significant changes for many existing exten-

sions: some features are now unavailable, which forces developers

to invest considerable time and effort to look for alternatives, which

sometimes do not exist. In other cases, developers complain about

limited API capabilities: the shift from the webRequest API to the

declarativeNetRequest API limits extensions’ ability to modify

web requests on the fly, which is problematic, e.g., for adblockers [5].

Takeaway Unfortunately, the transition from manifest V2 to V3

is challenging. As a consequence, 74% of extensions and 1.2 billion

users are potentially missing out on some security and privacy

benefits offered by manifest V3.

Figure 10: Life cycle of vulnerable extensions–The blue curve
represents the vulnerable extensions detected by DoubleX [41]

(crawl: March 16, 2021) that are still in the CWS. In orange, we

see the number of those extensions that have received at least one

update. The blue minus orange line thus represents a lower bound

of the number of extensions that are still in the CWS and vulnerable

6.3 Vulnerable Extensions
As shown in Section 6.1, the vast majority of extensions are unmain-

tained. This is particularly problematic for vulnerable extensions,

whose user base can stay at risk for years if the vulnerabilities are
not fixed. In fact, in 2021, Fass et al. showed that vulnerable exten-

sions persist in the CWS: of the 193 vulnerable Chrome extensions

they found in 2020, 160 (83%!) were still in the CWS and still vulner-

able one year later [41]. We extended their experiment from 2021

to 2023. To this end, we contacted the authors and received the

list of the 184 vulnerable extensions (including the corresponding

versions) they found to be vulnerable in 2021. In Figure 10, we

represent the life cycle of those vulnerable extensions; the blue

curve represents the vulnerable extensions detected by their tool,

DoubleX, (crawl: March 16, 2021) that are still in the CWS, over

time: 116 / 184 extensions (63%) remain in the CWS as of February

2023. In orange, we see the number of those extensions that have

received at least one update. The blue line minus the orange line

thus represents a lower bound of the number of extensions that

are still in the CWS and vulnerable (in fact, an update does not

necessarily equate to fixing a vulnerability, so our results are a lower
bound of the number of extensions still vulnerable today). Overall,

we find that at least 78 extensions (over 42%) are still vulnerable

two years after disclosure, impacting over 450k active users.

Takeaway At least 78 / 184 extensions (42%) are still in the CWS

and still vulnerable 2 years after disclosure. This shows that, while

detecting vulnerable extensions is critical, we also need better in-

centives to encourage and support developers to fix vulnerabilities
after disclosure.

6.4 Vulnerable JavaScript Library
After vulnerable extensions, we finally investigate the prevalence of

extensions using vulnerable JavaScript libraries. To detect known
vulnerable JavaScript library versions, we leverage RetireJS [10, 11]

to scan each Chrome extension. We find that 39,093 extensions



What is in the Chrome Web Store? ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Library Vulnerability summary # extensions

jquery XSS, 3rd party CORS 41,290

jquery-ui XSS 9,632

bootstrap XSS 6,746

moment.js regular expression DoS, path traversal 5,408

angularjs XSS, CSP bypass, DoS 4,728

jquery-ui-dialog XSS 2,223

underscore.js arbitrary code injection 1,693

vue XSS 1,486

YUI XSS 1,027

jquery-validation regular expression DoS 960

Table 4: 10 most commonly used JavaScript libraries contain-
ing known vulnerabilities and used by extensions

(31.5%) use at least one JavaScript library with a known vulnerabil-

ity. Those extensions belong to 32,144 distinct developers. Across

all extensions, we identify 87 unique JavaScript libraries with a

known vulnerability. We detect over 80k uses of those vulnerable

JavaScript libraries, impacting almost 500 million users. We list the

10 most commonly used vulnerable libraries in Table 4, along with

the corresponding vulnerabilities, and the number of impacted ex-

tensions. The top vulnerable JavaScript library is jQuery, with over

40k extensions loading a vulnerable version (this represents a third

of the extensions in the CWS!). As a comparison, the remaining vul-

nerable libraries we detected are used by less than 10k extensions.

We list the top 10 JavaScript library versions with vulnerabilities in

Table 8 in the Appendix; the majority of which are jQuery versions.

