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Abstract

Game-based proofs are a common technique used to verify
cryptographic constructions. Such proofs consist of a sequence
of games where each transition from one game to the next can
be individually verified. However, as more and more increas-
ingly complex proofs are being published, even such transitions
are often non-trivial. Moreover, games are frequently described
informally or just in some ad-hoc pseudocode and may be un-
derstood differently than originally intended by the authors, or
underlying assumptions may not be made explicit.

For this reason, Backes et al. developed a new formal lan-
guage at the chair of Information Security and Cryptography
at the Universität des Saarlandes. This language supports most
cryptographic primitives typically used in such games and is
intended to provide a formal standard to model them. Fur-
thermore it has been implemented on top of the proof assistant
Isabelle/HOL, such that it is possible to use Isabelle’s logic to
formally verify game transitions.

The goal of this thesis is to provide a first application of this
language to a real-world cryptographic construction by using
it to formally verify the security of the well-known ElGamal
encryption scheme. For this, we use the language to model
the scheme as well as the desired security properties and the
necessary assumptions. Next, we find appropriate game trans-
formations in the language and formally prove their validity.
Finally we show how to use these transformations to achieve a
fully formalized game-based proof of the security of ElGamal.
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Notations (in order of occurrence)

B The set of basic values of the language, see Def. 3.3.

↑ P All free variables in P are increased by one; see Def. 3.5.

↑k P All free variables in P with indices greater or equal than k are lifted by one; see
Def. 3.5.

P{V } The value V is substituted into the program P ; see Def. 3.7.

P a For a program P and a list of values a, the instantiation of all free variables in P with
the values in a; see Def. 3.9.

P |σ|η For a program P and store σ and event list η, the program state defined by the
triple (P, σ, η); see Def. 3.12.

B|σ|η For a set of programs B and store σ and event list η, the set {x|σ|η : x ∈ B}.

PS The set of all program states P |σ|η, see Definition 3.12.

VS The set of all value states V |σ|η, see Definition 3.13.

P |σ|η  µ For a program state P |σ|η and a measure on program states µ, the statement
“P |σ|η reduces to µ”, see Def. 3.14.

δx The Dirac measure associated with x ∈ X, defined by δx(B) = 1 ⇔ x ∈ B and
δx(B) = 0⇔ x /∈ B, for all B ∈ ΣX .

Λx. f(x) For an element x ∈ X and a function f : X → Y , the (unnamed) mathematical
function which for x yields the value f(x). Here we use a capital Λ to distinguish
mathematical functions from abstractions λx.f(x) of the language.

f(µ) For a measurable function f : X → Y and a measure µ on X, the measure on Y
defined by f(µ)

(

B
)

= µ
(

{x ∈ X : f(x) ∈ B}
)

, for all B ∈ ΣY .

g · µ For a kernel g : X → Y and a measure µ on X, the application g · µ defined by
(g · µ)(B) :=

∫

g(x)(B) dµ(x), for all B ∈ ΣY ; see Def. 3.16.

g ◦ f For a kernel f : X → Y and a kernel g : Y → Z, the kernel composition g ◦f defined
by (g ◦ f)(x) := g · (f(x)), for all x ∈ X; see Def. 3.17.

JP |σ|ηK The denotation of a program P with state σ and event list η, as defined in Def. 3.19.

JP K Shorthand notation for JP |[]|[]K, where [] is an empty list.

T (P |σ|η) For a program state P |σ|η, the probability of termination according to the se-
mantics of the language, see Def. 3.20.
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P |σ|η ∼ Q|σ|η P |σ|η and Q|σ|η are denotationally equivalent, see Def. 3.26.

P ∼ Q P and Q are denotationally equivalent, see Def. 3.26.

P ≡obs Q P and Q are observationally equivalent, see Def. 3.28.

P ≡CIU Q P and Q are CIU-equivalent, see Def. 3.29.

(Pn)n∈N≈indn
(Qn)n∈N The families (Pn)n∈N and (Qn)n∈N are computationally indistinguish-

able in n, see Def. 3.31.

P ≡INV
obs Q P and Q are observationally equivalent under certain invariants.

If we talk of measures on sets X,Y, . . . or measurable functions X → Y , we assume
implicitly the existence of canonical σ-algebras ΣX , ΣY , . . . on X,Y, . . . , respectively. In
particular, as canonical σ-algebras ΣR+ and ΣR on R

+ and R, respectively, we always
choose the Borel-algebras, i.e. the smallest σ-algebra on R

+ respectively R which contains
all closed intervals [a, b].
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1 Introduction

The main result of this thesis is the proof of the semantic security of ElGamal using
game-based transformations in a new formal language developed at the chair of Michael
Backes [2]. For this, we find the necessary transformations and prove their validity.

We explain this now in more detail.

The Game-Playing Technique. In modern cryptography, a prominent technique to rea-
son about security properties of cryptographic constructions are so-called game transforma-
tions. The idea is that one can formulate some desired security property as a probabilistic
experiment, which usually models an interaction between a challenger and some adversary ;
this experiment is the initial game. In such a game, the challenger uses some underlying
cryptographic construction and then has to give a certain amount of information to the
adversary. The goal is to show that the probability that the adversary may perform a
successful attack on the construction (where the meaning of a “successful attack” depends
on the context) is in some sense insignificant or negligible. To prove this, one transforms
the initial game in a series of steps. For each step, one shows that the probability of the
outcome of the previous game is changed at most by some negligible amount. The last
game usually has a form where it is easy to give an upper bound for the probability of the
outcome, or where such a bound is already known or assumed.

The need for more rigor. However, with the increasing complexity and multitude of
proofs generated by the cryptographic community, this approach is inherently error-prone.
Indeed, as argued by Halevi [17], the algorithms that we deal with are non-trivial (and
indeed truly complex), and the proofs concern properties of a sophisticated interaction be-
tween these algorithms. On the other hand, the games are usually simply described in just
a semi-formal way, using some ad-hoc pseudocode or even just natural language. Thus,
ambiguities may be introduced (e.g. some assumptions may not be made explicit), and
depending on the interpretation of some game, the correctness of a transformation may
not always be easily believed. Thus, Backes et al. [2] implemented a full-fledged language
to model cryptographic games in a fully formal way, and which knows several kinds of
cryptographic primitives used in such games. It is powerful enough to argue about proba-
bilistic behavior, the usage of oracles, and even continuous probability measures, so that it
is even possible to argue about information-theoretic security guarantees. Furthermore, it
has been implemented on top of the proof assistant Isabelle/HOL [19], and several kinds of
program relations have been formalized, so that it is possible to use the power of Isabelle’s
logic to formally verify the validity of the transformations.
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1 Introduction

Notions of security. Two well-known security properties of encryption schemes are those
of semantic security and the indistinguishability of encryptions. The semantic security of
an encryption scheme is the most natural definition that comes to mind, and intuitively
states that no adversary should be able to recover any part of a plaintext by looking at
the ciphertext. The more technical definition of the indistinguishability of encryptions
asserts that it is infeasible for an adversary to distinguish the encryptions of two self-
chosen plaintexts. While the first definition seems more natural, the second one is usually
far easier to deal with formally. Fortunately, today these definitions are known to be exactly
equivalent; that is, semantic security implies indistinguishability of encryptions and vice-
versa (see for example [16]). Hence, to show that an encryption scheme is semantically
secure, one can show that it has indistinguishable encryptions.

ElGamal. The ElGamal encryption scheme, invented in 1985 by Taher Elgamal [13], is
a widely used asymmetric encryption scheme based on the difficulty of computing certain
discrete logarithms. More precisely, the scheme is is well-known to be semantically se-
cure under the assumption that the (decisional) Diffie-Hellman problem is hard to solve in
certain cyclic groups. The proof can be beautifully performed using game-based transfor-
mations, and is at the same time a good demonstration of this technique.

Goal. As mentioned at the beginning, the goal of this thesis is to show the usefulness of
the language to perform game-based cryptographic proofs by using it to formally define
the ElGamal encryption scheme, find and formalize appropriate game transformations to
show that ElGamal has indistinguishable encryptions, and prove their validity.

Outline. The outline of the thesis is as follows. We begin by presenting some related
work in Section 2. In Section 3, we will introduce the language invented by Backes et al.,
formally define its semantics and define several kinds of program relations. In Section 4, we
will define what it means for an encryption scheme to have indistinguishable encryptions
and explain the ElGamal encryption scheme, as well as the problem it is based on. The
new results proposed in this thesis are given in Sections 5 to 7. In Section 5, we will show
how to formalize these definitions in the language. In Section 6, we introduce, formalize
and prove several kinds of game-based transformations. Finally, in Section 7 we apply the
results explained in the preceding sections to the concrete transformations which prove the
indistinguishability of encryptions of ElGamal. We conclude with an outlook in Section 8.
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2 Related Work

We point out some related work, in (roughly) chronological order.
In [6], Bellare and Rogaway take a fresh look at the game-playing technique and argue

for its usefulness, as it is a widely applicable and easily verifiable technique to perform
cryptographic proofs. They present some examples in a pseudo-code language, and discuss
that for truly rigorous statements, the language should be fully specified. In [17], Halevi
supports this view and furthermore advocates the creation of an automated tool to help
with this task. He argues that with the help of such a tool, humans could concentrate
on the creative part of proofs, such as finding appropriate transformations, while the tool
could help to verify the mundane part, such as checking that some transformation goes
through.

CryptoVerif [8, 7] was the first approach to build such a tool relying on the computational
model (i.e. proofs by reductions of games) to automatically prove the security of both
cryptographic primitives and cryptographic protocols. Blanchet and Pointcheval use it to
prove the unforgeability of the Full-Domain Hash signature scheme under the trapdoor-
one-wayness of some permutations. However this tool has some limitations as it comes to
mathematical reasoning, and is rather suited for security protocols which use high-level
primitives such as encryptions or signatures.

In [11], Courant, Daubignard, Ene, Lafourcade and Lakhnech present a different ap-
proach for automatically proving several security notions such as IND-CPA and IND-CCA2
security. They define a Hoare logic for a simple programming language, and use it to im-
plement an automated verification procedure. However, this approach has the drawback
that they have to sacrifice completeness for soundness, that is, their procedure may fail to
prove a secure encryption scheme, while it will never declare one secure which is insecure.
For this reason, they do not achieve high assurance e.g. when dealing with exact security.

The framework which comes closest to the one presented in this thesis is CertiCrypt,
presented in [4, 3, 24]. It also takes a code-centric approach to formalize game-based
transformations. Barthe et al. use an imperative programming language with random as-
signments, structured datatypes and procedure calls built upon the proof assistant Coq [23].
Their framework provides a set of certified tools to reason about equivalence of probabilis-
tic programs, including a relational Hoare logic, a theory of observational equivalence,
verified program transformations and cryptographic techniques such as reasoning about
failure events [4]. Thus their framework is similar to ours, although their language is not
higher-order and therefore it might be difficult to reason about oracles. Furthermore, their
framework does not allow reasoning about continuous probability measures, so they can-
not reason about e.g. information theoretic security guarantees. However, a fair amount
of proofs have already been achieved in CertiCrypt, such as the unforgeability of FDH
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2 Related Work

signatures [4, 24], as well as the the IND-CPA security of OAEP [4] and of ElGamal [4, 3],
with a proof similar to the one presented in this thesis.

The language that we use in this thesis was first published by Michael Backes, Matthias
Berg and Dominique Unruh in [2]. It is actively being developed at the Information Se-
curity and Cryptography Group at the Universität des Saarlandes. Recently, Jonathan
Driedger submitted his Bachelor’s thesis on the formalization of a number of game-based
transformations in our language [12], some of which we relied on in this thesis.
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3 The Framework

In this section, we will explain the basic framework that we will build on, as published
in [2]. More precisely, we will first introduce the language, including its formal syntax and
semantics. Afterwards, we can define different kinds of program equivalences that have
been formulated in Isabelle/HOL. In this way, we know how to write a game as a program
and what a valid transformation is.

The language that has been implemented in Isabelle/HOL is a higher-order functional
probabilistic language. It is higher-order, because it has to be able to deal with oracles, and
from a language perspective, oracles are higher-order arguments passed to functions. For
this reason, it is functional, since functional languages deal with higher-order arguments
much more naturally than imperative languages. Furthermore, it has to be probabilistic,
since we want to be able to argue about probabilistic behaviors. The language is powerful
enough to even deal with continuous probability measures, so that it is possible to reason
about, e.g., infinite random tapes for establishing information-theoretic security guarantees.
Finally, it also includes a store and references, which is normally not the case in purely
functional languages. However, since we want to be able to deal with, e.g., stateful oracles
(and simply passing a state around as an object is insufficient, because this might violate
secrecy properties, e.g., an oracle might be obliged to output its secret key), we have to
extend the language with a store. Similarly, we explicitly include events and an event list
in the language, since events are a salient technique used in cryptographic proofs.

As we are dealing with a functional language, it is only natural to model it as a λ-
calculus. Hence, in Section 3.1, we will give a quick overview over some general concepts of
the λ-calculus. We will proceed by defining the syntax of the language in Section 3.2. Then
we will introduce a few special operators in Section 3.3 that are needed in the following
sections. In Section 3.4, we will define the semantics of the language, and in Section 3.5 we
will introduce some syntactic sugar. Finally, in Section 3.6, we will formalize three kinds
of commonly known program relations that justify typical game transformations.

3.1 On the λ-calculus

The λ-calculus is a formal system first published by Alonzo Church in 1936 [10]. It is
widely used to model the mechanisms of a functional language, by concentrating on its
core aspect: functions. Basically, all computation is reduced to the basic operations of
function definition and application. The core syntax of a λ-calculus comprises only three
sorts of terms.

7



3 The Framework

t ::= terms
x variable
λ x. t abstraction
t t application

A variable x is by itself a term. The abstraction of a variable x from a term t1, written
λ x. t1, is a term. It denotes a function that takes an input x and returns the evaluation
of t1, where some value v is substituted for x in t1. Values are a subset of the set of terms,
comprising in such a simple λ-calculus only the variables and the abstractions (and things
like e.g. natural numbers in more sophisticated languages). For example, the function

factorial = λ n. if n=0 then 1 else n*factorial(n-1)

is a function that takes a natural number n, and returns the factorial of n. Note that
here we have defined neither natural numbers, if-then-else constructs, = or * operators
or recursion, so this is really just to give an intuition what a λ-term looks like. Finally,
the application of a term t1 to another term t2, written t1 t2, is a term. To continue our
example,

factorial 3

is an application, and intuitively should evaluate to the value 6.
Indeed, what one now usually does is define an evaluation relation (often called big-step

semantics), which for each term unambiguously states what it evaluates to (if it can be
evaluated). Similarly, one can define a small-step semantics that well-defines what a term
reduces to in one step. Note the difference in the meaning of a reduction and an evaluation:
the reduction yields the next term in the course of the evaluation, whereas the evaluation
yields its final value. Jumping ahead, we will define similar things in our language. What
we will call the denotation of a program term will correspond to some kind of big-step
semantics, while our reduction relation will be a small-step semantics. The notions will
still be a bit different though, since our language is probabilistic, so it is not clear a priori
what “the next term” in a reduction should be, as a term may reduce to several possible
other terms.

Of course, in complex (say interesting) programming languages one additionally intro-
duces a typing system. Furthermore one enriches the language with additional primitives
like e.g. natural numbers, and data structures such as pairs or lists. Then one can prove im-
portant properties of the language, such as Coincidence (if a program P eventually reduces
in a finite number of steps to a value v using the small-step semantics, then the big-steps
semantics yields exactly this value v for the program P ), the Uniqueness of Types (if a
program P has type T and it also has T ′, then T = T ′), Progress (every closed and well-
typed term is either a value or reducible), Type Preservation (the type of a program P is
preserved under reduction), and Type Safety (if P is a closed and well-typed term, then
either there is a value v such that P evaluates to v or the reduction does not terminate;
notice this follows from Progress and Type Preservation). Since, in the following, we will

8



3.2 Syntax of the Language

define our own language anyway, we do not got into further details at this point. A much
deeper insight into the λ-calculus in general can be found in [20].

One thing is worth noting before we start to define the language, however. This is
the so-called nameless representation of terms (here the word “names” refers to variables,
although generally speaking names can include more than only variables, e.g., names may
also refer to constants of the language). We strive for a representation of terms that does
not use variable names such as x in a λ-abstraction, because from a computational point
of view names are problematic. For example, the terms λ x. x and λ y. y denote exactly
the same function, but they are not equal since the names of the bound variables are
different (one says they are “equal up to α-renaming”, but it is not immediately clear what
this means computationally). Thus, we would prefer to have a canonical representation of
terms which does not use names for variables. To accomplish this, instead of using names
to refer to λ-binders, we use natural numbers to make variable occurrences point directly
to their respective binders; such a number is called a deBruijn index (see [20, Sect. 6]).
The construct var k, called a deBruijn variable, then stands for “the variable bound by the
k’th enclosing λ.”

Example 3.1. The following table shows a few ordinary terms and their corresponding
nameless version.

Ordinary term Nameless term

λ x. x λ. var 0
λ y. y λ. var 0
λ xλ y. x (y x) λ.λ. var 1 (var 0 var 1)
λ x. x (λ y. x y) λ. var 0 (λ. var 1 var 0)

It is also important to distinguish bound variables and free variables. Free variables
are variables that are not bound by a λ, but occur freely in a term. Bound variables are
variables bound to a λ. In a deBruijn setting, we can say a variable is bound iff its index
is strictly less than the number of enclosing λ’s.

Example 3.2. In the term λ.λ. var 2 (var 0 var 1), the variables var 0 and var 1 are
bound, but var 2 is free.

Defining a syntax based on the deBruijn notation makes sense from a computational
point of view. It also makes the job of defining a substitution operation (in view of a small-
step semantics) much easier. Hence, our language is defined using the deBruijn notation.
A drawback is that for us humans, these so-called deBruijn terms are a lot less readable.
For this reason, we will often write ordinary terms with names, when on a low level we
are actually dealing with nameless terms. We are comfortable doing so, since any ordinary
term can easily and uniquely be mapped to a corresponding nameless term.

3.2 Syntax of the Language

We model the syntax as probabilistic higher-order λ-calculus, extended with references
and events, and make use of an iso-recursive type system. We express the syntax using

9



3 The Framework

inductive grammars of terms, values (as a subset of terms), pure values (as a subset of
values), types and pure types (as a subset of types).

Since we define the syntax formally and we want to introduce probabilism, we will use
some notions from mathematical probability theory, such as σ-algebras and sub-Markov
kernels, but do not go into further details at this point. Rather, we give an intuitive idea
of what the constructs mean and do. We will come back to these notions from probability
theory when we define the semantics of the language in Section 3.4.

We first define the syntax, and proceed with a more detailed explanation.

Definition 3.3 (Syntax). The sets of of program terms P , of values V , of pure values V0 ,
of types T and of pure types T0 , are defined by the following grammars, where n ∈ N,
v ∈ B (see below), X ∈ ΣB, s denotes strings, and f denotes sub-Markov kernels of type
V0 →

(

ΣV0
→ R

+
)

.

