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Abstract. We present the first idealized cryptographic library that ba used
like the Dolev-Yao model for automated proofs of cryptodriapprotocols that
use nested cryptographic operations, while coming withyatographic imple-
mentation that is provably secure under active attacks.

To illustrate the usefulness of the cryptographic librargy,present a cryptograph-
ically sound security proof of the well-known Needham-®eter-Lowe public-
key protocol for entity authentication. This protocol was\pously only proved
over unfounded abstractions from cryptography. We showttigaprotocol is se-
cure against arbitrary active attacks if it is implementsohg standard provably
secure cryptographic primitives. Conducting the proof lsams of the idealized
cryptographic library does not require us to deal with thebabilistic aspects of
cryptography, hence the proof is in the scope of currentraated proof tools.
Besides establishing the cryptographic security of thedNam-Schroeder-Lowe
protocol, this exemplifies the potential of this cryptodragdibrary and paves the
way for the cryptographically sound verification of sequgirotocols by auto-
mated proof tools.

1 Introduction

Many practically relevant cryptographic protocols likeL$8.S, SIMIME, IPSec, or
SET use cryptographic primitives like signature schemesnaryption in a black-box
way, while adding many non-cryptographic features. Vudbdities have accompanied
the design of such protocols ever since early authentitgtiotocols like Needham-
Schroeder [4, 5], over carefully designed de-facto statalike SSL and PKCS [6, 7],
up to current widely deployed products like Microsoft Passf8]. However, proving
the security of such protocols has been a very unsatisfatask for a long time.

One possibility was to take the cryptographic approachs Theans reduction
proofs between the security of the overall system and thereof the cryptographic
primitives, i.e., one shows that if one could break the dlesstem, one could also
break one of the underlying cryptographic primitives wigspect to their cryptographic
definitions, e.g., adaptive chosen-message securitygoagire schemes. For authenti-
cation protocols, this approach was first used in [9]. Inggle, proofs in this approach
are as rigorous as typical proofs in mathematics. In practiowever, human beings are
extremely fallible with this type of proofs. This is not duwethe cryptography, but to the

* Parts of this work appeared in [1-3].



distributed-systems aspects of the protocols. It is wetvith from non-cryptographic
distributed systems that many wrong protocols have beelispg even for very small
problems. Hand-made proofs are highly error-prone bedaliseving all the different
cases how actions of different machines interleave is mdhe tedious. Humans tend
to take wrong shortcuts and do not want to proof-read sucildén proofs by others.
If the protocol contains cryptography, this obstacle isneweich worse: Already a rig-
orous definition of the goals gets more complicated, andhaft# only trace properties
(integrity) have to be proven but also secrecy. Further,ringple the complexity-
theoretic reduction has to be carried out across all thesescand it is not at all trivial
to do this rigorously. In consequence, there is almost nbamy@tographic proof of
a larger protocol, and several times supposedly proveatively small systems were
later broken, e.g., [10, 11].

The other possibility was to use formal methods. There omeelethe tedious parts
of proofs to machines, i.e., model checkers or automatiorédm provers. This means
to code the cryptographic protocols into the language of gaols, which may need
more or less start-up work depending on whether the tochdirsupports distributed
systems or whether interaction models have to be encodédNimse of these tools,
however, is currently able to deal with reduction proofsbhdy even thought about
this for a long time, because one felt that protocol proofsid¢te based on simpler,
idealized abstractions from cryptographic primitivesméist all these abstractions are
variants of the Dolev-Yao model [12], which represents Biptographic primitives as
operators of a term algebra with cancellation rules. Fdaamse, public-key encryption
is represented by operatdtgor encryption and for decryption with one cancellation
rule, D(E(m)) = m for all m. Encrypting a message twice in this model does not
yield another message from the basic message space butihie(t&(m)). Further, the
model assumes that two terms whose equality cannot be dewitle the cancellation
rules are not equal, and every term that cannot be deriveripletely secret. However,
originally there was no foundation at all for such assunstiabout real cryptographic
primitives, and thus no guarantee that protocols provel tiigse tools were still secure
when implemented with real cryptography. Although no poegly proved protocol has
been broken when implemented with standard provably secyptosystems, this was
clearly an unsatisfactory situation, and artificial couetamples can be constructed.

1.1 A Dolev-Yao Model that is Cryptographically Sound underActive Attacks

Three years ago, efforts started to get the best of both woHdsentially, [13, 14]
started to define general cryptographic models that sujgeatization that is secure in
arbitrary environments and under arbitrary active attaeksle [15] started to justify
the Dolev-Yao model as far as one could without such a modeh Birections were
significantly extended in subsequent papers, in parti¢lig#22].