However, using a vulnerable JavaScript library does not equate to a

vulnerable extension, since the vulnerability may not be exploitable

from the context of a web application. While some vulnerabilities

may be exploitable through Web Accessible Resources, we leave a

study of the exploitability of vulnerable libraries for future work.

Takeaway Almost a third of extensions (40k) use a JavaScript

library with a known vulnerability: we detect over 80k uses of

vulnerable libraries, impacting almost 500M extension users.

Next, we investigate how often extensions with a vulnerable

library are updated. In Figure 11, we represent the year of the most

recent update for each extension in blue and plot the number of ex-

tensions that use a library with a known vulnerability, grouped by

last update year, in orange. Surprisingly, we observe that extensions

which were updated recently are not less likely to have a vulnerable

library than extensions that were updated several years ago. Specif-

ically, for extensions with their most recent updates in 2017–2023,

between 19.54% and 24.62% are using vulnerable libraries. While

extensions with their most recent updates between 2013 and 2016

have a greater fraction of extensions with vulnerable libraries (be-

tween 24.49% to 32.88%), extensions with their most recent updates

in 2011 and 2012 have a smaller fraction (0.81–14.11%).

Interestingly, and perhaps surprisingly, we find that even when

developers are updating their extensions, they are not necessarily

maintaining the JavaScript libraries within their extensions. For

instance, 21% of the extensions updated in 2022 and later (8,236

extensions) have a known vulnerable library. Overall, this provides

further evidence that the use of vulnerable libraries persists even

when patched library versions are available and even when devel-

opers are maintaining their extensions.

Figure 11: Number of extensions using a vulnerable library
(orange), grouped by last update year, compared to the total
number of extensions (blue), by last update year

Takeaway Evenwhen developers update their extensions, they of-
ten do not update vulnerable libraries within their extensions, even
after a patched version of a vulnerable library has been released.

We encourage developers to not only maintain their extension

source code but also libraries within their extension package.

7 DISCUSSION
In this section, we first discuss some limitations of our approach.

Then, we summarize our takeaways and recommendations.

7.1 Limitations
Since Google does not archive browser extensions that used to be in

the CWS, we are dependent on ChromeStats to access longitudinal

data. As mentioned in Section 3.1, for some extensions, we only

had access to their metadata and not source code.

Another limitation of our paper relates to our code similarity

approach. We chose to compute similarity based on the raw source

code (Section 5.1.1). However, this approach is not resistant against

variable renaming or if a developer chooses to merge scripts in a

different order. In the future, we could consider other methods, such

as relying on Abstract Syntax Trees [38]. Regarding our suggestion

to use code similarity analysis to identify SNE (Section 5.1.3), we

realize that sharing an identical background or content script with

a SNE does not necessarily imply that an extension is also security-

critical. For example, in the case of policy-violating extensions,

we would need to also analyze the reported privacy policies; for

vulnerable extensions, we would need to review the extension’s

permissions. This is why we emphasize this as a tool for flagging

extensions for future investigation, not the end-all determination.

Regarding security implications of a lack of maintenance in the

CWS, we acknowledge in Section 6.1 that poorly maintained exten-

sions do not necessarily lead to security issues: an extension may

have achieved its intended functionality when first added to the

CWS and not necessitate any further updates. As for extensions

using vulnerable libraries, we emphasize in Section 6.4 that a vul-

nerability does not equate to exploitability. We leave a study of the

exploitability of vulnerable libraries in extensions for future work.
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7.2 Recommendations and Future Work
We summarize here our main guidelines to guide future research

and pave the way for a more secure CWS.

Volatility in the CWS and Reproducibility — We observe unex-

pected volatility of extensions in the CWS. It is important to keep in

mind that extensions are frequently being removed from the CWS

and new extensions are being added. Additionally, extensions have

extremely short life cycles, and extension user counts are unstable.

Given these constant changes, researchers should try to perform

their analyses over multiple points in time (e.g., by using data from

ChromeStats [6]) and evaluate the reproducibility of their findings

before making claims about broad patterns in the CWS. Specifi-

cally, longitudinal studies provide the best assurance of temporal

representativeness. To this end, we encourage researchers to open

source their extension sets to ease future work and comparisons.