P ::= var n | λ.P | PP | fun(f, P ) | value v | loc n | ref P |
!P | P := P | event s | eventlist | (P, P ) | fst P | snd P |
inl P | inr P | case P P P | fold P | unfold P

V ::= value v | var n | (V, V ) | λ.P | loc n | inl V | inr V | fold V
value v | (V0, V0) | inl V0 | inr V0 | fold V0V0 ::=

T ::= ValueX | T × T | T + T | T → T | Ref T | µ.T | Tvar n
ValueX | T0 × T0 | T0 + T0 | µ.T0 | Tvar nT0 ::=

Programs P . The first three sorts of program terms are the familiar variables, abstrac-
tions and applications, in a deBruijn setting.

Furthermore we introduce probability into the language with the construct fun(f, P ).
The function f is a sub-Markov kernel which, intuitively, takes a pure value and returns
a measure on pure values. It can be interpreted as applying f to P , thus obtaining a
distribution over V0 . f can be used to express any mathematical (deterministic) function,
but also randomized functions (and is not even restricted to discrete probability measures).

The construct value v is used to introduce an element v ∈ B in programs. Here we note
that for the sake of extensibility, the language does not fix a set of basic types, but rather
assumes a type B that contains the basic types we expect to need, like a type unit (with
a single element unit), the type of real numbers real, or function types like nat→ bool.

The next four constructs are used to access the store. To reference the (n+1)-st element
of the store, which is represented as a list, one uses the construct loc n. ref P and !P are
used for reference creation and dereferencing, respectively. For two programs P and Q, the
construct P := Q denotes the assignment of Q to P .

Two constructs are available to deal with events. The construct event s is used to raise
an event s, and eventlist returns a list of all previously raised events.

For two programs P and Q, the program (P,Q) represents the pair of P and Q, and
the constructs fst P and snd P are the first and second projections of a pair P . Sums
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(programs that have a sum type) can be constructed using inl P and inr P and destructed
using case P1 P2 P3.

Finally, the constructs fold P and unfold P are used to convert recursive types, which is
typical in an iso-recursive setting. For a program P of type µx.T , the construct unfold P
makes the recursive type explicit by recursively substituting µx.T for x in T . The construct
fold P does the inverse. It folds such an explicit type T into a recursive type µx.T ′. A
good tutorial on this topic can be found in [14].

As we will in fact only need a small subset of these terms, we do not go into further
details here.

Values V . Values are a subset of terms and cannot be reduced any more. Intuitively, for
well-typed and closed terms they correspond to those terms whose evaluation is finished.
They include, as usual, variables and abstractions. Furthermore loc n (for n ∈ N) and
value v (for v ∈ B) are values. A pair (V1, V2) of two values V1 and V2 is a value, and
the constructs inl V , inr V and fold V , for a value V , are values. Intuitively, the set of
pure values V0 is a subset of the set of values which corresponds to the fixed “datatypes”
and do not include the more abstract functions, variables or locations. The pure types are
those that can be used for sampling using the fun(f ,P ) construct.

Types T . The type constructor ValueX denotes, for a measurable set X, the type of basic
values contained in X.

Furthermore there exist some compound types. For some types T and U , the type T ×U
denotes the product type, and the type T + U denotes the sum type. T → U is the type
of all functions from T to U .

Ref T denotes the type of references of type T .
Finally, the construct µ.T is used to introduce recursively defined types, as described

in [20, Sect. 20]. Recursive types can be used, e.g., to construct the types of lists. Such types
describe an infinite set, but have a regular structure. Here µ is a recursive type constructor
(like a combination of fix and λ for types), which introduces a binder in deBruijn notation.
Accordingly, the constructor Tvar n denotes the type variable with deBruijn index n, that
is, the type variable that belongs to the (n + 1)-st enclosing µ. An example follows.

Intuitively, the set of pure types T0 is the set of those types in T which correspond to
the types of pure values.

Example 3.4. Recall the usual definition of lists using nil and cons. The type of a list of
nats is either unit (for the empty list) or a pair type nat× natlist, where natlist is again the
type of a list of nats. So, using our definition of sum types, we would intuitively define the
type natlist as something like

natlist ::= unit + nat× natlist

More generally speaking, for some type X, the type list X of a list over elements of type X
is the sum type of unit and a pair type of the form X × list X. Now, the µ-binder comes in

11



3 The Framework

handy to define such a type. For readability, similarly as for λ, we do not use the deBruijn
notation, but rather write µx.T , where x is like a variable for types. Intuitively, µx.T
represents the type obtained by recursively substituting µx.T for x in T . Thus, we would
define the type list X as

µx.Valueunit + X × x

which unfolds to Valueunit + X ×
(

µx.Valueunit + X × x
)

and so on...

In DeBruijn notation, the type of list X is then

µ.Valueunit + X × Tvar 0

3.3 Special Operators

We will now introduce some special operators, which we will need in the following sections
and chapters. These include a lift operator (typical in a deBruijn setting), a substitu-
tion operator (to define β-reduction), and finally an instantiation operator (a kind of a
generalized substitution operator).

3.3.1 The Lift Operator ↑ P

A lift operator is used to shift deBruijn indices in a term. This is useful in many setups,
e.g., in view of defining a substitution operator (see [20, Sect. 6]). We will also need it to
formalize certain transformations.

Essentially, the lift operator increases all occurrences of free variables in a program term
P by one. However, since we do not want to increase bound variables within a term,
we need to keep count of how many λ-binders we have already encountered (remember a
variable is free iff its index is greater or equal than the number of enclosing λ’s). Hence,
we first define the more general lift operator ↑k P , which, for a natural number k and a
program term P , increases all variables whose index is greater or equal than k by one.

Definition 3.5 (Lift Operator). Let k ∈ N, and P be a program term. Then the operator
↑k P is defined in Figure 3.1. Furthermore we use the notation ↑ P := ↑0 P .

Notice that only the two first cases are non-trivial:

1. In case we encounter a variable, we increase its index by one iff it is free (that is, if
i > k); otherwise we do not change it

2. In case we encounter a λ-abstraction of a term P , we increase k by one (since we
have found a new binder) and recursively descend into P .

In all the other cases, we either apply straightforward recursion, or we found a base case
and do not change anything.

12
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↑k var i =

{

var i if i < k
var i + 1 otherwise

↑k λ. P = λ. ↑k+1 P
↑k (P1 P2) = (↑k P1)(↑k P2)
↑k fun(f, P ) = fun(f, ↑k P )
↑k value v = value v
↑k loc n = loc n
↑k (ref P ) = ref (↑k P )
↑k (!P ) = !(↑k P )
↑k (P1 := P2) = (↑k P1) := ↑k P2

↑k event e = event e
↑k eventlist = eventlist
↑k fold P = fold (↑k P )
↑k unfold P = unfold (↑k P )
↑k (P1, P2) = (↑k P1, ↑k P2)
↑k fst P = fst (↑k P )
↑k snd P = snd (↑k P )
↑k inl P = inl (↑k P )
↑k inr P = inr (↑k P )
↑k case P1P2P3 = case (↑k P1) (↑k P2) (↑k P3)

Figure 3.1: Definition of the lift operator

3.3.2 The Substitution Operator P{Q}

A substitution operator is normally used to substitute a term for a variable in a program
P . Thus, it can be used to model β-reduction; consider a program (λx.P )V , where x is
a variable, P a program and V a value. This term should reduce to the term [x 7→ V ]P
(which we call a β-reduction). It means we remove the λx. in front of P, and replace each
occurrence of x in P with V .

Similarly, we would like to be able to say that the nameless term (λ.P )V reduces to P{V },
meaning “in P , replace all variables referring to the leading λ in λ.P by V ”. Moreover,
we will not restrict ourselves to values V , but define the substitution operator such that it
can substitute any program term Q for a variable. Thus, our substitution operator P{Q}
essentially has three jobs:

1. Clearly, replace each occurrence of a variable bound to the leading λ in λ.P by the
program Q (in P , this is var 0 at the beginning, but since we may encounter λ’s in
P , it may become var 1, var 2, etc.)

2. Furthermore, observe that, when we remove the leading λ in λ.P , then there is one
enclosing λ less; hence all free variables in λ.P should be shifted down by one, so
that they still refer to the same binders after we removed the leading λ.

13
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3. Finally, there may be free variables in Q. Since we substitute Q for certain variables
in P , there may be now be several more enclosing λ-binders around Q, but we still
want the free variables in Q to reference the same binders. Consequently, we need to
shift the free variables in Q as necessary.

Example 3.6. Let P := var 0 (λ. var 1 var 2). Let V := λ. snd var 1. We would like to
have that (λ. P )V → P{V }, i.e. we would like the following term to reduce as shown.

(

λ. var 0 (λ. var 1 var 2)
)

(λ. snd var 1)

→ (λ. snd var 1)
(

λ.(λ. snd var 2) var 1
)

All three jobs of the substitution operator can be seen in action here. First, every occur-
rence of a variable in the original term that referred to the leading λ has been replaced by
the value at the right (and we removed this leading λ, which is the job of the β-reduction).
This corresponds to job (1). Furthermore, in the second replacement, we changed snd var
1 to snd var 2; this is because since there is one more enclosing λ there, we need to shift
the variable to reference the same binder as originally. This is job (3). Finally, the free
variable var 2 in the original term has been shifted down by one, since now there is one
enclosing λ less than before. This is job (2).

Indeed, designing the substitution operator in such a way means that we get β-reduction
“for free”. Intuitively, we will just be able to model β-reduction by saying that for any
program P and value V , we have that (λ. P )V → P{V }.

Similarly as for the lift operator, we first define a more general operator that keeps track
of how many λ’s we encountered so far, so that we know which variables to replace, and
how.

Definition 3.7 (Substitution Operator). Let k ∈ N and let P and Q be programs. Then
the substitution operator [k 7→ Q]P that replaces var k in P by Q is defined in Figure 3.2.
Furthermore we define the notation P{Q} := [0 7→ Q]P .

As before, only the two first cases are non-trivial, while all others are either straightfor-
ward recursion or base cases.

1. In case P has the form var i, there are three possibilities. Either var i is a free
variable, but not the one we want to replace, because the number of enclosing λ’s is
strictly less than the variable index i; in this case, we decrement i. This corresponds
to job (2). Or the variable is free and exactly the one we want to replace; in this
case we substitute Q for the variable. This is job (1). The last possibility is that the
variable is bound, in this case we do not change it.

2. When we encounter a λ, we increment k, as now the variable we are looking for is
one larger. Furthermore, we lift Q, so that all its free variables reference the same
binders as before. This corresponds to job (3). Then we descend recursively into the
body of the abstraction.

14



3.3 Special Operators

[k 7→ Q] var i =







var i− 1 if k < i
Q if k = i
var i otherwise

[k 7→ Q] λ. P = λ. [k + 1 7→ ↑ Q]P
[k 7→ Q] P1 P2 = ([k 7→ Q]P1) ([k 7→ Q]P2)
[k 7→ Q] fun(f, P ) = fun(f, [k 7→ Q]P )
[k 7→ Q] value v = value v
[k 7→ Q] loc n = loc n
[k 7→ Q] ref P = ref ([k 7→ Q]P )
[k 7→ Q] !P = !([k 7→ Q]P )
[k 7→ Q] (P1 := P2) = ([k 7→ Q]P1) := [k 7→ Q]P2

[k 7→ Q] event e = event e
[k 7→ Q] eventlist = eventlist
[k 7→ Q] fold P = fold ([k 7→ Q]P )
[k 7→ Q] unfold P = unfold ([k 7→ Q]P )
[k 7→ Q] (P1, P2) = ([k 7→ Q]P1,[k 7→ Q]P2)
[k 7→ Q] fst P = fst ([k 7→ Q]P )
[k 7→ Q] snd P = snd ([k 7→ Q]P )
[k 7→ Q] inl P = inl ([k 7→ Q]P )
[k 7→ Q] inr P = inr ([k 7→ Q]P )
[k 7→ Q] case P1P2P3 = case ([k 7→ Q]P1) ([k 7→ Q]P2) ([k 7→ Q]P3)

Figure 3.2: Definition of the substitution operator

3.3.3 The Instantiation Operator P a

Sometimes, we may consider a program P with several free variables, and might want to
instantiate every such free variable with some value, so as to obtain a closed term. The
values which we want to instantiate these variables with may then be represented in some
list of values a. To say that we instantiate every free variable in P with a corresponding
value from a, we will write P a.

In practice, we can implement such an instantiation operator nicely using our previously
defined substitution operator. For a program P , let us call the substitution candidates
those variables which would be replaced with some value V if we wrote P{V } (i.e. var 0
in a term without any λ-binders, after one λ-binder var 1 etc.). Notice that there must
not always necessarily exist a substitution candidate. Furthermore, there may be only
one or several substitution candidates in a term. But we can always uniquely determine
those variables. Now for a term P and a list of values a, what we want our substitution
operator to do is to apply the substitution operator to substitute the first value in a for
the substitution candidates in P . Then, since our substitution operator also decrements
all free variables by one, there may be new substitution candidates. We want to substitute
the second value in a for these new candidates, and so on, until we worked through the
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entire list of values a.
If the list a is long enough (and the values in a do not introduce new free variables

themselves), our program P will eventually be closed. Actually, this is the only interesting
scenario in which we want to use the instantiation operator. If a was not long enough, or
if it introduced new free variables, there may still be free variables in P . Here we are not
interested in studying this behavior in detail, since when using the instantiation operator,
we will always require that a be such that P a is closed.

Example 3.8. Consider the term P := (λ.λ.var 1) var 0 var 2. Furthermore, let a list of
values a := [value 4, value 5, value 6]. Let us study the term P a.

P a def

=
(

(λ.λ.var 1) var 0 var 2
)[value 4,value 5,value 6]

=
(

(

(λ.λ.var 1) var 0 var 2
)

{value 4}
)[value 5,value 6]

=
(

(λ.λ.var 1) value 4 var 1
)[value 5,value 6]

=
(

(

(λ.λ.var 1) value 4 var 1
)

{value 5}
)[value 6]

=
(

(λ.λ.var 1) value 4 var 0
)[value 6]

=
(

(λ.λ.var 1) value 4 var 0
)

{value 6}

=
(

(λ.λ.var 1) value 4 value 6
)

Here, we first substituted value 4 for the substitution candidate. In doing so, we also
decremented the free variable var 2. Then, we tried to substitute value 5 for the next
candidates; but there were none. However, we still decremented var 1 to var 0, such that
there was a new candidate for the next round, where we substituted value 6 for var 0. The
λ.λ.var 1 was never touched, since its variable is bound.

Folding is a recursion scheme which folds a list according to a function f and an initial
value s. As an example, consider the expression foldl f s which folds the list [x1, x2, x3] as
follows.

foldl f s [x1, x2, x3] = f(x3, f(x2, f(x1, s)))

f
x3 f

x2 f
x1 s

For further explanations see [22, Sect. 4]. The foldl function can be defined recursively as

foldl: (α→ β → β)→ β → α list→ β

foldl f s nil = s
foldl f s (x :: xr) = foldl f (f x s) xr

Now, we can define the instantiation operator, using foldl and the substitution operator,
in a straightforward way.
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Definition 3.9 (Instantiation Operator). Let P be a program, and a be a list of values.
Then the instantiation P a is defined as

P a := foldl (λv.λp. p{v}) P a

3.4 Semantics of the Language

3.4.1 The Reduction Relation

We are about to define the reduction relation  , which is the small-step semantics of our
language. However, as already mentioned, our language also has to deal with locations
and events. For this reason, our reduction relation cannot just map programs to programs,
since we have to carry additional information for these constructs. At this point, let us
define a few notions.

Definition 3.10 (The store). The store of a program, usually denoted by σ, is a list of
values. It allows programs to store information in a separate memory using ref V , which
inserts V at the end of the list σ. The pointers to these values are denoted by loc n (the
value stored at the n-th index). Dereferencing is also available using !(locn), and location
update via loc n := V .

Definition 3.11 (The event list). The event list, usually denoted by η, is similar to the
store in that we carry it around as an extra memory. It is a list of strings. When an event
is raised in a program (using event s), the string s is inserted at the end of the list. The
construct eventlist outputs this list.

Definition 3.12 (Program state). For a program P , a store σ and an event list η, the
program state is the triple (P, σ, η), which we write as P |σ|η by convention. Intuitively, it
corresponds to the state of a program run, where P is the remaining code to execute, and
σ and η are the current store and event list. We use PS for the set of all program states.

Definition 3.13 (Value state). A program state of the special form V |σ|η, where V is a
value, is called a value state. Intuitively, it is a state which cannot be reduced any more.
We denote by VS the set of all value states.

Now we already get a better idea of what our reduction relation should look like. Instead
of mapping programs to programs, we would map program states to program states. How-
ever, this is still not enough. Since the language is probabilistic, for a program state P |σ|η,
there is not always one unique program state Q|σ|η such that P |σ|η can be uniquely
mapped to it. Instead, a program state may reduce to several different other program
states. Hence, our reduction relation will in fact map program states to measures on pro-
gram states. Let P |σ|η be a program state. By applying the reduction relation to P |σ|η,
we obtain a measure which for a set of program states B yields the probability that P |σ|η
reduces to one of the program states in B.

We now present the reduction rules, and proceed with explanatory comments.
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Definition 3.14. Let E be an evaluation context (see below), σ a store, η an event list,
P a program, V a value, and f a sub-Markov kernel from V0 to V0 (also explained below).
The semantic reduction rules are defined as follows.

E ::= � | fun(f, E) | (E,P ) | (V,E) | EP | V E | ref E | !E | (E := P ) | (V:=E)
| fst E | snd E | fold E | unfold E | inl E | inr E | case E P P | case V E P
| case V V E

E[(λ.P )V ]|σ|η  δE[P{V }]|σ|η Appl

E[ref V ]|σ|η  δE[loc (|σ|)]|σ@[V ]|η Ref

E[!(loc l)]|σ|η  δE[σl]|σ|η , if l < |σ| Deref

E[loc l := V ]|σ|η  δE[value unit]|σ[l:=V ]|η , if l < |σ| Assign

E[fst(V, V ′)]|σ|η  δE[V ]|σ|η Fst

E[snd(V, V ′)]|σ|η  δE[V ′]|σ|η Snd

E[fun(f, V )]|σ|η  (Λx.E[x]|σ|η)(fV ) Fun

E[event s]|σ|η  δE[value unit]|σ|η@[s] Ev

E[eventlist]|σ|η  δE[η]|σ|η EvList

E[case (inl V ) VL VR]|σ|η  δE[VLV ]|σ|η CaseL

E[case (inr V ) VL VR]|σ|η  δE[VRV ]|σ|η CaseR

E[unfold (fold V )]|σ|η  δE[V ]|σ|η Fold

Figure 3.3: Reduction rules

Fig. 3.3, shows all the reduction rules for our language. First, note that there are two
different kinds of specifications: the definition of evaluation contexts E on the one hand,
and the definition of the semantic reduction relation on the other hand. Let us consider
these in more detail, one after the other.

The definition of evaluation contexts gives us, intuitively, the specification of the struc-
tural rules (also sometimes referred to as congruence rules or descent rules), and they tell
us where to evaluate a term. However, they are not literally rules, but rather specify how
an evaluation context can be built. For a better understanding, we first introduce the
notion of a context.