The conference version [1, 23] underlying this paper is th& fine that offers
a provably secure variant of the Dolev-Yao model for prodifsat tpeople typically
make with the Dolev-Yao model, because for the first time weecdoth active at-
tacks and nested cryptographic operations. While [1] astshet the soundness of asym-
metric cryptographic primitives such as public-key entigm and digital signatures,
subsequent papers extended the soundness result to sycremétentication [24] and



symmetric encryption [25]. Moreover, tailored tool supor this library was subse-
quently added [26, 27.Combining security against active attacks and nestingtoryp
graphic operations arbitrarily is essential: First, magptographic protocols are bro-
ken by active attacks, e.g., man-in-the-middle attacksttacks where an adversary
reuses a message from one protocol step in a different miostep where it sud-
denly gets a different semantics. Such attacks are not edvsy [30, 16]. Secondly,
the main use of the Dolev-Yao model is to represent nestetbgbmessages like
Epke, (signgys, (M, N1), N2), wherem denotes an arbitrary message avid N, two
nonces. No previous idealization proved in the reactivettgraphic models contains
abstractions from cryptographic primitives (here maimgmryption and signatures, but
also the nonces and the list operation) that can be used mreested terms. Exist-
ing abstractions are either too high-level, e.g., the sechannels in [17, 19] combine
encryption and signatures in a fixed way. Or they need imnedhgeraction with the
adversary [18, 31], i.e., the adversary learns the stractfievery term any honest party
ever builds, and even every signed message. This abstréetiot usable for a term as
above because one may want to show thas secret because of the outer encryption,
but the abstraction gives to the adversary. (A similar immediate application of the
model of [17] to such primitives would avoid this problem} imstead keep all signa-
tures and ciphertexts in the system, so that nesting is alspossible.) Finally, there
exist some semi-abstractions which still depend on cryjaaigic details [32, 17]. Thus
they are not suitable for abstract protocol representatzom proof tools, but we use
such a semi-abstraction of public-key encryption as a suluhedelow.

The first decision in the design of an ideal library that supglooth nesting and gen-
eral active attacks was how we can represent an idealizgdographic term and the
corresponding real message in #a@neway to a higher protocol. This is necessary for
using the reactive cryptographic models and their comjposiheorems. We do this by
handles, i.e., local names. In the ideal system, these ésuedkentially point to Dolev-
Yao-like terms, while in the real system they point to regjptographic messages. Our
model for storing the terms belonging to the handles is fsteéad in the ideal system
comprises the knowledge of who knows which terms. Thus oeralvideal crypto-
graphic library corresponds more to “the CSP Dolev-Yao niaoie‘'the Strand-space
Dolev-Yao model” than the pure algebraic Dolev-Yao modeic®one has the idea of
handles, one has to consider whether one can put the exast-¥ab terms under them
or how one has to or wants to deviate from them in order to aligqwovably secure
cryptographic realization, based on a more or less gentxsd of underlying primi-
tives. An overview of these deviations is given in Sectioh and Section 1.5 surveys
how the cryptographic primitives are augmented to give arggienplementation of the
ideal library.

The vast majority of the work was to make a credible proof thatreal crypto-
graphic library securely implements the ideal one. This aad-made proof based
on cryptographic primitives and with many distributedieyss aspects, and thus with

1 In more recent work, drawing upon insides gained from thefobthe cryptographic library,
we showed that widely considered symbolic abstractionsshiiunctions and of the XOR op-
eration cannot be proven computationally sound in genkegice indicating that their current
symbolic representations might be overly simplistic [2§, 2



all the problems mentioned above for cryptographic prodiamye protocols. Indeed
we needed a novel proof technique consisting of a prob&bijlimperfect bisimulation
with an embedded static information-flow analysis, follow®y cryptographic reduc-
tions proofs for so-called error sets of traces where thienbistion did not work. As
this proof needs to be made only once, and is intended to bjgstiication for later
basing many protocol proofs on the ideal cryptographi@aliprand proving them with
higher assurance using automatic tools, we carefully wbiket all the tedious de-
tails, and we encourage some readers to double-check thad@i8full version of this
paper [23] and the extension to symmetric cryptographicatjpms [24, 25]. Based on
our experience with making this proof and the errors we fdunihaking it, we strongly
discourage the reader against accepting idealizationypfagraphic primitives where
a similar security property, simulatability, is claimed lomly the first step of the proof,
the definition of a simulator, is made. In the following, weslh the ideal cryptographic
library in Section 3, the concrete cryptographic realain Section 4, and the proof
of soundness in Section 5. We restrict our attention to asgtmacryptographic opera-
tions in this paper and refer the reader to [24, 25] for thesas symmetric encryption
and message authentication.

