
In the Compression Hornet’s Nest:
A Security Study of Data Compression in Network Services

Giancarlo Pellegrino
CISPA, Saarland University, Germany

gpellegrino@mmci.uni-saarland.de

Davide Balzarotti
EURECOM, France

davide.balzarotti@eurecom.fr

Stefan Winter
TU Darmstadt, Germany
sw@cs.tu-darmstadt.de

Neeraj Suri
TU Darmstadt, Germany

suri@cs.tu-darmstadt.de

Abstract

In this paper, we investigate the current use of data
compression in network services that are at the core of
modern web-based applications. While compression re-
duces network traffic, if not properly implemented it may
make an application vulnerable to DoS attacks. De-
spite the popularity of similar attacks in the past, such
as zip bombs or XML bombs, current protocol specifica-
tions and design patterns indicate that developers are still
mostly unaware of the proper way to handle compressed
streams in protocols and web applications. In this paper,
we show that denial of services due to improper handling
of data compression is a persistent and widespread threat.
In our experiments, we review three popular commu-
nication protocols and test 19 implementations against
highly-compressed protocol messages. Based on the re-
sults of our analysis, we list 12 common pitfalls that we
observed at the implementation, specification, and con-
figuration levels. Additionally, we discuss a number of
previously unknown resource exhaustion vulnerabilities
that can be exploited to mount DoS attacks against pop-
ular network service implementations.

1 Introduction

Modern web-based software applications rely on a num-
ber of core network services that provide the basic com-
munication between software components. For instance,
the list includes Web servers, email servers, and instant
messaging (IM) services, just to name some of the more
widespread ones. As a consequence of their popularity,
Denial of Service (DoS) may have very severe conse-
quences on the availability of many web services. In
fact, according to the 2014 Global Report on the Cost
of Cyber Crime [35], the impact of application DoS is
dramatic: 50% of the organizations have suffered from
such an attack, and the average cost of a single attack is
estimated to be over $166K US [35].

For performance reasons, many network services ex-
tensively use data compression to reduce the amount of
data transferred between the communicating parties. The
use of compression can be mandated by protocol speci-
fications or it can be an implementation-dependent fea-
ture. While compression indeed reduces network traffic,
at the same time, if not properly implemented, it may
also make applications vulnerable to DoS attacks. The
problem was first brought to users’ attention in 1996 in
the form of a recursively highly-compressed file archive
prepared with the only goal of exhausting the resources
of programs that attempt to inspect its content. In the
past, these zip bombs were used, for example, to mount
DoS attacks against bulletin board systems [1] and an-
tivirus software [2, 57].

While this may now seem an old, unsophisticated, and
easily avoidable threat, we discovered that developers
did not fully learn from prior mistakes. As a result,
the risks of supporting data compression are still often
overlooked, and descriptions of the proper way to han-
dle compressed messages are either lacking or mislead-
ing. In this paper, we investigate the current use of data
compression in several popular protocol and network ser-
vices. Through a number of experiments and by review-
ing the source code of several applications, we have iden-
tified a number of improper ways to handle data com-
pression at the implementation, specification, and config-
uration levels. These common mistakes are widespread
in many popular applications, including Apache HTTPD
and three of the top five most popular XMPP servers.
Similar to the zip bombs of 20 years ago, our experi-
ments show that these flaws can easily be exploited to
exhaust the server resources and mount a denial of ser-
vice attack.

The task of handling data compression is not as simple
as it may sound. In general, compression amplifies the
amount of data that a network service needs to process,
and some components may not be designed to handle this
volume of data. This may result in the exhaustion of re-

sources for applications that were otherwise considered
secure. However, in this paper we show that these mis-
takes are not only caused by unbounded buffers, and nei-
ther are they localized into single components. In fact,
as message processing involves different modules, im-
proper communication may result in a lack of synchro-
nization, eventually causing an excessive consumption of
resources. Additionally, we show similar mistakes when
third-party modules and libraries are used. Here, mis-
leading documentation may create a false sense of secu-
rity in which the web application developers believe that
the data amplification risks are already addressed at the
network service level.

To summarize, this paper makes the following contri-
butions:

• We show that resource exhaustion vulnerabilities due
to highly-compressed messages are (still) a real threat
that can be exploited by remote attackers to mount
denial of service attacks;

• We present a list of 12 common pitfalls and suscep-
tibilities that affect the implementation, specification,
and configuration levels;

• We tested 11 network services and 10 third-party ex-
tensions and web application frameworks for a total of
19 implementations against compression-based DoS
attacks;

• We discovered and reported nine previously unknown
vulnerabilities, which would allow a remote attacker
to mount a denial of service attack.

This paper is organized as follows. In Section 2, we
introduce the case studies. Then, in Section 3, we dis-
cuss the security risks associated with data compression,
revisit popular attacks, and outline the current situation.
In Section 4, we detail the current situation and present
a list of 12 pitfalls at the implementation, specification,
and configuration levels. Then, in Section 5, we de-
scribe the experiments and present previously-unknown
resource exhaustion vulnerabilities. In Section 6, we re-
view related works, and finally, in Sections 7 and 8, we
outline future work and draw some conclusions.

2 Data Compression

Data compression is a coding technique that aims at re-
ducing the number of bits required to represent a string
by removing redundant data. Compression is lossless
when it is possible to reconstruct an exact copy of the
original string, or lossy otherwise. For a detailed sur-
vey on compression algorithms please refer to Salomon
et al. [45]. Since the focus of our paper is on the incorrect

Prot. Network Service Native External

XMPP ejabberd 7 -
Openfire 7 -
Prosody 7 -
jabberd2 7 -
Tigase 7 -

HTTP Apache HTTPD 7 -
mod-php - 7
CSJRPC - 7
mod-gsoap - 7
mod-dav 7 -

Apache Tomcat - 7
Axis2 - 7
CXF 7 7
jsonrpc4j - 7
json-rpc - 7
lib-json-rpc - 7

Axis2 standalone 7 -
gSOAP standalone 7 -

IMAP Dovecot 7 -
Cyrus 7 -

Table 1: Case studies and Implementations

use of compression and it is independent of the algorithm
itself, we will discuss our finding and examples using the
popular Deflate algorithm.

Deflate is a lossless data compression technique that
combines together a Huffman encoding with a variant of
the LZ78 algorithm. It is specified in the Request For
Comments (RFC) number 1951 [13], released in May
1996, and it is now implemented by the widely used
zlib library [19], the gzip compression tool [18], and
the zip file archiver tool [22], just to name few popular
examples.

Deflate is widely used in many Internet protocols such
as the HyperText Transfer Protocol (HTTP) [17], the eX-
tensible Messaging and Presence Protocol (XMPP) [42],
the Internet Message Access Protocol (IMAP) [11], the
Transport Layer Security (TLS) protocol [26], the Point-
to-Point Protocol (PPP) [60], and the Internet Protocol
(IP) [33]. The list includes both text-based and binary
protocols. However, since the first category contains
fields of arbitrary length where the decompression over-
head is more evident, we decided to focus our study on
three popular text-based protocols: HTTP, XMPP and
IMAP. For each protocol we selected a number of imple-
mentations, summarized in Table 1. The columns Native
and External show if the compression is natively sup-
ported by the application or if it is provided by an exter-
nal component.

HTTP - Starting from version 1.1, HTTP supports com-
pression of the HTTP response body using different com-
pression algorithms (including Deflate) [17]. While the
specification only covers the compression of the response
body, we manually verified that several HTTP server im-

2

HTTP server No. Perc.

Apache HTTPD 248 24.8%
NGINX HTTPD 202 20.2%
Google HTTPD 81 8.1%
MS IIS HTTPD 64 6.4%
Apache Tomcat 22 2.2%
Others (20 servers) 102 10.2%
Unknown 218 21.8%
Errors 63 6.3%

Tot. no. of domains 1000 100%

(a) HTTP servers of the first 1000 domains of
the Alexa DB of 2013-10-05.

XMPP server No. Perc.

ejabberd 56 52.8%
Openfire 11 10.4%
Prosody 9 8.5%
jabberd2 3 2.8%
Tigase 2 1.9%
Other (1 server) 1 0.9%
Unknown 1 0.9%
Errors 23 21.7%

Tot. no. of domains 106 100%

(b) XMPP servers of the 106 domains from
xmpp.net of 2013-09-03.

