
UNIVERSITAS

S
A

R A V I E N S

I S

Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science
Information Security and Cryptography Group

Master’s Thesis

Generic Access Control for
Extensible Web Applications within
the SAFE Activation Framework

submitted by

Florian Michael Schröder

on December 4, 2012

Supervisor:
Prof. Dr. Michael Backes

Advisor:
Raphael M. Reischuk, Ph.D. cand.

Reviewers:
Prof. Dr. Michael Backes

Prof. Johannes Gehrke, Ph.D.

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwen-
det habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Ver-
sionen in die Bibliothek der Informatik aufgenommen und damit veröffentlicht
wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken,
Datum/Date Unterschrift/Signature

iii

Acknowledgements

Writing this thesis would not have been possible without the support that I
have received from many people.

In the first place, great thanks go to my supervisor Professor Michael Backes
for giving me the kind opportunity to write this thesis in the inspiring working
atmosphere of the Information Security and Cryptography Group.

I would like to extend this thanks to my second reviewer, Professor Johannes
Gehrke. He made himself available for numerous discussions, from which many
ideas emerged. His profound input regarding this thesis and further research
challenges was always of great value to me and is much appreciated.

Special thanks go to my advisor, Raphael Reischuk, whose excellent guidance
made this thesis actually possible. I owe him manifold insights and the great
opportunity to contribute to a particular interesting research field. Due to his
comprehensive assistance, I was very fortunate to have Raphael as my advisor.

Furthermore, I am indebted to my fellow friends Bernd and Martin, who sup-
ported and encouraged me throughout my whole studies.

Finally, I owe my deepest gratitude to my dearest father, mother, and sister for
their care and love.

v

Abstract

In times of massive and still increasing use of online resources, Rich Internet
Applications are considered of high importance. In particular, recent Web ap-
plication trends strive towards so-called mashup applications, in which multiple
users interact with multiple disjoint software components.

These novel kinds of applications introduce very specific demands on access
control : As software components within the overall application are possibly
contributed by third-parties, it is not sufficient to implement access control on a
per-user basis – instead, data access has to be restricted additionally according
to components.

Developed at Saarland University and Cornell University, the SAFE framework
addresses the common pattern of mashup Web applications. By this means,
SAFE applications are composed of functional self-contained units. SAFE, how-
ever, lacks a built-in user management mechanism as well as a stringent access
control abstraction with respect to both users and (potentially untrusted) soft-
ware components.

In this thesis, we develop a novel access control mechanism that complies with
the demands of contemporary Web environments. In particular, we take account
for a generic notion of access control in the SAFE environment, thereby not
leaving the enforcement of access control to possibly untrusted components. In
order to show the feasibility of our approach, we extend the SAFE framework
with a new component-based data model that corresponds to our findings.

vii

Contents

1 Introduction 1

2 The SAFE Framework 3
2.1 The Declarative Modeling Language SFW 3
2.2 F-units . 4
2.3 The Centralized Reference Monitor (CRM) 6
2.4 Access Control . 6
2.5 Drawbacks . 6

3 Security Principles – from a Requirements Perspective 9
3.1 Attacker Model . 9
3.2 Assumption-based Mitigations . 12

3.2.1 Sandbox Assumption . 12
3.2.2 Query Structure Assumption 13
3.2.3 Query Data Assumption 13

3.3 Generic Access Control Abstraction 14

4 A Novel Access Control Approach 17
4.1 Owner Invariant . 17
4.2 Query Sandbox . 19

5 Data Sharing – the Wiring Methodology 21
5.1 Input Tables and Output Tables 21
5.2 Data Consistency via Foreign Keys 23
5.3 Presentation Consistency via Updates 26

6 Data Invariants 29
6.1 Generic Invariants . 29
6.2 Output Table Invariants . 33

7 Implementation 37
7.1 Session Management . 37
7.2 F-unit Integration Overview . 40
7.3 Wiring . 47
7.4 Use Case Application . 48

8 Evaluation 53
8.1 Model Instantiation . 53

ix

8.2 Soundness . 56

9 Future Work 59
9.1 Advanced Owner Management 59
9.2 F-unit Sandboxing . 59
9.3 Securing the Session ID . 60
9.4 Mitigating Cross-Site Request Forgery 62

10 Summary & Conclusions 65

List of Figures 67

List of Listings 69

References 71

x

Chapter 1

Introduction

In times of massive and still increasing use of online resources, platform-inde-
pendent Rich Internet Applications (RIAs) are considered of high importance.
Called Web 2.0 in the consumer environment and Software as a Service (SaaS)
in the professional environment, these kinds of applications are often database-
driven and predominantly make high demands on their underlying technology.

In addition, recent Web application trends in which multiple users interact with
so-called mashup applications composed of multiple disjoint software compo-
nents introduce particular demands on access control : It is not sufficient to im-
plement access control on a per-user basis, as data access has to be additionally
restricted according to the particular software component. Such components are
possibly contributed by third-parties, which have to be considered untrusted.
Boundaries for both users and components have to be enforced centrally and
simultaneously – we cannot assume any component to securely and consistently
implement user-based access control for itself.

Access control modeled in the core of the Web application itself is a common
pattern, for the following reasons. Contemporary database engines include var-
ious user-management methods for the access to data and to the system as a
whole. Usually, the user management is only performed on a per-connection
basis, which requires a new connection whenever different privileges are desired.
Besides the lack of per-user queries, there is in general no dynamic row-based
access control that would consider the content of a particular record. A typical
Web application maintains a persistent database connection for performance
reasons with essentially universal permissions. The application itself is thus
responsible for tracking the user and for enforcing appropriate access control
policies.

Environments in which extensible and component-based Web applications can
be conveniently modeled are provided by Web application frameworks, one of
which is SAFE. The Safe Activation Framework for Extensibility is a framework
aiming for a unified handling of the common techniques largely used by today’s
RIAs, namely HTML, CSS, SQL, and JavaScript. SAFE is designed for a mod-
ularized structuring of the application into components, allowing for easy ex-
tensibility, e.g., by third-party customizations. The modularization is achieved

1

by dividing an application into semantically coherent features that are provided
by functional self-contained pieces of code, the so-called f-units. However, SAFE
lacks a user management mechanism as well as a stringent access control model
with respect to both users and f-units, which have to be considered potentially
malicious.

Despite the generally untrusted environment caused by the composition of po-
tentially malicious f-units, the design of SAFE comprises a central and trusted
entity. This entity is considered suitable in order to provide a generic and secure
interface for defining access control policies. Such policies should protect both
honest users and f-units from their dishonest counterparts by generally limiting
database access according to appropriate scopes. Furthermore, f-units should
be able to state additional policies as perceived by the developers – thereby
shifting the responsibility of access control logic to a lower layer orthogonal to
the business logic. With respect to crucial properties of modern RIAs, such as
modularity, customization, and extensibility, both types of access control poli-
cies should be flexible enough to support the ability of extending an application
in unforeseen directions.

Overview. In this thesis, we take account for a generic notion of access con-
trol in the SAFE environment. By this means, Chapter 2 outlines fundamental
concepts and the overall architecture of the SAFE framework. Common access
control aspects are reviewed in Chapter 3. Moreover, we introduce an attacker
model and derive the requirements of our particular scenario, according to a
generic access control model that comprises data separation between both users
and software components. In order to meet the derived requirements, Chapter 4
proposes a method that reliably establishes particular boundaries between users
and f-units on the database layer. Furthermore, Chapter 5 introduces interfaces
for well-defined data exchange allow for customizable information sharing and
collaboration. Chapter 6 proposes a flexible though convenient approach for
maintaining custom invariants on the datasets of a particular f-unit. The im-
plementation of the presented techniques and a showcase application are shown
in Chapter 7. In Chapter 8, we formalize our implemented access control ap-
proach and evaluate whether its semantics resembles the generic model stated
before. Chapter 9 discusses particular aspects that are considered for further
investigation. The retrospection in Chapter 10 concludes the thesis.

2

Chapter 2

The SAFE Framework

An increasing amount of software is developed for Web applications, which are
platform-independent and benefit from increased availability. One of the major
concepts for multi-tier Web application development is the combination of the
PHP, HTML, CSS, JavaScript, and MySQL techniques.

The diversity and purpose-oriented nature of the deployed techniques makes
feature-oriented programming difficult: Code reflecting the same functionality of
an application has to be coherently maintained at various locations and scopes.
Likewise, integration or modification of new functionality requires many code
locations to be touched. Each newly introduced feature has to be reflected
by the database layout, the PHP business logic, and the presentation layout
as formed by CSS and JavaScript. These common maintenance problems in
combination with security concerns limit the general innovation drive: As there
is a strong reservation against third parties accessing or even modifying the
application code, the integration of every new functionality or extension has to
be done and/or reviewed by one of the application’s main developers.

Besides the distributed nature of functionality, access control and user manage-
ment are often spread over the whole application’s business logic as well. While
a central point to define and review security policies would be desirable in gen-
eral, a generic access control layer usually comes with a lot of conceptional effort
and overhead.

Developed at Saarland University and Cornell University, the SAFE Activation
Framework for Extensibility [20] claims to encounter many of those challenges in
today’s Web application development. This chapter outlines the most important
aspects of SAFE.

2.1 The Declarative Modeling Language SFW

SAFE applications are implemented using a dedicated modeling language named
Secure FORWARD (SFW). By extending the HTML syntax, SFW provides ad-
ditional language primitives and shortcuts for common and re-occurring pro-

3

gramming patterns. While HTML in a .sfw source file basically remains un-
touched, SFW is interpreted by the SFW compiler sfwc and is translated to
corresponding PHP, JavaScript, and/or CSS code (Figure 2.1).

Figure 2.1: The SFW compiler sfwc translates SFW statements into
PHP code that runs in the application’s context.

As an example, Web applications often contain a substantial amount of con-
stant and context-independent code for dealing with database queries. For this
reason, SFW allows for direct database access, as presented in Listing 2.2 and
Listing 2.3. Additionally, SFW’s shortcuts contain abstractions for control flow,
database management, form handling, and variable expansion – a list of all fea-
tures can be found in the official SAFE user manual [19].� �
<form ...>

<select name="city">
<for query="SELECT postalcode AS pc, city AS name FROM cities ORDER BY city ASC">

<option value="$$pc">$$name</option >
</for>

</select >
<input ...>

</form >� �
Listing 2.2: A for loop in SFW that is embedded in HTML allows
for dynamic content generation using variable expansion for datasets
retrieved from the database.� �

<form >
<input type="text" name="name">
<input type="text" name="msg">
<input type="button" value="Send"

onclick="query:INSERT INTO messages SET msg=’$#msg’, name=’$#name’">
</form >� �

Listing 2.3: Seamless access to form values for embedded database
queries in SFW with the advantage of specifying objects and
corresponding event-driven code at the same location.

2.2 F-units

Due to the strong relationship between HTML and SFW, SFW inherits the hier-
archical character that comes with HTML or XML-related languages in general.
In HTML, the particular parts building up a whole page can be unambiguously
addressed via the Document Object Model (DOM). Figure 2.4 shows the hierar-
chical arrangement of HTML-defined elements according to the DOM, resulting
in a DOM tree.

SAFE addresses Web applications that predominantly show the common pat-
tern of providing various functionality on a single page – with a “clustered”

4

� �
<html >

...
<div id=’.A’>

<div id=’.A.B’>
<div id=’.A.B.D’></div >

</div >
<div id=’.A.C’>

<div id=’.A.C.E’></div >
<div id=’.A.C.F’></div >

</div >
</div >
...

</html >� �
Figure 2.4: A DOM tree as defined by HTML elements and its
schematic representation.

layout, as for example in Figure 2.5. Concerning HTML, the arrangement by
syntax often strongly conforms with the semantics of a page’s components. As
the inheritance of properties throughout the DOM is a fundamental concept in
JavaScript and CSS as well, even those additional parts can often be mapped
to a corresponding cluster of DOM elements. The hierarchy in syntax as rep-
resented by the DOM thus reflects the hierarchy in semantics as represented
by the functionality. All the code needed for a particular feature can hence be
subsumed within a single functional self-contained unit – a so-called f-unit.

Figure 2.5: Schematic showcase of a common application pattern with
clustered functionality.

F-units are structured according to the tree ordering as given by the DOM,
but with functionality-based granularity, which often can be directly derived
by semantic intuition. As for example in Figure 2.5, application components
such as images, menus, or searchbars can be represented by corresponding f-
units. Following the hierarchical programming model, an f-unit may invoke child
f-units that represent some sub-feature by an SFW <activate/> statement.
An activated f-unit may receive runtime arguments according to a particular
interface in order to define the concrete instance and/or the data to work on.

The approach of clustering an application’s code into self-contained f-units by
providing an interface and a hierarchy for major and minor prominent tasks sup-
ports both the reusability and modularity paradigms: Because of the partition-
ing into functionally distinct and the modularization of functionally dependent
pieces of code, f-units may be added, modified, or replaced in an transparent
way.

5

2.3 The Centralized Reference Monitor (CRM)

The Centralized Reference Monitor (CRM) is part of the so-called application
kernel. While the application kernel comprises the entire management code of
the SAFE framework in general, the CRM is responsible for dedicated tasks such
as the management of f-units and the maintenance of database connections. The
CRM connects the f-unit structure with the client who is interacting with the
application (cf. Figure 2.6). As the CRM is the only interface to the database,
the CRM forwards database queries on behalf of f-units.

Figure 2.6: The CRM delivers the application consisting of f-units to
the client’s browser and manages database connections.

The central monitoring of database accesses ensures that all persistently stored
information has to pass the CRM. In particular, the supervisor characteristics
makes the CRM ideally suited for use as a central authority that is capable to
enforce certain constraints on the behavior of an f-unit – i.e., to control access
to the database.

2.4 Access Control

The SAFE topology allows the CRM to exclusively inspect all database queries
that are issued by an f-unit. In order for the CRM to perform database access
control, appropriate scopes have to be stated for each f-unit, on which basis the
CRM may decide whether an access is considered permissive or not.

Each f-unit has to provide an interface that enumerates which columns of which
table the f-unit requests to read from and/or write to. Every incoming query
of this particular f-unit is hence parsed and restricted to the corresponding
interface.

2.5 Drawbacks

The possibility of reviewing interface files was introduced in order to reveal
unintended database access and thereby to assist the responsible application
developer who composes applications out of different f-units in estimating the
trustworthiness of a particular f-unit. However, this approach requires an f-unit

6

to know any accessed table and column in advance – with respect to extensibility
in unforeseen directions, an undesirable property.

Additionally, stateless database access control for basically untrusted f-units
on the basis of tables and columns is too coarse-grained in some scenarios.
Consider, for example, an f-unit that allows users of an application to publish
a personal profile. While the f-unit has to be granted virtually full access on all
columns of its particular profiles table, there is no need to grant access on all
rows: If connected to a particular user, neither the content of another user profile
must be readable per default, nor must it be available for write operations.

The particular demands on runtime flexibility, user management, and f-unit
monitoring suggest a revised access control approach, which will be discussed
throughout this thesis. The upcoming Chapter 3 derives the corresponding re-
quirements for a generic access control model more suitable to the SAFE scenario.

7

Chapter 3

Security Principles – from a
Requirements Perspective

Data-driven Web applications require user management and accounting of user
activity, mainly in order to enforce confidentiality and integrity properties: No
user should be able to read or modify data that affects other users without ex-
plicit affirmation. The reasoning about access control implies two preliminary
actions, namely, identification and authentication [23, pp. 135]. In common
terms, identification requires a username and authentication a shared secret
(e.g., a password) that proves the authoritative use of the username. We will
refer to both of these two steps using the term authentication only. The input of
the authentication process can be considered a compound value called creden-
tials. As the credentials may incorporate some password, we assume that they
inherit the properties of a shared secret: Only the user knows the credentials
[25, p. 20] that uniquely correspond to a user entity [25, pp. 4].

In order to identify and evaluate threats that might violate either one of the
access control properties, the upcoming section states an attacker model that
conforms to our particular setting. Subsequently, the attacker model will be
used to derive a corresponding access control approach.