Definition 3.15 (Context). A context C is a program with zero or more holes �. For the
program obtained by inserting a program P at the holes in C, we write C[P ]. Mathemat-
ically, a context can be seen as a function mapping programs to programs. Contexts are
defined by a grammar analogous to that of program terms (see Definition 3.3), but with
the additional construct �.

Now, an evaluation context is a special context with the additional property that the
hole is at a position where the program should be evaluated first, according to a call-by-
value strategy. Formally, they are defined by the inductive grammar E given at the top
of Fig. 3.3. For example, when evaluating the application P1P2, we first evaluate P1 until
it is a value; when it is a value, we begin to evaluate P2 until it is a value. This behavior
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emerges from the fact that we can build evaluation contexts using the specifications EP
and V E, respectively. That is, either the evaluation takes place in the first part, or given
the first part is a value, it takes place in the second part. Evaluation contexts constitute
an elegant and compact way to specify such structural rules.

Now let’s have a look at the second kind of rules. They are called computation rules,
because they are the ones where the real computation takes place (they are also commonly
known as proper rules or top-level rules). For programs of a certain form, we can explicitly
give the distribution that they reduce to. More precisely, we can do this for any evaluation
context which is applied to a primitive construct of our language. This is what the reduction
relation  does. The reduction relation is a relation (partially) defined on the set of
program states, which yields for these program states P |σ|η a sub-probability measure µ
on program states.

The most used measure is the so-called Dirac measure. For an element x ∈ X, we write δx

to denote the Dirac measure (on X) associated with x. We use it to model the deterministic
reduction steps. For a program state P |σ|η, δP |σ|η is the distribution that returns 1 for a
set B ⊆ PS iff P |σ|η ∈ B, and 0 otherwise. Hence, for the reduction relation, when we
have Q|σ′|η′  δP |σ|η, this intuitively tells us that the probability that Q|σ′|η′ reduces to
the program state P |σ|η is 1. Again in the example of an application, when we have a
program state (λ.P )V |σ|η (i.e., both sides of the application are values), the probability
that this program state reduces to the program state P{V }|σ|η is 1. Observe that we
require a special form of the value at the left. When we cannot reduce a program term
because there are no rules for it, we say that the execution got stuck. This cannot happen
with well-typed terms (our language fulfills the properties of Progress and Preservation).

Finally, it remains to understand the rule Fun, i.e. the rule for the probabilistic reduc-
tion steps. For this we need to introduce some more notions. First, by the construction
Λx.E[x]|σ|η, we mean the mathematical function g : P → PS,

g(x) := E[x]|σ|η

where x is a program, and σ and η are fixed (they are the same as in the previous state,
as this rule does not affect them).

Next, we explain the construction fV . For this, we have to explain, first of all, the
notion of a sub-Markov kernel. A kernel from X to Y is a function f : X → (ΣY → R

+)
such that

1. for all x ∈ X the function

ΣY → R
+, B 7→ f(x)(B)

defines a measure on Y, and,

2. for all B ∈ ΣY , the function

X → R
+, x 7→ f(x)(B)
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is measurable1.

We call f a Markov kernel or a sub-Markov kernel if for all x ∈ X, it holds that f(x) is a
probability measure, respectively a sub-probability measure. For a more in-depth overview
over probability theory and especially a formal definition of kernels, please see [5, §36].
Intuitively, a (sub-)Markov kernel from X to Y is a function which, for all x ∈ X, returns
a (sub-)probability measure on Y . In this thesis, we will see two concrete such kernels:

• The sub-Markov kernel step from PS to PS (a kind of extended  , totally defined
over the set PS), which we will use to define denotations of programs, and which
intuitively will yield for each program state a sub-probability measure on program
states

• The Markov kernel uniform from V0 to V0 , which we will use to model uniform
random selection of numbers in a range [0, . . . , n− 1], for some natural number n

Accordingly, the construction fV in the reduction rule Fun denotes a sub-probability
measure

µ : ΣV0
→ R

+,

so that fun(f, V )|σ|η reduces to the distribution g(µ), which we now explain.
In general, for a measurable function g : X → Y and a measure µ on X, we denote

by g(µ) the measure on Y defined by

g(µ)
(

B
)

= µ
(

{x ∈ X : g(x) ∈ B}
)

,

for all B ∈ ΣY . In other words, g(µ)(B) = µ(g−1(B)).
In our case, for g and µ as explained above, g(µ) is accordingly the sub-probability

measure on PS such that

g(µ)
(

B
)

= µ
(

{x ∈ V0 : g(x) ∈ B}
)

= µ
(

{x ∈ V0 : E[x]|σ|η ∈ B}
)

,

for all B ∈ ΣPS . A concrete example for the application of the rule Fun will be given
in Section 3.5, where µ will be a certain uniform distribution, more precisely, the Markov
kernel uniform whose precise description will be given in that section.

Now that the reduction relation  has been defined (which corresponds to a small-step
semantics), we will extend it to obtain the notion of a denotation.

3.4.2 The Denotation

The denotation of a program state P |σ|η will be, in some sense, a big-step semantics of
our language. However, as opposed to a typical big-step semantics, it does not evaluate
program states to values, but rather to measures on program states. We would like to

1A function h : X → Y is called measurable if for all B ∈ ΣY , the inverse image h−1(B) is contained
in ΣX . Recall that ΣR+ denotes the Borel-algebra.
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think of the denotation as an n-fold application of the reduction relation to a state P |σ|η,
until the program term P has been reduced to a value and thus cannot be reduced any
more. However, while a single reduction step is well-defined, it is not yet clear how we
should apply several reduction steps successively, since they do not map program states
to program states, but program states to measures on program states. Moreover, the
reduction relation is only partially defined on the set of program states, and for example,
we do not yet have the notion that “a value evaluates to itself”. To solve these problems,
we need to introduce some more notions of probability theory.

First of all, if f : X → R is a measurable function, and µ is a measure on X, then by
probability theory we have the notion of the (measure) integral of f with respect to the
measure µ

∫

f(x) dµ(x),

sometimes, if we want to make clear the domain of integration X, also written as

∫

X

f(x) dµ(x).

Remark. If µ is of the special form

µ(B) =
∑

x∈A∩B

cx (B ∈ ΣX)

for a fixed finite subset A of X and numbers cx > 0, then

∫

X

f(x) dµ(x) =
∑

x∈A

f(x)cx. (3.1)

Special cases of such measures which will be important in the sequel are Dirac measures
respectively uniform distributions with carrier (see Definition 3.23 below).

For a formal definition of the measure integral in the general case see [18]. Intuitively, if
we think of µ as a probability measure, the integral

∫

f(x) dµ(x) represents the expected
value of f(x) when x is chosen according to the probability defined by µ.

Definition 3.16 (Kernel application). Let g be a kernel from X to Y , and let µ be a
measure on X. Then we define the measure g · µ on Y by the equation

(g · µ)(B) :=

∫

g(x)(B) dµ(x) (B ∈ ΣY ).

Definition 3.17 (Kernel composition). Let f be a kernel from X to Y , and g a kernel
from Y to Z. The composition g ◦ f is the kernel from X to Z defined by

(g ◦ f)(x) := g · (f(x)) (x ∈ X).
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Remark. Note that according to Definition 3.16, we have, for the composition g ◦ f , the
formula

(g ◦ f)(x)(C) =

∫

g(y)(C) dfx(y) (x ∈ X, C ∈ ΣZ),

where, for the sake of readability, we write fx for the measure f(x).

We are now able to define the sub-Markov kernel step which is an extension of the
reduction relation to the complete set PS (whereas the reduction relation of Definition 3.14
is only defined on a proper subset of PS). This will enable us to perform the reduction
relation successively. Namely, using kernel composition, we can then inductively define the
sub-Markov kernels stepn (n ∈ N), which represent the reductions after n successive steps.
We will see that this sequence actually stabilizes, and the denotation will then be defined
as the supremum of stepn.

Definition 3.18 (Step). Let P |σ|η be a program state. We define

step(P |σ|η) :=

{

µ if P |σ|η  µ

δP |σ|η otherwise

Furthermore, we define sub-Markov kernels stepn from PS to PS inductively by

step0(P |σ|η) := δP |σ|η

stepn+1(P |σ|η) := step ◦ stepn(P |σ|η)

(where the right-hand side of the last equation is the composition of sub-Markov kernels
according to Definition 3.17).

Definition 3.19 (Denotation). Let P |σ|η be a program state. The denotation JP |σ|ηK of
P |σ|η is defined as

JP |σ|ηK := supn µn,

where µn is the sub-probability measure on PS defined by

µn(A) := µn(A ∩ VS) (A ∈ ΣPS).

Here we use µn = stepn(P |σ|η). Recall that VS is the subset of PS of all program states
of the form V |σ|η, where V is a value. Furthermore, we define the denotation of a program
P as JP K := JP |[]|[]K.

The denotation of a program state P |σ|η models our intuitive notion of the distribution
on VS generated by the execution of the program P with store σ and event list η. In
particular, we can use the denotation of a program to model the probability of termination.

Definition 3.20 (Probability of termination). Let P |σ|η be a program state. The proba-
bility of termination of P |σ|η is defined as T (P |σ|η) := JP |σ|ηK(PS).
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Note that the definition of the probability of termination conforms to our intuition.
Namely, since the denotation of a program is a sub-probability measure on PS, applying
it to the set of all program states yields the probability that the program evaluates to any
program state (whose first element is a value) at all. If it is 1, it means the program always
terminates, since it always evaluates to a value. By contrast, if it is 0, it means it never
evaluates to any value, i.e. the program diverges.

3.5 Syntactic Sugar and Uniform Distributions

We now define some syntactic sugar. First of all, we explain the let construct. This will
enable us to write applications of the form (λx.P )Q, in a more easily readable way. We
use let constructs only for terms with names, because nameless let constructs would not
increase readability. For the named λ-calculus, any let construct can be unambiguously
mapped to a named λ-term and vice versa. Furthermore, we can nest arbitrarily many let
constructs one after the other. We explain the let construct by an example.

Example 3.21. The following program adds the natural numbers 2 and 3:

let x ← 2
y ← 3

in x + y

let x ← 2
in let y ← 3

in x + y
(λx. (λy. x + y) 3) 2

Note that we implicitly used additional syntactic sugar here. Namely, whenever we are
dealing with a natural number n, we will just write n instead of the construct value n.
Furthermore, we assume the existence of an infix operator +. This can, of course, be
rewritten to the application of a program plus which performs addition of natural numbers,
applied to x and y.

Similarly, we will also also use group multiplication and exponentiation operators when
dealing with (cyclic) groups. Assume we are working in some cyclic group G, whose order
|G| is known in the context. Then for two variables x and y that are bound to natural num-
bers, we will just write x× y to denote the application of a program group multiplication
that takes three arguments: the order of the group, as well as x and y. Here the first
argument is implicit and will always be known in the context. For a generator g of G,
and another natural number x, we will just write gx, which means we apply a program
group exponentiation to |G|, g and x.

Example 3.22. Consider the unit group (Z/7Z)∗. Its order equals ϕ(7) = 6, and 3 is
a generator of the group. Assume the order of the group is known in the context. The
following program yields the value 3.

let g ← 3
in g × g6
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Finally, we introduce uniform random selection as a variant of the standard let construct.
What we want is to be able to write something like “let x ←R 7” to select uniformly at
random a value from the range [0, . . . , 6]. Clearly we will have to use the probabilistic
construct fun. For this we introduce a Markov kernel uniform that, for any pure value of
the form value n, yields an appropriate distribution over pure values. Here is the formal
definition.

Definition 3.23 (Uniform distribution with carrier). Let A be a finite subset of some
set X. The uniform distribution on X with carrier A is the probability measure µX,A on X
such that

µX,A(B) =
|A ∩B|

|A|

for all B ∈ ΣX .

Remark. We shall later need the following fact. If µ is the uniform distribution on X with
carrier A and if f : X → R is a measurable function, then by equation 3.1 we have

∫

X

f(x) dµ(x) =
1

|A|

∑

x∈A

f(x).

Definition 3.24 (Markov kernel uniform). The Markov kernel uniform : V0 → (ΣV0
→

R
+) is the Markov kernel from V0 to V0 such that uniform(l), for a natural number l, equals

the uniform distribution on V0 with carrier [0, . . . , l − 1], and such that uniform(l) = δl

otherwise.

The definition of uniform(l) for pure values l which are not natural numbers given here
is arbitrary, since we shall use uniform(l) only for natural numbers l. Thus any other
definition of uniform(l) for non-natural l would also be sensible.

Using uniform, we can define “let x ←R n”, for a natural number n, as syntactic sugar
for “let x ← fun(uniform, n)”. We continue the previous example.

Example 3.25. Assume we know a generator g and the order of the group (Z/7Z)∗ in the
context. Then, for given σ and η, the following program yields a uniform distribution on
PS with carrier [1, . . . , 6]|σ|η (see Notations).

let x ←R 6
in gx

let x ← fun(uniform, 6)
in gx

Lastly, we will often use, for a natural number n, the symbol 1n to denote a (unary)
string of length n, i.e. we set

10 = nil

1n+1 = value unit :: 1n
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3.6 Program Relations

Now that we know how to write programs in the language and how to interpret them,
it remains to understand how we can model game transformations. We will see several
possible transformations in Section 6. All these are based on one of three equivalence
relations on programs: the denotational equivalence, the observational equivalence, or the
computational indistinguishability. We will first formally define these equivalences. Then
we will see a few properties of these relations and explain how they relate to each other.

3.6.1 Denotational Equivalence

In a sense, the denotational equivalence of two programs is the strongest equivalence re-
lation that we consider (we will make this more precise in Section 3.6.4). It means that
the denotations of two programs P and Q are exactly the same. That is, they evaluate to
exactly the same distribution over program states.

Definition 3.26 (Denotational equivalence). We say that two programs states P |σ|η and
Q|σ′|η′ are denotationally equivalent and write P |σ|η ∼ Q|σ′|η′, iff it holds that

JP |σ|ηK = JQ|σ′|η′K.

We say P and Q are denotationally equivalent, and simply write P ∼ Q, if it holds that
JP K = JQK.

This is a strong relation indeed. Consider for example the two programs P := (λx. x) and
Q := (λx. (λy. y) x). Both compute the identity function, but they are not denotationally
equivalent. Indeed, we have that JP K = δP |[]|[] and JQK = δQ|[]|[] and so δP |[]|[] 6= δQ|[]|[],
because P 6= Q. But, on the other hand, for all v ∈ V , it holds that (P v) ∼ (Qv),
because JP vK = δv|[]|[], and also JQvK = δv|[]|[].

A powerful tool for reasoning about denotational equivalence which has been shown at
the chair of Michael Backes is the so-called chaining of denotations. Consider a program
E[P ], where E is an evaluation context, and P is a program. According to the rules defined
in Def. 3.14, first P will be reduced until it is a measure on values V (more precisely, a
measure on program states restricted to values in the sense of the definition), then E[V ]
will be evaluated. The chaining rule tells us that we can compute the denotations of P
and E[V ] separately, and then use kernel application (see Def. 3.16) to compute the final
denotation of E[P ].

Theorem 3.27 (Chaining denotations). Let E be an evaluation context, P a program, σ
a store and η an event list. Define

g(v|σ′|η′) := JE[v]|σ′|η′K

for v|σ′|η′ ∈ VS. Note that g : VS → (ΣPS → R
+) is a sub-Markov kernel. Then it holds

that
JE[P ]|σ|ηK = g · JP |σ|ηK

Proof. Shown by Michael Backes, Matthias Berg and Dominique Unruh, see [2].
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3.6.2 Observational Equivalence

The observational equivalence of two programs P and Q is a slightly weaker notion than
that of denotational equivalence. Intuitively, it states that P and Q are observationally
equivalent if their behavior is the same in all contexts that bind all free variables of P and
Q which are closed themselves and contain no locations outside of the store. Let’s make
this precise. We say that a program state P |σ|η is fully closed iff P and σ contain no free
variables, and P and σ contain no locations greater or equal than |σ|.

Definition 3.28 (Observational equivalence). We say that two programs P and Q are
observationally equivalent, and write P ≡obs Q, if for all contexts C such that C[P ]|[]|[]
and C[Q]|[]|[] are fully closed, we have that T (C[P ]|[]|[]) = T (C[Q]|[]|[]).

To model the statement that “P and Q behave the same in all contexts”, we just consider
the probability of termination of P and Q under all contexts. If P and Q can be distin-
guished, then there is a context C such that C[P ] and C[Q] have a different probability
of termination. By contraposition, if there is no such context, then P and Q cannot be
distinguished.

Remark. Because of the intuition that this relation means that P and Q have the same
behavior in all contexts, observational equivalence is also often referred to as contextual
equivalence in the theory of programming languages.

Often it is difficult to work with the definition of observational equivalence directly,
because of the universal quantification over arbitrary contexts, which makes it hard to
argue about the semantic behavior of the resulting programs. Fortunately, there is yet
another powerful tool that helps us with this problem: the CIU Theorem. Intuitively, it
tells us that it suffices to look at all evaluation contexts, but in exchange we must also
consider all possible instantiations of the free variables of P and Q, as well as all possible
stores and event lists, all of which could have been modelled by a general context.

Definition 3.29 (CIU Equivalence). Let P and Q be programs. We say that P and Q
are CIU-equivalent if for all evaluation contexts E, all list of values a, all stores σ and all
event lists η such that E[P a]|σ|η and E[Qa]|σ|η are fully closed it holds that

T (E[P a]|σ|η) = T (E[Qa]|σ|η).

Theorem 3.30 (CIU Theorem). If P and Q are CIU-equivalent, then they are observa-
tionally equivalent.

Proof. Shown by Backes et al. [2]

3.6.3 Computational Indistinguishability

The last notion that we look at is that of computational indistinguishability, well-established
in cryptography. Loosely speaking, it tells us that two objects are computationally indis-
tinguishable if they cannot be distinguished by any efficient algorithm (where “efficient”
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essentially means that its runtime is polynomially bounded). A bit more precisely, the no-
tion of computational indistinguishability deals with two sequences of objects (in our case,
programs), (Pn)n∈N and (Qn)n∈N. We say that these sequences are computationally indistin-
guishable if for sufficiently large n, the probability that any probabilistic polynomial-time
decider (i.e., an algorithm that returns true or false) accepts Pn but not Qn is negligible
in n. A function f is said to be negligible if it falls faster than the inverse of any polynomial,
that is, if for every positive polynomial p(·) and sufficiently large n, f(n) < 1/p(n). A deep
insight into this subject can be found in [15].

Definition 3.31 (Computational indistinguishability). Let Strue be the set {true}|σ|η,
i.e. the set of all program states whose first element is true. Define Pr[P ] := JP K(Strue)
(that is, the probability that P evaluates to true). Two families (Pn)n∈N and (Qn)n∈N are
said to be computationally indistinguishable, iff for all polynomial-time programs D the
function f : N→ [0, 1], defined by

f(n) := |Pr[D(1n, Pn)]− Pr[D(1n, Qn)]|

is negligible.

3.6.4 Properties of these Relations

We are now interested in how exactly the above relations are related to each other. When
we restrict our attention to closed programs P and Q, we will see that the denotational
equivalence implies the observational equivalence, and the observational equivalence im-
plies the computational indistinguishability. In this sense, denotational equivalence is the
relation with the highest granularity, while computational indistinguishability is the coars-
est relation on programs that we consider.