IMAP server No. Perc.

Dovecot 31 42.5%
Courier 19 26.0%
Zimbra 6 8.2%
Cyrus 3 4.1%
MS Exchange 2 2.7%
Others (5 servers) 6 8.2%
Unknown 6 8.2%

Servers discovered 73 100.00%

(c) IMAP servers of the first 1000 domains of
the Alexa DB

Table 2: Service detection for HTTP, XMPP, and IMAP servers

plementations additionally support the compression of
the request body. Table 2a shows the result of the HTTP
service detection1 in order to identify the most popular
HTTP server implementations among the top 1000 do-
mains of the Alexa Top Sites database2. From Table 2a,
we selected Apache HTTPD 2.2.22 [53] and Apache
Tomcat 7 [52] as they are available for GNU/Linux. The
former supports message decompression via the mod-
ule mod-deflate, while the latter can be extended with
third-party filters. In this paper, we used the 2Way HTTP
Compression Servlet Filter 1.2 [37] (2Way for short) and
Webutilities 0.0.6 [32].

In our experiments, we considered three use cases that
may benefit from request compression: distributed com-
puting, web applications, and sharing static resources.
For Apache HTTPD, we selected gSOAP 2.8.7 [59] to
develop SOAP-based RPC servers, CSJRPC 0.1 [9] to
develop PHP-based JSON RPC servers, the PHP Apache
module [55] (mod-php, for short) to develop PHP-based
web applications, and WebDAV [21] (as implemented by
the built-in Apache module mod-dav) to share static files.
For Tomcat, we selected Apache CXF 2.2.7 [51], Apache
Axis 2 [50], jsonrpc4j 1.0 [15], json-rpc 1.1 [41], and lib-
json-rpc 1.1.2 [7].

We test web servers with the following HTTP request:

POST $resource HTTP /1.1\r\n

Host: $domain\r\n

Content -Encoding: gzip\r\n

\r\n

$payload

\r\n

where $resource is the path to the resource, $domain
the web server domain, and $payload is the compressed
payload, or the compression bomb. The type of payload
varies according to the implementation under test, i.e.,

1Service detection is a technique to identify the name of a network
service by analyzing the server response against a database of finger-
prints. In this paper, we used the Nmap Security Scanner tool [30]).

2See http://www.alexa.com/

JSON or SOAP message requests, and HTML form pa-
rameters. For example, the SOAP compression bomb is
the following:

<soapenv:Envelope [...]>

$spaces

<soapenv:Body >[...] </ soapenv:

Body >

</soapenv:Envelope >

where $spaces can be, for example, a 4GB-long string
of blank spaces. Once compressed, this payload is re-
duced to about 4MB with a compression ratio of about
1:1000, a value close to the maximum compression fac-
tor that can be achieved with Zlib, i.e., 1:1024 [19]. It
might be possible to generate payloads with higher ra-
tios, for instance, by modifying the compressor to return
shorter, but still legal, strings. However, in this paper, we
did not investigate this direction and leave this as future
work.

XMPP - XMPP is an XML-based protocol offering mes-
saging and presence, and request-response services [43,
44]. XMPP is at the core of several public and IM ser-
vices, such as Google Talk, in which users exchange
text-based messages in real-time. We performed ser-
vice detection on the list of XMPP services available
at xmpp.net3. Table 2b shows the result of the ser-
vice detection. We selected the five most popular XMPP
servers for our tests: ejabberd 2.1.10 [38], Openfire
3.9.1 [27], Prosody 0.9.3 [56], jabberd2 2.2.8 [54], and
Tigase 5.2.0 [58].

To test XMPP servers, we used a similar trick as used
in SOAP compression bombs. The highly-compressed
XMPP message (i.e., xmppbomb) is the following:

<?xml version =’1.0’ ?>

<stream:stream

3xmpp.net maintains a publicly accessible list of XMPP services:
http://xmpp.net/services.xml. We retrieved it on 2013-09-03
and it contained 106 domains.

3

$spaces

to=’server ’ xmlns=’jabber:

client ’

[...] >

where $spaces can be a 4GB-long string of blank
spaces. Also in this case, the compression ratio is about
1:1000.

IMAP - IMAP is a command-response protocol that al-
lows a client to manage emails and mailboxes on a re-
mote server [11]. The protocol supports compression
algorithms to reduce the size of both commands and re-
sponses [23]. We obtained a list of popular IMAP servers
from the first 1000 domains of the Alexa database. We
first resolved the Mail eXchange (MX) domain and then
we performed service detection. Table 2c shows the re-
sults of the service detection. As opposed to HTTP, we
report percentages of the total number of the discovered
servers because the majority of MX domains do not of-
fer IMAP access to the email boxes. Two of the five
IMAP servers were available for GNU/Linux and sup-
ported data compression: Dovecot 2.0.19 [16] and Cyrus
2.4.12 [8].

To test for IMAP, we crafted an email which can be
compressed with a ratio of about 1:1000. The structure
of the email is the following:

From: sender@foo\r\n

To: receiver@foo\r\n

Subject: I am a bomb!\r\n

$spaces

where $spaces can be a 4GB-long string of blank
spaces4.

3 Decompression Security Risks

Applications can use the Deflate decompression algo-
rithm in three main ways. First, they can invoke the
functions provided by widely available libraries, such as
zlib for C and java.util.zip for Java. Second, they
can adopt a high-level wrapper built around one of the
previously mentioned libraries (e.g., the zlib module
in Python or the Zlib module in PHP). Finally, appli-
cations can implement their own version of the Deflate
algorithm. Either way, in this paper we show that it is
not trivial to properly decompress user-generated data
streams. The risk arises from three aspects of the com-
pression/decompression process:

1. Decompression is a computationally intensive task
entailing an extensive use of CPU, memory, and disk
space. If not properly limited, this process can be

4Due to limitations of the IMAP servers, in our experiments we
used a 2GB-long string.

abused to stall an application and cause a denial of
service;

2. Decompression amplifies the amount of data that soft-
ware needs to process. Other components may not be
designed to handle this volume of data. Therefore, the
use of other functionalities on compressed data may
result in the exhaustion of resources for components
that were otherwise considered secure;

3. Compressed data can often be pre-computed by an at-
tacker, thus creating a largely unbalanced scenario in
which the input can be sent very fast, but the server
needs to invest a lot of resources to process it. More-
over, the compressed input can often be meaningless
or even malformed, because applications are often de-
signed to discard bad inputs only after they are en-
tirely decompressed.

3.1 The Past: Zip Bombs and Billion
Laughs

Abusing data amplification to cause application or sys-
tem denial of services is an old trick. The first docu-
mented DoS attack via a highly-compressed file archive
dates back to 1996 when an attacker uploaded a mali-
cious compressed file archive (a zip bomb) to the Bul-
letin Board System (BBS) of Fidonet, waiting for the
system administrator to decompress it [1]. The classic
zip bomb was a 42-kilobyte zip file archive that con-
tained five nested layer of compressed files whose to-
tal size amounted to 4.5 petabytes. In 2001, zip bombs
were used by attackers as email attachments [57] to dis-
able anti-virus software designed to scan incoming mes-
sages [2].

A second popular exploitation of data amplification
flaws was the so-called Billion Laughs attack [49] in
2003 (CVE-2003-1564). The Billion Laughs attack, also
called the Exponential Entity Expansion attack, is an at-
tack that exploits resource exhaustion vulnerabilities of
XML document parsers when processing recursive en-
tity definitions. An attacker may exploit this behavior by
crafting a valid XML document (an XML bomb) which
will cause the parser to generate an exponential amount
of data. This results in CPU monopolization and memory
exhaustion that can be exploited to mount a denial of ser-
vice attack. This vulnerability was first reported in 2003
as a weakness of libxml2 (CVE-2003-1564), an XML
parser library. The same vulnerability was later discov-
ered in some network servers, e.g., in 2009 in WebDAV
as implemented by Apache HTTPD (CVE-2009-1955),
and in a number of XMPP servers in 2011 (see, for ex-
ample, CVE-2011-1755 and CVE-2011-3288).