3.1 Attacker Model

Applications implemented in SAFE involve three parties (cf. Figure 3.1): The
application kernel K mainly maintaining the database, the f-units F providing
the main functionality and user interaction, and the clients C. While the kernel
itself is considered a trusted entity, f-units and clients have to be treated as
potentially malicious. On this basis, the SAFE-specific attacker model focuses
on both f-units and clients as untrusted entities and presents corresponding
threat scenarios.

Before discussing the attacker model, we state three basic assumptions that are
anticipated to mitigate the threat scenarios derived afterwards.

9

Sandbox Assumption (SB): In order to prevent communication between f-
units possibly leading to unintended sharing of data or even of credentials,
the presence of a sandbox is assumed. The sandbox suppresses connec-
tions to destinations other than the application kernel, i.e., the CRM, and
thereby restricts the information flow of any f-unit towards the database.

Query Structure Assumption (QS): Queries reaching the CRM must be
validated against a well-defined set of acceptable queries with predefined
structures, thereby verifying that a client cannot execute self-crafted que-
ries. In other words, a client may only adapt certain values inside the
query, while preserving the structure of a query.

Query Data Assumption (QD): We assume that every query corresponds to
a particular request, which in turn contains reliable information about the
authenticated user (as discussed in Section 3.2). On the basis of this par-
ticular user information, we assume an access control mechanism to make
sure that only well-defined database access occurs. More precisely, the
scope of affected information should be limited according to the included
credentials and the database semantics.

Figure 3.1: Attacker model, stating three involved parties and nine
possible threat scenarios.

The applicability of these assumptions is investigated in Section 3.2. For now,
the classification according to nine possible threat scenarios, whose mitigation is
claimed to be covered by the SB, QS, and QD assumptions, is shown. Threats
originating from the application kernel (K⇀∗) will not be considered, since K
is not assumed to intentionally take part in any malicious activities.

C⇀F The client provides fake credentials, which are used by the f-unit to
perform its operation – thus fooling the f-unit into requesting or pro-
viding improper datasets from or to K. This attack is prevented by
the authenticity properties for credentials and thus covered by the QD
assumption.

C⇀C In preparation of providing faked credentials as in C⇀F , the client
tries to gain access to the credentials of another client. However, by
the definition of credentials and the implications of the QD assumption,
credential secrecy with respect to other clients is be assumed.

C⇀K The client accesses the kernel directly, circumventing possible f-unit
checks regarding query, credentials, and user input: Besides the cre-
dential properties and affected information checks as implied by the QD

10

assumption, unintended query modifications would be required in con-
tradiction to the QS assumption. In other words, no client can place
more potent queries as any f-unit is able to place on its own behalf.

F⇀C The f-unit abuses the credentials obtained from the client to perform
unintended actions (possibly including credential leakage): Even if the
f-unit’s actions are limited to database access (according to the SB as-
sumption), the f-unit can still leak information through the database.

By this means, consider an f-unit that is used for messaging purposes
and that maliciously sends a copy of each message to the developer’s
account. Both reading and sending of messages is covered by the f-
unit’s normal behavior and is therefore unsuspicious. Thus, preventing
information flow between instances is hardly possible, especially in a
framework that leaves as much freedom to the developer as SAFE does.

The messaging scenario shows that the functionality of an f-unit can
hardly be monitored automatically by means of database communica-
tion as a side-channel. In particular, supervision of f-unit behavior would
require a semantic scheme of the whole application logic. This leads to
the conclusion that potential leaking of own data or other unintended
properties have to be considered by the user before the f-unit in ques-
tion is used – in doubt, the decision should depend on the developer’s
“trustworthiness”.

The threatening implication of an f-unit’s uncontrolled behavior by cre-
dential abuse can at least be weakened by reducing the consequences:
Sensitive client data, e.g., credentials, should not be accessible to the
f-unit, but should bypass the f-unit’s logic. This hiding of credentials
prevents at least their leakage and the consequences beyond the scope of
the malicious f-unit. The approach of restricting credentials to the client
while hiding them from f-units is discussed in the implementational part
in Section 7.1.

Besides accessing the database, gathering information and/or triggering
events for the same client but in the context of a different f-unit is
possible by accessing the DOM, which the malicious f-unit is part of.
Scripting across f-unit boundaries should be comprised by the sandbox
assumption SB, though.

F⇀F In addition to f-unit interaction via the DOM, an f-unit could access
database content that is associated to another f-unit, without explicit
affirmation: In case of an inappropriate access control mechanism, un-
intended cross-f-unit data access is possible directly via the database.
However, the database semantics as considered by the QD assumption
should track an f-unit’s scope and thereby prevent non-authorized data
access across f-unit boundaries.

F⇀K The f-unit tries to access data not on behalf of the connected user: As-
sume for example, Alice is connected to an f-unit that maliciously up-
dates database columns that are considered private by Bob. This threat
is covered by the client-credential properties of the QD assumption and
the implied semantic access control, based on the particular credentials.

11

The presented threats yield a more precise outline of the requirements of the
particular assumptions. In the following Section 3.2, the presented assumptions
are reviewed and formalized. In the scope of a framework such as SAFE in which,
for the sake of extensibility, f-units may be provided by third-parties, we hence
focus on the needs of the C⇀K, F⇀K and F⇀F attacks.

3.2 Assumption-based Mitigations

This section discusses the assumptions stated in Section 3.1. For those assump-
tions, prerequisites are evaluated and implications are defined.

For an extensible framework, threats targeting at the application kernel or other
functional parts are most critical – i.e., C⇀K, F⇀K, and F⇀F are considered
most relevant. For this reason, the corresponding assumptions made for mitiga-
tion, i.e., the QS and QD assumptions, are in focus of the following discussion.

We refer to authentication as an abstract method ./c that takes user credentials
as input. The output called uid is only available if the authentication back-
end in use was able to map the verified input to that particular unique user
id. The successful authentication process by credentials is used to derive the
corresponding uid out of the request reqt at some time t:

reqt ` cred cred ./c uid

reqt ./r uid
(3.1)

The uid can be considered a context the request is bound to using the ./r
relation. The context of a request thus only relies on the verified credentials
that have been obtained via the extraction operator `. Section 7.1 on session
management discusses whether credentials have to be included for every request.

3.2.1 Sandbox Assumption

According to the SB assumption, we do not want f-units to exchange, sub-
mit, or receive potentially sensitive information through other channels but the
database, for which an appropriate sanitization mechanism in the CRM can be
deployed.

The most obvious way of information leakage by an f-unit is by sending data
to a foreign server that is out of the control of SAFE– which can easily be done
using AJAX, forms, iframes, or even by the parameters of an embedded image.
Furthermore, unintended local information flow between different f-units can
for example be established by accessing the DOM. Hence, the possibilities for
a subliminal channel are numerous and an approach claiming to cover them all
would nevertheless be prone to incompleteness.

A satisfiable solution would thus most likely be out of the scope of this thesis.
We thus leave a sandbox implementation for future work (Section 9.2). In
Section 3.1, however, the sandbox assumption SB was solely introduced for
F⇀C mitigation that strongly depends on the user’s impression of the f-unit’s
trustworthiness.

12

3.2.2 Query Structure Assumption

The QS assumption stated in Section 3.1 requires the CRM to accept a query
only from the f-unit that has previously defined the query’s structure and
thereby prevents a client from submitting self-crafted queries.

Similar to the concept of prepared statements in MySQL1, SAFE requires f-units
to register a prototype for each query. Every query prototype may contain
placeholders, such that the CRM can safely embed user-defined data, while
preserving the query’s overall structure. Technically, the execution of a query
query thus requires submitting a set of placeholder/data mappings q payload
along with a query identifier q id that indicates one of the previously registered
query prototypes. As the non-guessable identifier q id is only available in an
f-unit’s private code and/or in its delivered JavaScript payload where it is pro-
tected by the sandbox assumption (Section 3.2.1), it can be assumed that the
originating f-unit can be determined reliably.

Using the set of all available query prototypes, we hence assume the presence
of a mapping

(q id , q payload) 7→ (query , funit)

that returns the instantiated query query for a given query identifier q id with
appropriately embedded payload q payload . Using the extraction operator `,
further retrieval of the source f-unit or the query carried by the request reqt is
defined as:

reqt ` (q id , q payload) (q id , q payload) 7→ (query , funit)

reqt ` query reqt ./r funit
(3.2)

The presented approach of query retrieval ensures the integrity of a query’s
structure, as required by the assumption. In subsequent steps, the CRM can
hence inspect further properties of the query with respect to its associated f-unit,
as introduced by the QD assumption of the next section.

3.2.3 Query Data Assumption

According to the QD assumption, the scope of any provided or received infor-
mation has to comply with the uid the particular query is assigned to. However,
an f-unit may access the database on behalf of a client (F⇀K) – for now, re-
sponsibility lies solely at the f-unit in deciding which content may be accessed
within the connected client’s scope. Especially the presence of malicious f-units
suggests some constraint enforcement at lower layers – in contrast to hard-coded
security policies in the application or in the f-unit itself [15, 21].

In addition to enforcing query boundaries according to the uid , the scope of
a query has to be validated according to the originating f-unit as well. In
particular, mitigation of F⇀F and F⇀K requires a query to affect neither
clients nor f-units that are considered beyond the issuer’s responsibility.

As depicted in Figure 3.2, the CRM acting as monitoring instance has to derive
the allowed input and output data for the current uid and f-unit – and possibly

1http://dev.mysql.com/doc/refman/5.1/en/sql-syntax-prepared-statements.html

13

http://dev.mysql.com/doc/refman/5.1/en/sql-syntax-prepared-statements.html

Figure 3.2: Query processing topology

restrict access. By this means, Equation 3.1 and Equation 3.2 enable the CRM
to determine the origin of each encountered query with respect to both uid and
f-unit:

reqt ` queryt reqt ./r uid

queryt ./q uid

reqt ` queryt reqt ./r funit

queryt ./q funit
(3.3)

However, there is no clear intuition on the usage of this information in the scope
of query validation, yet. Because of the substantial impact on any access control,
major parts of this thesis will deal with concrete semantics and implementation
issues of a sanitization for both received queries and returned data – by referring
to the query/uid and query/f-unit mappings introduced in Equation 3.3.

3.3 Generic Access Control Abstraction

Traditional access control mechanisms consider the user assigned to a dataset in
order to accept or reject an operation on this particular dataset. By this means,
a trusted entity keeps track of ownerships that allow for enforcing appropri-
ate boundaries. This trusted entity can be the application kernel in SAFE or,
for example, the filesystem on a multi-user desktop computer, which prevents
unintended cross-user file access.

Likewise, there are approaches for enforcing boundaries across applications: A
sandbox prevents a particular application from accessing data in the scope of
another application residing in the same environment. Besides the notion of
f-units in the SAFE setting, a common multi-application scenario that suggests
to deploy such a sandbox is the encapsulation of application-specific data on
contemporary smartphones.

A common term in access control is the notion of a principal that usually refers
to a user within a system. Especially in the context of both multi-user and
multi-application scenarios, by a principal one can thus denote any first-class
object for which an access control policy may be applied. A principal can
hence be an authenticated user, an f-unit, an installed software component on
a smartphone, or a specific physical location around a company’s headquarters.
More specifically, we consider the n-dimensional universe Pn of principal classes

Pn := 〈P1, . . . ,Pn〉

that subsumes all instances the particular class Pi, e.g., users, f-units, or loca-
tions.

14

Furthermore, we define the data storage as set of all data entities D. Each such
entity is required to have a unique owner principal in each dimension, which
would be affected by any operation on the particular data entity. For each data
item d ∈ D, we define

affPi
: D → Pi

to represent the affected principal in dimension i. The affected principals may
be determined with arbitrary semantics, according to operation type, informa-
tion flow, inference prevention, etc. We thus stay as general as possible here
in order to permit a wide range of possible subsequent instantiations. For in-
stance, occurrences in WHERE clauses or timing information in side-channels can
be captured at particular demands.

In order to access data entities, a principal can issue a request r ∈ R. The set
of affected data entities of a particular request

affD : R → 2D

assumes the presence of a method that determines the scope of such a request.

As a basic principle, one wants to enable sharing between principals of the same
dimension, e.g., user Alice wants to share her favorite music files with user Bob.
We thus require a sharing function shPi

for each dimension Pi

shPi : Pi × Pi ×D → {0, 1}

to decide whether a sharing from one principal to another is defined for a specific
data entity.

Finally, the main access control policy decides whether a given request is valid
for all principals associated with a particular request (issuers):

req valid : R×P1 × . . .× Pn → {0, 1}

More specifically, a request is considered permissive if for each affected principal
pi, we have that either pi is the issuer itself, or pi has explicitly shared the
requested data with the actual issuer in its principal class.

req valid(r , p1 , . . . , pn) 7→ ∀d ∈ affD(r) :
n∧

i=1

affPi (d) = pi ∨ shPi (affPi (d), pi , d)
(3.4)

Given an extensible Web application, or in particular, the setting of SAFE,
consider the set of all users U and the set of all f-units F as an instantiation
of two different principal classes, such that P2 = 〈U ,F〉. If f-unit f ∈ F issues
a query (i.e., a request) q ∈ R on behalf of user u ∈ U , then q is considered
permissive if one of the following holds for any affected data entity d ∈ affD(q):

No sharing: affU (d) = u and affF (d) = f , i.e., the query would only access
data that is in the scope of both u and f .

Cross-user sharing: affU (d) = u′ for some u′ 6= u, affF (d) = f , and the user
u′ has shared the requested data with u, i.e., shU (u′, u, d).

15

Cross-f-unit sharing: affU (d) = u, affF (d) = f ′ for some f ′ 6= f , and the
f-unit f ′ has shared the requested data with f , i.e., shF (f ′, f, d).

Cross-user and cross-f-unit sharing: affU (d) = u′ for some u′ 6= u, affF (d)
= f ′ for some f ′ 6= f , and both the user u′ and the f-unit f ′ have shared
the requested data with f running on behalf of u, i.e., shU (u′, u, d) and
shF (f ′, f, d).

Upon reception of a query, knowledge of the originating user/f-unit, the affected
data entities, and the affected users/f-units is thus a crucial prerequisite in order
to restrict both users and f-units to their “own” data – except for well-defined
exceptions by means of sharing.

By Equation 3.3, queries can be mapped to their particular f-unit and the
currently connected user. The upcoming chapter considers the basic scenario in
which no sharing occurs and thus the extent of affected data entities is limited
to the current user’s and f-unit’s scope.

16

Chapter 4

A Novel Access Control
Approach

During the security analysis in Chapter 3, we introduced the need for a mech-
anism that ensures confidentiality and integrity of data on a per-user and per-
f-unit basis. Furthermore, both the associated uid and f-unit of a query can
be reliably determined for each request (and thus for each query) – allowing
the CRM to perform access control on the basis of ownerships, i.e., to enforce
appropriate boundaries for users and f-units.

Section 4.1 introduces the tracking of user information for each created dataset
(i.e., for each database row), which allows to limit upcoming operations on
this particular dataset to the specific user. Likewise, Section 4.2 introduces
a mandatory f-unit/database table mapping and thereby implements a well-
defined scope that defines permissive queries for a particular f-unit.

4.1 Owner Invariant

We will consider any data modification attempt as authorized only if the op-
eration either adds a new dataset with valid user information, or modifies (or
deletes) a dataset that was created on behalf of the user before. By this means,
we implement the separation in the dimension of users, as required by our access
control model. As this definition requires to keep track of the creating user and
the extent of each dataset, we require each dataset – more technically, each row
of a table – to hold an owner column.

We define the owner-preserving integrity invariant as transition constraints [4,
p. 14] on the basis of owner column values:

INSERT The owner field of the dataset to be written must match the authenti-
cated user the f-unit is currently connected to.

UPDATE The owner field of the dataset to be modified must match the authen-
ticated user the f-unit is currently connected to. In addition, the owner

17

column must not change due to the update operation.

DELETE The owner field of the dataset to be deleted must match the authenti-
cated user the f-unit is currently connected to.

We stress that the invariants mentioned above do only take the preservation of
metadata into account, i.e., only preserve the owner information of a dataset. In
particular, they do not provide any guarantee on the functionality of an f-unit
or any security constraints in general. However, the owner invariants ensure
accountability and strict access control for deletions.