1.2 An lllustrating Example — A Cryptographically Sound Proof of the
Needham-Schroeder-Lowe Protocol

To illustrate the usefulness of the ideal cryptographiralifs, we investigate the well-
known Needham-Schroeder public-key authentication padtd, 33], which arguably
constitutes the most prominent example demonstrating $keéulness of the formal-
methods approach after Lowe used the FDR model checkerd¢owdisa man-in-the-
middle attack against the protocol. Lowe later proposedaired version of the pro-
tocol [34] and used the model checker to prove that this nmedifirotocol (henceforth
known as the Needham-Schroeder-Lowe protocol) is secutteeilbolev-Yao model.
The original and the repaired Needham-Schroeder pubiigpkatocols are two of the
most often investigated security protocols, e.g., [35-88fious new approaches and
proof tools for the analysis of security protocols were dafed by rediscovering the
known flaw or proving the fixed protocol in the Dolev-Yao madel

It is well-known and easy to show that the security flaw of thiginal protocol
in the Dolev-Yao model can be used to mount a successfulkatigainst any crypto-
graphic implementation of the protocol. However, all poess security proofs of the
repaired protocol are in the Dolev-Yao model, and no thearamied these results over
to the cryptographic approach with its much more comprekermsiversary. We close
this gap, i.e., we show that the Needham-Schroeder-Loweqwbis secure in the cryp-
tographic approach. More precisely, we show that it is seagpainst arbitrary active
attacks, including arbitrary concurrent protocol runs artaitrary manipulation of bit-
strings within polynomial time. The underlying assumptisithat the Dolev-Yao-style
abstraction of public-key encryption is implemented usanghosen-ciphertext secure
public-key encryption scheme with small additions liketepext tagging. Chosen-
ciphertext security was introduced in [39] and formulateddD-CCAZ2 in [40]. Effi-
cient encryption systems secure in this sense exist undson@ble assumptions [41].



Our proof is built upon the ideal cryptographic library, amdomposition theo-
rem for the underlying security notion implies that protbjgmofs can be made using
the ideal library, and security then carries over autoradjico the cryptographic re-
alization. However, because of the extension to the Dolav+viodel, no prior formal-
methods proof carries over directly. Our paper therefolielates this approach by the
first protocol proof over the new ideal cryptographic litysaand cryptographic security
follows as a corollary. Besides its value for the Needhamr&eder-Lowe protocol, the
proof shows that in spite of the extensions and differencgsaesentation with respect
to prior Dolev-Yao models, a proof can be made over the neratjbthat seems eas-
ily accessible to current automated proof tools. In paldiGuhe proof contains neither
probabilism nor computational restrictions. In the follog, we express the Needham-
Schroeder-Lowe protocol based on the ideal cryptograjdtriarly in Section 6 and 7.
We formally capture the entity authentication requiremerection 8, and we prove
in Section 9 that entity authentication based on the ideahty implies (the crypto-
graphic definition of) entity authentication based on thearete realization of the li-
brary. Finally, we prove the entity authentication propdrased on the ideal library in
Section 10.

1.3 Further Related Literature

Both the cryptographic and the idealizing approach at m@eiryptographic systems
started in the early 80s. Early examples of cryptographfintiens and reduction
proofs are [42,43]. Applied to protocols, these technigaiesat their best for rela-
tively small protocols where there is still a certain intdian between cryptographic
primitives, e.g., [44,45]. The early methods of automapngofs based on the Dolev-
Yao model are summarized in [46]. More recently, such wonkcemtrated on using
existing general-purpose model checkers [34, 47, 48] agar&m provers [49, 50], and
on treating larger protocols, e.g., [51].