4

3.2 The present
Despite the popularity of previous attacks, a quick look
at current protocol specifications, coding rules, and de-
sign patterns suggests that developers remain mostly un-
aware of the risks of using data compression. The risks of
using compression are often overlooked, and guidelines
on the proper way to handle compressed messages are
either misleading or completely missing. In the rest of
this section we briefly describe what protocol specifica-
tions, design patterns, and secure coding practices men-
tion about the security issues related to data compression.
Then, in Section 4, we show how this lack of common
knowledge and understanding about the possible decom-
pression attack vectors leads to a multitude of mistakes
in many popular applications and protocols. Finally, in
Section 5, we show experiments and the software vulner-
abilities that we discovered on our case studies.

3.2.1 Protocol Specifications

A closer look at the specifications of the case studies re-
vealed that none of them discuss potential security is-
sues related to the use of data compression at the protocol
level.

The Deflate specifications are mainly concerned
with data integrity issues, suggesting developers imple-
ment means of validating the integrity of compressed
data [13]. The HTTP protocol is concerned with loss
of data confidentiality and unauthorized access, e.g., via
path traversal attacks [17]. HTTP also addresses other
DoS-related issues, such as broken clients when han-
dling the status code 100 and with HTTP proxies [17].
The XMPP stream compression [25] does not describe
any XMPP-specific security concern due to the use of
data compression. Instead, it refers to SSL/TLS [26],
which is concerned with data leakage, buffer overrun in
the compression library, and enforcing packet size limits
for uncompressed data. However, the specifications do
not elaborate on how these concerns apply to XMPP, and
therefore the developer may be left to personal interpre-
tation that, ultimately, translates into vulnerable imple-
mentations. Finally, the IMAP compression specifica-
tion [23] refers again to the SSL/TLS specifications for
everything related to the decompression process.

3.2.2 Security Design Patterns

Security design patterns [3] are used to prevent vulner-
abilities during the software design phase as well as to
mitigate security risks. They address security concerns
at a high level of abstraction (i.e., DoS Safety, Compart-
mentalization, and Small Process [24]) but unfortunately
lack the details to address the specific concerns at the im-
plementation level.

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt evt

Authn.

evt

Figure 1: Message Pipeline

3.2.3 Secure Development Rules

Secure development rules suggest ways to write secure
source code via secure code patterns (See, for example,
coding rules for Java [29] and C++ [46]) or by means
of software testing (see, for example, the OWASP Test-
ing Guide [31]). The only existing rule on processing
securely compressed data suggests a technique to vali-
date a zip archive file before decompressing it. Sadly,
the rule proposes an insecure technique, making the ap-
plications that implement it vulnerable to DoS via disk
space exhaustion. We give more details of this rule in
Section 4.2.

4 Common Pitfalls

In our study, we analyzed the implementation and docu-
mentation of our case studies, the protocol specifications
(i.e., [11, 13, 17, 23, 25, 42]), and the software develop-
ment best practices (i.e., [3, 24, 29, 31, 46]) looking for
proper and incorrect ways to handle data compression.
In this section, we distill our findings into 12 common
pitfalls we observed at the implementation, specification,
and configuration levels. Table 3 shows the list of pitfalls
and maps them to the implementations of Table 1 that are
affected by them.

4.1 Implementation Level
We start our survey of common compression-related mis-
takes by looking at the software implementation. As
mentioned in Section 3, the decompression of a user-
provided input is a delicate task that is prone to many
errors. Software developers may be unaware of or un-
derestimate the risks involved in this process, leading to
implementation mistakes that can introduce denial of ser-
vice vulnerabilities in the final product.

In this section, we list common pitfalls using a pipeline
that processes incoming compressed requests. A pipeline
is a linear chain of processing units in which the output of
a unit is the input of the following one. Data pipelines are
used to process incoming messages in blocks, in which
each unit processes a single piece of information at the
time, and provides an input to the next unit. Data com-
pression can be used at different stages of message pro-
cessing. For instance, it can be the first processing unit,

5

Implementation Specification Configuration

Prot. Network Service Im
pr

.I
np

ut
V

al
.

N
o

A
ut

hn
.

In
t.-

U
ni

tC
om

m
.

L
og

.M
sg

s.

U
nb

ou
nd

.M
em

.

U
nb

ou
nd

.C
PU

M
is

l.
D

oc
.

E
rr

.B
es

t-
Pr

ac
t.

A
PI

In
co

ns
.

In
su

f.
O

pt
io

ns

D
ef

au
lt

V
al

ue
s

D
ec

en
tr.

Pa
rs

.

XMPP ejabberd - - - - - - - - - - - -
Openfire - - - 7 7 7 - - - 7 7 -
Prosody - 7 - - 7 7 - - - 7 - -
jabberd2 - - - - - - - - - - - -
Tigase - - - - 7 7 - - - 7 7 -

HTTP Apache HTTPD Static document 7 - - - 7 7 7 - - 7 - -
mod-php scripts 7 - 7 - - 7 7 - - 7 - -
mod-php CSJRPC 7 - 7 - - 7 7 - - 7 - -
mod-gsoap 7 - 7 - - 7 7 - - 7 - 7
mod-dav - - - - - 7 - - - - - -

Apache Tomcat Axis2 7 - - - 7 7 7 - 7 7 - 7
CXF 7 - - 7 - 7 7 - 7 7 - 7
jsonrpc4j 7 - - - - 7 7 - 7 7 - 7
json-rpc 7 - - - 7 - 7 - 7 7 - 7
lib-json-rpc 7 - - - 7 - 7 - 7 7 - 7

Axis2 standalone 7 - - - 7 7 7 - 7 7 - 7
gSOAP standalone 7 - 7 - - 7 7 - 7 7 - 7

IMAP Dovecot - - - - - - - - - - - -
Cyrus - - - - - - - - - - - -

Table 3: Distribution of the pitfalls within the implementations under test

as it is for XMPP messages, or it can be placed after the
message parsing, as implemented by the HTTP message
processing.

Figure 1 shows a generic data pipeline to process an
incoming message M. This pipeline is extracted from
our case studies and is used to guide the description of
the pitfalls. The pipeline has four processing units: user
authentication, message validation, message decompres-
sor, and message parser. The user authentication verifies
that the request is sent by an authenticated user. This step
may not be present in certain protocols, e.g., HTTP. The
message validation unit implements a decision procedure
to establish whether the incoming message can be ac-
cepted. The decompressor implements the data decom-
pression algorithm to reconstruct the original message.
Finally, the message parser performs a syntactic analysis
of the message according to the rules of the communica-
tion protocol. As we already mentioned, the actual or-
der of the blocks can be different, to reflect the protocol
specification. The four units can send messages to the
logger in order to store errors or unusual events in a log
file. Finally, the output of the pipeline is consumed by
the application logic. Here, by application we refer to an
abstract representation of a message consumer. The con-
sumer can be the rest of the software, e.g., a web applica-
tion, as well as an additional component used to support
application software, e.g., a web-based RPC framework.

4.1.1 Improper Input Validation during Decom-
pression

One of the first mistakes we observed in our study is re-
lated to the erroneous way in which the size of incoming
compressed messages is validated. We observed three
ways to validate the message size: validation of the com-
pressed message size, validation of the decompressed
message size, and validation of the compression ratio of
the message.

The first approach is the most straightforward to im-
plement. Unfortunately, it is hard to estimate the size of a
message by looking at its compressed form. For instance,
while accepting an input no longer than 1MB could be in-
sufficient for many types of data (e.g., when uploading a
compressed picture), the same value is already sufficient
for an attacker to generate extremely large decompressed
output (e.g., by compressing a very repetitive string of
bytes) that may cause an application denial of service.

The second approach consists in checking the size of
the message by setting a limit to the amount of decom-
pressed data. While this is a better solution, the valida-
tion of the decompressed size of an object is not straight-
forward to implement. To the best of our knowledge, we
are not aware of any technique that allows one to com-
pute the uncompressed size without first decompressing
the input. Unfortunately, if the application needs to fully
decompress the data before checking its size, it cannot
protect itself against DoS attacks. However, many li-

6

braries (such as zlib and other language-specific wrap-
pers) allow the application to decompress the incoming
message in chunks. The size of each chunk is controlled
by the application, which creates two buffers to store the
compressed and the decompressed data streams. These
two buffers are passed to the decompressor function of
the library, which reads from one and writes to the other.
The decompressor function returns when there are no
more input bytes to process or when the output buffer
is full. At this point, the application can provide more
data or empty the output buffer. This interface allows an
application to decompress a large message a piece at a
time, constantly monitoring the amount of decompressed
data. If a threshold is reached, the application can reject
the input without the need to fully decompress the entire
message.