For implementing the above requirements, the trigger concept provided by
MySQL is a suitable choice1. Before a particular operation takes place, a trigger
is able to inspect a column’s pending new and old value (where appropriate) by
the NEW or OLD pseudo-table, respectively. In addition, direct access to a column
value supersedes the need for parsing the query string and thus reduces the risk
for the check of being bypassed. In Listing 4.1, the UPDATE trigger ensures both
requirements of our stated invariant by raising an error if the value of the owner
column would either change or cannot be validated against the connected user.
The purpose and semantics of the function verify uid(), its arguments, and
the variable @uid are derived in the following.� �
CREATE TRIGGER tbl_upd_t BEFORE UPDATE ON tbl FOR EACH ROW CALL assert(

NEW.owner <=>OLD.owner AND NEW.owner <=>@uid AND verify_uid(’unit’, ’sk’)
);� �

Listing 4.1: MySQL trigger that will be executed before UPDATE

operations on the table tbl . Modifications of the owner column and
unauthorized modifications are generally prevented.

Although we have to represent many application-level users, an individual data-
base user for each application user is not considered feasible, as motivated earlier
– we thus have to use a shared connection with generic f-unit permissions. For a
trigger being able to verify our stated owner invariants, the uid for each query,
which is known at the CRM by Equation 3.3, must be made available to the
trigger in a flexible though authentic way. When relying on the fact that there
is a single connection per CRM and a single CRM per f-unit processing lifetime,
we assume a single connection per f-unit and user. This allows the usage of a
connection-specific MySQL session variable2 to pass the current uid along to
the trigger with each query. After establishing the connection to the database,
the CRM thus sets the following session variables, using the f-unit name unit ,
a secret key sk , and a cryptographic hash function H(·):

@uid := uid

@uid h := H(@uid | unit | sk)
(4.1)

Before the query takes effect, the verify uid() function in the trigger of List-
ing 4.1 is thus able to compare @uid h with the outcome of its own hash com-
putation using @uid. The included sk inside the hash of @uid h prevents an
f-unit from creating valid hashes for arbitrary users on its own, as the sk is only
available to the CRM and hard-coded in the trigger. Consequently, no f-unit

1http://dev.mysql.com/doc/refman/5.1/en/create-trigger.html
2http://dev.mysql.com/doc/refman/5.1/en/user-variables.html

18

http://dev.mysql.com/doc/refman/5.1/en/create-trigger.html
http://dev.mysql.com/doc/refman/5.1/en/user-variables.html

should be granted the TRIGGER or SUPER privileges3. The unit string ensures
that even in case the @uid h is leaked, the security impact is limited to the
scope of a particular f-unit and user.

For the sake of automatic database management, the developer may hence pro-
vide an funit.db file, which declares the tables the f-unit funit uses. The dec-
larations (cf. Listing 4.2) are parsed, validated, and interpreted in a dedicated
step during the integration process. Each table is forced to specify exactly one
column of the hereby introduced column type OWNER. This convention allows the
creation of appropriate triggers that verify this particular column against the
@uid variable that was set by the CRM prior in the connection – and thereby
enforce the invariants as specified above.�
LOCAL TABLE profiles (

uid OWNER PRIMARY ,
phone VARCHAR (50)
...

)�
�

LOCAL TABLE groups (
id AUTO PRIMARY ,
name TEXT ,
owner OWNER

) �
Listing 4.2: Defining OWNER columns for local tables such that
only own profiles or groups may be added, modified, or deleted.
(PRIMARY and AUTO denote shortcuts for MySQL’s PRIMARY KEY and
AUTO INCREMENT, respectively.)

4.2 Query Sandbox

Our implementation of the owner invariant uses f-unit-specific credentials and
thereby guarantees that f-units can only modify datasets of their associated
tables – which is, in fact, a desirable property. In order to clarify the semantics
of database integration in this regard, we explicitly assign tables to f-units and
prevent any cross-references. Moreover, this sandboxing approach explicitly
ensures integrity across f-unit boundaries and thus limits the impact of the
intents of a malicious f-unit. As we have to ensure global uniqueness in the table
namespace anyhow, we further clarify this f-unit/table relation by prefixing all
names of f-unit-associated tables with the f-unit name.

By using shared database credentials, MySQL table permissions cannot be
granted with f-unit granularity. We thus have to ensure that incoming queries
only access tables of their originating f-unit, either at runtime in the CRM or
statically upon integration. By this means, we turn the notion of a single, global
database into multiple, per-f-unit databases.

MySQL’s EXPLAIN statement4 allows for the inspection of accessed tables inside
a query. However, the inspection is limited to SELECT queries. Furthermore, a
query validation using EXPLAIN could easily be bypassed by hiding references to
foreign tables behind AS aliases to own tables, which are considered permissive.

3http://dev.mysql.com/doc/refman/5.1/en/show-triggers.html
4http://dev.mysql.com/doc/refman/5.1/en/explain.html

19

http://dev.mysql.com/doc/refman/5.1/en/show-triggers.html
http://dev.mysql.com/doc/refman/5.1/en/explain.html

A demonstration of this flaw5 for aliases in “explained” statements is shown in
Listing 4.3.� �
> EXPLAIN SELECT * FROM funit a tbl AS funit b tbl;
+----+-------------+----------+-...
| id | select_type | table |
+----+-------------+----------+-...
| 1 | SIMPLE | funit b tbl |
+----+-------------+----------+-...� �

Listing 4.3: While the statement would return the contents of a table
belonging to f-unit A, EXPLAIN reports the referenced table to be
belonging to f-unit B .

The CRM thus has to parse each query on its own in order to determine the
accessed tables and check for their permissibility according to the particular
f-unit.

We hence introduce the table prefixing, which prefixes the name of each table
with the name of its associated f-unit. For a convenient usage, we do not expose
the prefixing to the developer – instead, the CRM automatically replaces each
encountered table in the query by its prefixed version, such that each table can
be accessed in a query by the name it was defined in the .db-file. The table
prefixing prevents both name clashes and data access across f-unit borders and
thus implements our query sandbox.

Each f-unit has to authenticate itself at the CRM before being able to place
queries, the f-unit name can hence be determined reliably. The CRM can thus
prefix each received query on-the-fly with the f-unit name and is able to expose
a clean interface to the f-units and to their developers while completely hiding
the sandbox implementation. The security of this approach solely relies on the
robustness of the used table-reference recognition and replacing algorithm6.

Both the query sandbox and the owner invariant as introduced in Section 4.1
establish boundaries between principals of a particular dimension – for f-units
and users, respectively. If combined, both approaches thus represent the basic
concepts of our overall access control design.

5http://bugs.mysql.com/bug.php?id=24693
6The query parsing and table prefixing algorithm was provided during the work on this thesis
and is omitted.

20

http://bugs.mysql.com/bug.php?id=24693

Chapter 5

Data Sharing – the Wiring
Methodology

In the previous chapter, we introduced the concept of owner invariants, which
prevent a user from modifying datasets that were created on behalf of another
user. Furthermore, the query sandbox limits the scope of a query in the f-unit
dimension by enforcing queries to only refer to their particular f-unit’s tables.

However, due to limiting f-units to access only their associated tables, we consid-
erably lose flexibility, as cross-f-unit collaboration via the database is prevented
– in contradiction to the extensibility paradigm of SAFE. According to the no-
tion of sharing as introduced by our access control model in Section 3.3, we thus
need well-defined interfaces for exchanging data across f-unit boundaries, while
preserving our integrity and confidentiality constraints.

5.1 Input Tables and Output Tables

Figure 5.1: An f-unit defines an input table and an output table as
part of its interface for data exchange.

In order for an f-unit to expose and receive arbitrary data (cf. Figure 5.1), we
introduce the interface concept of input tables and output tables, which are stated
in the f-unit’s .db-file: Input tables provide a table-like signature for receiving
datasets, while output tables implement SELECT statements for providing such
datasets, allowing f-units to decide on their own, which data in which format
shall be exposed. For example in Listing 5.2, an f-unit providing groups exposes
each group with its owner, while a statistics f-unit can receive entities of various
types. The new keyword KEY, the key column, and the handling of duplicate
keys are introduced in the upcoming section and can be ignored for now.

21

�
INPUT TABLE stats (

key KEY
owner OWNER
type TINYTEXT

)�
�

OUTPUT TABLE allgroups =
SELECT id AS ‘key ‘,

owner ,
name

FROM groups �
Listing 5.2: Example: Defining input tables and output tables.

� �
<!-- Count all datasets of each particular type -->
<for query="SELECT count (*) AS cnt , type FROM stats GROUP BY type">

$$type: $$cnt
</for >
<!-- The same for datasets belonging to the current user -->
<for query="SELECT count (*) AS cnt , type FROM stats WHERE owner=’$%me’

GROUP BY type">
Your $$type: $$cnt

</for >� �
Listing 5.3: Example: Using an input table for statistics.

A major motivation behind input tables is to define an interface for semantically
coherent data, whose (not necessarily single) source is unknown in advance but
whose structure is defined by column names and the corresponding types in the
receiving f-unit. Since the representation of data in the providing f-unit does not
necessarily match the intended signature of the input tables, we do not want to
limit the power of an output table in collecting its information from other tables.
We thus allow arbitrary queries, which are automatically table-prefixed and are
thus restricted to the boundaries of the source f-unit. Implemented as a VIEW, an
output table’s signature (column names and types) can be determined reliably
after creation using MySQL’s information schema.columns table1. Together
with the input table definitions, we can provide full signatures of both input
tables and output tables to a new step of the f-unit integration process – the
wiring.

During the wiring, an input table schema can be matched to one ore more output
table schemata. Input tables are represented by an overall union that combines
queries over the involved output tables – an approach in data integration terms
usually referred to as global-as-view [10]. Each of those input table queries form
a schema matching, which returns the columns of the output table in the naming
and order as defined by the input table. Multiple schema-matched output tables
contributing to a single union of an input table can be seen in Figure 5.4. There
exist several schema matching techniques that could be used for automatically
deriving input/output table correspondences – these techniques are still prone
to mistakes, suggesting at least a human-aided approach [3]. However, we leave
further improvements of the wiring process between input tables and output
tables, such as an algorithm-aided schema matching, for future work.

When composing the overall application, the developer in charge selects the f-
units to be integrated. During the integration process, the developer is presented
the list of all input tables and output tables and may connect these table columns
after reviewing their types and semantics, as shown in Figure 5.5. A column-

1http://dev.mysql.com/doc/refman/5.1/en/columns-table.html

22

http://dev.mysql.com/doc/refman/5.1/en/columns-table.html

Figure 5.4: An input table of f-unit F4 consists of a union, which
multiple output tables are contributing to. Each output table’s schema
is mapped to the requirements of the input table, as defined by the
wiring.

Figure 5.5: GUI screenshot, showing the wiring of the input table and
the output table of Listing 5.2 before usage in Listing 5.3.

wise mapping of the tables in Listing 5.2 could hence consist of key 7→ key,
owner 7→ owner, and the string literal ’Groups’ 7→ type. This wiring would
allow the statistics f-unit to use its input table as depicted in Listing 5.3. The
possibility of multiple source output tables wired as a UNION into a single input
table enables the f-unit of our example to display arbitrary statistics without
knowing the application’s environment in advance.

5.2 Data Consistency via Foreign Keys

The intention of input tables is not only to provide the possibility of collecting
data for presentation, but instead, f-units may want to build their own data
based on the received entries and thus extend existing datasets according to
their own functionality. As an example, consider the pattern of an f-unit man-

23

aging particular objects (images, groups, profiles, . . .), while a wired child f-unit
provides some per-user functionality on top of each parent object (comments,
votes, . . .). This 1:1 or 1:N dependency can be expressed as values in a local
table that explicitly refer to a value in another local table or even in an input
table. Upon deletion of the referenced value, all referencing entries that have
become stale shall be implicitly deleted, in order to ensure consistency between
both involved tables, e.g., if an image has been deleted, all associated comments
shall be deleted as well.

A common term to refer to such natured dependencies is the notion of a foreign
key, whose semantics is implemented by MySQL using the concept of foreign key
constraints2. However, foreign key constraints can be used in MySQL only for in-
volved tables being “real” tables. However, we also want to support foreign keys
on input tables, which are implemented as a UNION over the column-mappings to
arbitrarily crafted output tables. We thus implement a generic custom approach
in order to emulate foreign key semantics with increased flexibility.

In order to guarantee well-defined dependencies, every referenced table must
provide a unique key that can be referred to. For local tables, we require
a single PRIMARY column (as shown in Listing 4.2), which implies a PRIMARY

KEY and thus is a valid foreign key target. Furthermore, input tables must
provide a KEY column, and output tables must provide a column named key,
whose uniqueness is assumed across the output table. When wiring output
table otable to an input table itable, unique keys across all datasets of itable are
ensured by the implicitly added column otable.ukey, which consists of the hash
value H(otable|key). Each output table holds thus two keys – one for internal
and one for external usage. As otable is subject to the table prefixing via the
query sandbox, even global uniqueness can be assumed for the generated ukey.

Every foreign key of a local table can hence refer to a uniquely defined entry of
either another local table or of an input table. We propose a mechanism that
ensures consistency by automatically deleting stale child entries upon deletion
of the corresponding parent entry. A key-based mapping of the parent/child re-
lationship between local tables through the output table would thus be required.
As output tables may define their key column arbitrarily before being hashed to
ukey, we cannot derive a direct key mapping between wiring-dependent local ta-
bles in general – i.e., the key values in the parent and the child local table might
not be related obviously. However, for all foreign keys fi defined for the child
column ccolfi

referring to the column pcolfi
of the parent table ptblfi

(whether
local or input), we can state the relational algebraic [18, pp. 100] expression

∀fi : πccolfi
ctblfi

⊆ πpcolfi
ptblfi (5.1)

that we will refer to as the foreign key invariant defined by the child local table
ctblfi . As for the owner invariant, this additional foreign key invariant can be
ensured by triggers that are registered before INSERT and UPDATE operations
on ctbl . Inside these triggers, the soundness according to Equation 5.1 of all
defined foreign keys fi can thus be ensured by requiring:

EXISTS(SELECT * FROM ptblf0
WHERE ptblf0

.pcolf0
= NEW.ccolf0

) AND ...

2http://dev.mysql.com/doc/refman/5.1/en/innodb-foreign-key-constraints.html

24

http://dev.mysql.com/doc/refman/5.1/en/innodb-foreign-key-constraints.html

On the other hand, stale entries not satisfying the invariant (anymore) can be re-
moved by a generic delete statement stored in a procedure called ctbl cleanup():

DELETE FROM ctbl WHERE ccolf0
NOT IN (SELECT pcolf0

FROM ptblf0
) OR ...

In order to call the cleanup procedure of ctbl whenever any precondition of the
invariant might have changed in ptbl , we have to keep track of the foreign key
dependencies. Within the scope of a particular f-unit, foreign key dependencies
are known at integration time, namely from a local table either to an input
table or to another local table. Upon wiring, the wired output tables and in-
put tables form a new path in the dependency tree, as depicted in Figure 5.6.
For a particular local table, we can follow the paths to directly reachable local
tables and thus determine the tables to be monitored for changes. For these
invariant-involved tables, successful changes, which passed the before triggers
ensuring the owner invariant (Section 4.1), can be catched by after triggers. We
create those triggers during the wiring process in order to call the cleanup()

procedures of all tables that state a corresponding foreign key. We cannot gen-
erally assume a delete operation to be the only reason for an entry to disappear
from an output table and thus have to initiate the cleanup for possibly affected
tables by the triggers after INSERT, UPDATE, and DELETE. The usage of triggers
allows us to neglect dependencies introduced by transitivity, as events raised by
a performed cleanup will spread by triggering the after-operation triggers of the
affected local tables.

Figure 5.6: Wiring dependency tree: Due to foreign keys, a local ta-
ble may depend on several other local tables, while a local table may
have several depending local tables, too. (Possible direct foreign key
dependencies between local tables as well as SQL references between
output tables and input tables are not shown.)