Work intended to bridge the gap between the cryptographicageh and the use
of automated tools started independently with [13,14] &8@].[In [30], Dolev-Yao
terms, i.e., with nested operations, are considered spaljffor symmetric encryption.
However, the adversary is restricted to passive eavesoimpgponsequently, it was not
necessary to define a reactive model of a system, its honesd, d an adversary,
and the security goals were all formulated as indistingabdity of terms. This was
extended in [16] from terms to more general programs, burdlgiction to passive
adversaries remains, which is not realistic in most pratt@ipplications. Further, there
are no theorems about composition or property preservibamthe abstract to the real
system. Several papers extended this work for specific matdsbecific properties. For
instance, [52] specifically considers strand spaces adnrgtion-theoretically secure
authentication only. In [53] a deduction system for infotima flow is based on the
same operations as in [30], still under passive attacks only

The approach in [13, 14] was from the other end: It starts w&itjeneral reactive
system model, a general definition of cryptographicallyse@mplementation by sim-
ulatability, and a composition theorem for this notion ofwe implementation. This
work is based on definitions of secutactionevaluation, i.e., the computation of one



set of outputs from one set of inputs [54-57]; earlier extarstowards reactive sys-
tems were either without real abstraction [32] or for qujtecal cases [58]. The ap-
proach was extended from synchronous to asynchronousvsyste[17, 18]. All the
reactive works come with more or less worked-out exampleefractions of crypto-
graphic systems, and first tool-supported proofs were madedon such an abstrac-
tion [19, 59] using the theorem prover PVS [60]. Howeveryewih a composition the-
orem this does not automatically give a cryptographic hptia the Dolev-Yao sense,
i.e., with the possibility to nest abstract operations, gdaned above. Our crypto-
graphic library overcomes these problems. It supportedaesgperations in the intuitive
sense; operations that are performed locally are not eigibthe adversary. It is se-
cure against arbitrary active attacks, and works in theeedrf arbitrary surrounding
interactive protocols. This holds independently of thelgdhat one wants to prove
about the surrounding protocols; in particular, propergsgrvation theorems for the
simulatability definition we use have been proved for intggsecrecy, liveness, and
non-interference [59, 61-65].

Concurrently to [1], an extension to asymmetric encrypthart still under passive
attacks only, has been presented in [66]. The underlyingerathesis [67] considers
asymmetric encryption under active attacks, but in theosamndracle model, which is it-
self an idealization of cryptography and not justifiable][&&ud [69] has subsequently
presented a cryptographic underpinning for a Dolev-Yao ehofl symmetric encryp-
tion under active attacks. His work enjoys a direct conimaotvith a formal proof tool,
but it is specific to certain confidentiality properties triess the surrounding protocols
to straight-line programs in a specific language, and doeaddress a connection to
the remaining primitives of the Dolev-Yao model. HerzoglefG6] and Micciancio and
Warinschi [70] have subsequently also given a cryptog@phderpinning under active
attacks. Their results are narrower than that in [1] sineg tre specific for public-key
encryption, but consider slightly simpler real implemeiotas; moreover, the former
relies on a stronger assumption whereas the latter sevehcts the classes of proto-
cols and protocol properties that can be analyzed usingthistive. Section 6 of [70]
further points out several possible extensions of theikwdrich all already exist in the
earlier work of [1]. Recently, Canetti and Herzog [71] hawvdéd ideal functionalities
for mutual authentication and key exchange protocols toesponding representations
in aformal language. They apply their techniques to the NaedSchroeder-Lowe pro-
tocol by considering the exchanged nonces as secret kegg. vark is restricted to
the mentioned functionalities and in contrast to the ursially composable library [1]
hence does not address soundness of Dolev-Yao models iruthsl generality. The
considered language does not allow loops and offers plbljeencryption as the only
cryptographic operation. Moreover, their approach to éefirmapping between ideal
and real traces following the ideas of [70] only capturesdrbased properties (i.e., in-
tegrity properties); reasoning about secrecy propertidtianally requires ad-hoc and
functionality-specific arguments.

Efforts are also under way to formulate syntactic calculidealing with probabil-
ism and polynomial-time considerations, in particular,[32, 73, 74] and, as a second
step, to encode them into proof tools. This approach canetdtgndle protocols with
any degree of automation. It is complementary to the apjrofproving simple deter-



ministic abstractions of cryptography and working withghavherever cryptography is
only used in a blackbox way.