The third approach consists of calculating the com-
pression ratio. The compression ratio is the ratio between
the sizes of the compressed and the decompressed mes-
sages. If the value exceeds a certain threshold, the de-
compression is halted and the message discarded. How-
ever, the compression ratio may vary according to the re-
dundancies contained in the original message and it may
cause the rejection of valid inputs. Moreover, the prob-
lem of deciding the appropriate threshold for the ratio
must be solved. This may not be a simple task, as its
value may depend on the protocol itself and on the way
it is used by the application. Developers may leave the
choice to educated guesses, experience, or experiments.
This can result in under- or overestimation of this param-
eter. The former may increase the risk of rejecting valid
messages, while the latter may introduce an uncontrolled
use of resources.

To summarize, the first approach is a security mistake,
the second is correct (if properly implemented), and the
third one is potentially risky.

Apache HTTPD and gSOAP standalone provide ex-
amples of all three of these approaches. The first, vul-
nerable, approach is used by mod-deflate when it decom-
presses data for mod-php or mod-gsoap. This approach
is insecure and we will discuss the details of this vulner-
ability in Section 5.4. When a message enters Apache
HTTPD, it is processed by a chain of filters which trans-
form the message and perform additional checks. The
core module of Apache HTTPD offers a basic filter that
allows setting a limit on the size of any incoming request
body5. If the body exceeds the limit, then the message
is rejected. However, the limit refers only to the com-
pressed body size and it may render applications vulner-
able to resource exhaustion.

The second approach is also implemented by mod-
deflate, this time when it decompresses XML messages

5Via the configuration parameter LimitRequestBody

for mod-dav. The core module of Apache HTTPD offers
a second parameter to limit the size of XML body ob-
jects6. As opposed to the previous one, the limit correctly
applies to the decompressed form of the body. The third
approach is now implemented by the patched versions of
mod-deflate and gSOAP standalone. mod-deflate allows
the user to configure a threshold for the compression ra-
tio and the number of violations of the ratio that are al-
lowed. gSOAP instead has the ratio built into the source
code. In this case, the decompression is halted upon one
violation.

4.1.2 Use of Compression before Authentication

We observed a great variety of practices for enforc-
ing user authentication before the message decompres-
sion. For example, authentication is mandatory in SS-
L/TLS [14], recommended in XMPP [25], and undefined
in IMAP [23]. In some cases, the implementation may
even diverge from the specifications to postpone the use
of compression (e.g., as done by OpenSSH), or to use
compression where not prescribed (e.g., decompression
of HTTP requests). This great variety of cases clearly
indicates the lack of a consistent best practice. This may
lead developers to underestimate the risk and overlook
the recommendation. For example, we discovered that
Prosody accepts compressed messages before user au-
thentication, thus violating the recommendation of the
XMPP protocol [25].

4.1.3 Improper Inter-Units Communication

When a processing unit in the pipeline detects a fault, i.e.,
the buffer limit is reached, then the unit should halt and
notify the other units and the logger of this event. The
communication between units can be direct or indirect
via a third-party component, i.e., the pipeline manager.
If a unit does not halt the execution, then the application
may continue to consume resources until the resources
are exhausted.

We observed this problem in Apache HTTPD in the
interaction between mod-deflate and mod-php. mod-php
can limit the size of the incoming request body via the
parameter post max size. This parameter applies to
the amount of data received in input by mod-php. How-
ever, if the incoming message is compressed, then it is
first decompressed and then passed to mod-php. In this
case, once the limit is reached, mod-php has no means to
signal mod-deflate to stop processing the incoming data.
As result, mod-deflate will keep on decompressing data,
thus wasting system resources. The same problem was
also observed between mod-deflate and mod-gsoap. The

6Via the configuration parameter LimitXMLRequestBody

7

developers of mod-php and mod-gsoap confirmed this
behavior.

4.1.4 Logging Decompressed Messages

Log files are used to store events generated by a running
program (or an entire operating system), and they are
particularly important to monitor the execution of back-
ground processes that have little interaction with the user,
as is the case for web services. The information stored
in log files can cover a wide range of events, including
warning messages, malfunction errors, and verbose re-
ports of the current activity of a given process.

While the use of log files is a good practice, both de-
velopers and users should carefully select the frequency
and the verbosity of the generated events. An excessive
level of verbosity may be useful to debug unusual behav-
iors, but it may have side effects from a security perspec-
tive. In particular, when the unusual behavior is caused
by compressed data, developers and users may underesti-
mate the resources needed to generate and store the event
and, as a result, the application can exhaust all the avail-
able resources.

For instance, we observed this type of issue in Apache
CXF. Upon receiving an invalid request, Apache CXF
stores the request in a temporary file, and then adds an
entry in the log file containing the first 100 KB of the
request. However, if the invalid message is compressed,
Apache CXF decompresses the entire request on disk just
to extract the 100KB header to log. As a result, in our
experiments we observed that a single request of 4MB
(containing 4GB of data after decompression) can cause
Apache CXF to store on the disk 8 GB of temporary data.

4.1.5 Unbounded Resource Usage

In general, the best way to avoid DoS attacks against an
application is to properly limit the size of decompressed
inputs. However, whenever such thresholds need to be
set very high because the application has to accept large
amounts of user-provided data, the developers should
carefully design the code to bound the CPU and mem-
ory usage of the decompression routine. We found un-
bounded CPU and memory usage in different applica-
tions. Below, we discuss these pitfalls separately.

Unbounded Memory - The data amplification intro-
duced by a decompressor may be underestimated by the
developers who may leave buffers uncontrolled on the
size both in peripheral (e.g., input validation compo-
nents) and internal components (e.g., message parsers).
For example, we observed this type of mistake in
Prosody and json-rpc. Prosody decompresses incom-
ing messages in chunks. Each chunk is passed to the
XMPP message parser, which internally accumulates the

chunks without bounds before the processing. A single
highly-compressed message results in consuming all the
available memory and, finally, being terminated by the
operating system. A similar behavior was observed in
json-rpc. Upon receiving a JSON request, json-rpc accu-
mulates the uncompressed request into a memory buffer
until no more memory is available.

Unbounded CPU - Decompressors are CPU-bound
software procedures, as they tend to monopolize the CPU
usage for the entire duration of the operation. If an at-
tacker can influence their execution, then she may de-
grade system performance and mount a CPU DoS attack.

Unfortunately, best practices in secure software cod-
ing [29, 46] do not provide techniques for controlling
CPU-bound tasks. As a result, developers may not be
aware of the risks and leave the CPU usage unbounded.
One way to control CPU-bound operations is to intro-
duce idle time intervals in which a task is suspended for
a period of time. The size of the interval and the moment
in which it is introduced can be decided at run-time by
taking into account the current status of the process. For
example, a task may introduce idle times in order to keep
constant the bandwidth of the decompressor throughput.

We observed an unbounded CPU usage in many im-
plementations of our case studies, including Apache
mod-deflate, Apache CXF, Webutilities, 2Way, Prosody,
and Tigase. On the other hand, we found that CPU con-
trols via idle time intervals were already implemented by
ejabberd and jabberd2.

4.2 Specification Level

In this section, we review common data compression pit-
falls stemming from imprecise protocol specifications,
misleading documentation, and erroneous best practices.

4.2.1 Misleading Documentation

Modern software is a collection of reusable components.
The developers of each component should carefully doc-
ument the security risks related to the usage of their
own components in order to allow a more secure integra-
tion. For this purpose, we reviewed the documentation
of Apache mod-deflate, Webutilities, 2Way Filter, Axis
2, and gSOAP. None of the above components discuss
the security risks related to the use of data compression.
Even worse, the user documentation of Webutilities and
2Way even reassure their users that (i) a developer can
plug in the decompression “without changing the source
code” [37], and (ii) that “nothing [else is] needed” [32]
from the user. In general, misleading documentation may
create a false sense of security in which a developer may
believe that she does not need to address the problem

8

in her application because the possible security concerns
are already addressed at the underlying level.