SNE Detection and Extension Vetting — We show that SNE

stay in the CWS for years. First, additional efforts are needed to

detect such extensions prior to their acceptance to the CWS. For

example, existing tools [41, 74] could help Google engineers flag

potential vulnerable extensions. To detect malware-containing and

privacy-violating extensions, we strongly recommend thoroughly

scrutinizing extensions submitted to the CWS by developers having

published SNE in the past. Similarly, we encourage researchers and

Google engineers to look for extensions with a similar code base

to known SNE. Flagged extensions should be more closely moni-

tored, e.g., run through more computationally and time-expensive

analyses to detect and reject verified SNE from the CWS. Second,

we suggest to vet extension updates given that “benign” extensions

can easily turn malicious after permission changes. Third, we en-

courage researchers to investigate why vulnerable extensions stay

in the CWS for years, even after disclosure. While Google engineers

may need to be more active and restrictive when vetting extensions,

this also raises the question of who should be responsible for hav-

ing SNE in the CWS. For instance, developers may not have any

incentives to fix their vulnerable extensions once they have been

accepted to the CWS. In this case, the impacted users should be

notified of the security and privacy issues they may be subject to.

This is all the more important as users have a limited understanding

of security and privacy issues extensions can induce [15].

Extension Maintenance — We obviously encourage developers

to maintain their extension source code, including migrating to

manifest V3, when applicable. We also recommend updating the

libraries within their extension package. We leave an investigation

of the exploitability of vulnerable libraries for future work.

8 RELATEDWORK
Prior work focused on detecting malicious, vulnerable, and finger-
printable extensions. Our work is in an orthogonal direction. We

investigate what is in the CWS and highlight security implications

that were overlooked by prior work.

Malicious Extensions — First, malicious extensions are designed

by malicious actors to harm victims. For example, some extensions

may tamper with security headers [13], steal users’ credentials,

track users [72], spy on them [14], spread malware [1], leak sensi-

tive information [22, 68], or have inconsistencies in their privacy

practices [18]. To defend against these issues, several approaches

have been proposed to detect malicious extensions, e.g., by mon-

itoring their behavior [45, 71], tracking the reputation of devel-

opers [44], or detecting anomalous ratings [57]. In this paper, we

highlight the fact that malicious extensions have different patterns

(e.g., number of days in the CWS, user counts, or developers) com-

pared to benign extensions. Such patterns could be leveraged to

flag suspicious extensions for additional analyses.

Vulnerable Extensions — Second, vulnerable extensions are de-

signed by well-intentioned developers but contain vulnerabilities,
leading to security or privacy issues. Prior work focused on vulner-

abilities in XPCOM Firefox extensions (XPCOM is now deprecated),

based on static information flow tracking [17] and JavaScript names-

pace vulnerabilities [19]. To detect vulnerable Chrome extensions,

some approaches primarily rely on manual analysis [21, 64], oth-

ers focus on a formal approach [20], abstract interpretation [74],

or data flow analysis [41]. In this paper, we show that vulnera-

ble extensions have patterns quite similar to benign extensions’,

which makes them more challenging to detect. Besides detection,

it is of utmost importance to encourage developers to fix known

vulnerabilities that currently pervade the CWS.

Fingerprintable Extensions — Third, fingerprintable extensions

enable an attacker to track users across websites, deanonymize them,

or infer sensitive information about them (e.g., related to health or

religion) [46]. Extensions can be fingerprinted by analyzing their

observable side effects. An attacker can detect the extensions a

user has installed by leveraging DOM changes [63, 67, 69], style

changes [50], Web Accessible Resources [46, 60], user actions [62],

or timing-channels [59]. Several defenses to extension-enumeration

attacks have been proposed, such as controlling extensions loaded

on a website [61], randomizing browser extension fingerprints [2],

or creating a parallel DOM [47]. We leave a study of fingerprintable

extensions and a comparison with SNE for future work.