Theorem 3.32. Let P and Q be programs. Assume that for all lists of values a, stores σ
and event lists η such that P a|σ|η and Qa|σ|η are fully closed, P a|σ|η and Qa|σ|η are
denotationally equivalent. Then P and Q are observationally equivalent.

Proof. We obtain this result using the CIU Theorem and the chaining rule for denotations.
For all evaluations contexts E, lists of values a, stores σ and event lists η we have

T (E[P a]|σ|η)

= JE[P a]|σ|ηK(PS) (by Definition 3.20)

=
(

Λ(v, σ′, η′).JE[v]|σ′|η′K
)

· JP a|σ|ηK(PS) (chaining rule)

=
(

Λ(v, σ′, η′).JE[v]|σ′|η′K
)

· JQa|σ|ηK(PS) (by assumption)

= JE[Qa]|σ|ηK(PS) (chaining rule)

= T (E[Qa]|σ|η) (by Definition 3.20)

We conclude that P ≡CIU Q, which implies P ≡obs Q.
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Remark. Intuitively we often think of the denotational equivalence as the strongest relation
because there are closed programs which are not denotationally equivalent, but still obser-
vationally equivalent. The programs λx. x and λx. (λy. y) x seen in Section 3.6.1 constitute
an example of such a case.

However, the requirement that P and Q be closed is really necessary here. For programs
P and Q which contain free variables, the implication does not hold. Consider for example
the programs P := (var 0) ValueTrue and Q := (var 0) ValueFalse. P and Q are denotationally
equivalent because their evaluation gets “stuck” so that they can never reduce to any value.
Hence their denotation is the measure on PS which always returns 0. But P and Q are
not observationally equivalent. Consider for example the context C := (λ.�)(λ.var 0), such
that C[P ] evaluates to ValueTrue and C[Q] evaluates to ValueFalse (clearly we can extend
this to a context which has a different termination behavior in either case).

Theorem 3.33. Let (Pn)n∈N and (Qn)n∈N be two families of programs. Assume that for all
natural numbers n, Pn and Qn are observationally equivalent. Then (Pn)n∈N and (Qn)n∈N

are computationally indistinguishable.

Proof. Assume for contradiction that (Pn)n∈N and (Qn)n∈N are not computationally in-
distinguishable. Then there exist a fixed polynomial-time decider D and a fixed natural
number n such that

Pr[D(1n, Pn)] 6= Pr[D(1n, Qn)] (3.2)

according to Definition 3.31. Recall that D is a function which always outputs true or false.
Now we can use it to define a context F which has a different termination behavior for Pn

and Qn, namely
F := if D(1n,�) then Ω else 0

Here we use Ω for some diverging term. We can construct diverging terms e.g. by using
recursion (to define recursion we can use the fold and unfold constructs of the language,
or yet the store). We use an if-then-else construct here, which can also be translated into
our language with the case, inl and inr constructs. Here we do not go further into these
technical details.

Since by equation 3.2 we have JD(1n, Pn)K(Strue) 6= JD(1n, Qn)K(Strue), we obtain that

JF [Pn]K(PS) 6= JF [Qn]K(PS).

But this means that Pn 6≡obs Qn. This is a contradiction to our assumption. Hence we
conclude that (Pn)n∈N ≈indn

(Qn)n∈N, which proves the claim.

We will now look into a few additional properties of these relations. We will speak about
reflexivity, symmetry and transitivity. In view of program transformations, the symmetry
of an equivalence relation is useful, since when we know that P and Q are in a relation,
we can transform P into Q and vice-versa. The transitivity is clearly useful when we want
to apply several transformations in a row, since it tells us that if P can be transformed
into Q and Q into R, then P can be transformed into R. Furthermore we introduce
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another property of relations. Often it is the case that we are dealing with big programs,
and we only want to transform some small subterm, especially since we want to keep the
transformations as simple as possible. Hence for a relation between programs, it is useful
to know that, when two programs P and Q are in a relation, then for all contexts C it
holds that C[P ] and C[Q] are also in the relation.

Definition 3.34 (Compatibility). Let R ⊆ P × P be a binary relation on program terms.
We call R compatible if it holds that for all contexts C, we have (C[s], C[t]) ∈ R whenever
(s, t) ∈ R.

Theorem 3.35 (Properties of denotational equivalence). The relation ∼ is reflexive, sym-
metric and transitive. That is, it is an equivalence relation.

Proof. Since denotational equivalence is based on the equality of distributions over program
states, and we know that the = relation is an equivalence relation, the claim is trivial.

Remark. Denotational equivalence is not compatible. Consider the following counter-
example. Let P := ValueUnit and Q := (λx.x)ValueUnit. We have P ∼ Q. Now consider
the context C := λy.�. Since our reduction relation does not evaluate λ-abstractions,
C[P ] ≁ C[Q].

However, we can at least state that for all evaluation contexts E, if P ∼ Q then it also
holds that E[P ] ∼ E[Q]. This follows easily from the chaining rule for denotations.

Theorem 3.36 (Properties of observational equivalence). The relation ≡obs is reflexive,
symmetric, transitive and compatible, i.e. it is a compatible equivalence relation.

Proof. The three first properties again follow because the observational equivalence is based
on the equality of real numbers (in the range [0, 1]).

For the compatibility, consider two programs P and Q such that P ≡obs Q. This means
that for all contexts C such that P |[]|[] and Q|[]|[] are fully closed, we have that

T (C[P ]|[]|[]) = T (C[Q]|[]|[]). (3.3)

Our goal is to show that for all contexts C ′, it holds that C ′[P ] ≡obs C ′[Q], which means
that for all contexts C such that C[C ′[P ]]|[]|[] and C[C ′[Q]]|[]|[] are fully closed, we have
that

T (C[C ′[P ]]|[]|[]) = T (C[C ′[Q]]|[]|[])

We fix such contexts C and C ′. We now set C0 := C[C ′]. Note that C0[P ] = C[C ′[P ]] and
C0[Q] = C[C ′[Q]]. Furthermore, C0[P ]|[]|[] and C0[Q]|[]|[] are fully closed since we required
that C be such that C[C ′[P ]]|[]|[] and C[C ′[Q]]|[]|[] are fully closed. Hence by equation 3.3,
we obtain

T (C0[P ]|[]|[]) = T (C0[Q]|[]|[]).

This proves the claim.

Theorem 3.37 (Properties of computational indistinguishability). The relation ≈indn
is

reflexive, symmetric and transitive, i.e. it is an equivalence relation.
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Proof. The claims for reflexivity and symmetry are trivial.
For the transitivity, consider sequences of programs A = (An)n∈N, B = (Bn)n∈N and

C = (Cn)n∈N, and assume that A ≈indn
B and that B ≈indn

C. By this, we know
respectively that for a fixed polynomial-time decider D, the functions

fAB(n) := |PD(A)− PD(B)|

fBC(n) := |PD(B)− PD(C)|

are negligible. Here (and throughout the proof), for the sake of readability we use the
notation PD(P ) = Pr[D(1n, Pn)] according to Definition 3.31 for a decider D and a pro-
gram P , and make the security parameter n implicit. Our goal is to show that the function
fAC : N→ [0, 1],

fAC(n) := |PD(A)− PD(C)|

is negligible too.
First note that the function fABC : N → [0, 1], defined by fABC(n) := fAB(n) + fBC(n)

is also negligible. In the following we use the triangle inequality, which states that for any
two real numbers x and y, we have |x + y| 6 |x|+ |y|. We compute

fAC(n) = |PD(A)− PD(C)|

= |PD(A)− PD(B) + PD(B)− PD(C)|

6 |PD(A)− PD(B)|+ |PD(B)− PD(C)|

= fAB(n) + fAC(n)

= fABC(n).

We showed that fAC(n) 6 fABC(n). But since fABC is negligible, then so is fAC . Hence
we conclude that A ≈indn

C, which finishes the proof.

Remark. Computational indistinguishability is not compatible. This is because in the
definition of compatibility, we quantify over all possible contexts, and in particular also
contexts whose runtime is not polynomially bounded. Thus for a non-polynomial time
context C, even if we have P ≈indn

Q for some programs P and Q, it must not necessarily
hold that C[P ] and C[Q] are also computationally indistinguishable.

However it is not difficult to see that we can establish a similar property in the limit of
polynomial-time contexts, which in practice should be sufficient in many cases. But since
we will not need such a property in the remaining of this thesis, we do not go into further
details here.

In practice, all of the knowledge obtained in this section will be very helpful when dealing
with game-based transformations. We can successively transform one game into another
and know by transitivity that the initial and the final game are in the same relation. Most
often we will use observational equivalence, where we can even state that if only two sub-
programs are observationally equivalent then the whole two games are also observationally
equivalent. If, somewhere along these transformations, we use a transformation of compu-
tational indistinguishability, we will only be able to state that the initial and final games
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are computationally indistinguishable (since the relation ≈indn
is coarser than the relation

≡obs). The notion of denotational equivalence is too strong in general (and we could mostly
only use it for the whole games, since it is not compatible), but will sometimes come in as
a helpful lemma to conclude observational equivalence of two programs.
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In this section, we introduce the basic cryptographic concepts that we want to formalize
in Isabelle/HOL in Section 5. We will first explain a few general ideas about public-key
encryption schemes. Then we discuss security notions, especially the indistinguishability of
encryptions and therefore introduce the Chosen-Plaintext Attack in Section 4.2. We will
proceed with an explanation of the Diffie-Hellman problem, on which the ElGamal encryp-
tion scheme is based, in Section 4.3. Finally we will define ElGamal in Section 4.4. Since
these are very basic and well-established concepts, we will rather give a rough overview
than a thorough discussion. For the definitions we mainly follow [1], but we concentrate
on the uniform case, as this is what we will use in the sequel. Further information on
these concepts can also be found in a standard textbook about the basics of cryptography,
e.g. [9].

4.1 About Encryption Schemes

Encryption, the classical object of cryptography, is the art of transforming private or
confidential information in such a way as to make it unreadable without the prior knowledge
of some secret. Formally, we can model an encryption scheme with message spaceM and
ciphertext space C as a triple of algorithms (K,E,D) that fulfill the following properties:

• K is a randomized key generation algorithm that takes a security parameter 1n and
returns a key pair (e, d) ∈ K. Here e is the encryption key, and d is the decryption
key. We denote by K the key space of the encryption scheme.

• E is an encryption algorithm that takes a tuple (1n, e,m) of a security parameter 1n,
an encryption key e and a plaintext m ∈ M, and returns a ciphertext c ∈ C. This
algorithm may be randomized or stateful.

• D is a decryption algorithm that takes a tuple (1n, d, c) of a security parameter 1n,
a decryption key d and a ciphertext c ∈ C. It returns a plaintext m ∈ M. This
algorithm is usually deterministic. We further require that for all security parameters
1n, key pairs (e, d) ∈ K and messages m ∈M, it holds that D(1n, d, E(1n, e,m)) = m.

In the case of private-key (or symmetric) encryption schemes we have that e = d, or
at least that d is easily computable from e. By contrast, for public-key (or asymmetric)
encryption schemes, which are our scope of interest here, it is infeasible (with acceptable
effort) to compute d from e. In this case, we call e the public key and d the private key.
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Asymmetric encryption schemes are useful because it is not necessary to share any a priori
secret (like a commonly known secret key) for two parties to communicate in a possibly
insecure network. People make their public key publicly known. Thus, everyone in the
network can encrypt messages for an intended recipient using their public key, and only
the recipient can decrypt this message, because only he owns the corresponding secret key.
Note that this only works in the passive case, i.e. when an adversary can only eavesdrop
on messages sent over the network. In the active case, i.e. when an adversary can even
alter the messages, here we also have to deal with the issue of authenticity, but we do
not discuss that here. Finally, one can quickly show that the encryption algorithm must
necessarily be randomized, as otherwise it cannot even fulfill basic security properties.

4.2 Chosen-Plaintext Attack

As mentioned in the introduction, two well-established security properties are those of
semantic security, meaning that no adversary can deduce even partial information about a
plaintext by looking at a ciphertext, while the notion of indistinguishability of ciphertexts
intuitively asserts that even if an adversary can choose two messages and see the encryption
of one of them, he cannot decide which message was encrypted better than by pure guessing.
Interestingly, these two properties are in fact equivalent (see e.g. [16]). This is nice, because
to show that an encryption scheme fulfills the very natural definition of semantic security,
one can show that it has indistinguishable encryptions, which is usually much easier.

Now, in cryptography, one usually models such security properties as games, that is, an
interaction between an adversary and some “challenger”, and shows that the probability
for the adversary to “win” the game is negligible. There are several kinds of attacks known
in cryptography, yielding different security notions. We usually differentiate the capabilities
of the adversary, i.e. what he is allowed to do to break an encryption scheme, and the goal
that we aim at. Here our goal is the security property of indistinguishable ciphertexts, and
we model the capabilities of the adversary with the well-known Chosen-Plaintext Attack
(CPA). The game depicted in Figure 4.1, called the CPA game, formalizes this scenario.

Definition 4.1 (CPA Challenger). Let PE = (K,E,D) be an encryption scheme, let n be
a security parameter and let b ∈ {0, 1} be a bit. We define the CPA challenger as follows.

• First it creates a key pair (e, d)← K(1n), and outputs (1n, e) to the adversary.

• Then, it receives two plaintexts m1,m2 ∈ M such that |m1| = |m2| from the adver-
sary, and it computes and outputs the tuple (1n, c) to the adversary, where c is the
ciphertext E(1n, e,mb+1).

Hence there are two interactions with the adversary. At first, he obtains a tuple (1n, e),
where 1n is the security parameter in unary representation and the encryption key e, and
so he may encrypt arbitrarily many messages of his choice, before sending two messages
m1 and m2 of his choice to the challenger. Then, the challenger sends to the adversary the
tuple (1n, E(1n, e,mb+1)) of the security parameter (in unary representation) 1n and the
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n ∈ N, b ∈ {0, 1}

(e, d)← K(1n)
1n, e

m1, m2

1n, c := E(1n, e, mb+1)

b′ ∈ {0, 1}

C A

Figure 4.1: The CPA game

encryption of mb+1. The adversary now has to guess b, that is, which message has been
encrypted. Of course, he may again encrypt messages of his choice as he sees fit. This is
why encryption should be randomized, otherwise his task would clearly be trivial. Finally
the adversary outputs his guess b′.

Definition 4.2 (Indistinguishable encryptions under CPA). For a security parameter n,
let CPA1n be the CPA game where b = 0 and CPA2n the game where b = 1. Furthermore
let us denote by Pr[CPA1PE

A = b′] and Pr[CPA2PE
A = b′] the probability of the events that

the respective games output bit b′, for an efficient uniform adversary A and an encryption
scheme PE . In this notation we omit the security parameter n for readability. Now, given
a public-key encryption scheme PE = (K,E,D), we say that PE has indistinguishable
encryptions under CPA if for all efficient (i.e., probabilistic polynomial-time) adversaries
A, the function

f(n) := |Pr[CPA1PE
A = 1]− Pr[CPA2PE

A = 1]|

is negligible (i.e. the probability that the adversary guesses correctly is at most negligibly
better than 1/2). This is equivalent to saying that for all efficient adversaries A, the families
of games (CPA1n)n∈N and (CPA2n)n∈N are computationally indistinguishable.

Here we consider the uniform case, that is, every algorithm takes a security parame-
ter 1n. In the non-uniform case, we define an encryption scheme as a family of algorithms
(Kn, En, Dn)n∈N. We can construct such an encryption scheme using a uniform encryption
scheme by using the sequence (Kn, En, Dn)n∈N := (K(1n), E(1n), D(1n))n∈N. Defining the
notion of security over a family of algorithms is typical in cryptography, and we use it to
speak about negligible functions or computational indistinguishability. This seems pretty
natural anyway, as the algorithms are often already defined in function of some security
parameter n (for example, n could be the length of the key). The security parameter n is
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given in unary representation, as we measure the efficiency of the algorithms in the length
of the input. See [15] for a deeper insight.

4.3 The Diffie-Hellman Problem

The encryption scheme that we are going to look at, ElGamal, is based on the Diffie-
Hellman problem, which is derived from the difficult problem of computing discrete loga-
rithms in certain cyclic groups. Computing such logarithms is a very old and well-known
mathematical problem from number theory.

The difficulty of breaking the security of ElGamal can be reduced to the difficulty of
solving the Diffie-Hellman problem. It is a good idea to base a cryptographic construction
on the difficulty of a well-known mathematical problem, as many mathematicians around
the world have worked and failed on this problem. As long as it is unsolved, the construction
stays secure. If it is solved (and the security of the construction breaks down), the solution
becomes quickly known and people can act accordingly. By contrast, if a construction is
based on some very special and not so well-known problem, it could happen that only a
small group of people (e.g. a secret service) finds the solution, and people may not even
learn that they are using an encryption scheme that has become insecure.

The problem of computing discrete logarithms is conjectured to be hard in many cyclic
groups. Often, it is used in unit groups (Z/pZ)∗ for a prime number p (but it is also
conjectured to be hard in many other cyclic groups). Let g be a generator of such a
group mod p. Then for each number h ∈ {1, 2, . . . , p − 1} there exists an exponent x ∈
{0, 1, 2, . . . , p− 2} such that

h ≡ gx mod p

We call x the discrete logarithm to the base g of h. As of today, no efficient algorithms are
known to solve this problem.

A related problem is the Computational Diffie-Hellman problem (CDH). In a cyclic group
G with a generator g (where computing discrete logarithms is conjectured to be hard), the
problem is the following. Given only g, gx and gy, for elements x and y distributed
uniformly at random in {1, . . . , |G|}, compute the value gxy. Clearly, if one could compute
discrete logarithms in G, the task would be easy. Hence, the CDH problem is at most as
difficult as computing discrete logarithms. The converse direction is an open problem in
the general case.

Finally, the Decisional Diffie-Hellman problem (DDH) is a slightly weaker form of this
problem. Here, the task is as follows. Given g, gx, gy and gz, decide whether gz = gxy. Here
x and y are again elements distributed uniformly at random in {0, . . . , |G|−1}, whilst with
probability 1/2 we have z = xy and with probability 1/2, z is also an element distributed
uniformly at random in {0, . . . , |G|−1}. Clearly, a solution to the CDH problem in general
implies a solution to the DDH problem. While the Decisional Diffie-Hellman problem can
be efficiently solved in unit groups (Z/pZ)∗, it is still conjectured to be hard in many cyclic
groups in general. Because this assumption will play an important role later on, similar as
for the chosen-plaintext attack we formally define a game to model it.
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Definition 4.3 (DDH Challenger). Let (Gn)n∈N be a sequence of cyclic groups with re-
spective generators gn, and let b ∈ {0, 1} be a bit. Let n be a security parameter. First,
the DDH Challenger selects uniformly at random elements x, y, z ∈ [0, . . . , |Gn| − 1]. If
b = 0, it outputs to the adversary the DDH tuple (1n, gx

n, gy
n, gxy

n ), otherwise it outputs the
tuple (1n, gx

n, gy
n, gz

n).

The task of an adversary interacting with the DDH challenger is to guess b, as above.
But the DDH assumption tells us that there exists a sequence of cyclic groups such that
this is not feasible for efficient adversaries.