4.2.2 Erroneous Best Practices

Unawareness and underestimation of the risks in using
data compression may also affect best practices. In our
review of secure coding rules, we found out that the se-
curity risks specific to the decompression of compressed
messages are not properly addressed. Design patterns
are too generic to address the specificity of data com-
pression, and secure code patterns address only the risks
of storage exhaustion due to zip archive bombs [29]. Fi-
nally, testing guides only propose tests against informa-
tion leakage vulnerabilities caused by the simultaneous
usage of data compression and data encryption [31].

Interestingly enough, we discovered that the only
available pattern on the topic is also insecure7. In fact,
it suggests developers verify the decompressed size re-
ported in the file headers before accepting a Zip archive.
Unfortunately, this information can be easily forged by
an attacker to contain any arbitrary value, thus success-
fully bypassing the security checks. We disclosed the
flaw in the pattern to the authors, who marked it as vul-
nerable and provided a newer, secure version.

4.2.3 API Specifications Inconsistency

Data compression is an optional feature and it is transpar-
ent from the point of view of the application. However,
in our review we found out that the use of compression
may also violate the contract of other APIs. For example,
the method ServletRequest.getContentLength()

of J2EE 7 is supposed to return the length of the request
body as it is made available through the input stream.
The input stream refers to the object used by the servlet
developer to access the content of the body of the mes-
sage. This parameter may be used in the logic of the
servlet to allocate a buffer, or to accept or reject the re-
source. Unfortunately, when the HTTP decompression is
enabled, getContentLength returns a wrong value. In
our experiments, we verified that getContentLength
returns the value stored in the Content-Length HTTP
header, while the input stream contains the much larger
uncompressed body.

4.3 Configuration Level

In this section, we list common pitfalls in the way com-
pression can be configured in different services.

7See https://www.securecoding.cert.org/confluence/display/
java/IDS04-J.+Safely+extract+files+from+ZipInputStream

4.3.1 Insufficient Configuration Options

In Section 4.1, we described a number of secure ap-
proaches to handle data compression at the implemen-
tation level. These solutions allow one to control the re-
source consumption by setting limits to the amount of
resources to be used. The actual threshold may vary de-
pending from a number of factors. For example, a web
application that manages an online storage service may
require the web server to accept large input messages to
upload big files. In order to allow use of network ser-
vices in different scenarios, the resource limits need to be
parametric and the proper thresholds should be selected
by the user during the deployment phase.

However, we observed that the number of configura-
tion parameters provided by common servers is often in-
sufficient. This is mainly due to the lack of implemen-
tations of the resource consumption controls. For exam-
ple, Prosody only allows the use of data compression to
be enabled or disabled; it does not offer any parameters
to specify the maximum size of decompressed data to be
accepted, nor the output bandwidth of the decompressor.

4.3.2 Insecure Default Values

Recently, it has been demonstrated that compression may
be problematic when used together with data encryption,
as it can lead to information leakage (e.g., CRIME [39]
and BREACH [36]). The exploitation of these flaws may
depend on the deployment scenario and the capability of
the attacker to choose the plaintext. For these reasons,
the use of data compression should be at the discretion
of the user, who should assess the characteristics of the
deployment scenario and the usage of the service.

While data compression should be an optional feature,
in our survey we observed network service configura-
tions in which data compression was enabled by default,
such as in Openfire and Tigase.

4.3.3 Decentralized Configuration Parameters

The time to identify and resolve an attack is critical to
contain the costs of a cyber-incident [34]. The response
to an attack may require changing the configuration of a
running system, and this task is simplified if the security-
relevant configuration parameters are easily accessible to
the security response team. In our survey, we verified
that this is not always the case. For example, compres-
sion in CXF can be enabled in two ways. First, it can be
enabled by adding the decompressor filter in the config-
uration of the servlet (i.e., the web.xml file). Second, it
can be enabled within the Java code of the service using
a Java annotation. In both cases, in order to disable the
compression, the security response team needs to mod-
ify the configuration of all the servlets or, in the worst

9

case, to modify even their source code. However, the re-
sponse team may not have access to the source code. As
a result, they may need to involve developers in this ac-
tivity, which may increase the time required to react to
an attack.

5 Analysis

In this section, we describe the experiments that we
performed to detect resource exhaustion vulnerabilities.
This section is organized as follows. In Section 5.1, we
describe the experiment setup. Then, in Section 5.2 we
present our results, and in Section 5.3 we discuss them.
Finally, in Section 5.4, we present the complete list of
vulnerabilities.

5.1 Experiment Setup

The services we tested in our experiments are devel-
oped using different programming languages, including
C, C++, Java, PHP, Erlang, and Lua. While automatic
code-based techniques could be used to detect software
vulnerabilities, these techniques are language-dependent
and therefore cannot be used in our analysis. For this rea-
son, we followed a black-box testing approach in which
we probed the implementation with malicious inputs,
and then measured the resource consumption and the ser-
vice availability.

Tests - Each test consists of two parts: baseline test and
attack. The baseline test measures the point of reference
for resource consumption and service availability when
compression is not used and there are no attacks. Base-
line measurements are sampled over a period of 60 sec-
onds by probing the target with 4MB-long, honest proto-
col messages. The attack measures instead the resource
consumption and service availability when stressing the
implementation with malicious messages sent by one,
12, and 24 simultaneous attackers—a very low number
compared with the number of clients that participate in
most of the distributed DoS attacks. Malicious messages
are presented in Section 2. Both the baseline and the at-
tack requests have a 4MB payload in order to rule out the
overhead of transferring the data over the network.

Testbed - We performed the experiments on a testbed
of three machines to host, respectively, the server, the
attackers, and the honest client. The server machine runs
the IUT and the internal monitor, the attackers execute
the test cases to send highly-compressed messages to the
server, and the client executes baseline tests to measure
the availability of the service.

To test the HTTP services, we used (i) a 4MB static file
resource; (ii) two PHP scripts for mod-php, each using a

Prot. Network Service C
PU

M
em

.

D
is

k

XMPP ejabberd - - -
Openfire 7 7 7
Prosody 7 7 -
jabberd2 - - -
Tigase 7 7 -

HTTP Apache HTTPD Static document 7 7 -
mod-php scripts 7 - -
mod-php CSJRPC 7 - -
mod-gsoap 7 - -
mod-dav 7 - -

Apache Tomcat Axis2 7 7 -
CXF 7 - 7
jsonrpc4j 7 - -
json-rpc - 7 -
lib-json-rpc - 7 -

Axis2 standalone 7 7 -
gSOAP standalone 7 - -

IMAP Dovecot - - 7
Cyrus - - 7

Table 4: Resource Consumption Vulnerabilities

different PHP interface8 to read the content of the request
body; and (iii) PHP, Java, and C++ classes and functions
to be deployed as a web services with CSJRPC, Axis 2,
CXF, jsonrpc4j, json-rpc, lib-json-rpc, and gSOAP (both
mod-gsoap and standalone). To test the XMPP and the
IMAP servers, we created user accounts for both the at-
tackers and the honest client. In our tests, we considered
different IUT configurations. For example, we tested
Apache HTTPD, mod-php, Apache Tomcat, ejabberd,
and jabberd2 with different maximum message sizes.

Monitoring - We monitored the IUT with a combination
of internal and external monitors. The external moni-
tor measures the service availability in terms of num-
ber of honest messages processed per second. We used
the client to continuously provide the server with honest
messages and measure the server’s response time. The
internal monitor is a modified version of pidstat from
the sysstat tool suite [20], which repeatedly polls the
/proc filesystem. It measures (1) CPU usage, (2) vir-
tual size (VSZ) and the resident set size (RSS) memory
and (3) disk I/O of the processes associated with the IUT.

5.2 Results

Table 4 shows a summary of the results of our ex-
periments on the 19 implementations. Out of them,
only four implemented the compression in a secure way.
Both ejabberd and jabberd2 keep a constant resource us-
age even during multiple simultaneous attacks. In fact,
through a manual source code analysis, we were able to

8php://input interface and $HTTP RAW POST DATA

10

verify that both servers implement two separate mecha-
nisms to limit the use of memory and CPU usage dur-
ing decompression. Table 4 shows a possible disk-based
DoS attack against Dovecot and Cyrus; however, this is
not to be considered a vulnerability, as IMAP servers are
designed to store on disk the email used as the attack
vector. All the other 15 services we tested showed an
uncontrolled increase in at least one of the three sys-
tem resources, making them potentially vulnerable to
decompression-based DoS attacks. All results were re-
ported to (and confirmed by) the developers of the corre-
sponding applications and libraries.