Untrusted Libraries and Third Parties — In this paper, we

show that extensions are not maintained and use known vulnerable

libraries. This is comparable to the npm ecosystem where lack of

maintenance causes packages to depend on vulnerable code [75]. In

npm, one proposed mitigation was to reduce the attack surface by

removing unused code [49]. We could imagine a similar approach

for browser extensions. More generally, similar issues are observed

on the Web (and still an open challenge), when developers do not

maintain libraries, allowing their site to be compromised [51].

9 CONCLUSION
This paper provides a holistic view of the browser extensions’ land-

scape, within the CWS. We leverage historical data provided by

ChromeStats to broadly investigate and understand what is in the

CWS, along with security implications. Our research fundamentally

underlines (a) the extremely short life cycles of extensions, (b) the per-
vasiveness of what we call “Security-Noteworthy Extensions” (SNE),
(c) the presence of clusters of similar extensions, and (d) a critical lack
of maintenance in the CWS. We are confident that our results can

serve as a foundation for researchers and practitioners looking to

study and improve the security of the browser extension ecosystem.
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A APPENDIX

Rank Benign Malware Policy violation Vulnerable

1 storage storage storage tabs

2 tabs topSites tabs storage

3 activeTab activeTab cookies webRequest

4 contextMenus webRequest activeTab webRequestBlocking

5 notifications webRequestBlocking management contextMenus

6 webRequest cookies topSites cookies

7 scripting management webNavigation activeTab

8 unlimitedStorage webNavigation webRequest notifications

9 cookies tabs webRequestBlocking bookmarks

10 webRequestBlocking unlimitedStorage notifications downloads

Table 5: Top 10 API-based permissions for benign and SNE

Rank URL Occurrences

1 http://opensource.org/licenses/mit-license.php 426,224

2 http://apache.org/licenses/LICENSE-2.0 383,040

3 http://jqueryui.com 99,984

4 http://opensource.org/licenses/BSD-3-Clause 87,712

5 http://code.google.com/p/crypto-js 65,376

6 http://code.google.com/p/crypto-js/wiki/License 65,248

7 http://opensource.org/licenses/MIT 65,056

8 http://jquery.org/license 59,552

9 http://codemirror.net/LICENSE 58,240

10 https://github.com/twbs/bootstrap/blob/master/LICENSE 57,312

Table 6: Most popular URLs and number of occurrences of a
URL across all JavaScript files of all extensions (total of over
50k URLs)

Rank Second-level domain # unique URLs # unique extensions

1 github.com 9,685 62,285

2 ecma-international.org 516 9,976

3 github.io 1,128 8,461

4 whatwg.org 737 7,491

5 stackoverflow.com 3,036 6,793

6 chrome.com 698 6,422

7 w3.org 870 6,413

8 google.com 1,297 6,319

9 mozilla.org 1,388 6,088

10 opensource.org 48 5,030

Table 7: Most popular second-level domains with the number
of unique extensions they appear in (total of 18,551 second-level

domains)

Library Version # extensions

jquery 3.3.1 4,744

jquery 3.4.1 3,700

jquery 3.2.1 3,326

jquery-ui 1.12.1 2,242

jquery 3.1.1 2,144

jquery-ui 1.11.4 2,015

jquery 2.1.1 1,970

jquery 2.1.4 1,921

jquery 2.0.0 1,871

jquery 1.10.2 1,808

Table 8: Top 10 JavaScript library versions containing known
vulnerabilities and used by extensions

Figure 12: Number of extensions created each year using
Extensionizr [73]

https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://extensionizr.com/

	Abstract
	1 Introduction
	2 Background: Browser Extensions
	3 Extension Collection and Analysis
	3.1 Extension Collection
	3.2 Overall Trends
	3.3 Extension Life Cycle

	4 Security-Noteworthy Extensions
	4.1 Number of Days in the CWS
	4.2 Number of Users
	4.3 Extension Ratings
	4.4 Extension Developers
	4.5 Extension Permissions

	5 Code Similarity and Security
	5.1 Extensions with a Similar Code Base
	5.2 Sources of Code Similarity

	6 Maintenance and Security
	6.1 Extension Updates
	6.2 Manifest Versions
	6.3 Vulnerable Extensions
	6.4 Vulnerable JavaScript Library

	7 Discussion
	7.1 Limitations
	7.2 Recommendations and Future Work

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Appendix