Assumption 4.4 (Hardness of the DDH problem for (Gn)n∈N). We assume that the se-
quence of cyclic groups (Gn)n∈N fulfills the following property. Similarly as in the CPA
game, let DDHxyn be the DDH game where b = 0, and DDHzn the DDH game where
b = 1. For an adversary A interacting with the DDH challenger, let Pr[DDHxyA = b′] and
Pr[DDHzA = b′] be the probability that the adversary outputs b′ in the respective games.
Then the function

f(n) := |Pr[DDHxyA = 1]− Pr[DDHzA = 1]|

is negligible for all efficient uniform adversaries A. That is, we assume the two games
DDHxy and DDHz to be computationally indistinguishable.

4.4 The ElGamal Encryption Scheme

The ElGamal encryption scheme, which gets its name from its inventor, Taher Elgamal
(though it really has a meaning: the name Elgamal is derived from the Arabic al djamal,
which literally means “of beauty”), is a well-known encryption scheme based on the hard-
ness of the DDH problem, and under this assumption is known to have indistinguishable
encryptions under CPA.

We work with a sequence of cyclic groups (Gn)n∈N where the DDH problem is hard, as in
Assumption 4.4. Furthermore assume that there is a corresponding sequence of canonical
generators (gn)n∈N such that for all n ∈ N, we have 〈gn〉 = Gn (i.e. there is a pointwise
relation between the two sequences). Let n ∈ N be a security parameter. We describe
below the ElGamal encryption scheme PEElGamal = (K,E,D) in the scenario where Bob
wants to send a message to Alice.

Key generation. Alice uses the key generation algorithm K(1n), which selects a value x
uniformly at random from {0, . . . , |Gn|−1} and computes h := gx

n. It sets e := h and
d := x and outputs the key pair (e, d). Alice can now send her public key to Bob.

Encryption. The message space Mn is the set Gn. To encrypt a message m ∈ Mn, Bob
uses the encryption algorithm E(1n, e,m), which chooses an element y uniformly at
random from {0, . . . , |Gn| − 1}. It computes i := gy

n, c′ := m × hy and outputs the
ciphertext c := (i, c′). Hence the ciphertext space Cn is the set G2

n.
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Decryption. When Alice receives the cipher c from Bob, she can recover the plaintext m
as follows, knowing her secret key d. She uses the decryption algorithm D(1n, d, c),
which computes and outputs m := c′ × (ix)−1.

The correctness of the scheme can be easily verified, as we have

D(1n, d, c) = D(1n, (gn, x), (gy
n,m× hy))

= (m× hy)× ((gy
n)x)−1

= m× gxy
n × g−yx

n

= m

For a total break of this scheme (that is, for recovering the secret exponent x from the public
key gx

n), one clearly needs to be able to compute discrete logarithms in Gn. To recover
the plaintext from an encryption, one needs to be able to solve the Computational Diffie-
Hellman problem. But as we will see, to ensure the indistinguishability of encryptions, we
even have to assume the hardness of the Decisional Diffie-Hellman problem.
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In Section 3, we saw how to formally write programs in the cryptographic language in
Isabelle/HOL, and learned about program relations. Then in Section 4, we recalled a few
basic constructions from cryptography. In this section, we are going to plug the concepts
introduced in these two chapters together. We are going to formally define the CPA game
and the ElGamal encryption scheme in the language in Isabelle/HOL. Together, they will
serve as a starting point of our proof.

5.1 The CPA Game

Following Definition 4.1, to model the CPA challenger, we model two CPA games: one in
which we encrypt the message m1 and another in which we encrypt the message m2. Apart
from this, these two games are perfectly identical. We parameterize these games with an
encryption scheme (since the challenger uses a key generation algorithm and an encryption
algorithm), an adversary and the security parameter. As explained in Definition 4.2, given
an encryption scheme, the goal is to show that the first CPA game and the second CPA
game are computationally indistinguishable in the security parameter. This entails that
the encryption scheme is CPA-secure.

We define the first CPA game IND CPA1 as follows.

IND CPA1 ES A A’ n ==
let (e, d) ← :encGen ES: 1n

(m1, m2, a) ← :A: (1n, e)
c ← :encEnc ES: (1n, e, m1)

in :A’: (1n, m1, m2, a, e, c)

Figure 5.1: Definition of IND CPA1

The game takes as arguments an encryption scheme ES (which defines a key generation
algorithm encGen, an encryption algorithm encEnc and a decryption algorithm encDec),
an adversary defined by the functions A and A′, and a security parameter n.

First it uses the key generation algorithm encGen as defined by the encryption scheme.
This algorithm should return a pair (e, d) where e represents the (public) encryption key,
and d the (secret) decryption key.

Then it calls the function A (the first interaction with the adversary) and gives it the
security parameter 1n (in unary representation) as well as the public key e. The adversary
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returns two messages m1 and m2, where we require that |m1| = |m2|, and a string a, in
which it can store additional information. We will say more about how we precisely model
the adversary in Section 5.4.

Now, the game encrypts the first message m1 using the encryption function defined by the
encryption scheme ES, passing it the security parameter 1n and the obvious arguments
e and m1 needed for encryption. The encryption algorithm returns a ciphertext c. For
instance, using the ElGamal encryption scheme, we will obtain a ciphertext c = (i, c′), as
described in Section 4.4.

Finally, it calls the function A′, which corresponds to the second interaction with the
adversary. It again parameterizes it with the security parameter 1n, and also passes the
two original messages m1 and m2, the string a (into which A might have written additional
information), the public key e, and the ciphertext c. The output of the game is the output
of the function A′.

We define the second CPA game IND CPA2 analogously. As the name suggests, the
only difference is that here the message m2 is encrypted in place of the message m1.

IND CPA2 ES A A’ n ==
let (e, d) ← :encGen ES: 1n

(m1, m2, a) ← :A: (1n, e)
c ← :encEnc ES: (1n, e, m2)

in :A’: (1n, m1, m2, a, e, c)

Figure 5.2: Definition of IND CPA2

The goal of the adversary is to determine which message was encrypted. Clearly, the
adversary can only use the information it is given to determine which of the two functions
IND CPA1 and IND CPA2 called it, in other words, it can only use the arguments with
which we call it. But these are almost identical in the two games, except for the ciphertext c
of the encrypted message m1 or m2, which is the only sensitive information the adversary is
given. Recall that the output of the game is the output of the function A′. Hence, if for some
encryption scheme ES and for all proper adversaries (A, A′) we can show that the programs
IND CPA1 ES A A’ n and IND CPA2 ES A A’ n are computationally indistinguishable in n,
this means the ciphertexts cannot be distinguished with non-negligible probability. That
is, the encryption scheme ES has indistinguishable encryptions under chosen-plaintext
attack.

5.2 The Security Parameter

Throughout the whole proof, in all the games we are working with a fixed family of cyclic
groups (Gn)n∈N, in which we assume the DDH problem to be hard, as defined in Section 4.3.

We use the security parameter n as the index of the cyclic group Gn which we are working
with. Intuitively, we may think, for instance, that the greater the security parameter, the
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greater the order of Gn. Note that this does not mean that the order of the group is equal
to the security parameter, it just depends on it.

We will often need a fixed generator of our group Gn. For this purpose, we will use
a function that, given a security parameter (in unary representation) 1n, returns a fixed
generator of the cyclic group Gn. More formally, we define a deterministic function g,
which takes a bitstring of length n, as defined in Section 3.5. It returns an element of the
set Gn such that 〈g(1n)〉 = Gn, for all n ∈ N. Here we assume that the elements of any
cyclic group Gn can be represented as bitstrings in our language. We consider g as a global
constant, i.e. it can be directly accessed in all the games. For the sake of readability, we
also use the notation

gn := g(1n).

In this manner, we can use gn to denote a fixed generator of the group Gn.

5.3 ElGamal

As introduced in Section 4.1, an encryption scheme ES consists of a tuple (K,E,D) where
K is the key generation algorithm, E the encryption algorithm, and D the decryption
algorithm. In Isabelle/HOL, we define an encryption scheme analogously as a record of
functions encGen (the key generation algorithm), encEnc (the encryption algorithm), and
encDec (the decryption algorithm).

Hence the definition of our ElGamal encryption scheme in Isabelle/HOL is as follows.

ElGamal ==
{ encGen = ElGamalGen

encEnc = ElGamalEnc
encDec = ElGamalDec }

Figure 5.3: The ElGamal encryption scheme

With our description of the ElGamal encryption scheme from Section 4.4, the correspond-
ing formal games for key generation, encryption and decryption are fairly straightforward.
In the remaining of this section, we will precisely define these programs. First we consider
the key generation algorithm.

ElGamalGen ==
λ unaryn. let x ←R |〈g(unaryn)〉|

in (g(unaryn)x, x)

Figure 5.4: The ElGamal key generation algorithm

The key generation algorithm expects a security parameter 1n, which we call unaryn
here. It selects a random element x in the range [0, . . . , p− 1] where p = |〈gn〉| is the order
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of Gn and returns a tuple consisting of the element gx
n (consequently distributed uniformly

at random in the set Gn) and x itself. They correspond to the public and the secret key
used in the algorithms for encryption and decryption.

Now, we define the encryption algorithm as follows.

ElGamalEnc ==
λ (unaryn, gx, m). let y ←R |〈g(unaryn)〉|

in (g(unaryn)y, m× gxy)

Figure 5.5: The ElGamal encryption algorithm

It takes a security parameter 1n, a public key gx and a message m. Similarly as in the
key generation algorithm, it selects a random element y from the range [0, . . . , p−1], where
p = |Gn|, and returns as a ciphertext the tuple consisting of the elements gy

n and m× gxy,
as explained in Section 4.4.

Although we will in fact not need the decryption algorithm in the remaining of this
thesis, we define it here for the purpose of clarity and completeness.

ElGamalDec ==
λ (unaryn, x, i, c’). c′ × i−x

Figure 5.6: The ElGamal decryption algorithm

Note that the parameter unaryn, which corresponds to the security parameter 1n, is
implicitly used in the multiplication and exponentiation operations, since we are always
working with the cyclic group Gn (see Section 3.5 on syntactic sugar). We simply multiply
the encrypted message with the inverse of the element that we used for encryption, yielding
the original message.

5.4 The Adversary

Intuitively, it is clear we have to parameterize a CPA game with a CPA adversary. Tech-
nically, we represent the adversary as a pair of functions (A, A′), since there are two calls
of the adversary in the CPA game. In the first interaction, we ask from the adversary two
messages m1 and m2. In the second interaction, after having encrypted one of these two
messages, we send the encryption of one of the two messages to the adversary. The two
functions A and A′ are the functions which correspond to these two interactions.

We will now formalize more precisely the behavior of A and A′. First, two important
assumptions about both A and A′ should be made explicit:

1. Their runtime is polynomially bounded, since we are only interested in efficient adver-
saries. Technically, we say they are probabilistic polynomial-time adversaries.
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2. They are fully closed ; this is important, since we do not want our adversaries to be
able to read variables from the outer context, otherwise it would be trivial for an
adversary to determine which message has been encrypted. Furthermore they are
not allowed to access the eventlist, nor are they allowed to read or write the store at
indexes other than those which they allocated themselves (we might even forbid that
they access the store or the eventlist altogether, but then we would have to show
that this does not lessen their power).

Now we take a closer look at the two functions.

• A takes as arguments

– 1n, the security parameter in unary representation and

– e, the public key used for the encryption.

A returns two messages m1,m2, and a string a. Here we assume that our adversary
is a valid CPA adversary for ElGamal. In particular, we assume that m1,m2 ∈ Gn.
In this case, we do not even need to require that |m1| = |m2|. The string a is used
for the communication between A and A′. In the context, we later only use a as an
additional argument for A′, so A can encode any information it wants and pass it to
A′ via the string a. This is necessary because we want to consider a single (stateful)
adversary, but model it with two functions that are both closed (and so cannot read
variables from each other). By allowing the function A to generate an arbitrary string
a which we pass unaltered to the function A′, the adversary has the the possibility to
“remember” any computations it may have performed in its first call, when we call it
a second time.

• A′ takes as arguments

– 1n, the security parameter in unary representation,

– m1, the first plaintext chosen by A,

– m2, the second plaintext chosen by A,

– a, used to store additional information computed by A,

– e, the public key used for encryption and

– c, the ciphertext of either m1 or m2; the task of A′ is to determine which one it
is.

Technically, note that it is not strictly necessary to pass m1, m2 or e to A′ since A
could encode all of this information and write it into the string a, thus implicitly
passing it to A′. However, we only use a for “internal” computations performed by
A, and not for obvious information that A′ will need. Note that this is simply a
design decision. A′ tries to guess which of the two messages m1 or m2 has been
encrypted and outputs a single bit b, meaning that its guess is that the ciphertext c
is an encryption of the plaintext mb+1.
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In this chapter, we are going to look into several kinds of program transformations, all of
which will be needed in the proof in Chapter 7. Recall from Section 3.6 that all transforma-
tions are based on one of three equivalence relations. The relation we will use most often
is the observational equivalence. Furthermore, we will see one transformation based on the
computational indistinguishability and finally we will see a rather involved transformation
based on the denotational equivalence.

6.1 Transformations based on Observational Equivalence

6.1.1 β-equivalence

The first program transformation that we are going to look at is an easy one. We will
show that two β-equivalent programs are also observationally equivalent. Let us first get
an intuitive notion of what we want to achieve and then properly formalize the property
that we will prove.

Example 6.1. The two programs shown in Figure 6.1 compute the same value. Intuitively,
the left-hand program deterministically reduces to the right-hand program, i.e. the right-
hand program corresponds to the left-hand program one step further in its execution. Of
course we expect such two programs to be observationally equivalent.

(λ x. x + 2) 4 4 + 2≡obs

Figure 6.1: A β-reduction step

Note that the following more general observation is rather clear. Loosely speaking, when
we consider a program P that deterministically reduces to a program Q, then we have that
P and Q are denotationally equivalent. In fact, this theorem is a typical theorem in the
design of functional programming languages and is usually called Coincidence (of the big-
step semantics and the small-step semantics). Here, because our language is probabilistic,
the notion is a little bit different, but we can still state the following

Theorem 6.2 (Coincidence). Let P |σ|η and Q|σ′|η′ be program states such that P |σ|η  
δQ|σ′|η′. Then P |σ|η ∼ Q|σ′|η′.
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Proof. The proof is straight-forward by computing the denotations of P |σ|η and Q|σ′|η′.
First, by the definition of step0, we know that

step0(Q|σ
′|η′) = δQ|σ′|η′

Now we compute one step of the program state P |σ|η.

step1(P |σ|η) = step ◦ step0(P |σ|η) (by definition of stepn+1)

= step · (step0(P |σ|η)) (by definition of ◦)

= step · δP |σ|η (by definition of step0)

=

∫

PS

step(x)(A) dδP |σ|η (by definition of ·)

= step(P |σ|η) (by equation 3.1)

= δQ|σ′|η′ (since P |σ|η  δQ|σ′|η′)

We have shown that step0(Q|σ
′|η′) = step1(P |σ|η). Recall that by Definition 3.18 we have

stepn+1(A) = step ◦ stepn(A), for A ∈ PS. Thus we easily get by induction on n that
stepn(Q|σ′|η′) = stepn+1(P |σ|η). By Definition 3.19 of the denotation of program states,
we obtain JP |σ|ηK = JQ|σ′|η′K.

However, here the observational equivalence does not follow trivially. More precisely,
the observational equivalence of two programs P and Q, where P reduces to Q, such as
two β-equivalent programs, follows only under the assumption that both P |σ|η and Q|σ|η
are fully closed for all stores and eventlists (see Section 3.6). However, we would like to
state at least that two β-equivalent programs are observationally equivalent even if they
do not fulfill these restrictions. Fortunately, the following lemma has already been shown
and comes in very helpful.

Lemma 6.3. For all programs P , values V , lists of values a and stores σ and event lists
η the following equation holds true:

J
(

(λ.P )V
)a
|σ|ηK = J

(

P{V }
)a
|σ|ηK

Proof. Proven by Matthias Berg in Isabelle/HOL.

We shall need later the following fact.

Corollary 6.4. By the chaining rule for denotations (see Theorem 3.27), we obtain fur-
thermore that for all evaluation contexts E, it holds

JE[
(

(λ.P )V
)a

]|σ|ηK = JE[
(

P{V }
)a

]|σ|ηK

Note that the simple equality J(λ.P )V |σ|ηK = JP{V }|σ|ηK already follows from Theo-
rem 6.2, as we have (λ.P )V |σ|η  δP{V }|σ|η by Definition 3.14. But in Lemma 6.3, we are
additionally allowed to instantiate the two programs with arbitrary lists of values a. This
makes it very easy to prove the observational equivalence of two β-equivalent programs.
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Theorem 6.5 (β-equivalence). Let P be a program, and let V be a value. Then we have
(λ.P )V ≡obs P{V }.

Proof. We show that (λ.P )V ≡CIU P{V }. For all evaluation contexts E, lists of values a
and stores σ and event lists η such that E[

(

(λ.P )V
)a

]|σ|η and E[(P{V })a]|σ|η are fully
closed, we have

T (E[
(

(λ.P )V
)a

]|σ|η)

= JE[
(

(λ.P )V
)a

]|σ|ηK(PS) (by Definition 3.20)

=
(

Λ(v, σ′, η′).JE[v]|σ′|η′K
)

· J
(

(λ.P )V
)a
|σ|ηK(PS) (chaining rule)

=
(

Λ(v, σ′, η′).JE[v]|σ′|η′K
)

· J
(

P{V }
)a
|σ|ηK(PS) (by Lemma 6.3)

= JE[(P{V })a]|σ|ηK(PS) (chaining rule)

= T (E[(P{V })a]|σ|η) (by Definition 3.20)

Thus we obtain that (λ.P )V ≡CIU P{V }. It follows that (λ.P )V ≡obs P{V }, which proves
the Theorem.

6.1.2 Expression Propagation

The next very useful equivalence that we look at is that of expression propagation. It is
described in depth and formally proven in [12]. Here we only give the essential ideas. Intu-
itively, expression propagation models the following transformation. When we consider an
application (λx.P )Q where P and Q are programs, then the program [x 7→ Q]P resulting
from replacing every occurrence of x in P by Q should be observationally equivalent to
the program (λx.P )Q, given some restrictions on Q. Indeed, such a transformation corre-
sponds to a reduction step in a call-by-name setup, and is in fact a generalization of the
β-equivalence discussed in Section 6.1.1.

Example 6.6. In Figure 6.2, the first program only performs addition of a few natural
numbers. We may want to transform it into the last program. This can be achieved by a
double application of expression propagation. First we replace all occurrences of x by its
assignment, then we do the same for y. Note that the assignments themselves disappear
respectively, as would be the case for β-reduction in a call-by-name setup.

let x ← 1 + 2
y ← x + 3

in x + y + 4

let y ← (1 + 2) + 3
in (1 + 2) + y + 4

(1 + 2) + ((1 + 2) + 3) + 4

≡obs

≡obs

Figure 6.2: Two consecutive applications of expression propagation
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However, when we model this equivalence, namely the observational equivalence of
(λ.P )Q and P{Q} as explained above, we have to be careful. In fact, it turns out that
this equivalence does not hold unconditionally. The following problems arise, and we
have to formulate the theorem such as to exclude these cases. Recall that we call the
substitution candidates those variable which are replaced by the substitution operator (see
Section 3.3.3), e.g. x in the named version of the transformation described at the beginning
of this section.