Table 5 shows an excerpt of our experiments on three
vulnerable implementations: Prosody, Apache HTTPD,
and Apache CXF with the WebUtilities filter. For each
implementation in Table 5, we performed four experi-
ments (col. Attackers): the baseline and three attacks re-
spectively with one, 12, and 24 parallel attackers. For
each experiment, we report the requests response time
(col. Resp.), the median value of the CPU usage (col.
Mdn), the maximum virtual size memory allocated (col.
VSZ), the maximum resident set size9 allocated (col.
RSS), and the total amount of data written to disk (col.
WR). The columns mult report the ratio between the mea-
sured value during the attack and the baseline. In the rest
of this section we detail the results of Table 5.

Prosody allocates up to 7.8GB of RSS memory and
22GB of VSZ memory when processing a single mali-
cious request. The process is then killed by the operat-
ing system due to a system out of memory error. Even
worse, Prosody also exhibits the same behavior when
we sent the malicious message before the user authen-
tication. Similarly as seen for Prosody, the measure-
ments for Apache CXF show a significant resource uti-
lization: starting from 0.03 GB of the baseline, Apache
CXF can write about 1 TB, which is 3243 times the base-
line. These value indicates that Apache CXF may be vul-
nerable to disk space exhaustion. Other services, while
still potentially vulnerable, had a more controlled behav-
ior. For instance, Apache HTTPD monopolizes the CPU
at about 100% for 17 seconds with a single attacker, and
up to 140 seconds by sending 24 malicious payloads in
parallel.

5.3 Experiment Results Discussion
In this section, we discuss three factors that play an im-
portant role in our black-box experiments.

First, the baseline sets the amplitude of the propor-
tions with the measurements done during the attack. The
choice of the baseline is crucial because it can affect the
conclusion of the analysis. As we already explained, the
choice of the baseline was to offer a reference point that

9The total RAM size of the server machine is 8 GB.

rules out network delay. This results in ratio values that
cannot be directly transferred to real-size servers.

Second, the quantification of the severity of the ob-
served degradation heavily depends on a number of vari-
ables that our testbed does not realistically reproduce,
e.g., number of CPU cores, size of main memory, disk
space, and average load of the server. Small-size servers
can be DoSed with few requests, while large and pow-
erful servers may be able to sustain a higher load before
showing signs of resource exhaustion. As a result, to ob-
tain an externally visible effect, it may be necessary to
use a larger number of simultaneous attackers.

Finally, it is hard to develop an automated procedure
to detect DoS vulnerabilities on the basis of the data we
collected. The measures do not offer an accurate view of
the internal behavior of the application, and the figures
depend on so many factors that sometimes it is hard to
make a final conclusion. For this reason, we manually
verified each case, often complementing the experiments
with a source code analysis of the affected components.
Moreover, we discussed each problem with the develop-
ers, and obtained confirmation of each vulnerability re-
ported in this paper.

5.4 Vulnerabilities
Our experiments led to the discovery of nine vulnerabil-
ities. After we completed our experiments, our results
were also reproduced on other three additional XMPP
network services (M-Link, Metronome, and Mongoo-
seIM), discovering resource exhaustion vulnerabilities
also in these products as well.

We followed the principle of responsible disclosure
and informed the developers, the community, and the se-
curity response teams. In most of the cases, developers
reacted to our first reports and worked on a patch. If de-
velopers were unresponsive for over a month, we tried
a second time and then alerted the US CERT to support
the disclosure. Eventually, all the developers acknowl-
edge the reported vulnerabilities. The way in which each
product was patched is described in the rest of this sec-
tion.

5.4.1 HTTP

Apache HTTPD - The component that caused CPU and
memory consumption is mod-deflate. This affected mod-
php, CSJRPC, and mod-gsoap applications. Unfortu-
nately, mod-php and mod-gsoap developers are unable to
solve this issue on their components, as they are unaware
of a suitable interface to control mod-deflate. As a result,
we escalated the issue to the Apache Security Team. The
security team acknowledged the presence of the vulner-
ability, fixed it in Apache HTTPD 2.4.10, and disclosed

11

Attacks CPU Memory Disk
Prot. Network Service No. Resp. Mdn mult. RSS mult. VSZ mult. WR mult.

XMPP Prosody baseline > 0 s 1% x1 0.01 GB x1 0.05 GB x1 0.00 GB -
1 204 s 18% x18 7.68 GB x1397 10.71 GB x210 0.00 GB -

12 222 s 21% x21 7.60 GB x1383 18.40 GB x361 0.00 GB -
24 531 s 34% x34 7.71 GB x1402 22.96 GB x451 0.00 GB -

HTTP Apache HTTPD baseline 1 s 21% x1 0.05 GB x1 0.55 GB x1 0.00 GB -
1 17 s 114% x6 0.10 GB x2 0.78 GB x1 0.00 GB -

12 72 s 297% x14 0.58 GB x11 2.36 GB x4 0.00 GB -
24 142 s 229% x11 0.84 GB x15 2.75 GB x5 0.00 GB -

Apache CXF WU baseline 1 s 57% x1 0.33 GB x1 3.03 GB x1 0.03 GB x1
1 149 s 55% x1 0.38 GB x1 3.03 GB x1 9.10 GB x317

12 1135 s 109% x2 0.73 GB x2 6.09 GB x2 84.90 GB x2958
24 1296 s 109% x2 0.44 GB x1 3.08 GB x1 93.07 GB x3243

Table 5: Excerpt of the experiment results

it publicly (CVE-2014-0118). Our contribution was also
rewarded by the bounty program of Hackerone10.

Apache HTTPD developers implemented two new
mechanisms to control CPU and memory consumptions
that can be configured via the following new pa-
rameters: DeflateInflateLimitRequestBody,
DeflateInflateRatioLimit, and
DeflateInflateRatioBurst. The first parame-
ter limits the maximum amount of memory that can be
allocated to decompress incoming HTTP requests. The
second enforces a ratio between the compressed and
decompressed message. This mechanism also allows
specifying the number of tolerated violations of the
ratio before halting the decompression. While this
mechanism limits the use of resources in the presence of
highly-compressed messages (not necessarily compres-
sion bombs), it does not limit the amount of CPU used
by the decompressor.

gSOAP - gSOAP standalone suffers from uncontrolled
CPU usage. The developers acknowledged the presence
of the vulnerability and released a patch. The patch im-
plements a ratio-based technique similar to the mecha-
nism implemented now by mod-deflate. However, as op-
posed to mod-deflate, the ratio is not parametric but it is
built into the source code.

Webutilities and 2Way - Webutilities and 2Way filters
are the components that cause unbounded CPU usage
in Axis 2, CXF, and jsonrpc4j. After our reports, the
developers of Webutilities fixed the vulnerability using
a CPU throttling mechanism that can be configured via
a new parameter, decompressMaxBytesPerSecond.
This mechanism monitors the throughput in bytes per
second of the decompressor and, if the limit is reached, it
introduces idle time intervals in which the decompressor
is suspended from execution for a short period of time.
The developers of 2Way acknowledged the presence of

10See https://hackerone.com/reports/20861

the issue and are working on a patch (still unavailable at
the time of writing).

Apache CXF - Apache CXF suffers from a disk exhaus-
tion vulnerability. We reported the issue to the Apache
Security Team. The security team acknowledged the
presence of the vulnerability in two branches of the soft-
ware, fixed it in version 2.6.14 and 2.7.11, and disclosed
it publicly (CVE-2014-0109 and CVE-2014-0110). This
vulnerability is described in Section 4.1.4.

json-rpc and lib-json-rpc - json-rpc and lib-json-rpc
suffer from an uncontrolled memory vulnerability. Upon
receiving a JSON request, both frameworks try to store
all of the uncompressed data in a single memory buffer,
causing an out of memory error. The developers ac-
knowledged the issue and are currently working on a
patch.

5.4.2 XMPP

The disclosure of the XMPP vulnerabilities was con-
ducted with the involvement of the XMPP community.
We supported the community in coordinating the dis-
closure and preparing a common secure notice about
the multiple vulnerabilities. In total, our experiments
directly discovered four vulnerabilities in three XMPP
servers, and three other servers were found vulnerable
during the disclosure. All the vulnerabilities are fixed
and new versions of the servers are already available11.
Also in this case, our contribution and efforts were re-
warded by the bounty program of Hackerone12.