However, deletions triggered for consistency reasons might not satisfy our owner
invariant as stated in Section 4.1. When using foreign keys, each child object
has to be deleted upon deletion of its parent object – the uid that accounts for
the parent’s deletion (its owner) does not generally match the owner of all child
objects3, though. Consequently, the whole transaction could be rejected due to
the owner invariant check of the children table ctbl : The UPDATE and DELETE

triggers of ctbl rely on verify uid(), on the owner column ownerctbl , and on

3As for example when images can be commented that are handled by another f-unit.

25

the @uid variable, in order to reject deletions of connections not in the scope of
the particular user (cf. Listing 4.1):

assert(OLD.‘ownerctbl‘<=>@uid AND verify uid(’unit’, ’sk’))

In order to overcome the permission inheritance problem, the owner invariant
verification has to be circumvented whenever a deletion is caused by the cleanup
procedure.

Overriding the trigger checks and deleting entries not belonging to the cur-
rently connected user violates our owner invariant. However, this exception is
inevitable for ensuring consistency in many use cases and happens only on be-
half and with explicit knowledge of the f-unit that defines the foreign key. The
cleanup procedure ctbl cleanup() thus overwrites the connection’s uid by call-
ing set uid(), using the global shared secret sk for a valid @uid h generation:

... AND set uid(‘ownerctbl‘, ’unit’, ’sk’);

As set uid() unconditionally returns true, the logic of the preceding conditions
is not affected. However, upon evaluation of the WHERE clause for every stale
entry, the side-effect of setting @uid and @uid h according to the current owner
column will be executed, thereby simulating the correct uid and allowing the
deletion to be “approved” by the corresponding DELETE trigger.

At a glance, input tables, output tables, and the wiring concept are crucial
features in order to cope with the limitations introduced by the query sandbox
in Section 4.2: Clear responsibilities and increased security by data encapsula-
tion and scope restriction come at the price of reduced f-unit interoperability
and mere impossible collaboration – in contrast to the modularity paradigm of
SAFE. In addition to the possibility to directly work on wired input data, we
propose an approach that clones basic foreign key behavior, even for arbitrarily
crafted input tables as foreign key targets. The wiring concept together with
foreign keys thus increases flexibility while keeping an f-units data encapsulated,
functionality modular, and responsibility in place.

5.3 Presentation Consistency via Updates

One of the major features and challenges of today’s data-driven and reactive
Web applications – in particular of SAFE – is to ensure server-client consistency.
If an f-unit modifies the state of the database, the changes should be reflected
by the visual representation of dependent f-units and by the instances of the
f-units at the client. In SAFE, any f-unit can activate arbitrarily many other
f-units:

act : F → 2F

Upon an activation initiated by an f-unit f ∈ F , activation data is passed from
f through the particular activation interfaces of act(f). The behavior of the
activated child f-unit instances thus depends on the state of the parent f-unit
f . Consequently, the set act(f) is possibly data-dependent of f .

F-units generate HTML content that is enclosed by a particular node in the
DOM tree of the HTML page. F-units and their activations hence constitute a

26

hierarchical, cycle-free structure, the activation tree:

Gact = 〈Vact ,Eact〉 = 〈F , {(f, f ′) ∈ F × F | f ′ ∈ act(f)}〉

Due to the activation data dependencies, each change in an f-unit’s data realm
causes possibly outdated f-units in the corresponding subtrees of Gact .

The concept of wiring introduces an additional possibility of receiving data
such that propagation of changes is not necessarily reflected by the edges of the
activation tree. The set of all f-units that contribute to some input table of
f-unit f is given by it(f):

it : F → 2F

This additional data dependency that was imposed by our sharing mechanism
is covered by the combined graph

Gcomb = 〈Vact ,Eact ∪ Esh〉

that includes edges representing the presence of an input table/output table
channel from one f-unit to another:

Esh = {(f, f ′) ∈ F × F | f ∈ it(f ′)}

The definitions of both Eact and Esh can be considered as an over-approximation
since they do not respect the extent of the actually changed data – their com-
bination, however, clearly captures all possible dependencies.

Using the combined graph, we can determine and update f-units that rely on
stale data. If a local table of a particular f-unit f changes due to a modifying
query, the transitive closure starting at f contains all potentially stale f-units
that should be considered for updating. For the combined graph, we determine
a topological f-unit ordering, which takes the partial orderings as defined by the
particular dependencies into account. The global topological ordering is well-
defined, as wirings and/or activations that would result in a cycle are rejected
at first place, and thereby ensures that the rebuilding step propagates on yet
refreshed data. Using the partial ordering, the order of required activations and
thus f-units to be rebuilt can be determined – in other words, all f-units are
rebuilt in an order such that all data requirements are satisfied. The freshly
generated content is merged into complete subtrees of the activation tree (and
thus also into the DOM tree). Finally, the rebuilt content is pushed to stale
client browser instances.

27

Chapter 6

Data Invariants

Data-driven Web applications usually rely on numerous assumptions on their
maintained data – for both integrity and access control reasons. Consider an
instant messaging feature, for which the developer wants to allow a user to
write messages only to its friends (or otherwise related users). Typically, such
constraints that depend on the application semantics are enforced directly by
the application’s business logic in a fuzzy, decentralized, and thus hardly main-
tainable manner. This habit suggests the responsibility of data validation to be
placed at the lowest possible layer [15, 21], in order to prevent circumvention
and to provide central management.

In this chapter, we first propose invariants to hold for data that is stored in
local tables. Subsequently, the approach is extended to allow for invariants on
data that is provided by output tables.

6.1 Generic Invariants

In order to give the developer of an f-unit the opportunity to define constraints
on his data at the database layer, the table messages of the previously men-
tioned instant messaging feature could only allow users in the to column that
are “friends” of the owner stated in the from column. By enforcing the existence
of foreign key targets, we explicitly introduced our first table-specific invariant
(cf. Equation 5.1) and a mechanism to ensure its validity throughout the par-
ticular record’s lifetime. However, providing owner and foreign key invariants
might not satisfy all needs regarding consistency and/or access control, as seen
with the messages example.

We thus need an additional mechanism for the developer to provide table in-
variants, which cannot be modeled in terms of foreign keys or owner columns.
Similar to foreign key invariants, generic invariants shall provide increased ex-
pressivity, reject INSERT and UPDATE operations for invalid datasets, and auto-
matically delete formerly valid datasets when becoming invalid.

29

�
LOCAL TABLE messages (

id AUTO PRIMARY
from OWNER

to USER
msg TEXT

INVARIANT friends(*, from , to)
)�

�
INPUT TABLE friends (

key KEY
uid1 OWNER
uid2 USER

) �
Listing 6.1: Local table invariant that allows messages to be sent only
between particular users, as defined by the input table friends.

Using tables as predicates, an f-unit may specify an additional INVARIANT expres-
sion for each table. As shown in Listing 6.1, an invariant stating the predicate

friends(*, from, to)

holds true if there exists a tuple in the friends table that matches the contents
of the from and the to column in the current dataset. Likewise, a predicate
that contains a negation as one of the following

!ignores(to, from)

!supervisor(to, !from)

prevents messages from users on an ignore list, or to foreign supervisors, re-
spectively. With the possibility of negation by !-prefixing, the semantics of a
single predicate using the table tbl is shown in Equation 6.1, expressed using
existential quantifiers:

tbl(x0, . . . , xk) ↔ ∃(p0, . . . , pk) ∈ tbl :

k∧
i=0

match(xi, pi)

!tbl(x0, . . . , xk) ↔ @(p0, . . . , pk) ∈ tbl :

k∧
i=0

match(xi, pi)

(6.1)

The conjunction over match(·, ·) compares the given tuple with the predicate
tuples according to the semantics stated in Equation 6.2: The variables xi rep-
resent the given column names and can be bound to their value in the current
dataset environment using val(·). In addition, column names can also be !-
prefixed, denoting an inequality condition at this particular tuple position, as
implied by neg(·).

match(x, p) =

true, x = ∗
true, val(x) = p ∧ ¬neg(x)

true, val(x) 6= p ∧ neg(x)

false, else

(6.2)

The existential quantifier semantics with conjunctive matching allows for easy
deployment of common environments, in which access control bases on group
memberships, permissions, and/or user relationships. As predicates can even
refer to input tables, the wiring process provides the flexibility and modularity
needed for incorporating extensions at runtime – knowing the input table’s
column semantics is sufficient for an f-unit to state senseful invariants.

30

While supporting basic checks in an invariant, a single predicate only might not
be sufficient in order to express the desired semantics. For increased function-
ality, we thus support predicates to be linked by AND and OR clauses. Together
with obeying parenthesis for convenience, invariants may consist of more com-
plex expressions such as:

(friend(from, to) OR admin(from)) AND ...

Intuitively, this invariant allows members of the group admin posting messages
to everyone, even though not being a friend.

The increased power in expressivity on the predicate level also allows the column
matching to be of virtually arbitrary semantics. For example, one can express
forall semantics in addition to exists for completeness reasons, by exploiting
quantifier duality and by passing matching logic to the predicate level:

∀(p0, . . . , pk) ∈ tbl :

k∧
i=0

match(xi, pi)

= @(p0, . . . , pk) ∈ tbl :

k∨
i=0

¬match(xi, pi)

↔ !tbl(!x0, ∗, . . .) OR . . . OR !tbl(. . . , ∗, !xk)

(6.3)

¬∀(p0, . . . , pk) ∈ tbl :

k∧
i=0

match(xi, pi)

= ∃(p0, . . . , pk) ∈ tbl :

k∨
i=0

¬match(xi, pi)

↔ tbl(!x0, ∗, . . .) OR . . . OR tbl(. . . , ∗, !xk)

(6.4)

As the main intuition and syntax still implies comparison of the full tuple that
was given as argument, this forall representation comes with a certain additional
effort, which should only be needed in rare cases, though.

Until now, valid predicate parameters that can be passed to match(·, ·) are the
asterisk *, a column name col of the current table, and its negation !col.
However, this might not include the possibility of referencing all relevant data
– i.e., if the local table uses foreign keys, only the key values themselves are
referable by their column name as predicate argument. This contradicts our
intuition, as foreign key values are predominantly used for pointing to a unique
parent object, whose attributes are extended by the children’s data. We thus
want to provide the possibility of foreign key expansion (or foreign key traversal),
as known from the object-oriented paradigm in general.

We choose the dot (.) notation to indicate foreign key-based object expansion.
If for example an f-unit provides the functionality of posting a comment to a
published image, one may wish to restrict commenting to friends of the image
owner: The input table comments for provides the set of images with at least
the required columns id and owner, while the local table comments holds at least

31

the columns for id (the foreign key to comments for.id), owner, and comment.
By using object expansion, one can access attributes of the object referred to
by for id and state the desired invariant as friends(owner, for id.owner).

In order to evaluate the dot notation with respect to match(·, ·) in Equation 6.2,
we have to augment the val(·) semantics by not only returning the value of a
single column name in the current transaction. If called with multiple argu-
ments a0 , . . . , ai (implicitly splitted according to the dot character “.”), val ′

will recursively resolve foreign keys and ultimately return the value of the last
referenced column ai in its particular table.

val ′(a0) = val(a0)

val ′(a0, . . . , ai) = πaiσfkc(a0,...,ai−1)=val′(a0,...,ai−1)fkt(a0, . . . , ai−1)
(6.5)

Upon successful key traversal, the projection π returns at most a single 1 × 1
tuple, since foreign key target values are unique and thus unambiguous. As
foreign keys can be specified within the particular f-unit’s scope only, foreign
key reference chains a0 , . . . , ai can be resolved at integration time using the
implicitly available functions fkc and fkt for resolving foreign key target columns
and their tables, respectively: Starting with column a0 of the current table, the
graph spanned by all foreign keys can be traversed until reaching ai , which
determines the target column and table.

So far, our approach basically requires predicate parameters to be columns,
whose names can be bound to their particular values. Amongst other things,
the lack of free variables or runtime-instantiable variables restricts functionality
if one wants to express a relation’s transitivity, for example the presence of an
intermediate friend:

friend(from, to) OR (friend(from, $i) AND friend($i, to))

Although being able to work with a “friends of friends” semantics could be a
desirable feature, we rely on f-units to export all its possibly senseful relations
and leave the implementation for this or a similar approach for future work.

As with owner invariants (Section 4.1) and in particular foreign key invariants
(Section 5.2), we use triggers to implement INSERT/UPDATE invariant verification
and DELETE propagation. For invariant verification, we augment the particular
triggers by an additional AND-condition that we derive from the whole invariant
expression, for example from the single predicate tbl(x0, . . . , xi):

EXISTS(SELECT * FROM tbl WHERE p0=val ′(x0) AND ... AND pi=val ′(xi))

A straight-forward approach can be applied for *-parameters or !-prefixed and
thus negated parameters or predicates. Resolving foreign key references and
returning column values can be done by replacing val ′(·) with the output of a
suitable implementation of Equation 6.5 at integration time. For delete prop-
agation, we augment the foreign key dependency edges in Figure 5.6 by edges
that represent used predicates and traversed foreign key tables of a local table’s
invariant. This will call the cleanup function (Section 5.2) of the table that
defined the invariant, whenever a dataset’s validity according to the invariant
might have been compromised. The condition of the cleanup function’s delete
statement is thus augmented by an OR condition, which can be formed by the
negation of the whole invariant expression as stated above.

32

In this section, we proposed a simple and generic syntax for defining invariants
on data held by a particular table. With the combined use of local tables and
even input tables as predicates, complex expressions can be given, which allow
each dataset’s values to be set into relation with the properties of the devel-
oper’s intention. Apart from logic primitives like conjunction, disjunction, and
negation, the expressivity comprises foreign key semantics by allowing for object
expansion on a foreign key basis. Finally, the trigger concept was augmented to
prevent invalid datasets finding their way into the table, while datasets becom-
ing invalid for external reasons are automatically and recursively deleted.

6.2 Output Table Invariants

Apart from rejecting unauthorized data modifications on local tables by means
of owner invariants (Section 4.1) or custom invariants (Section 6.1), leakage of
potentially sensitive user data has to be prevented. In the scope of confiden-
tiality, we thus have to provide a mechanism that allows to limit read access on
particular datasets.

Consider an f-unit F that provides the functionality of friendships between users.
While friendship information might be valuable for other components, e.g., for
an f-unit that provides some messaging feature, each particular dataset of the
corresponding output table of F shall only be accessible for either one of the
involved users. This intuition reflects that a user that provides some information
to F has to trust F in implementing appropriate access control, whether in the
scope of business logic or output tables.

Every persistently stored dataset might be processed arbitrarily by an f-unit
before ultimately reaching the particular local table. As f-units “see” thus any
dataset anyhow upon insertion, every information represented in a local table
could be reconstructed by the corresponding f-unit. It is thus irrelevant, with
respect to confidentiality, whether we explicitly allow f-units to directly access
arbitrary datasets of an associated local table or not. Despite that, access
control directly on top of local tables could be achieved by parameterized views
that exclusively provide uid -based restricted access to the underlying tables.
This so-called Truman model suffers from various drawbacks – e.g., transparent
views that hide particular datasets may introduce subtle logical inconsistencies
for aggregate functions such as AVG or COUNT [21].

Due to the limited gain and the anticipated problems of a restriction directly on
local tables, we explicitly neglect this approach for now. However, the fact of
local tables being public in their f-unit’s scope1 does not necessarily contradict
our fundamentally pessimistic perception of an f-unit, as f-units do not gain
any additional knowledge as a result. In addition, the potential leakage or
abuse of information has to be considered anyhow by the user before providing
sensitive data to a particular f-unit – the trustworthiness of an f-unit as a crucial
assumption on the behavior of an f-unit was introduced in Chapter 3.

However, regardless of the fact that an f-unit may access all its explicitly pro-
vided data, data that is passed along via wiring shall be restricted: The source

1Due to the query sandbox (Section 4.2).