1. The program Q may be randomized. Then, if there are more than one substitution
candidates in P , it might yield different outcomes at each place where it was substi-
tuted into the program P{Q}. Clearly, this is not the case in the program (λ.P )Q,
where Q is executed only once.

→ We require that on every possible input, either Q deterministically reduces to a
value q, or it does not terminate at all. Allowing Q to not terminate at all on some
inputs makes this Theorem more realistic in practice, since otherwise we would have
to ensure that Q terminates on every possible input, even on inputs outside of its
domain.

2. Q could read or write the store or the event list. In either case, it clearly makes a
difference whether we execute Q only once at the beginning or possibly several times
later on, especially since we explicitly want to give P the ability to use the store and
the event list. However, we need to require that Q cannot do so.

→ We require that the value q to which Q deterministically evaluates (if it terminates)
is independent of the store and the event list, and does not alter them.

3. Finally, it might be that Q diverges, but P does not use the variable to which Q is
assigned. Then, (λ.P )Q diverges too, but P{Q} does not (provided that P does not
already diverge itself).

→ We require that whenever Q does not terminate, P{Q} does not terminate either.

Theorem 6.7 (Expression propagation). Let P and Q be programs. Assume that both of
the following two conditions hold.

1. For all lists of values a such that Qa is closed, either

a) there exists a unique value q such that for all stores σ and event lists η such that
Qa|σ|η is fully closed, JQa|σ|ηK = Jq|σ|ηK, or

b) JQa|σ|ηK = 0, where we use 0 to denote the measure on PS defined by 0(A) = 0,
for all A ∈ ΣPS .

2. For all lists of values a, stores σ and event lists η, we have J(P{Q})a|σ|ηK = 0

whenever JQa|σ|ηK = 0.

Then the equation (λ.P )Q ≡obs P{Q} holds true.

Proof. For the proof, we refer to the Bachelor thesis of Jonathan Driedger [12].
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6.1.3 Expression Subsumption

The notion of expression subsumption denotes the transformation which corresponds to the
exact opposite of expression propagation. Intuitively, in a program P , if some expression
Q occurs zero or more times, we may want to simply assign the program Q to some fresh
variable x at the beginning of P , and then replace every occurrence of Q in P with x.
Consider the following

Example 6.8. The following game sends an image of some function f to two adversaries
A1 and A2. The adversaries try to guess something (e.g. the preimage) and their output
is bound to the variables x and y respectively. Finally the game checks if both adversaries
computed the same guess. It seems unnecessary to compute the function f(123) twice here,
especially if we assume for instance that the computation is expensive. We may want to
transform it as in the second game, where the computation takes place only once.

let x ← A1(f(123))
y ← A2(f(123))

in x = y

let c ← f(123)
x ← A1(c)
y ← A2(c)

in x = y

≡obs

Figure 6.3: An application of expression subsumption

At first glance this transformation seems somewhat surprising as we have to make up a
fresh name for a variable. However, recall from Section 3.1 that we are actually dealing
with nameless terms and that we only write names here for readability. Hence this problem
does not arise, as on a low level, our representation of variables is canonical.

The validity of this transformation follows immediately from Theorem 6.7 under the
restrictions given there, as the observational equivalence is a symmetric (equivalence) rela-
tion. Often there are several possible ways to apply expression subsumption. In the above
program, we could also just have subsumed the first computation of f(123) in the call of
A1, or just the second in the call of A2. We could choose, as all of these transformations are
valid. This is because here, the obtained program can always be represented in the form
P{Q}, as required in Theorem 6.7. Indeed, it could be that P already contains the expres-
sion Q zero or more times itself, before we substitute Q for the substitution candidates
in P .

6.1.4 Nesting Chained Applications

We are now going to look at yet another very useful transformation. To explain the goal
of this section, we first explain the notions of nested lets and of chained lets.

As already mentioned in Section 3.5, we can use several let constructs one after the other
in the following manner.
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let x ← 1
y ← x + 2

in y + 3

let x ← 1
in let y ← x + 2

in y + 3
=

Figure 6.4: Nested lets

The two above programs are identical, as the left program is just syntactic sugar for the
right program. We refer to this construction of one let construct within another as nested
lets, or nested applications. In the low-level syntax, we would write the above program as

(

λx.
(

λy. y + 3
)

(x + 2)
)

1

Here we can observe that the inner application
(

λy. y + 3
)

(x + 2) is indeed nested within
the outer application, i.e. the whole term.

We can also chain such let constructs. Consider the following program.

let y ← let x← 1
in x + 2

in y + 3

Figure 6.5: Chained lets

Here we chained the two lets one after the other. We will refer to such a construction as
chained lets or chained applications. In the low-level syntax, this program becomes

(

λy. y + 3
)

(
(

λx. x + 2
)

1)

This is really another program as the one described in Figure 6.4, but we would still expect
it to be observationally equivalent to the program in Figure 6.5. Hence, the following
example models an application of the transformation that we call nesting chained lets
which transforms a chained let into a nested let.

Example 6.9. The first two programs in Figure 6.6 should be observationally equivalent
by the transformation described in this section, while the last program is just identical to
the second one by syntactic sugar.

The converse direction of the transformation does not hold unconditionally. In the
second or third program of Figure 6.6, consider the expression y + 3. We also expect that
we can transform it into the first program, and indeed we can, but this only works because
this expression does not contain the variable x. If it did (e.g. if we had y + x instead of
y+3), then the programs would certainly not be observationally equivalent, as the variable
x would be free in the first program, but not in the second program.

Hence our formalization will be as follows. We describe a chained let by the construction
(

λ.R
)(

(λ.Q)P
)

, where P , Q and R are programs. The program obtained by transforming
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let y ← let x← 1
in x + 2

in y + 3

let x ← 1
y ← x + 2

in y + 3

let x ← 1
in let y ← x + 2

in y + 3

≡obs

=

Figure 6.6: Nesting chained lets

it as above then has the form
(

λ.(λ. ↑1 R)Q
)

P . Here the lift operator is useful to model
that R cannot access the variable bound to the result of P (as is the case in the original
program), since we shift all variables with deBruijn index greater or equal than 1 in R
by 1, so that no variable references the outer λ. Furthermore, in this manner, all other
potentially free variables in R are bound to the same λ’s in the context as they were in
the original program. Thus, this formalization is sensible, and we can state the following

Theorem 6.10. Let P , Q and R be programs. Then the following identity holds true.

A :=
(

λ.R
)(

(λ.Q)P
)

≡obs

(

λ.(λ. ↑1 R)Q
)

P =: B

Proof. We show that A ≡CIU B. For all evaluation contexts E, lists of values a, stores σ
and event lists η such that E[Aa]|σ|η and E[Ba]|σ|η are fully closed, we have

T (E[
((

λ.(λ. ↑1 R)Q
)

P
)a

]|σ|η)

= JE[
((

λ.(λ. ↑1 R)Q
)

P
)a

]|σ|ηK(PS) (by Definition 3.20)

= JE[
((

λ.(λ. ↑1 R)Q
)

�
)a

][P a]|σ|ηK(PS) (*, see below)

=
(

Λ(v, σ′, η′).JE[
((

λ.(λ. ↑1 R)Q
)

v
)a

]|σ′|η′K
)

· JP a|σ|ηK(PS) (chaining rule)

=
(

Λ(v, σ′, η′).JE[
((

λ.R
)(

(λ.Q)v
))a

]|σ′|η′K
)

· JP a|σ|ηK(PS) (by Lemma 6.11)

= JE[
((

λ.R
)(

(λ.Q)�
))a

][P a]|σ|ηK(PS) (chaining rule)

= JE[
((

λ.R
)(

(λ.Q)P
))a

]|σ|ηK(PS) (**, see below)

= T (E[
((

λ.R
)(

(λ.Q)P
))a

]|σ|η) (by Definition 3.20)

For (*), we use that E ′ := E[
((

λ.(λ. ↑1 R)Q
)

�
)a

] is another evaluation context, such

that E ′[P a] = E[
((

λ.(λ. ↑1 R)Q
)

P a
)a

] = E[
((

λ.(λ. ↑1 R)Q
)

P
)a

]. Here note that in the
term in the middle the substitution a is applied to P twice, but since we assume that a
closes the entire term, the second substitution has no effect on P . The argument for (**)
is analogous.

We obtain that
(

λ.R
)(

(λ.Q)P
)

≡CIU

(

λ.(λ. ↑1 R)Q
)

P , which proves the theorem.
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Lemma 6.11. In Theorem 6.10 we used that for all evaluation contexts E, lists of values
a, programs R and Q, values v and stores σ and event lists η the following equation holds
true.

JE[
((

λ.(λ. ↑1 R)Q
)

v
)a

]|σ|ηK = JE[
((

λ.R
)(

(λ.Q)v
))a

]|σ|ηK

Proof. We compute

JE[
((

λ.(λ. ↑1 R)Q
)

v
)a

]|σ|ηK

= JE[
((

(λ. ↑1 R)Q
)

{v}
)a

]|σ|ηK (by Corollary 6.4)

= JE[
(

(λ. ↑1 R){v}(Q{v})
)a

]|σ|ηK (by Definition 3.7)

= JE[
(

(λ.R)(Q{v})
)a

]|σ|ηK (*, see below)

= JE[
(

(λ.R)
(

(λ.Q)v
))a

]|σ|ηK (by Corollary 6.4)

It remains to show for (*) that we have (λ. ↑1 R){v} = λ.R. First observe that for all
programs P , we have that ↑ P contains no substitution candidates, since all variables are
lifted by 1. Thus we have that (↑ P ){v} = P by Definitions 3.5 and 3.7 of the lift operator
and the substitution operator. Here note that the lift operator shifts all free variables up
by 1, and the substitution operator shifts them down by 1. Now if P has the form λ.R, we
obtain that

λ.R =
(

↑ (λ.R)
)

{v} =
(

λ. ↑1 R
)

{v}

This proves the lemma.

6.1.5 Chaining Nested Applications

As already mentioned, under sensible side conditions we can also apply the previous trans-
formation in the reverse direction. That is, when we consider a nested application of
the form

(

λx.(λy.R)Q
)

P , we can transform it into a chained application of the form
(

λy.R
)(

(λx.Q)P
)

, provided that x does not occur free in R.
Intuitively, we can think of a “big” program A that first uses a program P to compute a

value which is then bound to a variable x in A. Then this result is used in the computation
of another variable y. If we know that x is not used in the remaining of the program A, then
we can just compute the variable y directly and “hide” the variable x in the computation
of the variable y. We continue the example from the last section.

Example 6.12. This transformation is analogous to the previous example, only in the
reverse direction. It only works because the variable x does not occur free in the expression
y + 3 in the first program.

let x ← 1
y ← x + 2

in y + 3

let y ← let x← 1
in x + 2

in y + 3
≡obs

Figure 6.7: Chaining nested lets
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The validity of this transformation follows directly from Theorem 6.10, since this theo-
rem asserts the observational equivalence of both programs, which is a symmetric relation.
Indeed, the side condition that R cannot access x in the program

(

λx.(λy.R)Q
)

P is au-
tomatically ensured by the fact that R cannot access the variable var 1 in the program
(

λ.(λ. ↑1 R)Q
)

P according to our formalization for the nameless form, as the lift operator
lift all variables starting from var 1 up by 1. We make this observation explicit here, since
it is interesting to note that we need the side condition only for this direction, and we will
indeed use both directions later on.

6.1.6 Line Swapping

Often, it is quite helpful if we are allowed to swap two consecutive lines in a program.
Clearly, such a transformation does not hold under all circumstances. Intuitively, the two
lines should not be able to influence each other. For instance, if the first line computes a
value for some variable x which is used in the next line, certainly these two lines cannot be
swapped. Similarly, if both lines access the store or the eventlist (and at least one of the
lines changes them), the result might change. However we expect that there are situations
where the order of two lines does not matter, and we might like to swap them.

Example 6.13. Consider the first two lines in the two programs at the top of Figure 6.8.
Note that with lines here we refer more precisely to nested applications, but in this case
the term “lines” conforms well to what we think of as a line in a program. We expect
these two programs to be observationally equivalent. Indeed, here it should not make any
difference which of the variables a and b is assigned its value first.

let a ← 1
b ← 2

in a + b

let b ← 2
a ← 1

in a + b

let a ← 1
in let b← 2

in a + b

let b ← 2
in let a← 1

in a + b

≡obs

= =

≡obs

Figure 6.8: Line swapping

First we are going to formulate a slightly weaker version of the theorem asserting
that for all programs A and B, under sensible conditions it holds that the programs
(λa.(λb.(a, b))B)A and (λb.(λa.(a, b))A)B are observationally equivalent. The proof is
pretty involved, but fortunately has already been proven by Backes et al. Then we will
generalize the theorem to programs of the form (λa.(λb.C)B)A and (λb.(λa.C)A)B, for all
programs C.
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Now we want to formalize the conditions for the first theorem. First we need that one
of the programs A and B is not allowed to raise events or issue the command eventlist,
i.e. it cannot access the eventlist in any way whatsoever. It does not matter which of the
two programs we restrict in this way, since the transformation is symmetric. Furthermore,
they are not allowed to access the same places in the store, or places outside of the store.
For this, we introduce the notion of accessible locations.

Definition 6.14 (Accessible locations). Let A be a program. Let L(A) be the set of
locations in A (syntactically). The set of accessible locations Loc(A, σ) of a program state
A|σ|η is defined as the smallest set of locations reachable from A in A|σ|η, namely

Loc(A, σ) :=
⋂

{l|L(A) ∪
⋃

i∈l

L(σ[i]) ⊆ l}.

Now we can state the theorem with the appropriate side conditions.

Theorem 6.15. Let A and B be programs and let σ be a store. Assume that

1. Loc(A, σ) ∩ Loc(B, σ) = ∅,

2. A, B, σ do not contain locations greater or equal than |σ| and

3. B does not contain events or the command eventlist.

Then the following equivalence holds:

(λa.(λb.(a, b))B)A ≡obs (λb.(λa.(a, b))A)B.

More precisely, in the nameless representation we write

PAB := (λ.(λ.(var 1, var 0)) ↑ B)A ≡obs (λ.(λ.(var 0, var 1)) ↑ A)B := PBA.

Proof. The most difficult part of the proof has already been performed at the chair of
Michael Backes (see [2]). The main idea is to show that under the given conditions, the
programs PAB and PBA are similar in the sense that their denotations can be computed
from each other. More precisely, since, in PAB, first A is executed and then B, while in
PBA it is the opposite, one can show that the denotations JPAB|σ|ηK and JPBA|σ|ηK are
identical up to reordering of the store. This kind of equivalence is then called L-renaming
equivalence. The fact that L-renaming equivalence implies observational equivalence has
also already been performed.

We now show how to generalize this theorem. For this we first need an auxiliary function
swap which, loosely speaking, “swaps” in a program C the free variables var 0 and var 1,
more precisely those two variables which are bound respectively to the results of the two
preceding lines in the context. This is exactly what we need for line swapping, since in
the resulting program after a line swap, the first two λ’s bound respectively to the two
swapped lines will also be swapped.
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Definition 6.16. Let k ∈ N, and P be a program term. We define the swapk operator
by recursion on P . The k is used to keep track of how many λ’s have been encountered
so far in a subterm, similar as we did for the lift operator. Indeed, the only cases which
are non-trivial are the cases where P is a variable or an abstraction. They are shown
in Figure 6.9. All the other cases are analogous to the definition of the lift operator in
Figure 3.1. We now define the notation swap P := swap0 P .

swapk(var i) =







var i + 1 if i = k
var i− 1 if i = k + 1
var i otherwise

swapk(λ. P ) = λ. swapk+1(P )

Figure 6.9: Definition of swapk

Theorem 6.17. Let A, B and C be programs, and let σ be a store. Assume the same
conditions on A, B and σ as in Theorem 6.15. Then the following equivalence holds:

PABC := (λ.(λ.C) ↑ B)A ≡obs (λ.(λ. swap C) ↑ A)B =: PBAC

Proof. The idea is to transform the initial program into a form where Theorem 6.15 can
be applied. This is possible by defining an appropriate program C ′ such that we can in
some way substitute C ′ for C in PABC and then use this new form to apply the Theorem.
In this proof, by abuse of the language, we use the lift operator in named terms. Here we
are in fact thinking of nameless terms, but giving the variables names instead of dealing
with a deBruijn representation makes the programs much more readable.

We define the program C ′ as follows:

C ′ := λx1.
(

λx2. (λx3. ↑2 C)
)

(fst x1)(snd x1)

What this program does is to take a pair and “split it up” by passing the first and second
projections of this pair to ↑2 C. Here the ↑2 operator models the fact that C cannot access
the pair x1 itself. The intuition is that C ′ is a program which is similar to C, but it expects
a pair (x2, x3) instead of expecting these variables successively. Using this program, we
can apply the transformations shown in Figure 6.10.

For (1), the transformation appropriately inserts the program C ′ in place of C. Here
the double lift operator is needed to express the fact that C ′ cannot access xa or xb. This
step is mostly computational. It follows from the observational equivalence of β-equivalent
terms, and similar lemmas that assert the observational equivalences fst(xa, xb) ≡obs xa

and snd(xa, xb) ≡obs xb.
The argument for (2) essentially uses an interesting observation which states that for

two evaluation contexts E1 and E2, if it holds for all values v that E1[v] ≡obs E2[v] this
implies that for all programs P , we have that E1[P ] ≡obs E2[P ], which itself eventually
follows from the chaining rule.
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let xa ← A
xb ← ↑ B

in C

let xa ← A
xb ← ↑ B

in (↑↑ C’) (xa, xb)

C’
(

let xa ← A
xb ← ↑ B

in (xa, xb)
)

C’
(

let xb ← B
xa ← ↑ A

in (xa, xb)
)

let xb ← B
xa ← ↑ A

in (↑↑ C’) (xa, xb)

let xb ← B
xa ← ↑ A

in swap C

(1)

(2)

(3)

(4)

(5)

Figure 6.10: How to generalize line swapping

For (3), we apply Theorem 6.15. Recall that here already, in the nameless representation
the pair (var 1, var 0) has been changed to (var 0, var 1). The argument for (4) is analogous
to (2), but is used for the converse direction.

For (5), the argument is also similar to (1), but here, moreover, since the pair has been
swapped we need to apply the swap function to C.

As one can see, the transformations are not difficult to understand, but it is a tedious
task to perform all the computational steps to formally prove the observational equivalence.
It is with such kinds of tasks where we can hope to obtain much help from Isabelle’s logic
to prove the validity of the transformations. Indeed, the transformations described in this
proof have been performed by Matthias Berg in Isabelle/HOL.

6.2 A Transformation based on Computational

Indistinguishability

6.2.1 The DDH Assumption

Recall the Decisional Diffie-Hellman problem from Section 4.3. We stated that, for some
sequence of cyclic groups (Gn)n∈N with generators gn, the tuples of the form (1n, gx

n, gy
n, g

xy
n )

and (1n, gx
n, gy

n, gz
n) are assumed to be computationally indistinguishable in n, if x, y and z

are elements distributed uniformly at random in [0, . . . , |Gn| − 1].