Openfire - Openfire does not properly restrict the re-
sources used in processing incoming XMPP messages
(see, CVE-2014-2741 and VU#495476).

Prosody - Prosody suffers from memory exhaustion due

11See http://xmpp.org/resources/security-notices/
12See https://hackerone.com/reports/5928

12

to an uncontrolled buffer (CVE-2014-2745) and allows
unauthenticated users to use data compression (CVE-
2014-2744).

Tigase - Tigase does not properly limit the memory
used to process incoming XMPP messages (CVE-2014-
2746).

M-Link - M-Link does not properly restrict the resources
used in processing incoming XMPP messages (CVE-
2014-2742).

Metronome - Metronome suffers from unbounded mem-
ory consumption (CVE-2014-2743) and allows the use
of compression before user authentication (CVE-2014-
2744, shared with Prosody).

MongooseIM - MongooseIM does not properly restrict
the resources used in processing incoming XMPP mes-
sages (CVE-2014-2829).

6 Related Work

In this section, we review works that are related to this
paper from different perspectives. In particular, we dis-
cuss attacks that exploit data amplification, leakage due
to the use of data compression, worst-case complexity,
and bandwidth exhaustion.

Data Amplification Attacks - To the best of our knowl-
edge, zip bombs [1] and XML bombs [49] are among
the first documented abuses of data amplification. We al-
ready discussed the details of these attacks in Section 3.
Data amplification can also be achieved by using exter-
nal servers for which the response size is bigger than the
request size [40]. An attacker can spoof the network ad-
dress of a victim and sends small request packets to a
large number of servers. These requests trigger volumi-
nous response traffic that accumulates on the network
link of the victim and leads to bandwidth exhaustion.
Similar to an asymmetry in the request/response traffic
volume, our work considers an asymmetry in creating
and processing compressed data for attack amplification.

Compression and Encryption - Data compression can
lead to information leakage when used together with en-
cryption. CRIME [39] and BREACH [36] are two at-
tacks that exploit the change of size of a ciphertext due
to the compression of the plaintext. These attacks target
the SSL/TLS layer when used to carry HTTP conversa-
tions and rely on an attacker that is capable of performing
a chosen-plaintext attack. These attacks and our work
show orthogonal security issues in using data compres-
sion. While CRIME and BEAST aim at breaking the
SSL/TLS encryption layer, our paper addresses software
vulnerabilities due to the data amplification of decom-
pression algorithms.

Algorithmic Attacks - Resource exhaustion can also re-
sult from the worst-case performance of the data struc-
ture algorithms [12] and rule matching algorithms [47].
Similarly to these attacks, in this paper we exploit
the worst-case scenario of decompression algorithms in
which the attacker can cause resource exhaustion with a
compression rate of 1:1000.

Bandwidth Exhaustion - A variety of DoS attacks target
network bandwidth exhaustion [6, 28, 48]. The Coremelt
attack [48] and the Crossfire attack [28] achieve DoS
through network bandwidth exhaustion of a targeted Au-
tonomous System backbone routers. The attacker does
not connect to the victim, but instead she uses machines
under her control to exchange data over the link used
by the victim. As both Coremelt and Crossfire work
by exposing network links to high traffic, their effects
can arguably be mitigated by using compression. How-
ever, the results presented in this paper demonstrate that
there is a catch to such strategies, as compression bears
risks for the communication’s end nodes. Büscher and
Holz [6] show that the vast majority of attacks launched
by the DirtJumper/Ruskill botnet target HTTP port 80 [6]
and that an average number of 185 DoS threads is suffi-
cient to saturate the link between the botnet and the vic-
tim. Our results indicate that service disruptions can be
achieved with a much lesser number if compression is
used, thereby circumventing the detection and analysis
proposed in the paper [6].

7 Future Work

As future work, we plan to investigate two directions:
secure data compression, and automated detection tech-
niques for resource exhaustion vulnerabilities.

Solving the mistakes presented in Section 4 is only
part of the problem. Data compression introduces an un-
balanced scenario in which the sender can generate of-
fline compressed messages while the receiver needs to
perform online decompression. This gives a large advan-
tage to the attacker. The first direction of our research is
to tackle this problem by studying new techniques that
introduce fairness in data compression. The idea is to
allow the receiver to decompress an incoming message
when it has evidence that the sender has performed the
compression online. The evidence can be provided by
the means of single-use or session-based compression
keys.

The problem of detecting resource exhaustion vulner-
abilities has been addressed in the past [4, 5, 10]. How-
ever, existing techniques are fragmented and suffer from
a number of limitations which hinder their use: they can-
not scale to real programs (See [5]), are not fully auto-
mated (See [4]), and can be applied only to a subset of

13

the resource exhaustion vulnerabilities (See [10]). As a
second research direction, we plan to develop an intelli-
gent fuzzer which combines code analysis and blackbox
testing: The code analysis can be responsible for extract-
ing a set of program constraints that the fuzzer would
then use to generate inputs using a constraint solver.

8 Conclusion

In this paper, we presented a study on the current use
of data decompression in three popular network services
that are at the core of modern web-based applications.
We analyzed 19 network services and extensions, proto-
col specifications, and documentation looking for proper
and incorrect ways to handle data compression. We
grouped our findings into 12 common pitfalls that we ob-
served at the implementation, specification, and configu-
ration levels. Furthermore, in our tests we discovered and
reported nine previously unknown vulnerabilities. While
these problems have been now being patched, we believe
that this paper shows how the risks of supporting data
compression are still too often overlooked, even by very
popular web and network services.

Acknowledgments

We thank the anonymous reviewers for the valuable com-
ments. We also thank Gabriel Serme (SAP) for the valu-
able discussion that originated this line of research, and
various members of the standardization and software de-
velopment groups for fruitful discussions. In no spe-
cific order, we thank the Apache Security Team, Daniel
Kulp (CXF), Stanislav Malyshev (PHP), Matthew Wild
(Prosody), Andrzej Wójcik (Tigase), Guus der Kinderen
(Openfire), Peter Saint-Andre (XMPP Standards Foun-
dation), Philipp Hancke (XMPP Standards Foundation),
Kevin Smith (XMPP Standards Foundation), Waqas
Hussain (XMPP Standards Foundation), Robert van En-
gelen (gSOAP), and Rajendra Patil (Webutilities). This
project was supported in part by the German Ministry
for Education and Research (BMBF) through funding for
the project 13N13250, H2020 ESCUDO-Cloud, and TU
Darmstadt CASED/EC-SPRIDE.

References

[1] ACCESS DENIED. DFS Issue 55. http://

textfiles.com/magazines/DFS/dfs055.txt,
1996.

[2] AERASEC NETWORK SERVICES AND
SECURITY GMBH. Decompression
Bomb Vulnerabilities. http://www.

aerasec.de/security/advisories/

decompression-bomb-vulnerability.html,
2009.

[3] ALUR, D., MALKS, D., AND CRUPI, J. Core
J2EE Patterns: Best Practices and Design Strate-
gies. Prentice Hall PTR, 2001.

[4] ANTUNES, J., NEVES, N., AND VERISSIMO, P.
Detection and prediction of resource-exhaustion
vulnerabilities. In ISSRE 2008 (Nov 2008), pp. 87–
96.

[5] BURNIM, J., JUVEKAR, S., AND SEN, K. Wise:
Automated test generation for worst-case complex-
ity. In ICSE 2009 (May 2009), pp. 463–473.

[6] BÜSCHER, A., AND HOLZ, T. Tracking DDoS At-
tacks: Insights into the business of disrupting the
Web. In Proc. LEET (2012).

[7] BUTKO, A. JSONRPC Java implementation.
https://code.google.com/p/libjsonrpc/,
2014.

[8] CARNEGIE MELLON UNIVERSITY. Project Cyrus.
https://cyrusimap.org/, 2014.

[9] CAZI, M. CSJSONRPC - A PHP JSON-RPC
Server. https://github.com/mojtabacazi/

CSJRPC, 2014.
[10] CHANG, R., JIANG, G., IVANCIC, F., SANKARA-

NARAYANAN, S., AND SHMATIKOV, V. Inputs of
coma: Static detection of denial-of-service vulner-
abilities. In CSF ’09 (July 2009), pp. 186–199.