The first cryptographically sound security proofs of the dlemm-Schroeder-Lowe
protocol have been presented concurrently and indepdgde{2] and [75]. While the
first paper conducts the proof by means of the ideal crypfigedibrary and hence
within a deterministic framework that is accessible for hine-assisted verification,
the proof in the second paper is done from scratch in the egypphic approach and is
hence vulnerable to the aforementioned problems. On thes btind, the second paper
proves stronger properties; we discuss this in Sectionfartther shows that chosen-
plaintext-secure encryption is insufficient for the setyuaf the protocol. While cer-
tainly no full Dolev-Yao model would be needed to model jirgt Needham-Schroeder-
Lowe protocol, there was no prior attempt to prove this omailar cryptographic pro-
tocol based on a sound abstraction from cryptography in aagegssible to automated
prooftools. After the Needham-Schroeder-Lowe protoca s@undly analyzed, a vari-
ety of additional protocols were proven to be secure in a agatipnally sound manner,
e.g., [76-80]

1.4 Overview of the Ideal Cryptographic Library

The ideal cryptographic library offers its users abstragptographic operations, such
as commands to encrypt or decrypt a message, to make or igstuse, and to gen-
erate a nonce. All these commands have a simple, deterimisgshantics. In a reactive
scenario, this semantics is based on state, e.g., of whadglienows which terms. We
store state in a “database”. Each entry has a type, e.gndkige”, and pointers to its
arguments, e.g., a key and a message. This corresponds tiopthevel of a Dolev-
Yao term; an entire term can be found by following the posité&urther, each entry
contains handles for those participants who already knoihitis the database index
and these handles serve as an infinite, but efficiently coct#tte supply of global and
local names for cryptographic objects. However, most tiesahave export operations
and leave message transport to their users (“token-basial’actual implementation
of the simulatable library might internally also be struedllike this, but higher proto-
cols are only automatically secure if they do not use thisedfoinction except via the
special send operations.

The ideal cryptographic library does not allow cheating.iRstance, if it receives a
command to encrypt a messagewith a certain key, it simply makes an abstract entry
in a database for the ciphertext. Each entry further costa@andles for those partici-
pants who already know it. Another user can only ask for datoy of this ciphertext
if he has handles to both the ciphertext and the secret keyjlaBly, if a user issues a
command to sigh a message, the ideal system looks up whatherser should have
the secret key. If yes, it stores that this message has bgeedswith this key. Later
tests are simply look-ups in this database. A send operatekes an entry known to
other participants, i.e., it adds handles to the entry. Rétat our ideal library is an
entire reactive system and therefore contains an abstagbrk model. We offer three
types of send commands, corresponding to three channed {gpei}, meaning se-
cure, authentic (but not private), and insecure. The typatdde extended. Currently,



our library contains public-key encryption and signatureances, lists, and applica-
tion data. We have subsequently added symmetric auth&atiq24] and symmetric
encryption [25]).

The main differences between our ideal cryptographic tip@nd the standard
Dolev-Yao model are the following. Some of them already texigprior extensions
of the Dolev-Yao model.

— Signature schemes are not “inverses” of encryption schemes

— Secure encryption schemes are necessarily probabibstit,so are most secure
signature schemes. Hence if the same message is signedyptedcseveral times,
we distinguish the versions by making different databasee=n

— Secure signature schemes often have memory. The standaritiate [43] does
not even exclude that one signature divulges the entireryisif messages signed
before. We have to restrict this definition, but we allow ansityire to divulge the
number of previously signed messages, so that we includeadise efficient prov-
ably secure schemes under classical assumptions like tliedss of factoring [43,
81,82]?

— We cannot (easily) allow participants to send secret kegs the network because
then the simulation is not always possiBlEortunately, for public-key cryptosys-
tems this is not needed in typical protocols.

— Encryption schemes cannot keep the length of arbitraryrtelets entirely secret.
Typically one can even see the length quite precisely becaessage expansion
is minimized. Hence we also allow this in the ideal system x&dilength version
would be an easy addition to the library, or can be implenteaietop of the library
by padding to a fixed length.

— Adversaries may include incorrect messages in encryptesl ga message which
the current recipient cannot decrypt, but may possibly &dito another recipient
who can, and will thus notice the incorrect format. Hence Vge allow certain
“garbage” terms in the ideal system.

1.5 Overview of the Real Cryptographic Library

The real cryptographic library offers its users the samermamds as the ideal one, i.e.,
honest users operate on cryptographic objects via hafdiesis quite close to standard
APIs for existing implementations of cryptographic lidesrthat include key storage.
The database of the real system contains real cryptogréphs; ciphertexts, etc., and
the commands are implemented by real cryptographic algost Sending a term on an
insecure channel releases the actual bitstring to the sangmho can do with it what
he likes. The adversary can also insert arbitrary bitstriog non-authentic channels.
The simulatability proof will show that nevertheless, giking a real adversary can
achieve can also be achieved by an adversary in the ideansysir otherwise the
underlying cryptography can be broken.