33

f-unit, whose access control logic is assumed to be trusted by the user, has
currently no control on whether a receiving f-unit performs appropriate access
control as well. In the scope of confidentiality, we thus propose access control
solely for output tables. In particular, we introduce the possibility of hiding
datasets for output tables according to the uid the receiving f-unit is currently
connected to. The decision on whether and to which extent an output table’s
information has to be restricted requires semantic information on the data’s rep-
resentation and thus has to be under the responsibility of the source f-unit. By
uid -based filtering of output tables, we maintain the property that f-units are
only able to receive possibly sensitive data if they are in use by the particular
user.

Analog to invariants on local tables (Section 6.1 and accordingly Section 7.2),
we thus allow a deviant output table syntax to incorporate the possibility of
defining an INVARIANT expression for each output table. In addition to column
names as predicate arguments, we introduce the variable @uid, which allows
uid -based restrictions for every access at runtime. Listing 6.2 shows several
examples of output tables that define invariants on their returned datasets.
Unless overridden by explicit invariant specification, the default behavior of
output tables assumes the invariant is(@uid, owner) and thereby generally
protects any private data. In particular, consider the output table friends o of
Listing 6.2 being wired into an input table of a malicious f-unit F . Due to the
invariant of friends o, F would gain knowledge of all friends of a particular
user U only if U used F once – in other words, F has no access granted to U ’s
datasets until being activated in the scope of U ’s uid .� �
OUTPUT TABLE friends_o (

SELECT CONCAT(uid1 , ’|’, uid2) AS ‘key ‘,
uid1 AS ‘owner ‘,
uid2 AS ‘friend ‘

FROM friends
INVARIANT is(@uid , owner) OR is(@uid , friend)

)

OUTPUT TABLE messages_o (
SELECT msgid AS ‘key ‘,

from AS ‘owner ‘,
to,
msg

FROM messages
INVARIANT is(@uid , owner) OR is(@uid , to)

)

OUTPUT TABLE profiles_o (
SELECT owner AS ‘key ‘,

owner ,
profile

FROM profiles
INVARIANT is(@uid , owner) OR friends_i(@uid , owner)

)� �
Listing 6.2: Invariant examples for output tables, using the variable
@uid, the relation is(), and the input table friends i().

The limitations of the Truman model concerning aggregate functions may also
affect our presented approach of suppressing datasets by invariants on output
tables. However, the source f-unit may provide sensefully aggregated data under
particular circumstances, as the full dataset is locally accessible. Additionally,
our approach does not explicitly consider information leakage as a result of
inference – e.g., by indirect access, statistical inference, or data correlation [4,

34

pp. 17]. Consider here again friends o of Listing 6.2 wired into the f-unit
F : F not only intentionally gains knowledge of @uid’s friends, but can also
successively gather friendship information on the friends of @uid. In the worst
case, F can know all the friends of user U for sure, even if U never used F
– after all other users used F once. However, this applies only as the “is a
friend of” relation is assumed to be semantically mutual and thus commutative,
in contrast to e.g., “likes”. Mitigation of such natured inference is left to the
responsibility of the source f-unit, which should thus model the output table
invariants according to the anticipated benefit-cost ratio.

35

Chapter 7

Implementation

By means of invariants and the query sandbox, we have introduced mechanisms
that provide integrity and confidentiality across boundaries of both users and
f-units. In addition, the concept of wiring allows for well-defined interaction and
data sharing between f-units. This chapter discusses various implementational
issues of the aforementioned approaches in greater detail.

7.1 Session Management

Chapter 3 has motivated the need for database access control according to
both users and f-units. In order to enable the CRM to perform user-based
access control, i.e., to enforce owner and output table invariants, the uid of
the currently connected client has to be determined in a reliable way. More
specifically, Equation 3.1 assumed the client’s credentials to be present for each
request – and thus for each query (Equation 3.3).

However, requesting user credentials for every query is not feasible while provid-
ing those credentials to f-units contradicts our basically pessimistic perception
of f-units. We thus introduce a mechanism of maintaining state under control
of the CRM: A so-called session mechanism provides the ability to recognize
the source of a request. Thereby, a session mechanism allows a current request
reqt at time t to be linked to an event that belongs to a past request reqt′<t of
the same source.

In particular, we introduce a session function s(·) that refers to the past event of
a successful authenticated request reqt′ according to our ./r semantics in Equa-
tion 3.1. Equation 7.1 makes use of the main functionality a session mechanism
has to provide: With src(·) we refer to the intuitive matching of request origins,
sticking both requests to the same client.

t′ < t reqt′ ./r uid src(reqt) = src(reqt′) s valid(t, reqt)

s(reqt) = uid
(7.1)

A past request reqt′<t with valid credentials is thus interpreted as a login and

37

Figure 7.1: Four stages of the session model: Authentication, initial-
ization, operation, and invalidation.

fixes the uid of requests having the same source until the session becomes invalid
for arbitrary reasons1 according to s valid(·, ·).

The session function s(·) allows for binding future requests reqt>t′ to the uid
after authenticating once and thus provides a uid caching mechanism. This
property can be used for extending ./r:

s(reqt) = uid

reqt ./r uid

According to Equation 3.3, a query inherits its request’s uid information and
can thereby be validated appropriately.

We apply this definition of a session to our scenario as a straight-forward au-
thentication procedure consisting of four stages, as depicted in Figure 7.1:

1. The client authenticates at the application kernel. If req1 contains valid
credentials linked to the user id uid , this request represents the initial
login with req1 ./r uid .

2. The login procedure of the session mechanism may include the execution
of a specific stage for session initialization that allows for s valid(t , ·) being
evaluated later on for some t > 1.

3. Requests can be considered authenticated for a particular uid , if their
sources match the ones encountered in the first stage – in our example, it
holds: src(req3) = src(req1)⇒ req3 ./r uid

4. The session may now become explicitly or implicitly invalid, such that
requests otherwise being accepted for uid will now fail due to ¬s valid(t , ·)
for t > 4.

In order to implement session functionality in our scenario, we introduce a mech-
anism of maintaining a state on top of HTTP, which is considered stateless per
se: HTTP offers no generic way of linking a current request to past requests
and thus to past events. A widely used mechanism for implementing sessions
by introducing state in HTTP is by using cookies. Introduced by Netscape in
1997 [8], the client browser is urged to echo the value obtained once by the
Set-Cookie header back to the server using the Cookie header. The possibil-
ity of maintaining state by referring to past events provides a functionality to
implement the semantics of a session.

As a basic intuition, one could hand out the plain uid using a cookie upon
successful authentication. For upcoming requests of the same client, the corre-
sponding uid would then be trivially determinable. However, shifting the task

1For example due to an implemented logout functionality or a session expiration.

38

of maintaining the whole authentication state to the cookie in a reliable and
secure manner is a non-trivial task [14]. A common approach is thus to use a
cookie only to refer to a state that is maintained by the application (kernel)
itself.

Upon authentication of a client with user id uid in stage 1 (cf. Figure 7.1),
the CRM chooses a unique and hardly guessable identifier (nonce) as session id
sid . In order to later on recall the uid based on a received sid , we maintain a
database table sessions over these two values. A logout functionality and/or
a timeout deletes the corresponding row of this sessions table in stage 4.

After mapping a sid to the uid , the sid can be passed along to the client by
setting a cookie in stage 2 (cf. Figure 7.1). Since the corresponding uid has to
be available at the CRM for each client query in stage 3, every possible path a
query can take must reliably provide a sid -carrying cookie. There are two kinds
of queries:

1. Initial Queries in an f-unit’s static PHP code that are directly executed
by a local instance of the CRM. This is the case with for or activation
statements (Chapter 2), for example.

2. User-Triggered Queries that are issued on behalf of client interaction (for
example by a query statement of a button): These queries are sent to a
particular ajax.php script and processed in the background.

CRM instances of both an ajax.php2 and an f-unit’s regular .php file can
access cookies and thus retrieve the particular sid . After verification according
to s valid(·, ·), whose semantics is still to be defined, the corresponding uid can
be derived and used for access control purposes.

As there is no need for the sid to be available in client-side scripts, we use
HTTPOnly cookies [12]. Additionally, our s valid(·, ·) implementation accounts
for an expiration time for maintenance and security reasons: We augment the
sessions table by an expires column that holds a timestamp, which is in-
cremented for each access. Restricting a session’s lifetime by using a cookie’s
expires or max-age flag is not authentic and thus no reliable solution on its
own.

There is a main and well-known weakness in our approach so far: If the value
of a cookie happens to get stolen or leaked, an adversary is able to access the
application with the victim’s privileges (session riding or session hijacking).
While there is a lot of related work on the topic on securing cookies [11, 28, 17],
we stick for now to the straight-forward method of binding the cookie value
to the client IP address. By this means, we extend the sid by an IP-based
signature, yielding:

sid ′ := sid | H(sid | ip | sk)

The signature uses an appropriate cryptographic hashing function H and con-
sists of three parts: A static secret key sk to prevent third parties from generat-
ing valid signatures, the actual sid to prevent a replay of the signature for other
sessions, and the client IP address ip that implements the binding property of
sid ′. The signature’s non-forgeability property solely relies on the secrecy of sk ,

2http://stackoverflow.com/questions/1041285/does-jquery-send-cookies-in-a-post

39

http://stackoverflow.com/questions/1041285/does-jquery-send-cookies-in-a-post

which makes the signature prone to brute force attacks. In addition, there are
several problematic technical scenarios that are discussed in Section 9.3. How-
ever, the signature should prevent the basic attack of using a foreign cookie’s
value in our scenario.

To summarize, our presented cookie-based approach fulfills the semantics of the
conditionals in Equation 7.1:

• The occurrence of a past ./r event (login) is detected through the existence
of a row in the sessions table corresponding to the cookie’s value.

• The matching of upcoming request sources src(·) is ensured by the non-
guessability of the randomness in the session id and the restriction to the
IP address.

• The validity s valid(·) of the session is represented by the check for expi-
ration and by the absence of a logout event.

Our session approach moves the assumed non-guessability and secrecy proper-
ties of the client’s credentials to the sid . While the non-guessability property
should be preserved, the secrecy property might be compromised by f-units that
maliciously access cookies. However, the short-term impact of a sid leakage on
the overall security is limited by binding a session to a particular IP-address.

7.2 F-unit Integration Overview

The database-related process of f-unit integration copes with features such as
local/input/output table creation, invariant enforcement, dependency tracking,
and trigger management. This section reviews and summarizes technical aspects
of those concepts presented in Chapter 4, Chapter 5, and Chapter 6.

Basically, f-unit database integration takes an f-unit’s .db-file as input and
generates and executes the SQL-statements corresponding to encountered table
definitions. An abstract overview of the whole process is given by Figure 7.2,
illustrating subtasks and their particular input and output.

1. Parsing: The .db-file is read in line per line and is parsed into suitable
datastructures, which are returned. Datastructures of interest are basically the
four sets of defined entities: Local tables, input tables, output tables, and foreign
keys. A rough overview of the recognized syntax for defining the different classes
of tables is given in Listing 7.3.

For local tables and input tables, column definitions are parsed into column
names and their corresponding types. In order to increase the chance of type
compatibility without conversion during a potential wiring, recognized basic
column types are given from a reduced set3 of the types provided natively by
MySQL. According to Section 4.1 and Section 5.2, both local tables and input
tables have to specify exactly one OWNER and one key column, which is of type
KEY for input tables and marked with the flag PRIMARY for local tables.

3Ignoring performance and/or space constraints, “superset” types are chosen from similar pur-
pose data types – for example DATETIME subsumes the ranges of both DATE and TIMESTAMP

(http://dev.mysql.com/doc/refman/5.1/en/datetime.html).

40

http://dev.mysql.com/doc/refman/5.1/en/datetime.html

Figure 7.2: Schematic overview of f-unit database integration. From
top to bottom, the major steps required for evaluating a .db-file are
shown.

In order to flag columns of local tables to hold only unique values (besides keys),
the UNIQUE keyword can be given both in the type definition and in one or more
dedicated rows, possibly defining multiple sets of columns that are unique for
themselves. Similar to lines consisting of UNIQUE followed by column references,
an invariant as introduced in Section 6.1 can be stated for a local table by a
row starting with INVARIANT. Furthermore, local tables may define foreign keys
to column col of table tbl by a type definition of WTYPE(tbl.col).

Output tables can be stated as a native MySQL SELECT statement. As intro-
duced in Section 6.2, the multi-line syntax for output tables allows an INVARIANT

expression to be given. While output tables that are available for wiring are
defined using either one of the OUTPUT TABLE statements, it is also possible
to define views for internal use only (as for example in invariants or by the
presentational part) via LOCAL VIEW.

41

� �
LOCAL TABLE [SINK] mytable (

(column name local column definition)+
(INVARIANT ...)?
(UNIQUE ...)*

)
INPUT TABLE myinput (

(column name input column definition)+
)
OUTPUT TABLE myoutput (

SELECT ...
(INVARIANT ...)?

)
OUTPUT TABLE myoutput = SELECT ...
LOCAL VIEW myview = SELECT ...

type = INTEGER | TEXT | DATETIME | ...
input column definition = type | KEY
local column definition = (type | USER | OWNER | WTYPE(tbl.col) | AUTO)

(UNIQUE | PRIMARY | [NOT] NULL | DEFAULT (""| NULL |0 -9+))*� �
Listing 7.3: Major components of a .db-file in a relaxed grammar
syntax.

Upon reaching the end of the .db-file, the parsing returns the sets of all local
tables and input tables along with their properties (i.e., their columns), all
output tables (or local views), and all defined foreign keys as a table/column 7→
table/column mapping.

2. Derive Foreign Key Types: A common usability drawback of foreign keys
in MySQL is that the types of both involved columns have to match, though
having to be defined separately. This inconvenience can be resolved by a foreign
key definition using WTYPE that implicitly derives and inherits the type of the
referenced column.

Valid foreign key targets are PRIMARY or UNIQUE columns of other local tables or
KEY columns of input tables inside the scope of the particular f-unit. As columns
of the type OWNER and USER4 implicitly state a foreign key, the uid column of
the CRM-controlled table sfw users is considered a valid foreign key target as
well.

Using the foreign key mapping and the type information of all permissive foreign
key targets, the gaps in a local table’s type definitions caused by foreign keys
can be recursively filled.

3. Create Local Tables: Using the complete type information for local tables,
the only “real” tables can already be created in the database:

CREATE TABLE tbl (...) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Apart from minor deviations and substitutions, the LOCAL TABLE syntax in
Listing 7.3 strongly resembles the MySQL CREATE TABLE syntax. Consequent-
ly, stated column definitions can be basically passed through – even the line-wise
UNIQUE statements can be taken over in an (almost) unchanged manner5.

4. Create Input Tables: In order to prevent reference errors, input tables

4As with the OWNER type, USER columns hold uids that might be used in explicit invariants, but
without any implicit invariant checks as for OWNER columns.

5http://dev.mysql.com/doc/refman/5.1/en/create-table.html

42

http://dev.mysql.com/doc/refman/5.1/en/create-table.html

with proper column signatures have to be created as well – even though there
is no wiring in place and thus no data available yet. A default input table itbl
with columns coli does not contain any data and therefore returns an empty
resultset obtained using the “dummy” table DUAL6:

CREATE VIEW itbl AS SELECT NULL AS ‘col0‘, ... FROM DUAL WHERE 1=0;

GRANT SELECT ON itbl TO funituser;

At this point, the SELECT privilege can already be granted to the f-unit database
user. Upon wiring, the SELECT statement of an input table’s VIEW may then be
replaced by a suitable statement returning the desired resultsets from one ore
more output tables.

5. Prefix Output Tables: SQL statements defining output tables (or local
views) have to be put on a level with all other queries executable by an f-unit.
Consequently and due to the query sandbox restriction (Section 4.2), every
accessed table of the output table has to be prefixed with the f-unit name7,
thus enforcing the permissive scope. During the prefixing process, all accessed
tables are collected as dependencies of the particular output table and are stored
for later reference.

6. Create Output Tables: The prefixed representation of an output table
statement has to be augmented by an appropriate ukey column, as introduced
in Section 5.2. As the VIEW of an output table otbl may not contain a subquery
in the FROM clause8, the creation is splitted up into two steps: The actual output
table statement is created as an intermediate view otbl orig, while the ukey is
explicitly added by a subsequent view holding the actual otbl name.