[11] CRISPIN, M. Internet Message Access Protocol
- Version 4rev1. RFC 3501 (Proposed Standard),
Mar. 2003. Updated by RFCs 4466, 4469, 4551,
5032, 5182, 5738, 6186, 6858.

[12] CROSBY, S. A., AND WALLACH, D. S. Algorith-
mic DoS. In Encyclopedia of Cryptography and
Security (2nd Ed.), H. C. A. van Tilborg and S. Ja-
jodia, Eds. Springer, 2011, pp. 32–33.

[13] DEUTSCH, P. DEFLATE Compressed Data For-
mat Specification version 1.3. RFC 1951 (Informa-
tional), May 1996.

[14] DIERKS, T., AND ALLEN, C. The TLS Protocol
Version 1.0. RFC 2246 (Proposed Standard), Jan.
1999. Obsoleted by RFC 4346, updated by RFCs
3546, 5746, 6176.

[15] DILLEY, B. JSON-RPC for Java. https://

github.com/briandilley/jsonrpc4j, 2014.
[16] DOVECOT SOLUTIONS OY. Dovecot - Se-

cure IMAP Server. http://www.dovecot.org/,
2014.

[17] FIELDING, R., GETTYS, J., MOGUL, J.,
FRYSTYK, H., MASINTER, L., LEACH, P., AND
BERNERS-LEE, T. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616 (Draft Standard), June 1999.
Updated by RFCs 2817, 5785, 6266, 6585.

14

[18] GAILLY, J.-L., AND ADLER, M. gzip. http://

www.gzip.org/, 2014.
[19] GAILLY, J.-L., AND ADLER, M. zlib. http://

www.zlib.net/, 2014.
[20] GODARD, S. SYSSTAT. http://sebastien.

godard.pagesperso-orange.fr/, 2014.
[21] GOLAND, Y., WHITEHEAD, E., FAIZI, A.,

CARTER, S., AND JENSEN, D. HTTP Extensions
for Distributed Authoring – WEBDAV. RFC 2518
(Proposed Standard), Feb. 1999. Obsoleted by RFC
4918.

[22] GORDON, E., SPIELER, C., WHITE, M., AND
HAASE, D. Info-ZIP. http://http://www.

info-zip.org//, 2014.
[23] GULBRANDSEN, A. The IMAP COMPRESS Ex-

tension. RFC 4978 (Proposed Standard), Aug.
2007.

[24] HAFIZ, M., ADAMCZYK, P., AND JOHNSON,
R. E. Growing a pattern language (for security).
In Proc. Onward! ’12 (2012), ACM, pp. 139–158.

[25] HILDEBRAND, J., AND SAINT-ANDRE, P. XEP-
0138: Stream Compression. http://xmpp.org/

extensions/xep-0138.html, 2009.
[26] HOLLENBECK, S. Transport Layer Security Pro-

tocol Compression Methods. RFC 3749 (Proposed
Standard), May 2004.

[27] IGNITEREALTIME. Igniterealtime Open-
fire. http://www.igniterealtime.org/

projects/openfire/, 2014.
[28] KANG, M. S., LEE, S. B., AND GLIGOR, V. The

Crossfire attack. In Proc. SP (2013), pp. 127–141.
[29] LONG, F., MOHLNDRA, D., SEACORD, R. C.,

SUTHERLAND, D. F., AND SVOBODA, D. The
CERT Oracle Secure Coding Standard For Java.
SEI Series In Software Engineering. Addison-
Wesley, 2012.

[30] LYON, G. Nmap Security Scanner. http://nmap.
org/, 2014.

[31] MEUCCI, M. ET AL. The OWASP Testing Guide
4.0. https://www.owasp.org/images/5/52/

OWASP_Testing_Guide_v4.pdf, 2014.
[32] PATIL, R. webutilities. https://code.google.

com/p/webutilities/, 2014.
[33] PEREIRA, R. IP Payload Compression Using DE-

FLATE. RFC 2394 (Informational), Dec. 1998.
[34] PONEMON INSTITUTE LLC. 2013 Cost of Cy-

ber Crime Study: United States. Tech. rep.,
Ponemon Institute LLC, Traverse City, Michigan
49629 USA, October 2013.

[35] PONEMON INSTITUTE LLC. 2014 Global Re-
port on the Cost of Cyber Crime. Tech. rep.,

Ponemon Institute LLC, Traverse City, Michigan
49629 USA, October 2014.

[36] PRADO, A., HARRIS, N., AND GLUCK, Y.
SSL, Gone in 30 Seconds - A BREACH Be-
yond CRIME. http://breachattack.com/

#resources, 2013.
[37] PREDIC8 GMBH. 2Way HTTP Compres-

sion Servlet Filter. http://predic8.com/

gzip-compression-filter.htm, 2014.
[38] PROCESSONE. ejabberd - the Erlang Jabber/XMPP

Daemon. http://www.ejabberd.im/, 2014.
[39] RIZZO, J., AND DUONG, T. The

CRIME Attack. https://docs.google.

com/a/trouge.net/presentation/

d/11eBmGiHbYcHR9gL5nDyZChu_

-lCa2GizeuOfaLU2HOU/edit#slide=id.

g1e59c14c_1_54, 2012.
[40] ROSSOW, C. Amplification hell: Revisiting net-

work protocols for ddos abuse. In Proc. NDSS
(2014).

[41] SAIKIA, R. JsonRpc - Easy and Lightweight
Json-Rpc Client/Server. https://github.com/

RitwikSaikia/jsonrpc/, 2014.
[42] SAINT-ANDRE, P. Extensible Messaging and Pres-

ence Protocol (XMPP): Core. RFC 3920 (Proposed
Standard), Oct. 2004. Obsoleted by RFC 6120, up-
dated by RFC 6122.

[43] SAINT-ANDRE, P. Extensible Messaging and
Presence Protocol (XMPP): Instant Messaging and
Presence. RFC 3921 (Proposed Standard), Oct.
2004. Obsoleted by RFC 6121.

[44] SAINT-ANDRE, P. Mapping the Extensible Mes-
saging and Presence Protocol (XMPP) to Common
Presence and Instant Messaging (CPIM). RFC
3922 (Proposed Standard), Oct. 2004.

[45] SALOMON, D. Data Compression: The Complete
Reference. Springer-Verlang, 2007.

[46] SEACORD, R. C. Secure Coding In C And C++.
SEI Series In Software Engineering. Addison-
Wesley, 2006.

[47] SMITH, R., ESTAN, C., AND JHA, S. Backtrack-
ing algorithmic complexity attacks against a NIDS.
In Proc. ACSAC (2006), IEEE Computer Society,
pp. 89–98.

[48] STUDER, A., AND PERRIG, A. The Coremelt at-
tack. In Proc. ESORICS, M. Backes and P. Ning,
Eds., vol. 5789 of LNCS. Springer, 2009, pp. 37–
52.

[49] SULLIVAN, B. XML Denial of Service Attacks
and Defenses. http://msdn.microsoft.com/

en-us/magazine/ee335713.aspx, 2009.
[50] THE APACHE FOUNDATION. Apache Axis. http:

//axis.apache.org/, 2014.

15

[51] THE APACHE FOUNDATION. Apache CXF: An
Open-Source Services Framework. http://cxf.

apache.org/, 2014.
[52] THE APACHE FOUNDATION. Apache Tomcat.

http://tomcat.apache.org/, 2014.
[53] THE APACHE FOUNDATION. HTTP Server

Project. http://httpd.apache.org/, 2014.
[54] THE JABBERD TEAM. JabberD XMPP Server.

http://jabberd2.org/, 2014.
[55] THE PHP GROUP. PHP. http://www.php.net/,

2014.
[56] THE PROSODY TEAM. Prosody IM. http://

prosody.im/, 2014.

[57] THE REGISTER. DoS Risk from Zip of
Death Attacks on AV Software? http:

//www.theregister.co.uk/2001/07/23/

dos_risk_from_zip/, 2001.
[58] TIGASE INC. Open Source and Free XMPP/Jabber

Software. http://www.tigase.org/, 2014.
[59] VAN ENGELEN, R. A. The gSOAP Toolkit

for SOAP Web Services and XML-Based Appli-
cations. http://www.cs.fsu.edu/~engelen/

soap.html, 2014.
[60] WOODS, J. PPP Deflate Protocol. RFC 1979 (In-

formational), Aug. 1996.

16