2 Memory-less schemes exist with either lower efficiency @elokon stronger assumptions (e.g.,
[83—-85]). We could add them to the library as an additionahitive.

% The primitives become “committing”. This is well-known froindividual simulation proofs.
It also explains why [30] is restricted to passive attacks.



We base the implementation of the commands on arbitraryreancryption and
signature systems according to standard cryptographinitiefis. However, we “ide-
alize” the cryptographic objects and operations by meassireilar to robust protocol
design [86].

— All objects are tagged with a type field so that, e.g., sigresteannot also be ac-
ceptable ciphertexts or keys.

— Several objects are also tagged with their parameters sgggatures with the pub-
lic key used.

— Randomized operations are randomized completely. Faannst as the ideal sys-
tem represents several signatures under the same messglagieevdame key as dif-
ferent, the real system has to guarantee that Wik\be different, except for small
error probabilities. Even probabilistic encryptions aaadomized additionally be-
cause they are not always sufficiently random for keys chbgehe adversary.

The reason to tag signatures with the public key needed ify\teem is that the
usual definition of a secure signature scheme does not extdighature stealing:” Let
(sksn, pksp,) denote the key pair of a correct participant. With ordindagnatures an
adversary might be able to compute a valid key fais, , pks,) such that signatures
that pass the test withks;, also pass the test withks, . Thus, if a correct participant re-
ceives an encrypted signature:an it might accepin as being signed by the adversary,
although the adversary never saw It is easy to see that this would result in protocols
that could not be simulated. Our modification prevents thiznaaly.

For the additional randomization of signatures, we incladeandom string in the
message to be signed. Alternatively we could reptabg a counter, and if a signature
scheme is strongly randomized already we could entiphertexts are randomized by
including the same random strimgn the message to be encrypted and in the ciphertext.
The outen prevents collisions among ciphertexts from honest pasitis, the inner
ensures continued non-malleability.

2 Preliminary Definitions

We briefly sketch the definitions from [17]. gystentonsists of several possid&uc-
tures A structure consists of a s&f of connected correct machines and a sulsset
free ports, calledpecified portsA machine is a probabilistic IO automaton (extended
finite-state machine) in a slightly refined model to allow gdexity considerations. For
these machines Turing-machine realizations are definedh&ncomplexity of those is
measured in terms of a common security parameteyiven as the initial work-tape
content of every machine. Readers only interested in usiagdeal cryptographic li-
brary in larger protocols only need normal, determinisbcalutomata.

In a standard real cryptographic systerthe structures are derived from one in-
tended structure and a trust model consisting of an acaessse ACC and a channel
modely. Here ACC contains the possible sets of indices of uncorrupted machines
among the intended ones, agdlesignates whether each channel is secure, authentic
(but not private) or insecure. In a typical ideal systemhestoucture contains only one
machineTH calledtrusted host



Each structure is complemented te@nfigurationby an arbitraryusermachineH
andadversarymachineA. H connects only to ports if andA to the rest, and they may
interact. The set of configurations of a systéigs is calledConf(Sys). The general
scheduling model in [17] gives each connectioffrom an output port! to an input
portc?) a buffer, and the machine with the corresponding clock g8rtan schedule a
message there when it makes a transition. In real asynchsamgptographic systems,
network connections are typically scheduled® configuration is a runnable system,
i.e., for eachk one gets a well-defined probability spacewfs Theviewof a machine
in a run is the restriction to all in- and outputs this machiees and its internal states.
Formally, the viewview .o (M) of @ machineM in a configuratiorconf is afamily of
random variablesvith one element for each security parameter value

2.1 Simulatability

Simulatability is the cryptographic notion of secure impkntation. For reactive sys-
tems, it means that whatever might happen to an honest userdal systenbys,.,,
can also happen in the given ideal syst&m,,: For every structuréM;, S) € Sys, ..,
every polynomial-time use, and every polynomial-time adversafy, there exists
a polynomial-time adversari, on a corresponding ideal structu(rﬁ?fg, S) € Sysy
such that the view ofl is computationally indistinguishable in the two configioas.
This is illustrated in Figure 1. Indistinguishability is alkknown cryptographic notion
from [87].