CREATE DEFINER=funituser SQL SECURITY DEFINER VIEW otbl orig AS ...;

CREATE VIEW otbl AS

SELECT *, SHA1(CONCAT(’otbl ’, ‘otbl orig‘.‘key‘)) AS ‘ukey‘

FROM ‘otbl orig‘;

GRANT SELECT ON otbl TO funituser;

When referencing otbl in for example invariant expressions, the ukey column is
thus intentionally available. Due to the appended column, however, the devel-
oper has to be aware of the increased arity of the derived predicate. For local
views basically being output tables not available for wiring, the intermediate
view is not necessary, as there is no need for a public ukey.

As a view’s query runs in the context of the creating user (the privileged CRM
user in our case) per default9, the explicit restriction to the f-unit database user
funituser ensures the output table query is executed with the same permissions
a regular f-unit query would be executed as well.

7. Get Output Table Schema: Currently, output tables and local views
lack any column information, as they are defined using plain SQL statements
without any additional information. However, column names and types are
needed in the wiring process and for the evaluation of invariant predicates.

6http://dev.mysql.com/doc/refman/5.1/en/select.html
7While there exist numerous projects on SQL parsing routines, e.g., http://pear.php.net/

package/SQL_Parser and http://code.google.com/p/php-sql-parser/, the algorithm was
given during writing this thesis.

8http://bugs.mysql.com/bug.php?id=16757
9http://dev.mysql.com/doc/refman/5.1/en/stored-programs-security.html

43

http://dev.mysql.com/doc/refman/5.1/en/select.html
http://pear.php.net/package/SQL_Parser
http://pear.php.net/package/SQL_Parser
http://code.google.com/p/php-sql-parser/
http://bugs.mysql.com/bug.php?id=16757
http://dev.mysql.com/doc/refman/5.1/en/stored-programs-security.html

As both output tables and local views are created by now, we can obtain the
needed information using the columns table of the builtin metadata database
information schema10:

SELECT column name, column type FROM information schema.columns

WHERE table name=’otbl’
ORDER BY ordinal position ASC;

The output table and local view datastructures are thus augmented by the
particular column information and are returned for further processing.

8. Announce Wiring Tables: Since the wiring is an independent process,
the column information of all integrated input tables and output tables has to
be preserved. We thus store the signatures of all tables available for wiring in
a dedicated database table, in order to be able to deduce a suitable schema
matching later on.

9. Foreign Key Invariants: As generic invariants will be dynamically en-
sured anyhow, we rely on the generic invariant mechanism for implementing
foreign keys, too. Even for foreign keys between local tables, MySQL foreign
key constraints would not be an option in our scenario, as cascaded deletions
erroneously11 do not activate (i.e., after) triggers12, which we use for invariant
delete propagation (Section 5.2). For each foreign key defined at column ccol of
the child local table ctbl to column pcol of the parent target table ptbl , we thus
repeatedly augment the invariant of ctbl :

invctbl = (invctbl) AND ptbl(. . . , ∗, ccol︸ ︷︷ ︸
at position of pcol

, ∗, . . .)

This approach will prevent the insertion of a dataset not satisfying the foreign
key invariant, i.e., of a dataset stating a value in ccol that does not exist in pcol .
Both the invariant checking and the delete propagation will be implemented by
triggers, which are created in an upcoming step.

10. Predicates: For the upcoming invariant expression parsing, we need the
set of all valid predicates, together with their column information, i.e., their
arity. Table names available for usage as predicate are those of all local tables,
input tables, output tables, and local views defined by the particular f-unit.
Moreover, we provide a binary is relation for uids as cartesian product over all
registered users.

11. Invariant Expression Parsing: Given the set of all predicates, the in-
variant string of each local table is parsed into an invariant tree, according to
the syntax introduced in Section 6.1. As a side-effect of the invariant parsing,
all used predicates are collected and provided for further processing as depen-
dencies.

12. Create Triggers: Invariant enforcement for every local table tbl is ensured
by triggers before INSERT, UPDATE, and DELETE operations:

CREATE TRIGGER tbl op BEFORE op ON tbl FOR EACH ROW

CALL assert(tbl op checks);

10http://dev.mysql.com/doc/refman/5.1/en/columns-table.html
11http://bugs.mysql.com/bug.php?id=11472
12http://dev.mysql.com/doc/refman/5.1/en/innodb-foreign-key-constraints.html

44

http://dev.mysql.com/doc/refman/5.1/en/columns-table.html
http://bugs.mysql.com/bug.php?id=11472
http://dev.mysql.com/doc/refman/5.1/en/innodb-foreign-key-constraints.html

The custom assert() procedure raises an error condition13 and thus aborts the
current operation, whenever its argument does not hold valid. Depending on
the operation op, the checks tbl op checks to be passed consist of a subset of
foreign key invariants, generic invariants, and owner invariants.

For an INSERT operation, tbl op checks has to contain the foreign key invari-
ants and generic invariants as defined by the invariant expression tree. The
corresponding SQL representation using EXISTS statements can be derived as
described in Section 6.1. Furthermore, the owner invariant – i.e., the equality
of the owner column owner value and the connected user – has to be ensured.
The tbl op checks are thus AND-augmented with the uid verification using the
f-unit name funit and a static secret sk , as introduced in Section 4.1:

verify uid(’funit’, ’sk’) AND (NEW.‘owner‘=@uid)

The verify uid() function

CREATE FUNCTION verify uid(unit VARCHAR(128), secret VARCHAR(128))

RETURNS BOOLEAN RETURN (@uid IS NOT NULL) AND

(@uid h<=>SHA1(CONCAT WS(’|’, @uid, LOWER(unit), secret)));

validates the session variable @uid, which the CRM initializes accordingly using
set uid():

CREATE FUNCTION

set uid(uid VARCHAR(40), unit VARCHAR(128), secret VARCHAR(128))

RETURNS BOOLEAN RETURN ’foo’<>

@uid h:=SHA1(CONCAT WS(’|’, @uid:=uid, LOWER(unit), secret));

An UPDATE operation trigger additionally ensures that the owner column re-
mains static, and thus adds the following expression:

NEW.‘owner‘<=>OLD.‘owner‘

For a DELETE operation on the other hand, no invariant but the owner invariant
has to be considered inside of the assertion.

After creating the triggers that implement our access control, the permissions
for the particular operations (including SELECT) may be granted to the f-unit
user.

13. Cleanup Procedures: As introduced in Section 5.2, we have to explicitly
ensure automatic deletion of invalid and thus stale entries. For each local table
tbl , stale entries can be identified by the negation of the SQL expression checks
that reflects the same conditions as those inside of the triggers – except for the
owner invariant.

CREATE PROCEDURE tbl cleanup() DELETE FROM tbl
WHERE set uid(‘owner‘, ’funit’, ’sk’)

AND NOT (checks)

By calling tbl cleanup(), stale entries are thus identified by re-evaluating the
particular table invariants and deleted accordingly.

Each local table collects the cleanup procedures of dependent tables for delete
propagation in its cleanup t() procedure:

13As MySQL does not natively provide a reliable way of aborting an operation, assert() simply
deletes from an inexistent table: CREATE PROCEDURE assert (IN a BOOLEAN) SQL SECURITY

INVOKER IF NOT (a) THEN DELETE FROM raise error; END IF;

45

CREATE PROCEDURE tbl cleanup t() DO 0; -- NOOP

The contents of the cleanup t() procedure and the associated triggers are set
up in an upcoming step.

14. Output Table Invariants: As for invariants on local tables, the invari-
ant expression of an output table is parsed and predicates are translated into
corresponding SQL statements (Section 6.1). In addition to column names as
predicate arguments, the token @uid is allowed, as discussed in Section 6.2.
During the parsing, all referenced predicates are collected and passed along as
additional dependencies of the particular output table.

15. Create Output Table Invariants: For any output table otbl , a third
view named otbl out is created – in addition to otbl orig (the statement as
given by the user) and otbl (the view providing the ukey for use in queries or
invariants). This additional view is created for use in the wiring process, as it
restricts the otbl view according to the generated invariant statements. If no
invariant is specified for otbl , the default otbl out view omits datasets that are
not assigned to the current @uid:

CREATE VIEW otbl out AS SELECT * FROM otbl WHERE ‘owner‘=get uid();

As variables such as @uid cannot be referred from within view definitions14, all
occurrences of @uid are replaced by the function get uid(), which overcomes
this limitation by returning the needed uid value.

However, the @uid value returned by get uid() has to be validated according
to @uid h using verify uid(’funit’, ’sk’). As the currently connected funit
cannot be determined inside of otbl out for each access, the task of @uid verifi-
cation has to be done by every input table – thereby moving the responsibility
to the wiring implementation.

16. Collect Table Dependencies: The cleanup functionality of stale datasets
according to foreign keys (Section 5.2) or invariants in general relies on the pos-
sibility to track dependencies between tables. At this point, all of these depen-
dencies are centrally stored – namely, predicates used in local table invariants
(including foreign key invariants), predicates used in output tables, and accessed
tables in SQL statements of local views or output tables (obtained during the ta-
ble prefixing step). The resulting dependency tree allows to propagate changes
by calling the cleanup() procedures of affected tables, whose invariants are
thereby re-evaluated.

While all collected dependencies are formed between tables inside the current
f-unit so far, a wiring between input tables and output tables of different f-units
will form a cross-f-unit path inside of the dependency tree.

17. Rollback Log: As many of the so far presented SQL statements are not
usable in a single MySQL transaction15, atomicity and rollback functionality
have to be implemented “by hand”. We thus collect for each executed statement
a corresponding undo statement16 throughout the whole integration process.
This set of undo statements are used for a rollback functionality that allows

14http://dev.mysql.com/doc/refman/5.1/en/create-view.html
15http://dev.mysql.com/doc/refman/5.1/en/implicit-commit.html
16Corresponding statements in this sense are for example GRANT/REVOKE, CREATE/DROP, or
INSERT/DELETE.

46

http://dev.mysql.com/doc/refman/5.1/en/create-view.html
http://dev.mysql.com/doc/refman/5.1/en/implicit-commit.html

for leaving the database in a clean state after encountering an error during the
integration. In addition, the rollback statements are stored in the database and
are executed in the context of an f-unit de-integration.

18. Table Dependency Triggers: At this point, all newly created table
dependencies are known, whether formed by foreign keys, wiring17, invariant
predicates, or references in output tables or views. This dependency information
is required for implementing a local table’s delete propagation mechanism, which
basically calls the cleanup() procedures of all dependent local tables, whenever
this might be required. As in-between output tables may be crafted arbitrarily,
we have to consider all the possible triggers after INSERT, UPDATE, and DELETE

operations as eventually indicating a relevant change in a local table’s data18.
For each local table tbl , we thus follow the dependency tree, determine the
potentially affected local tables deptbli , and update the after triggers of tbl such
that the deptbli cleanup() procedures are called accordingly.

Starting at tbl , we recursively traverse the dependency paths and collect the
affected tables deptbli with their particular cleanup routines. By a trigger’s
nature, successful changes will continuously propagate, such that there is no
need to care about transitivity – we thus terminate at the first encountered
local table on each path.

As there is no way for an atomic in-place modification of the cleanup triggers,
all after-triggers merely call the single tbl cleanup t() procedure, which finally
calls the actual collected cleanup() routines. We thus are able to gracefully
break the delete propagation chain by first dropping the triggers, followed by
dropping the tbl cleanup t() procedure itself.

The chain is now rebuilt backwards by first re-creating the common cleanup
trigger procedure:

CREATE PROCEDURE tbl cleanup t() BEGIN

CALL deptbl0 cleanup(); CALL deptbl1 cleanup(); CALL ...

END;

After bringing the triggers back in place as well, the tbl cleanup t() procedure
is called explicitly in order to cope with the presence of inconsistent datasets,
which might have accumulated in the meantime.

7.3 Wiring

The f-unit integration process provides the enumeration of all integrated input
tables and output tables, together with their column information. Upon wiring,
the user can pick one available table out of each type and can define a schema
matching between the table columns via an interface (cf. Figure 5.5). The
outcome of the wiring process is a column mapping that maps each column icoli
of the input table itbl either to a constant ci or to a column ocoli of the output

17As we are still in the integration phase, wiring for this particular f-unit is not possible yet.
18However, for foreign key dependencies between local tables only, a DELETE trigger would be

sufficient.

47

table otbl :

∀icoli ∈ itbl : icoli 7→ mi , mi =

{
’ci’

‘otbl‘.‘ocoli‘

The mapping can be transformed into a single SELECT statement that returns
the columns of otbl in the naming and order as defined by the columns of itbl :

SELECT m0 AS ‘icol0‘, m1 AS ‘icol1‘, ...

FROM ‘otbl out‘

WHERE verify uid(’funit’, ’sk’);

As introduced in Section 6.2 and accordingly in Section 7.2, the invariant-
protected output table otbl out relies on each input table to ensure the uid
validity according to the current funit and the global secret sk . The resulting
SELECT statement is stored in the database for this particular otbl/itbl pair. As
the following process is held generic, an unwiring operation deletes the corre-
sponding entry from the database and proceeds starting at this point.

Using the stored information of all defined wirings, the view of the involved input
table itbl can be updated. Like for the first integration, itbl will be replaced
by a dummy view returning no data, if there is no wiring defined. In case of
at least one mapping being available in the database, the view of itbl will be
replaced by the UNION over all the SELECT statements that define the particular
output table mappings.

In addition to the input table’s view, the wiring might affect present table
dependencies – i.e., if the involved input table is a parent table in a foreign key
context or is used as invariant predicate. Consequently, the delete propagation
mechanism has to be updated, involving triggers on the otbl and cleanup()

procedures on the itbl side. We thus determine all local tables tblj that are
contributing to the output table otbl . As output tables may even access input
tables, the recursive search can spread across f-unit scopes, until reaching the
first local table tbl on each path. As there might exist other dependencies, the
triggers of each tbl are fully re-created, using the table dependencies approach
presented for the integration in Section 7.2. The updated wiring dependencies
will thus ensure that the cleanup() procedure of every itbl -dependent local
table is called by the cleanup triggers of every otbl -contributing local table.

7.4 Use Case Application

During writing this thesis, a showcase application was developed, for general
SAFE functionality evaluation and, in particular, access control testing purposes.
As depicted in Figure 7.4, the application mainly comprises six different f-units
in order to provide functionality for user login, instant messaging, groups, polls,
statistics, and livesearch, respectively. The documented source is attached to
the electronic version of this thesis for further reference.

1. User login, logout, registering, unregistering, and password changing is
implemented by FUnitSnAuth. As each f-unit has to authenticate at the
CRM, the CRM is able to expose the corresponding interfaces for user

48

Figure 7.4: Use case screenshot highlighting six involved f-units.

management exclusively to this particular f-unit. Upon successful login
event, each f-unit is reloaded and thereby provided an environment vari-
able, which allows to provide functionality depending on the login status.

2. FUnitSnMessaging enables authenticated users to compose instant mes-
sages and thereby expects the set of permissive recipients in a particular
input table. As there is no f-unit that would provide a notion of friend-
ships yet, the input table stating valid sender/recipient tuples contains
the cross-product of all registered users.

3. Using FUnitSnGroups, any user may create a group, which can be joined
by other users. Group membership is denoted by a unique group-id/user-
id combination and announced by a particular output table – in addition
to an output table that provides all groups together with their group-id.
Upon clicking on a certain group, the group-id is used to activate the f-unit
that provides the functionality encapsulated within groups – poll votings.

4. A group owner may create arbitrarily many polls that are bound to a
particular group-id using a foreign key on an input table, which states all
groups in their capacity of poll containers. For each poll, group members
may place a vote, which involves an invariant referring to the particular
input table that states group membership. The foreign key and invariant
concepts ensure both polls and votes cleanup in case of group deletion or
membership termination, respectively.

5. Statistics on the number of messages, groups, and polls are provided by
FUnitSnUserStats. The corresponding statistics input table is wired to
the three particular output tables, for which a fixed string denotes the
source type that can be grouped by.