We would now like to model a corresponding program transformation in our language.
More precisely, we will consider two games DDHxy and DDHz, which, as the name suggest,
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will model the two DDH games as described in Definition 4.3. Both games will be param-
eterized with an efficient uniform decider D and a security parameter n, that is, they will
be treated as constants within the program term. In Chapter 7, we will be able to prove
the IND-CPA security of ElGamal only under the assumption that the two games defined
in Figure 6.11 are computationally indistinguishable in n.

DDHxy D n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
in :D: (1n, gx

n, g
y
n, (gx

n)y)

DDHz D n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
z ← fun(uniform, |〈gn〉|)

in :D: (1n, gx
n, g

y
n, gz

n)

≈indn

Figure 6.11: Definition of the DDH games DDHxy and DDHz

Formally, we define the following assumption.

Assumption 6.18. Let D be a probabilistic polynomial-time program that always returns
a bit. Let n be a natural number. We assume the following program terms to be computa-
tionally indistinguishable in n:

(

λx.
(

λy. :D: (1n, gx
n, gy

n, gxy
n )

)

µ
)

µ ≡obs

(

λx.
(

λy.
(

λz. :D: (1n, gx
n, gy

n, gz
n)

)

µ
)

µ
)

µ

where we use the notation µ := fun(uniform, |〈gn〉|).

6.3 A Transformation based on Denotational Equivalence

6.3.1 Multiplication with Random Elements in Cyclic Groups

The last transformation that we look at is rather mathematical and concerns cyclic groups.
Let G be a cyclic group, and g a generator of G.

Consider a program P that selects a value x uniformly at random from [0, . . . , |G| − 1],
i.e. from the set of exponents of G, and then returns the value gx. It is intuitively clear
(and will be shown below) that the value to which it evaluates is distributed uniformly at
random in the set of values of the group G. Next, let m be some constant in G. Now
consider a program Q that also selects a value x uniformly at random from the set of
exponents of G, but then returns the value m × gx. We expect (and we will in fact show
below) that Q evaluates again to a value distributed uniformly at random in G. Since both
programs evaluate to the same distribution over values, we expect them to be denotationally
equivalent. The goal of this section is to give a formal statement and proof that this holds
indeed true.

For stating the main result of this section we need some notations. Let (Gn)n∈N denote
a sequence of cyclic groups, and, for each n, fix a generator gn of Gn. We assume that the
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elements of Gn can be represented as bitstrings in our language. For a fixed N and a fixed
constant m ∈ GN , we consider the programs P and Q defined in Figure 6.12.

P ==
let z ← fun(uniform, |GN |)
in group exp(gN , z, |GN |)

Q ==
let z ← fun(uniform, |GN |)
in group mult(m, group exp(gN , z, |GN |), |GN |)

Figure 6.12: Definition of P and Q

We shall assume from now on:

Assumption 6.19. Let P |σ|η be a program state. We denote by µ
(n)
P the distribution over

program states stepn(P |σ|η), that is, the distribution of P |σ|η after n steps. Assume that

for a natural number j, the distribution µ
(j)
P is of the form

µ
(j)
P (A) =

1

l
|
{

v ∈ [0, . . . , l − 1] : group exp(gN , v, l)|σ|η ∈ A
}

| (A ∈ ΣPS),

where gN is a generator of Gn and l = |GN |. Then we assume that there is a natural

number k such that the distribution µ
(j+k)
P , i.e. the distribution of P |σ|η after j + k steps,

has the form

µ
(j+k)
P (A) =

1

l
|
{

v ∈ [0, . . . , l − 1] : gv
N |σ|η ∈ A

}

| (A ∈ ΣPS).

Similarly, if the distribution µ
(j)
P has the form

µ
(j)
P (A) =

1

l
|
{

v ∈ [0, . . . , l − 1] : group mult(m, group exp(gN , v, l), l)|σ|η ∈ A
}

|

for A ∈ ΣPS , where gN is a generator of Gn, l = |GN | and m is an element of Gn, we
assume that there is a natural number k′ such that the distribution after j + k′ steps has
the form

µ
(j+k′)
P (A) =

1

l
|
{

v ∈ [0, . . . , l − 1] : mgv
N |σ|η ∈ A

}

| (A ∈ ΣPS).

That is, we assume that under the given conditions, the program group exp always com-
putes the value gv

N in a finite number of steps k. This means that the program group exp
always performs the same number of steps for values from the specified domains, i.e. it
always has a “worst-case” running time. The argument for the program group mult is
analogous. This assumption is not unrealistic, as we could always perform a number of
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6.3 A Transformation based on Denotational Equivalence

skips (i.e. steps which do not do anything) in the cases where the algorithms perform bet-
ter, so that they always performs the same number of steps. This assumption eases the
proof a lot.

Recall from Section 3.4.2 that the denotation of a program is a sub-probability measure
µ on the set of program states PS, which assumes the value 0 for sets A ∈ ΣPS which do
not contain elements of VS. Finally, recall from section Notations that GN |σ|η, for fixed
σ and η denotes the set {x|σ|η : x ∈ GN}. We then have:

Theorem 6.20. For a fixed N , let P and Q be the programs defined in Figure 6.12, and
let σ and η be a store and an event list, respectively. Let µ be the uniform distribution on
program states with carrier GN |σ|η (i.e. µ(A) = |A ∩ (GN |σ|η)|/|GN | for A ∈ ΣPS , see
Definition 3.23). Then:

JP |σ|ηK = JQ|σ|ηK = µ.

Proof. For the proof we calculate the denotations of P |σ|η and Q|σ|η by following the very

definition of a denotation of a program state. Let µ
(n)
P := stepn(P |σ|η). Recall, that by

Definition 3.18 we have

µ
(0)
P = step0(P |σ|η) = δP |σ|η

µ
(n+1)
P = stepn+1(P |σ|η) = (step ◦ stepn)(P |σ|η)

= step · (stepn(P |σ|η)) = step · µ
(n)
P .

Using Definition 3.16 of the application of a kernel to a measure we can rewrite the second
formula in the form

µ
(n+1)
P (A) =

∫

PS

step(x)(A) dµ
(n)
P (x) (A ∈ ΣPS)

We calculate µ
(n)
P (A). First of all, we deduce from the preceding formula and the formula

for µ
(0)
P (A) that

µ
(1)
P (A) =

∫

PS

step(x)(A) dδP |σ|η(x) = step(P |σ|η)(A).

The second identity follows from equation 3.1. We shall show in Lemma 6.21 below that

step(P |σ|η)(A) =
1

l
|A ∩

{(

λz.group exp(gN , z, l)
)

v|σ|η : v ∈ [0, . . . , l − 1]
}

|, (6.1)

where l = |GN |. Hence we obtain

µ
(2)
P (A) =

∫

PS

step(x)(A) d step(P |σ|η)(x)

=
1

l

∑

v∈[0,...,l−1]

step
(

(λz.group exp(gN , z, l))v|σ|η
)

(A),
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where the second identity follows again from equation 3.1. By the definition of step and
by the reduction rule Appl from Definition 3.14, we have

step
(

(λz.group exp(gN , z, l))v|σ|η
)

= δRv |σ|η,

where we use Rv := group exp(gN , v, l). Therefore the last formula for µ
(2)
P (A) becomes

µ
(2)
P (A) =

1

l

∑

v∈[0,...,l−1]

δRv |σ|η(A) =
1

l
|
{

v ∈ [0, . . . , l − 1] : Rv|σ|η ∈ A
}

|.

By Assumption 6.19 we obtain

µ
(2+k)
P (A) =

1

l
|
{

v ∈ [0, . . . , l − 1] : gv
N |σ|η ∈ A

}

|

=
1

l
|{g ∈ GN : g|σ|η ∈ A}|

=
1

l
|A ∩

(

GN |σ|η
)

|

= µ(A).

But then

µ
(3+k)
P (A) =

∫

PS

step(x)(A) d µ(x) =
1

l

∑

x∈GN |σ|η

step(x)(A)

=
1

l

∑

x∈GN |σ|η

δx(A) =
1

l
|A ∩

(

GN |σ|η
)

| = µ(A).

Inductively we hence see that the sequence µ
(n)
P gets stationary for n > 2 + k. Summing

up we have

µ
(n)
P =











δP |σ|η if n = 0,

step(P |σ|η) if n = 1,

µ if n > 2 + k.

The denotations µ
(n)
P for 2 6 n < 2 + k are the intermediate distributions over program

states generated by the program group exp. Finally, JP |σ|ηK(A) = sup µ̄
(n)
P (A) (see 3.19),

where µ̄
(n)
P (A) := µ

(n)
P (A ∩ VS). Since, for n < 2 + k, the restrictions of µ̄

(n)
P to ΣVS are

identically zero we therefore find JP |σ|ηK = µ as claimed (here, we use that for 2 6 n < 2+k,
the intermediate steps generated by the program group exp are never value states).

The proof of JQ|σ|ηK = µ is analogous. Here, for calculating the measures µ
(n)
Q :=

stepn(Q|σ|η) we have to replace (6.1) by

step(Q|σ|η)(A)

=
1

l
|A ∩

{(

λz.group mult(m, group exp(gN , z, l), l)
)

v|σ|η : v ∈ [0, . . . , l − 1]
}

|.
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6.3 A Transformation based on Denotational Equivalence

(see Lemma 6.21). By a similar calculation as above (and the application of Assump-
tion 6.19) we then obtain

µ
(2+k′)
Q (A) =

1

l
|
{

v ∈ [0, . . . , l − 1] : mgv
N |σ|η ∈ A

}

|.

But if v runs through [0, . . . , l − 1] then mgv
N runs through GN , and therefore we obtain

here similarly µ
(2+k′)
Q (A) = 1

l
|A ∩

(

GN |σ|η
)

|. This proves the theorem.

Lemma 6.21. In Theorem 6.20 we used the following. Let ν1 be the uniform distribution
on program states with carrier

{(

λz.group exp(gN , z, l)
)

v|σ|η : v ∈ [0, . . . , l − 1]
}

where gN is a generator of GN and l = |GN |. Let ν2 be the uniform distribution on program
states with carrier

{(

λz.group mult(m, group exp(gN , z, l), l)
)

v|σ|η : v ∈ [0, . . . , l − 1]
}

where m is a value from GN . Then we have, respectively,

step(P |σ|η)(A) = ν1,

step(Q|σ|η)(A) = ν2.

Proof. We will show that

P |σ|η  ν1,

Q|σ|η  ν2.

The claim then follows by the definition of the sub-Markov kernel step. We define the
evaluation context

E[�] :=
(

λz.group exp(gN , z, l)
)

�.

According to the reduction rule Fun as in Definition 3.14 (reduction rules of the language),
we have

E[fun(uniform, l)]|σ|η  µ′ := g(uniform(l)),

where g : V0 → PS, g(x) = E[x]|σ|η. Thus by definition of g(µ) for a measure µ (see
Section 3.4.1) we have

µ′(B) = µl({v ∈ V0 : E[v]|σ|η ∈ B}),

where we use µl = uniform(l). We have to show that µ′ is the uniform distribution on
program states with carrier

{(

λz.group exp(gN , z, l)
)

v|σ|η : v ∈ [0, . . . , l − 1]
}

. Indeed we
have:

µ′(B) = µl({v ∈ V0 : E[v]|σ|η ∈ B})

=
1

l
|{v ∈ V0 : E[v]|σ|η ∈ B} ∩ [0, ..., l − 1]|

=
1

l
|{v ∈ [0, ..., l − 1] : E[v]|σ|η ∈ B}|

=
1

l
|{v ∈ [0, ..., l − 1] :

(

λz.group exp(gN , z, l)
)

v|σ|η ∈ B}|
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6 Program Transformations

The proof of the statement for Q is analogous: replace in the preceding proof the eval-
uation context E[�] by F [�] :=

(

λz.group mult(m, group exp(gN , z, l), l)
)

�. This proves
the lemma.

Note that here, we have only shown the denotational equivalence of the two programs
under the assumption that m is a value in GN . However, the games that we will consider
later will not in fact use such a value m. Instead, m will just be some free variable in the
term. In this case, it is not possible to conclude the observational equivalence of the two
programs. This is because when we consider all possible instantiations of the variable m
by quantifying over all list of values a which we use to close the term (see Definition 3.29
of CIU equivalence), then m will also be instantiated with values which are not elements
of GN . What we need here is an extended version of the CIU Theorem, which allows us
to impose certain invariants by restricting the list of values a to appropriate values.

Michael Backes, Matthias Berg and Dominique Unruh are currently working on such
a version of the CIU Theorem with invariants. For this proof, what one would have to
do is to impose the invariant that m is only instantiated with values which are elements
of GN . Then, one could use the above Theorem as a Lemma to conclude the observational
equivalence of the two programs under this invariant. However, since this would require
a huge expansion of the framework and the language, and since this version of the CIU
Theorem is still in an experimental phase, we do not go into further details here. Rather,
we will later on assume that the above programs are observationally equivalent under the
invariant that m only gets instantiated with elements of GN , which certainly holds true.
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7 The Proof of IND-CPA Security of
ElGamal

As outlined in Chapter 5, our goal is to show that for all efficient adversaries (A,A′), the two
games IND CPA1 ElGamal A A’ n and IND CPA2 ElGamal A A’ n are computationally
indistinguishable in n. The main goal of this section is to present the game transformations
this can be achieved with.

Roughly speaking, we will transform the first CPA game, within which we encrypt m1,
into a computationally indistinguishable program where m1 is not used any longer for the
calculation of the ciphertext. We will call this game RandomElGamalGame. To do this, we
will rely on the DDH assumption and use all of the transformations presented in Chapter 6.

By applying the same transformations to the second CPA game, we can see that this
game is also computationally indistinguishable from the game RandomElGamalGame. By
that we will be able to conclude that (under the DDH assumption) the first and the second
CPA game are computationally indistinguishable. Figure 7.1 shows a high-level overview

IND CPA1 ElGamal A A’ n IND CPA2 ElGamal A A’ n

ElGamalGameI A A’ n ElGamalGameII A A’ n

DDHxy ElGamalCPASub1 n DDHxy ElGamalCPASub2 n

DDHz ElGamalCPASub1 n DDHz ElGamalCPASub2 n

RandomElGamalGame A A’ n

≡obs

≡obs

≈indn

≡obs

≡obs

≡obs

≈indn

≡obs

Figure 7.1: High-level overview

of the transformations. Here, for reasons of space, we only give the names of the games,
but not all their definitions. The definitions of the games on the left-hand side are depicted
in the figures at the beginning of the next sections of this chapter, respectively. Indeed,
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7 The Proof of IND-CPA Security of ElGamal

to get from one game to the next, most often several transformations are needed, which
is why we call this overview high-level. The next sections describe respectively these high-
level transformations in detail. Furthermore here we note the following. Often, we will
apply a transformation which asserts the observational equivalence of two subterms of some
program term. By the compatibility of observational equivalence (see Theorem 3.36), we
then know that the two entire games are also observationally equivalent. Yet, because we
want to concentrate on other facts, we will not mention this each time. We note here once
and for all in this chapter that if two subterms are observationally equivalent, then so are
the whole terms.

As for the games on the right-hand side in Figure 7.1, the transformations are perfectly
analogous to those on the left-hand side, as the definitions of the games are analogous,
the only difference being that where we use m1 for encryption in the left games, we use
m2 in the right games. Hence, when we know how to perform the transformations for the
left-hand side, the right-hand side becomes trivial. For this reason, in this chapter we will
only consider the left-hand side.

7.1 IND CPA1 ElGamal to ElGamalGameI

Let us first get an intuitive notion of what we want to do in this section.
We start by parameterizing the game IND CPA1 (see Figure 5.1) with the ElGamal en-

cryption scheme, as defined in Figure 5.3. Recall that in Chapter 5 we have seen definitions
of:

1. the CPA game IND CPA1,

2. the ElGamal key generation algorithm ElGamalGen and

3. the ElGamal encryption algorithm ElGamalEnc.

Now, according to these definitions, the game IND CPA1 calls a key generation algorithm
encGen ES which it passes a security parameter, and expects a tuple (e, d) as return
value. Furthermore it calls an encryption algorithm encEnc ES, which it passes the tuple
(1n, e,m1), and expects some value c. Our definitions of ElGamalGen and ElGamalEnc
are defined such that they behave exactly in this way. Hence, we can substitute these
function calls with the definitions of ElGamalGen and ElGamalEnc. We obtain a well-
typed program.

In doing so, we get, loosely speaking, a “modularized” game where the calls of the key
generation and encryption algorithms are closed functions. In this section, our goal is to
transform this game into a more “monolithic” form which describes a CPA game using
the ElGamal encryption scheme, as we might have written it if we had defined this game
directly. We will call this game ElGamalGame1.

For our first transformation, we just apply the definitions of the key generation and en-
cryption algorithms to their arguments which corresponds to the transformation shown in
Figure 7.2. This transformation follows essentially by applying Theorem 6.5 (β-equivalence).
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7.1 IND CPA1 ElGamal to ElGamalGameI

IND CPA1 ElGamal A A’ n ==
let (e, d) ← :encGen ElGamal: 1n

(m1, m2, a) ← :A: (1n, e)
c ← :encEnc ElGamal: (1n, e, m1)

in :A’: (1n, m1, m2, a, e, c)

ElGamalGameI 0 A A’ n ==
let (e, d) ← let x ← fun(uniform, |〈gn〉|)

in (gx
n, x)

(m1, m2, a) ← :A: (1n, e)
c ← let y ← fun(uniform, |〈gn〉|)

in (gy
n, m1 × ey)

in :A’: (1n, m1, m2, a, e, c)

≡obs

Figure 7.2: Inserting definitions and applying arguments

Next, we want to integrate these subroutines into the main program. Thereby, we get a
more “intuitive” and readable form of a CPA game using ElGamal. Formally, we want to
make the following transformation.

ElGamalGameI 0 A A’ n ==
let (e, d) ← let x ← fun(uniform, |〈gn〉|)

in (gx
n, x)

(m1, m2, a) ← :A: (1n, e)
c ← let y ← fun(uniform, |〈gn〉|)

in (gy
n, m1 × ey)

in :A’: (1n, m1, m2, a, e, c)

ElGamalGameI A A’ n ==
let x ← fun(uniform, |〈gn〉|)

(e, d) ← (gx
n, x)

(m1, m2, a) ← :A: (1n, e)
y ← fun(uniform, |〈gn〉|)
c ← (gy

n, m1 × ey)
in :A’: (1n, m1, m2, a, e, c)

≡obs

Figure 7.3: Nesting chained applications

This transformation follows by applying Theorem 6.10 (nesting chained applications).
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7 The Proof of IND-CPA Security of ElGamal

7.2 ElGamalGameI to DDHxy

Recall that the proof of the IND-CPA security of ElGamal relies on the assumed hardness of
the DDH problem. Hence, on our way to transforming the game such that the computation
of the ciphertext is independent of m1, we expect to need this assumption. In Section 6.2.1,
we saw the associated program transformation that models the DDH assumption. In this
section, we are going to transform our program into such a form that it matches this
transformation, which we will then apply in the next section.

At first we are going to propagate the expression (e, d), that is, we are going to replace
every occurrence of e and d by the values we assigned to these variables, and eliminate the
assignment itself. Indeed, Theorem 6.7 (expression propagation) tells us that the following
transformation yields two observationally equivalent programs.