Definition 1. (Computational Indistinguishability) Two familiegvary)ren and
(var})ken Of random variables on common domaibg are computationally indis-
tinguishable(* ") iff for every algorithm Dis (the distinguisher) that is probabilistic
polynomial-time in its first input,

|P(Dis(1%,vary,) = 1) — P(Dis(1*,var,) = 1)| € NEGL,

where NEGL denotes the set of atiegligible functionsi.e.,g: N — R>¢ € NEGL iff
for all positive polynomials), 3koVk > ko: g(k) < 1/Q(k). &

Intuitively, given the security parameter and an elemenseh according to eithear;,
orvary, Dis tries to guess which distribution the element came from.

Definition 2. (Simulatability) Let systemsys,.,; andSys;q be given. We sa§ys .., >
Sys,q (atleast as secure)aff for every polynomial-time configuratiamnf, = (M, S,
H,A;) € Conf(Sys,.,), there exists a polynomial-time configuratiamf., = (Ms, S,
H, As) € Conf(Sys,q) (with the samed) such thatview cons, (H) = view conys, (H). <

For the cryptographic library, we even show blackbox sirtaiidity, i.e., A, consists of
a simulatorSim that depends only 0(11\?[1, S) and used\; as a blackbox submachine.
An essential feature of this definition of simulatabilityascomposition theorem [17],
which essentially says that one can design and prove a lsygeam based on the ideal
systemSys,4, and then securely repladgs,, by the real systenyys

real*
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Fig. 1. Simulatability: The two views oH must be indistinguishable.

2.2 Notation

We write “=" for deterministic and £ for probabilistic assignment, andZ” for
uniform random choice from a set. By := y++ for integer variables:, y we mean
y := y + 1;x := y. The length of a message is denoted asen(m), and| is an
error element available as an addition to the domains argksaof all functions and
algorithms. The list operation is denotedlas= (z1,...,z;), and the arguments are
unambiguously retrievable d§], with {[i] = | if ¢« > j. A databaseD is a set of
functions, called entries, each over a finite domain caltetbates. For an entry € D,
the value at an attributett is writtenx.att. For a predicatered involving attributes,
D[pred] means the subset of entries whose attributes fyifdll. If D[pred] contains
only one element, we use the same notation for this elemelaing an entry: to D is
abbreviated) < z.

3 Ideal Cryptographic Library

The ideal cryptographic library consists of a trusted Hds4, for every subset of a
set{1,...,n} of users. It has a poit,,? for inputs from and a podut,,! for outputs to
each user, € H and foru = a, denoting the adversary.

As mentioned in Section 1.4, we do not assume encryptioresysto hide the
length of the message. Furthermore, higher protocols magl teknow the length of
certain terms even for honest participants. Thus the wusbst is parameterized with
certain length functions denoting the length of a corregjpumvalue in the real system.
The tuple of these functions is contained in a system paemet

For simulatability by a polynomial-time real system, theaticryptographic library
has to be polynomial-time. It therefore contains explioitbds on the message lengths,
the number of signatures per key, and the number of accappetsiat each port. They
are also contained in the system paraméteFhe underlying 10 automata model guar-
antees that a machine can enforce such bounds without@iffuring steps even if
an adversary tries to send more data. For all details, we teefg3].

3.1 States

The main data structure dfH4 is a databas®. The entries ofD are abstract repre-
sentations of the data produced during a system run, togeittethe information on
who knows these data. Each entrye D is of the form

(ind, type, arg, hndy, , . .., hnd,,, , hnd,, len)

11



whereH = {u1,...,u,} and:

— ind € Ny is called thendexof z. We write D[] instead ofD[ind = i].

— type € typeset := {data, list, nonce, ske, pke, enc, sks, pks, sig, garbage} identi-
fies thetypeof z. Future extensions of the library can extend this set.

— arg = (a1, a9, ...,a;) is a possibly emptiist of arguments

— hnd,, € NgU {]} foru € H U {a} identifies howu knows this entry. The value
represents the adversary, andl,, = | indicates that: does not know this entry. A
valuehnd,, # | is called thehandlefor u to entryz. We always use a superscript
“hnd” for handles and usually denote a handle to an eftjf by i"".

— len € Ny denotes théengthof the abstract entry. It is computed By, using the
given length functions from the system paramédier

Initially, D is empty. TH4 keeps a variableize denoting the current number of el-
ements inD. New entriese always receive the indekd := size++, andx.ind is
never changed. For each € H U {a}, THy maintains a counteturhnd, (cur-
rent handle) ovelNj initialized with 0, and each new handle farwill be chosen as
iMmd = curhnd,++.