6. Similar to the statistics f-unit, FUnitSnLiveSearch relies on an input table
that can be wired to output tables stating arbitrary textual content and

49

source type. Upon typing event, the content is inspected according to the
given pattern and matching rows are shown.

We illustrate how to conveniently extend an existing application with new
functionality, based on the previously introduced techniques. More specifi-
cally, we take the SAFE application of an interactive social network and ex-
emplarily show how to add the incremental search functionality provided by
FUnitSnLiveSearch (6).

As f-units are urged to state appropriate output tables for the sake of extensi-
bility, FUnitSnGroups provides the public output table all groups with a data
and an invariant declaration:

OUTPUT TABLE all groups (

SELECT name, gid AS key, owner FROM groups

INVARIANT is(owner, @uid) OR !is(owner, @uid)

)

The output table exposes the group names to the wiring process: If wired, other
f-units can access the names of all groups. Per default, every user may access
output table rows with a matching owner column (is(owner, @uid), see Sec-
tion 6.2). However, the invariant of all groups replaces this default behavior
by making the group information public, i.e., readable for every user, and thus
for every @uid.

Furthermore, the instant messaging f-unit FUnitSnMessaging defines the output
table private msgs as the set of all messages (local table conversations) that
can be associated with the current user:

OUTPUT TABLE private msgs (

SELECT msg id AS key, msg, uid from AS owner, uid to AS to

FROM conversations

INVARIANT is(owner, @uid) OR is(to, @uid)

)

The invariant of private msgs allows foreign f-units to access both sent and
received messages of the particular user they are currently connected to.

Given both FUnitSnGroups and FUnitSnMessaging, we show how to integrate
the common incremental search functionality provided by FUnitSnLiveSearch.
By this means, FUnitSnLiveSearch monitors a text input field for typing events,
searches all its available datasets for the input pattern, and displays matching
rows. FUnitSnLiveSearch is equipped with an input table data that can be
wired to output tables of other f-units. The input table has two main data
fields: text for arbitrary textual content (e.g., chat messages, group titles, poll
descriptions), and type for an informal description of the search source type
(e.g., messages, groups, polls).

INPUT TABLE data (

text TEXT

type VARCHAR(20)

key KEY

owner OWNER

)

By virtue of this input table, FUnitSnLiveSearch is able to search arbitrary

50

datasets – even for data sources that are provided by f-units that were not
known before, or by f-units that might come up in the future. At runtime,
FUnitSnLiveSearch compares these data sources with the search patterns en-
tered in its search input field:

<input type="text" name="search" id="searchField">

FUnitSnLiveSearch issues queries against its input table data for every keyup-
event of the search field and activates corresponding instances of the helper
f-unit FUnitSnLiveSearchResults:

<activate:SnLiveSearchResults

query="SELECT text AS result, type AS info

FROM data

WHERE ’$#search’<>’’ AND LOWER(text) LIKE LOWER(CONCAT(

’%’, REPLACE(’$#search’, ’ ’, ’%’), ’%’

))"

refresh="searchField.keyup"

/>

In our social network setting, the search engine shall now include the groups of
the social network in its search results.

In order to provide FUnitSnLiveSearch with the actual group names, the wiring
of all groups into FUnitSnLiveSearch.data maps ukey 7→ key, name 7→ text,
the constant ’Group’ 7→ type, and owner 7→ owner. See Section 5.2 for the
purpose of the implicitly added ukey column. Furthermore, upon integration
of FUnitSnMessaging, the new feature of searching in both sent and received
messages can be stated by the wiring of private msgs into data: ukey 7→ key,
msg 7→ text, the constant ’Message’ 7→ type, and owner 7→ owner.

The wiring of all groups and private msgs into data results in a safe set-
ting that reflects our modularity and extensibility paradigms. The implemen-
tation of FUnitSnLiveSearch benefits from various features and concepts that
are offered by the described extensions of SAFE. For instance, the result set of
LiveSearch can be arbitrarily augmented at “run-time”, and the wiring allows
for easy integration of new functionality into an existing application, without
affecting already established f-units. Collaboration across f-units thus only re-
lies on a sufficiently generic interface of all involved f-units, formed by input
tables and output tables. Furthermore, FUnitSnLiveSearchResults – or any
other involved f-unit – can be replaced by means of extensibility with respect
to both presentation and functionality, allowing for augmenting the application
in unforeseen directions.

In addition, even though FUnitSnMessaging publishes privacy-sensitive data,
the f-unit itself is able to bind datasets to appropriate invariants and thus has
full control over which data might possibly be presented to other users. Con-
sequently, the impact of an malicious f-unit on the overall system’s security is
limited to the abuse of the malicious f-unit’s very own or received datasets.

51

Chapter 8

Evaluation

In Section 3.3, we introduced an access control model that comprises multiple
principal dimensions and weakens the resulting data separation by means of
sharing. Furthermore, in Chapter 4, Chapter 5, and Chapter 6, we proposed
approaches that implement access control in the context of SAFE, namely, owner
invariants, query sandboxing, and wiring.

In this section, we present an instantiation of the access control model intro-
duced in Section 3.3. In particular, we consider the SAFE environment, which
instantiates the principal universe

P2 = 〈U ,F〉

to consist of the set of all users and the set of all f-units that are present in the
system. On this basis, this section formalizes the semantics of our implemented
access control approach and shows that the derived semantics resembles the
formal model stated in advance.

8.1 Model Instantiation

Tables and Affected F-units. As we consider all data entities of D being
rows of a particular database table, data entities can be grouped according to
a set of database tables T . The set of all affected tables affT according to a
particular request r ∈ R and the set of all data entities held by a particular
table t ∈ T hence establish a relation between requests R and data entities D:

affT : R → 2T

data : T → 2D

By this means, all data entities of all affected tables form an over-approximation
over all actually affected data entities affD(r) for some request r ∈ R – in other
words, the datasets of affected tables include the actually affected datasets:

d ∈ affD(r)⇒ ∃t ∈ affT (r) : d ∈ data(t) (8.1)

53

The set of all affected tables can be obtained using the table prefixing algorithm
as introduced by the query sandbox in Section 4.2 and accordingly in Section 7.2.

Furthermore, we have to introduce the notion of input tables. Besides local
tables

lt : F → 2T

that hold the actual data of the assigned f-unit, input tables subsume data
entities of the same schema that can be explicitly provided by other f-units
by means of sharing – implemented using wired output tables, as introduced
in Chapter 5. Access control policies might impose restrictions on sharing the
actual data of an input table according to the user who is accessing the data
(cf. Section 6.2). Input tables are therefore instantiated for a particular user id:

it : F × U → 2T

As the overall content of an input table t ∈ it(·, ·) may be provided by multiple
f-units, the providing f-unit of a particular retrieved data entity d ∈ data(t),
i.e., the source

src : D → F

constitutes the affected f-unit for access on an input table:

∀t ∈ it(·, ·), d ∈ data(t) : affF (d) = src(d) (8.2)

For access on local tables, the affected f-unit is the associated f-unit f ∈ F itself:

∀t ∈ lt(f), d ∈ data(t) : affF (d) = f (8.3)

Owners and Affected Users. In order to determine the affected user of any
access on any data entity d ∈ D, we require the presence of an owner mapping

own : D → U

to be maintained in the database. The retrieval of owner information relies on
the owner column for local tables and input tables, as introduced in Section 4.1
and Chapter 5, respectively. We instantiate the affected user accordingly:

∀d ∈ D : affU (d) = own(d) (8.4)

Sharing. As discussed in Section 6.2, f-units may access arbitrary datasets
of their own local tables1. Access control responsibility for local tables is thus
delegated to the dimension F of f-units by a virtual cross-user sharing:

∀t ∈ lt(·), d ∈ data(t), u ∈ U \ {own(d)} : shU (own(d), u, d) (8.5)

In other words, any user u ∈ U that uses some f-unit f ∈ F has to rely on f in
which data f presents to other users.

Similarly, a user has to rely on the output table access control (Section 6.2)
of the providing f-unit in which datasets might eventually end up in an input

1Only for read operations, though.

54

table. Thus, given any user u ∈ U and f-unit f ∈ F , the contents of an input
table are assumed to be shared across the dimension U of users:

∀t ∈ it(f , u), d ∈ data(t), u ∈ U \ {own(d)} : shU (own(d), u, d) (8.6)

By Equation 8.5 and Equation 8.6, we basically incapacitate the user by shift-
ing sharing responsibility solely to the f-unit dimension – in contrast to the
requirement that both dimensions have to agree on a sharing of a particular
data entity. However, an f-unit can only share datasets that it was explicitly
provided with by either the dataset’s owner or another sharing f-unit. We can
regard both cases as the implicit affirmation of the user based on his personal
trust assessment for potential sharing in a manner the f-unit may specify on
own behalf.

By the definition of an input table t, all data entities d ∈ data(t) are intentionally
shared on behalf of the providing f-unit src(d). Hence, for all input tables of
f-unit f ∈ F running in the scope of user u ∈ U , we assume

∀t ∈ it(f , u), d ∈ data(t) : shF (src(d), f , d) (8.7)

that is, an intended sharing in the principal dimension of f-units F .

Model Instantiation. Using the previously introduced predicates, we pro-
pose an instantiation of the formal model that we call sandbox. The sandbox sb
discriminates a request r ∈ R according to a common operation-set in relational
database systems:

op : R → {SEL, INS, UPD, DEL}

Here, op is defined to restrict a single request to a single operation, while this
is not necessarily the case in practice, e.g., an update operation UPD might
incorporate a select operation SEL when updating data that was previously
read or evaluated according to some condition. However, we assume op(r) to
be well-defined for all r ∈ R – if necessary, r has to be split up into sub-requests.

We define the sandbox
sb : R× U × F → {0, 1}

according to the following semantics:

sb(r , u, f) 7→

(A)︷ ︸︸ ︷
∀t ∈ affT (r) : t ∈ lt(f)︸ ︷︷ ︸

(B)

∨ t ∈ it(f , u)︸ ︷︷ ︸
(C)

, op(r) ∈ {SEL}

(D)︷ ︸︸ ︷
∀t ∈ affT (r) : t ∈ lt(f) ∧
∀d ∈ affD(r) : own(d) = u︸ ︷︷ ︸

(E)

, else

(8.8)

Intuitively, a read-only request is considered permissive (A), if it operates only
on own local tables (B) or on input tables (C) – in other words, an f-unit
may read data from own local tables and from own input tables that are wired
according to the currently connected user. This scenario is covered by our query

55

sandbox implementation (Section 4.2), which ensures that only tables associated
to a particular f-unit are accessible and thus possibly affected.

On the other hand, a modification request is considered permissive, if it operates
only on own local tables (D) and if all affected datasets are owned by the
currently connected user (E). As only local tables can be modified2, the owner
invariant (Section 4.1) restricts authorized changes to the particular dataset
owner and thereby implements the sb semantics for modification requests.

8.2 Soundness

In this section, we investigate whether our sandbox semantics presented in Equa-
tion 8.8 is a valid instantiation of the formal access control model as defined in
Equation 3.4.

We thus claim that

∀r ∈ R, u ∈ U , f ∈ F : sb(r , u, f)⇒ req valid(r , u, f)

i.e., that the sandbox is at least as restrictive as the presented formal model.
By the introduced instantiation, we can derive for the particular parts of sb:

(B) The affected f-unit for any local table dataset is the associated f-unit itself:

t ∈ lt(f)

⇒(8.3) ∀d ∈ data(t) : affF (d) = f

(B) The affected user for any local table dataset omits any restriction but
relies on the particular f-unit:

t ∈ lt(f)

⇒(8.5) ∀d ∈ data(t) : own(d) = u ∨ shU (own(d), u, d)

⇒(8.4) ∀d ∈ data(t) : affU (d) = u ∨ shU (affU (d), u, d)

(B) Both the above implications of (B) yield together:

∀d ∈ data(t) : affF (d) = f ∧ (affU (d) = u ∨ shU (affU (d), u, d))

(C) Input table datasets are shared by the providing f-unit:

t ∈ it(f , u)

⇒(8.7) ∀d ∈ data(t) : shF (src(d), f , d)

⇒(8.2) ∀d ∈ data(t) : shF (affF (d), f , d)

(C) The affected user for any input table dataset omits any restriction but
relies on the providing f-unit and its output table invariants:

t ∈ it(f , u)

⇒(8.6) ∀d ∈ data(t) : own(d) = u ∨ shU (own(d), u, d)

⇒(8.4) ∀d ∈ data(t) : affU (d) = u ∨ shU (affU (d), u, d)

2Local tables are the only entities for which write permissions are granted.

56

(C) Both the above implications of (C) yield together:

∀d ∈ data(t) : shF (affF (d), f , d) ∧ (affU (d) = u ∨ shU (affU (d), u, d))

(D) If only local tables of the same f-unit f are affected, the overall affected
f-unit is f itself:

∀t ∈ affT (r) : t ∈ lt(f)

⇒(8.3) ∀t ∈ affT (r) : ∀d ∈ data(t) : affF (d) = f

⇒(8.1) ∀d ∈ affD(r) : affF (d) = f

(E) If all affected datasets are owned by user u, the overall affected user is u
itself:

∀d ∈ affD(r) : own(d) = u

⇒(8.4) ∀d ∈ affD(r) : affU (d) = u

By the implications of (B) and (C), we can derive the overall semantics of (A),
i.e., of a SEL operation:

(A)

⇔ ∀t ∈ affT (r) : (B) ∨ (C)

⇒(8.1) ∀d ∈ affD(r) : (affF (d) = f ∨ shF (affF (d), f , d)) ∧
(affU (d) = u ∨ shU (affU (d), u, d))

(8.9)

Furthermore, for a request being an INS, UPD, or DEL operation, we have:

(D) ∧ (E)

⇔ ∀d ∈ affD(r) : affF (d) = f ∧ affU (d) = u
(8.10)

If we reconsider the formal model as in Equation 3.4, the instantiation to the
〈U ,F〉 universe gives:

req valid(r , u, f) 7→ ∀d ∈ affD(r) : (affU (d) = u ∨ shU (affU (d), u, d)) ∧
(affF (d) = f ∨ shF (affF (d), f , d))

Both branches of our implemented sandbox, Equation 8.9 and Equation 8.10,
reflect that for every dimension, either own or explicitly shared datasets are
affected – and thus satisfy the formal model. 2

57

Chapter 9

Future Work

This chapter revises particular technical aspects that are considered problem-
atic or worth further investigation. Moreover, suitable existing approaches are
presented as related work.

9.1 Advanced Owner Management

The extensions of SAFE do not offer the possibility for handling delegation, i.e.,
users cannot temporarily or permanently transfer their ownerships on a certain
set of data entities: The owner invariant (Section 4.1) maintains the owner
information throughout the lifetime of a particular row. However, there are
scenarios where delegation could be a desirable feature, even regardless of a
potential loss of accountability properties. Moreover, one wants to account for
a group of users that are jointly responsible for a common set of data in the
scope of collaboration.

In addition to the problem of multiple or deviant owners per dataset, the owner
invariant has to be maintained even for output tables in the presence of mali-
cious f-units: So far, an f-unit may arbitrarily choose the returned owner for a
particular dataset. However, some information flow approach on output tables
might be needed in order to track returned rows down to the set of actually
affected users.

9.2 F-unit Sandboxing

As required by the sandbox assumption SB (Section 3.1 and, in particular,
Section 3.2.1), f-unit information flow shall be limited to the channel between
f-unit, CRM, and database. In other words, an f-unit must not be able to
communicate with other f-units or even foreign entities.

Connections in Flash-based applications are restricted to their originating do-
main per default [1]. Similar functionality for preventing outbound connections

59

in Web applications is provided by the RequestPolicy browser extension [22].
In contrast to the W3C Cross-Origin Resource Sharing [26] that can be used
to relax a browser’s same origin policy, the opposite approach that would ad-
ditionally limit the connectivity of delivered content seems to be still missing.
However, there are projects that might be worth further evaluation in this con-
text – the Google Caja project [6] for example claims to introduce a fine-grained
security model for a “safe” embedding of third-party JavaScript code. In gen-
eral, static or dynamic JavaScript code analysis [7] is an option that is worth
being mentioned, too.