ElGamalGameI A A’ n ==
let x ← fun(uniform, |〈gn〉|)

(e, d) ← (gx
n, x)

(m1, m2, a) ← :A: (1n, e)
y ← fun(uniform, |〈gn〉|)
c ← (gy

n, m1 × ey)
in :A’: (1n, m1, m2, a, e, c)

ElGamalGameI 1.0 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

(m1, m2, a) ← :A: (1n, gx
n)

y ← fun(uniform, |〈gn〉|)
c ← (gy

n, m1 × (gx
n)y)

in :A’: (1n, m1, m2, a, gx
n, c)

≡obs

Figure 7.4: Expression propagation of (e, d)

Here on a low-level we additionally have to deal with uncurrying of pairs and simple
equivalences such as fst (p, v) ≡obs p, for a program p and a value v. This is a rather tech-
nical (but not difficult) part which concerns the pretty-print syntax, not further detailed
here. We now similarly propagate the ciphertext c.
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ElGamalGameI 1.0 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

(m1, m2, a) ← :A: (1n, gx
n)

y ← fun(uniform, |〈gn〉|)
c ← (gy

n, m1 × (gx
n)y)

in :A’: (1n, m1, m2, a, gx
n, c)

ElGamalGameI 1.1 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

(m1, m2, a) ← :A: (1n, gx
n)

y ← fun(uniform, |〈gn〉|)
in :A’: (1n, m1, m2, a, gx

n, g
y
n, m1 × (gx

n)y)

≡obs

Figure 7.5: Expression propagation of c

This transformation again holds by Theorem 6.7. Here, note that the parameters for A′

are internally represented as nested pairs. That is, an expression of the form (a, b, c) is
syntactic sugar for the expression (a, (b, c)). Thus, it is not necessary to put parentheses
around gy

n, m1 × (gx
n)y here, or in other words, these parentheses are implicit.

To apply the DDH assumption as explained in Section 6.2.1, the program should have
a form where first, two random values are selected uniformly at random from the range of
exponents of |Gn|, then the values (1n, gx, gy, (gx)y) are passed to a probabilistic polynomial-
time function. To bring our program into such a form, only two steps remain. First, we
are going to swap two lines such that our program selects the two random values for the
variables x and y at the very beginning of the execution.
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7 The Proof of IND-CPA Security of ElGamal

ElGamalGameI 1.1 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

(m1, m2, a) ← :A: (1n, gx
n)

y ← fun(uniform, |〈gn〉|)
in :A’: (1n, m1, m2, a, gx

n, g
y
n, m1 × (gx

n)y)

ElGamalGameI 1.2 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
in :A’: (1n, m1, m2, a, gx

n, g
y
n, m1 × (gx

n)y)

≡obs

Figure 7.6: Swapping lines

This transformation is valid by Theorem 6.17 (line swapping). Second, we need to ab-
stract the remaining of our program into a closed, probabilistic polynomial-time function
that will act as the decider. Since we will need it several times, for the sake of readabil-
ity we define it here once, and will only refer to it by name from then on. We call it
ElGamalCPASub1.

λ (1n, gx, gy, gxy). let (m1, m2, a) ← :A: (1n, gx)
in :A’: (1n, m1, m2, a, gx, gy, m1 × gxy)

Figure 7.7: Definition of ElGamalCPASub1

Observe that this function corresponds indeed to the last two lines of the previous game,
namely ElGamalGameI 1.2, except that all occurrences of the expressions gx, gy and (gx)y

have been replaced by the variables gx, gy and gxy, which are bound at the beginning of
this function. In fact, the term ElGamalCPASub1 (1n, gx, gy, (gx)y) is β-equivalent to
these last two lines. Hence, we can perform the following transformation using Theorem 6.5
(β-equivalence).
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ElGamalGameI 1.2 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
in :A’: (1n, m1, m2, a, gx

n, g
y
n, m1 × (gx

n)y)

DDHxy ElGamalCPASub1 n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
in :ElGamalCPASub1: (1n, gx

n, g
y
n, (gx

n)y)

≡obs

Figure 7.8: The IND CPA1 ElGamal game as DDH subroutine

A few things should be mentioned here. First, the reason why we call this function
ElGamalCPASub1 is because it acts as a “subroutine” for the DDH game which implements
the first CPA game for ElGamal. We append a trailing “1” to make it clear that the message
m1 is being encrypted here. In contrast, if we started with IND CPA2, we would get another
function ElGamalCPASub2. The only difference would be that the last parameter for A’
was m2 × gxy instead of m1 × gxy.

Second, to apply the DDH assumption we required that the decider be a closed, proba-
bilistic polynomial-time function. The function ElGamalCPASub1 is indeed closed. The
variables A and A′ are not variables bound in the context, but rather they are parameters
for the game itself. That is, they are treated as constants within the term. Hence, in the
sense of the language, the function is closed. It is also probabilistic polynomial-time, since
we required of the functions A and A′ that they also be probabilistic polynomial-time.

7.3 DDHxy to DDHz

Our next transformation is based on the assumed hardness of the DDH problem. Indeed,
at this point we can apply Assumption 6.18. Our program has exactly the required form.
Furthermore, as we already observed, the condition that ElGamalCPASub1 be a closed,
probabilistic polynomial-time function is also fulfilled. Thus, ElGamalCPASub1 just acts
as a probabilistic polynomial-time decider for the DDH game.
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DDHxy ElGamalCPASub1 n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
in :ElGamalCPASub1: (1n, gx

n, g
y
n, (gx

n)y)

DDHz ElGamalCPASub1 n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
z ← fun(uniform, |〈gn〉|)

in :ElGamalCPASub1: (1n, gx
n, g

y
n, gz

n)

≈indn

Figure 7.9: Application of the DDH assumption

This transformation is special in two ways. First, it is justified by the relation of com-
putational indistinguishability, while all our other transformations are based on the obser-
vational equivalence. Since computational indistinguishability is a coarser relation than
observational equivalence (cf. Section 3.6.4), this means that at the end, we will only be
able to state that our initial and final games, namely IND CPA1 and IND CPA2 (with the
appropriate parameters), are computationally indistinguishable. It is not surprising that
this is the case. Indeed, we cannot show that these two games are observationally equiva-
lent, since this would imply that ElGamal would be information-theoretically secure, which
it is not. Observational equivalence between such two games is a very strong statement
that is only fulfilled by encryption schemes like the one-time pad.

Second, this transformation is only justified by an assumption, namely the DDH assump-
tion. We do not show it. We know that this assumption is not true in general (i.e., for
any cyclic group), but the assumption just says that we work with some sequence of cyclic
groups such that the games are computationally indistinguishable. If someone discovered
a solution for the DDH problem in general, the IND CPA security of ElGamal would break
down. Furthermore, since this would also imply that this transformation is not valid, this
proof would rely on a false assumption and thus would not be sensible. This is what we
would expect, since we know that ElGamal yields indistinguishable encryptions only under
the DDH assumption.

7.4 DDHz to RandomElGamalGame

We have applied the DDH assumption to our program. Now, it seems pretty clear that no
adversary A′ could discern which message, m1 or m2, we used for encryption. It gets the
value m1 × gz

n as a parameter, but since z is sampled uniformly at random from the set of
exponents [0, . . . , |Gn| − 1], the value gz

n is distributed uniformly at random in the cyclic
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group Gn. Hence, so is m1 × gz
n, if m1 is some variable bound to a value in Gn, which is a

restriction that we imposed on the adversary A.
To show this, we would like to transform this game into an observationally equivalent

game where m1 is not even used for the encryption any more, i.e. where, instead of comput-
ing the value m1 × gz

n, we just compute gz
n. Since both look like values sampled uniformly

at random from Gn to any outside observer who does not know z, intuitively this should
not make any difference. Indeed, the variable z is only used once in the computation of
the ciphertext, and nowhere else. In particular, the functions A and A′ are closed and
thus cannot access z. Furthermore, since we want to keep all of our transformations as
small and as general as possible, we will now do the following. First, in several steps, we
will transform our game such that a subterm will look like the program which we saw in
Section 6.3.1. We will then argue that these two programs are observationally equivalent
under a certain invariant, namely that m1 only gets instantiated with values in Gn.

First, we just “reintegrate” the function ElGamalCPASub1 back into the main program.
This step is analogous to the last step before we applied the DDH assumption, but in the
other direction. It is valid by Theorem 6.5 (β-equivalence).

DDHz ElGamalCPASub1 n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
z ← fun(uniform, |〈gn〉|)

in :ElGamalCPASub1: (1n, gx
n, g

y
n, gz

n)

ElGamalGameI 2.0 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
z ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
in :A’: (1n, m1, m2, a, gx

n, g
y
n, m1 × gz

n)

≡obs

Figure 7.10: Reintegrating the DDH subroutine

To argue about the value m1 × gz
n, we first use expression subsumption to introduce a

new, fresh variable c′ that is assigned the value m1× gz
n, and we use this variable whenever

we encounter the value m1 × gz
n in the remaining of the program. The validity of this

transformation follows from Theorem 6.7 (expression propagation) and is explained in
more detail in Section 6.1.3 (expression subsumption). Note that the name c′ is arbitrary
here, since we are actually dealing with nameless terms. The reason why we choose this
name is that it matches our intuition that this variable corresponds to the second part of
the ciphertext c = (i, c′).
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ElGamalGameI 2.0 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
z ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
in :A’: (1n, m1, m2, a, gx

n, g
y
n, m1 × gz

n)

ElGamalGameI 2.1 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
z ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
c′ ← m1 × gz

n

in :A’: (1n, m1, m2, a, gx
n, g

y
n, c′)

≡obs

Figure 7.11: Expression subsumption of m1 × gz
n

We observe that the reason why the expression m1 × gz
n looks like a value sampled

uniformly at random from Gn is twofold. First, m1 is a variable bound to a value in Gn,
as it is bound to the λ which corresponds to the return value of A. But we required in
Section 5.4 that A be such that the values m1 and m2 which it returns are values in Gn.
Second, the value gz

n is distributed uniformly at random in Gn. Ultimately, this is the case
because z is a value distributed uniformly at random in [0, . . . , |Gn|−1], the set of exponents
of Gn. Hence the line that samples z from [0, . . . , |Gn|−1] is, intuitively, important to make
a statement about the value m1 × gz

n. We swap two lines in our program to bring these
two lines next to each other. The validity of this transformation follows by Theorem 6.17
(line swapping).
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ElGamalGameI 2.1 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
z ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
c′ ← m1 × gz

n

in :A’: (1n, m1, m2, a, gx
n, g

y
n, c′)

ElGamalGameI 2.2 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
z ← fun(uniform, |〈gn〉|)
c′ ← m1 × gz

n

in :A’: (1n, m1, m2, a, gx
n, g

y
n, c′)

≡obs

Figure 7.12: Swapping lines

Now, only one step remains to obtain a form which matches the program discussed in
Section 6.3.1. We are going to chain the nested let construct of the variable z into the
computation of c′. We refer to this transformation as chaining nested applications, and its
validity holds by Theorem 6.10. The condition that z is not used in the remaining of the
program is fulfilled. In the new form of the program, this becomes obvious.
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ElGamalGameI 2.2 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
z ← fun(uniform, |〈gn〉|)
c′ ← m1 × gz

n

in :A’: (1n, m1, m2, a, gx
n, g

y
n, c′)

ElGamalGameI 2.3 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
c′ ← let z ← fun(uniform, |〈gn〉|)

in m1 × gz
n

in :A’: (1n, m1, m2, a, gx
n, g

y
n, c′)

≡obs

Figure 7.13: Chaining a nested application

Finally, we have the program in the form that we want it in. Recall that we showed in
Theorem 6.20 that if m1 is a value in Gn, then the two highlighted subterms in Figure 7.14
are denotationally equivalent. Since the function g and the security parameter n are
regarded as constants within the program term, and the variable z is bound, the terms
would be closed, and hence, observationally equivalent. However, here m1 is not a value
in Gn, but rather a free variable bound by the context. For this reason, it is impossible to
show the observational equivalence of the two highlighted subterms, simply because it does
not hold true. This is because to show the observational equivalence of two programs, we
have to consider all possible instantiations of free variables. Here in particular we have to
consider all possible instantiations of the variable m1. But the observational equivalence
only holds true if we instantiate m1 only with values that are elements of Gn, which is
indeed the case here as we required this of A. As discussed in Section 6.3.1, here we need
an extended version of the CIU Theorem, which allows us to impose certain invariants.
More precisely, here we need the invariant that m1 only gets instantiated with values
from Gn. As mentioned in said section, such an extended version of the CIU Theorem
is being worked on at the chair of Michael Backes. Here, we just assume that under this
invariant, the two program terms are observationally equivalent. We write ≡INV

obs to denote
this kind of equivalence. By this, we can eliminate the multiplication with the constant
m1 in the computation of c′.
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ElGamalGameI 2.3 A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
c′ ← let z ← fun(uniform, |〈gn〉|)

in m1 × gz
n

in :A’: (1n, m1, m2, a, gx
n, g

y
n, c′)

RandomElGamalGame A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
c′ ← let z ← fun(uniform, |〈gn〉|)

in gz
n

in :A’: (1n, m1, m2, a, gx
n, g

y
n, c′)

≡INV
obs

Figure 7.14: Multiplying with random elements in cyclic groups

This was the last transformation, and we are done. We have transformed the initial game
into a game where m1 is not even used in the computation of the ciphertext anymore. To do
this we had to rely on the DDH assumption, which stated that one of our transformations
involved two programs that are (assumed to be) computationally indistinguishable.
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7.5 Finishing the Proof

By looking at all the transformations described in this chapter, it becomes clear that we
can perform the very same steps on the program IND CPA2 ElGamal A A’ n. The dif-
ference is that we would encrypt the message m2 where in the games described in this
chapter we encrypted m1. Hence we could get rid of this message in the computation of
the ciphertext in the same manner as we did for m1. Thus, both of the games IND CPA1
ElGamal A A’ n and IND CPA2 ElGamal A A’ n are computationally indistinguishable
from RandomElGamalGame A A’ n. By the transitivity of computational indistinguisha-
bility (see Theorem 3.37), we conclude that IND CPA1 ElGamal A A’ n and IND CPA2
ElGamal A A’ n are also computationally indistinguishable from each other, which is what
we wanted to show. The following figure clarifies this idea.

IND CPA1 ElGamal A A’ n IND CPA2 ElGamal A A’ n

RandomElGamalGame A A’ n ==
let x ← fun(uniform, |〈gn〉|)

y ← fun(uniform, |〈gn〉|)
(m1, m2, a) ← :A: (1n, gx

n)
c′ ← let z ← fun(uniform, |〈gn〉|)

in gz
n

in :A’: (1n, m1, m2, a, gx
n, g

y
n, c′)

≈indn

≈indn
≈indn

Figure 7.15: Result: IND CPA1 ElGamal A A’ n ≈indn
IND CPA2 ElGamal A A’ n
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As discussed in Section 5.1, the fact that the two CPA games are computationally indistin-
guishable from each other yields the conclusion that the ElGamal encryption scheme has
indistinguishable encryptions under chosen-plaintext attack assuming the DDH problem is
hard in certain cyclic groups, which was the main goal of this thesis. We learned about the
cryptographic language that has been implemented on top of Isabelle/HOL, how to for-
malize program relations written in this language, and made several important properties
of these relations explicit. We recalled some basic cryptographic definitions and showed
how to formalize these definitions in the language. We formalized several important and
useful game transformations and proved their validity. Finally we showed how to transform
the CPA games for ElGamal to prove their computational indistinguishability under the
DDH assumption, and we explained how and why these transformations are valid and on
which program relations they were based. This thesis demonstrates the usefulness of the
language to model cryptographic constructions, as well as the ability to formally state and
prove game-based transformations. It was the first application of this new language to a
well-known real-world encryption scheme and hopefully will serve as a base for many more
such applications.

Future Work

This thesis describes how to verify the security of the ElGamal encryption scheme in our
new probabilistic λ-calculus for cryptographic proofs. This language has been implemented
on top of the proof assistant Isabelle/HOL, and clearly the next step would be to prove
all the statements of this thesis with it. This is a challenging task, albeit a lot of work has
already been done. The language, the special operators and the relations we considered in
Chapter 3 have already been defined in Isabelle/HOL. However some of the properties, like
the transitivity of computational indistinguishability or the relation between observational
equivalence and computational indistinguishability still have to be made explicit. While
this may be less difficult, what should prove to be quite challenging is to verify all the
game transformations from Chapter 6 in Isabelle/HOL. For instance, in the case of line
swapping, while the result that L-renaming equivalence implies observational equivalence
has already been performed on paper, it has not yet been shown in Isabelle/HOL. The
expression propagation uses a pretty involved proof too that may be tedious to verify in
a proof assistant. The proof for the multiplication with random elements in cyclic proofs
will also be difficult, especially as the measure theory which is used (see [21]) does not
yet support such complex calculations, so it would need to be extended first. Furthermore
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the observational equivalence with invariants would have to be implemented. Then the
formalizations of the games from Chapter 5 would have to be defined, and the game trans-
formations from Chapter 7 would have to be verified. This also involves intricate technical
details. For instance, proving that the games are indeed all probabilistic-polynomial time
(to reason about computational indistinguishability) is hard to verify formally, and for the
time being would first have to be used as an additional assumption.

Thus, a lot of work remains to do, but already a lot of significant steps have been
achieved. Using a proof assistant can increase our trust in proofs, but some extra effort
is involved. A difficulty in designing such a framework is to design it in such a way as to
make this extra effort not exceedingly cumbersome. For this, it is helpful to have a huge
database of small lemmas which take care of many of the technical details, an elaborate
theory of program equivalences, and many transformations that can be reused over and
over. The research on this field is an interesting and state-of-the-art topic, and it will be
fascinating to see what future developments are awaiting us.
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[11] Judicaël Courant, Marion Daubignard, Cristian Ene, Pascal Lafourcade, and Yassine
Lakhnech. Towards automated proofs for asymmetric encryption schemes in the ran-
dom oracle model. In CCS ’08: Proceedings of the 15th ACM conference on Computer
and communications security, pages 371–380, New York, NY, USA, 2008. ACM.

79

http://www.infsec.cs.uni-sb.de/teaching/SS08/Cryptography/


References

[12] Jonathan Driedger. Formalization of Game-Transformations, Jan 2010. Bachelor’s
Thesis.

[13] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18,
New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[14] Vladimir Gapeyev, Michael Y. Levin, and Benjamin C. Pierce. Recursive subtyping
revealed: (functional pearl). In ICFP ’00: Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming, pages 221–231, New York, NY,
USA, 2000. ACM.

[15] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, New York, NY, USA, 2000.

[16] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 2004.

[17] Shai Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology
ePrint Archive, Report 2005/181, 2005. http://eprint.iacr.org/.

[18] Paul R. Halmos. Measure theory. Springer-Verlag New York, Inc., New York, NY,
USA, 1978. Volume 18 of Graduate Texts in Mathematics.

[19] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[20] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA,
USA, 2002.

[21] Stefan Richter. Formalizing integration theory, with an application to probabilistic
algorithms, 2003.

[22] Gert Smolka. Programmierung – eine Einführung in die Informatik mit Standard ML.
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