A short-term solution for preventing leakage across f-units while neglecting the
possibility of sending data to foreign servers could consist of iframes that hold
f-units hosted on distinct subdomains: Every f-unit is hosted on its own subdo-
main and instead of a <div> tag as container, the f-unit is displayed as a stand-
alone page inside an iframe. The same origin policy, which is implemented by
all recent and common browsers [27, 5], will thus prevent any attempts of DOM
accesses across f-units. However, in contrast to divs, iframes do not support
an automatic sizing according to its content and would thus only allow a fixed
layout. For this reason, a dedicated communication channel, e.g., by using the
fragment identifier [13], would be needed that allows to announce the children’s
inner dimensions1. The parent iframe may then resize its child appropriately.

9.3 Securing the Session ID

The management of users and sessions presented in Section 7.1 follows the basic
and well-known approach of cookies carrying a session id. This is possible
because of our strong assumptions on the behavior of an f-unit. In particular, the
sandbox assumption may be considered too strong to be satisfiable – preventing
a malicious f-unit from leaking sensitive information (the sid) is still a problem
to be solved. If we weaken or even drop the sandbox assumption, a reasonable
approach could be to limit the consequences of a possible sid leakage: If a sid is
bound to and only valid for a particular f-unit, an adversary can abuse a stolen
session id only for queries that would be possible directly for the malicious f-unit
anyhow. Additionally, the sid could be bound to a secret that is only available
in the current browser instance and hidden even from the f-units themselves.

However, when binding a cookie to an IP address (Section 7.1), there are several
problematic technical scenarios that are worth to mention:

NAT If the attacker and the client reside in the same network that is using
network address translation, our IP-binding signature will render useless.

Proxy The same holds if both parties are using an anonymous Web proxy that
is not transmitting the X-Forwarded-For-header.

IP-Spoofing In an environment allowing for IP address spoofing, an adversary
could abuse the cookie as well.

1http://stackoverflow.com/questions/153152/resizing-an-iframe-based-on-content/

362564#362564

60

http://stackoverflow.com/questions/153152/resizing-an-iframe-based-on-content/362564#362564
http://stackoverflow.com/questions/153152/resizing-an-iframe-based-on-content/362564#362564

DHCP Our approach will break sessions for clients using dynamic addresses
that can legitimately change in between.

A common proposal to overcome these limitations is to use the SSL session key
instead of the IP address for binding the sid to a browser instance [11]. How-
ever, this approach might suffer from the possibility of renegotiation handshakes
during the session2.

While binding the sid to the client IP address provides protection against re-
mote abuse of a leaked sid in principle, we suggest several techniques that
are considered suitable for implementing the semantics of a per-f-unit or per-
browser-instance sid in the following. While we focus on the problem of the
cookie residing in the same browser environment, more generic approaches on
the topic of securing cookies are introduced in existing work [11, 14, 17, 28].

In order to prevent leakage of session information, it is reasonable to restrict its
validity to a corresponding secret available only in the client’s browser environ-
ment. Upon visit, client-side JavaScript code could generate a random nonce,
which is announced to the CRM using a secure and authenticated channel and
thereby bound to the session. As long as this nonce is kept hidden in memory on
the browser side, its value can be used to sign queries upon request of an f-unit
before passing the queries to the CRM. In addition, this approach can easily be
extended to an additional set of per-f-unit nonces that are handed out to each
f-unit’s object upon creation. This approach ensures that all leaked nonces will
render useless without knowing the secret that is only locally available in the
browser.

The previous approach requires an initial confidential channel between the client
and the CRM. Meeting this confidentiality requirement could be technically fea-
sible, whereas this could be undesirable. Hash-chains as introduced by Lamport
[9] use a one-way function H(·), which is initially applied up to n times on a
chosen secret s0:

si = H(. . . H(︸ ︷︷ ︸
i times

s0) . . .) = Hi(s0) = H(si−1) , 0 < i ≤ n

A client-side script could now announce its computed value of sn together with
the session id to the CRM, keeping all other parts secret – the root image s0
(and n), in particular. For an upcoming jth query, the f-unit could then request
a signature for its query, which is based on sn−j that is recalled or recomputed
using s0 in the client’s browser. While it is considered infeasible to compute the
pre-image sn−j on the basis of a seen sn−j+1 only, the validity of a new token is
publicly verifiable by comparing H(sn−j) with the previously received sn−j+1.

A second approach that does not rely on a confidential exchange of information is
inspired by the accountability technique for randomized systems called CSAR
[2]. Adapted to our scenario with weakened requirements, one could extract
the possible usage of low-exponent RSA as one-way trapdoor function. When
picking n as the product of two suitable primes p and q, one would define the
low-exponent RSA fn(·) as:

fn(x) = x3 mod n

2http://support.microsoft.com/kb/257591/EN-US

61

http://support.microsoft.com/kb/257591/EN-US

Assume a client-side script chooses an initial seed value s0 that is publicly (but
authentic) announced along with the RSA modulus n, while p and q are kept
secret in the browser environment. Then, the client is able to compute tokens
of the sequence

si = f−1n (si−1)

while this is assumed to be infeasible for parties not aware of the factorization
of n into p and q. However, the origin of each produced si is easily verifiable
using:

fn(si) = si−1

This provides another possibility of binding the session of a user to its current
browser environment – in addition to the session information, each query reach-
ing the CRM has to carry an si that was certainly requested from the client
browser by the f-unit. Furthermore, this approach is considered extensible with
respect to supporting per-f-unit tokens as well. For implementing f(·), other
trapdoor functions may as well be suitable.

The presented approaches are intended to allow for a weakened sandbox assump-
tion. However, the resulting assumption can only be slightly weakened: Only
the leakage of the session id is tolerated, while an assumption on the secrecy
of private data in client-side scripts has to be added. Furthermore, the leakage
of other user-related data, the possibility of accessing another f-unit’s DOM,
and all the other possible sandbox-related threats remain unaffected. Another
main problem consists in using the browser instance as additional authenticity
factor to the cookie. This disqualifies the approaches for usage in an initial or
static queries context (Section 7.1), as code executed at PHP-runtime (before
being delivered to the client) cannot use any JavaScript functionality. Other
problems of technical nature are the storage of secrets beyond page reloads and
the implementation of session-resets if the CRM misses some si in between. For
these reasons, further evaluation or even implementation of one of the presented
techniques are left for future work.

9.4 Mitigating Cross-Site Request Forgery

Even in scenarios that reliably bind a cookie to a browser instance and thus to
a particular user, an adversary might be able to trick the user into performing
unintended actions by a Cross-Site Request Forgery.

In the scope of a CSRF, an adversary can exploit various techniques that result
in self-crafted requests issued by the victim’s browser to the target application.
As cookies are seamlessly included in any request to the particular domain in
general, the potential malicious request seems to originate from the authenti-
cated source, as indicated by the cookie.

Amongst others, a promising mitigation technique could be the inclusion of a
verifiable challenge or the cookie value itself in hidden form fields [24] – ba-
sically preventing an adversary from crafting valid form-submitting requests.
As in SAFE, forms are parsed and automatically augmented anyhow, this ap-
proach could be adapted with manageable effort. Furthermore, advanced secu-

62

rity methods such as link signing or encryption could be supported, allowing for
prevention of parameter tampering, e.g., by means of injection, in general.

63

Chapter 10

Summary & Conclusions

In this thesis, we have payed particular attention to an access control abstrac-
tion that complies with the demands of contemporary RIAs. The SAFE frame-
work addresses the common pattern of mashup Web applications, which can be
composed out of functional self-contained f-units. Additionally, the design of
SAFE comprises the presence of a CRM that is considered well-suited for central
database query monitoring and policy enforcing.

By this means, we have derived an attacker model and a generic access control
abstraction, yielding a clear notion of data separation between and across both
users and f-units. On this basis, we have extended SAFE by an ownership-based
access control approach that maintains well-defined scopes on the database layer
and thereby meets the derived data separation requirement. On top of this, by
automatically maintained database table invariants, the developer of an f-unit
may shift the responsibility of additional access control policies to the database
layer as well.

Moreover, we have addressed the possibility of f-unit collaboration and run-
time extensibility by introducing the concept of wiring, which allows f-units to
receive and extend data through particular interface tables. In particular, we
have implemented foreign key functionality with dependency tracking and seam-
less cleanup even on input tables, allowing f-units to extend arbitrary foreign
datasets according to their own functionality. We have shown that, in addition
to our basic access control approach, our wiring approach resembles the notion
of data sharing in the scope of our previously introduced access control model.

While we consider our overall approach as well-suited to the particular SAFE

scenario, we ultimately had to rely on a user’s perception of the trustworthiness
of an f-unit. In particular, we avoided to base our approach on information flow
or code analysis tools, i.e., for HTML, JavaScript, or SQL – thereby leaving still
room for further improvements.

65

List of Figures

2.1 SFW compiler sfwc translating SFW statements 4
2.4 DOM tree . 5
2.5 Schematic application functionality showcase 5
2.6 F-units, CRM, and browser . 6

3.1 Attacker model . 10
3.2 Query processing topology . 14

5.1 An f-unit defining an input table and an output table 21
5.4 An input table consists of the union over multiple output tables . 23
5.5 Wiring GUI screenshot . 23
5.6 Input/output table wiring dependency tree 25

7.1 Session model . 38
7.2 Schematic overview: Database integration 41
7.4 Screenshot: SN use case . 49

67

List of Listings

2.2 SFW for loop . 4
2.3 SFW form value access . 4

4.1 Owner invariant UPDATE trigger 18
4.2 Defining OWNER columns for local tables 19
4.3 EXPLAIN statement output for table aliases 20

5.2 Defining input tables and output tables 22
5.3 Using an input table for statistics 22

6.1 Local table invariant . 30
6.2 Invariant examples for output tables 34

7.3 .db-file syntax . 42

69

Bibliography

[1] Adobe Systems Inc. Cross-domain policy for Flash movies. http://kb2.

adobe.com/cps/142/tn_14213.html.

[2] Michael Backes, Peter Druschel, Andreas Haeberlen, and Dominique Un-
ruh. CSAR: A Practical and Provable Technique to Make Randomized
Systems Accountable. In Proceedings of the Network and Distributed Sys-
tem Security Symposium. The Internet Society, 2009.

[3] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. Generic Schema
Matching, Ten Years Later. PVLDB, 4(11):695–701, 2011.

[4] Silvana Castano, Maria Grazia Fugini, Giancarlo Martella, and Pierangela
Samarati. Database Security. Addison-Wesley & ACM Press, 1995.

[5] Google Inc. Browser Security Handbook. http://code.google.com/p/

browsersec/wiki/Part2#Same-origin_policy.

[6] Google Project Hosting. google-caja – Compiler for making third-party
HTML, CSS and JavaScript safe for embedding. http://code.google.

com/p/google-caja/.

[7] Seth Just, Alan Cleary, Brandon Shirley, and Christian Hammer. Informa-
tion Flow Analysis for JavaScript. In Proceedings of the 1st ACM SIGPLAN
international workshop on Programming language and systems technologies
for internet clients, PLASTIC ’11, pages 9–18. ACM, 2011.

[8] D. Kristol and L. Montulli. HTTP State Management Mechanism. RFC
2109 (Proposed Standard), February 1997. Obsoleted by RFC 2965.

[9] Leslie Lamport. Password Authentication with Insecure Communication.
Commun. ACM, 24(11):770–772, November 1981.

[10] Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In Pro-
ceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 233–246. ACM, 2002.

[11] Alex X. Liu, Jason M. Kovacs, Chin-Tser Huang, and Mohamed G. Gouda.
A Secure Cookie Protocol. In Proceedings of the 14th IEEE International
Conference on Computer Communications and Networks, pages 333–338,
October 2005.

71

http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
http://code.google.com/p/google-caja/
http://code.google.com/p/google-caja/

[12] Microsoft Developer Network Library. Mitigating Cross-site Script-
ing With HTTP-only Cookies. http://msdn.microsoft.com/library/

en-us/ms533046.aspx.

[13] Microsoft Developer Network Library. Secure Cross-Domain Communi-
cation in the Browser. http://msdn.microsoft.com/en-us/library/

bb735305.aspx.

[14] Steven J. Murdoch. Hardened Stateless Session Cookies. In Security Pro-
tocols XVI - 16th International Workshop, pages 93–101. Springer, 2008.

[15] Qun Ni and Elisa Bertino. xfACL: An Extensible Functional Language
for Access Control. In Proceedings of the 16th ACM symposium on Access
control models and technologies, SACMAT ’11, pages 61–72. ACM, 2011.

[16] Oracle. MySQL 5.1 Reference Manual. http://dev.mysql.com/doc/

refman/5.1/en/.

[17] Joon S. Park and Ravi Sandhu. Secure Cookies on the Web. IEEE Internet
Computing, 4(4):36–44, 2000.

[18] Raghu Ramakrishnan and Johannes Gehrke. Database Management Sys-
tems (3rd ed.). McGraw-Hill Publ. Comp., 2002.

[19] Raphael M. Reischuk. The SAFE Activation Framework for Exten-
sibility: Official SAFE User Manual. http://safe-activation.org/

publications/safe-manual.pdf.

[20] Raphael M. Reischuk, Michael Backes, and Johannes Gehrke. SAFE Ex-
tensibility for Data-Driven Web Applications. In Proceedings of the 21st
international conference on World Wide Web, WWW ’12, pages 799–808.
ACM, 2012.

[21] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Ex-
tending Query Rewriting Techniques for Fine-Grained Access Control. In
Proceedings of the 2004 ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’04, pages 551–562. ACM, 2004.

[22] Justin Samuel. Firefox addon for privacy and security – RequestPolicy.
https://www.requestpolicy.com/.

[23] Bruce Schneier. Secrets and Lies – Digital Security in a Networked World.
Wiley Publishing, Inc., 2004.

[24] The Open Web Application Security Project (OWASP). Cross-
Site Request Forgery (CSRF) Prevention Cheat Sheet. https:

//www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%

29_Prevention_Cheat_Sheet.

[25] Dobromir Todorov. Mechanics of User Identification and Authentication:
Fundamentals of Identity Management. Taylor & Francis, 2007.

[26] World Wide Web Consortium. Cross-Origin Resource Sharing. http://

www.w3.org/TR/cors/.

[27] World Wide Web Consortium. Same Origin Policy. http://www.w3.org/

Security/wiki/Same_Origin_Policy.

72

http://msdn.microsoft.com/library/en-us/ms533046.aspx
http://msdn.microsoft.com/library/en-us/ms533046.aspx
http://msdn.microsoft.com/en-us/library/bb735305.aspx
http://msdn.microsoft.com/en-us/library/bb735305.aspx
http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/refman/5.1/en/
http://safe-activation.org/publications/safe-manual.pdf
http://safe-activation.org/publications/safe-manual.pdf
https://www.requestpolicy.com/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy

[28] Donghua Xu, Chenghuai Lu, and Andre Dos Santos. Protecting Web Usage
of Credit Cards Using One-Time Pad Cookie Encryption. In Proceedings of
the 18th Annual Computer Security Applications Conference, ACSAC ’02,
pages 51–. IEEE Computer Society, 2002.

73

	Introduction
	The SAFE Framework
	The Declarative Modeling Language SFW
	F-units
	The Centralized Reference Monitor (CRM)
	Access Control
	Drawbacks

	Security Principles – from a Requirements Perspective
	Attacker Model
	Assumption-based Mitigations
	Sandbox Assumption
	Query Structure Assumption
	Query Data Assumption

	Generic Access Control Abstraction

	A Novel Access Control Approach
	Owner Invariant
	Query Sandbox

	Data Sharing – the Wiring Methodology
	Input Tables and Output Tables
	Data Consistency via Foreign Keys
	Presentation Consistency via Updates

	Data Invariants
	Generic Invariants
	Output Table Invariants

	Implementation
	Session Management
	F-unit Integration Overview
	Wiring
	Use Case Application

	Evaluation
	Model Instantiation
	Soundness

	Future Work
	Advanced Owner Management
	F-unit Sandboxing
	Securing the Session ID
	Mitigating Cross-Site Request Forgery

	Summary & Conclusions
	List of Figures
	List of Listings
	References