3.2 Inputs and their Evaluation

Each inputc at a portin,,? with v € H U {a} should be a lis{cmd, z1,...,z;). We
usually write ity <— cmd(z1, ..., x;) with a variabley designating the result thatHy,
returns abut,!. The valuecrnd should be a command string, contained in one of the
following four command setsCommands in the first two sets are available for both the
user and the adversary, while the last two sets model spabialrsary capabilities and
are only accepted far = a. The command sets can be enlarged by future extensions of
the library.

Basic Commands First, we have a sefiasic_.cmds of basic command<£ach basic
command represents one cryptographic operation; arpiieams similar to the Dolev-
Yao model are built up or decomposed by a sequence of commiandimstance there
is a commangen_nonce to create a noncencrypt to encrypt a message, afist to
combine several messages into a list. Moreover, there anenemdstore andretrieve

to store real-world messages (bitstrings) in the librany &retrieve them by a handle.
Thus other commands can assume that everything is addregdeghdles. We only
allow lists to be signed and transferred, because thepistation is a convenient place
to concentrate all verifications that no secret items ardmiatmessages. Altogether,
we have

basic_cmds := {get_type, get_len, store, retrieve, list, list_proj, gen_nonce,
gen_sig_keypair, sign, verify, pk_of _sig, msg_of _sig, gen_enc_keypair, encrypt, decrypt,
pk_of_enc}.

The commands not yet mentioned have the following meargaigtype and get_len
retrieve the type and abstract length of a messhtgeproj retrieves a handle to the
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i-th element of a listgen_sig_keypair andgen_enc_keypair generate key pairs for sig-
natures and encryption, respectively, initially with heesdfor only the usetr. who in-

put the commandign, verify, anddecrypt have the obvious purpose, apkl_of sig,
msg_of_sig; andpk_of_enc retrieve a public key or message, respectively, from a sig-
nature or ciphertext. (Retrieving public keys will be pbésiin the real cryptographic
library because we tag signatures and ciphertexts withipkéys as explained above.)

We only present the details of hoWH4, evaluates such basic commands based
on its abstract state for two examples, nonce generatioreaon/ption; see the full
version [23] for the complete definition. We assume that hrmand is entered at a
portin,? with v € H U {a}. Basic commands adecal, i.e., they produce a result
at portout, ! and possibly update the databd3ebut do not produce outputs at other
ports. They also do not touch handles for participangs«. The functionsionce_len*,
enc_len*, andmax_len are length functions and the message-length bound from the
system parametdr.

For noncesTHy just creates a new entry with typence, no arguments, a handle
for useru, and the abstract nonce length. This models that in the ys&é® nonces
are randomly chosen bitstrings of a certain length, whicukhbe all different and not
guessable by anyone else thamitially. It outputs the handle ta.

— Nonce Generation:" < gen_nonce().
Setn" .= curhnd,++ and

D :< (ind := size++, type := nonce, arg := (),
hnd,, :=n", len := nonce_len* (k)).

The inputs for public-key encryption are handles to the jpukey and the plaintext

list. THy, verifies the types (recall the notatidnpred]) and verifies that the ciphertext
will not exceed the maximum length. If everything is ok, itkea a new entry of type

enc, with the indices of the public key and the plaintext as argots, a handle for user
u, and the computed length. The fact that each such entry ismatels probabilistic

encryption, and the arguments model the highest layer afdhresponding Dolev-Yao
term.

— Public-Key Encryptionc™™ < encrypt(pk"™d, 1hnd).
Let pk := D[hnd, = pk"™? A type = pke.ind andl := D[hnd, = [" A type =
list].ind andlength := enc_len*(k, D[l].len). If length > max_len(k) or pk = |
or! = |, thenreturn,. Else set" := curhnd,++ and

D <= (ind := size++, type := enc, arg := (pk, 1),
hnd., == ™, len := length).

Honest Send CommandsSecondly, we have a setnd_cmds := {send_s,send_r,
send_i} of honest send commanfds sending messages on channels of differentdegrees
of security. As an example we present the details of the mgsbitant case, insecure
channels.
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— send_i(v, M), forv € {1,...,n}.
Let " := Dfhnd, = "™ A type = listlind. If (" # |, output
(u,v,i,ind2hnd, (1)) atout,!.

The used algorithnmd2hnd,, retrieves the handle for userto the entry with the
given index if there is one, otherwise it assigns a new suadldleaascurind,++. Thus
this command means that the databBseow stores that this message is known to the
adversary, and that the adversary learns by the output feat:uwvanted to send this
message to uset

Most protocols should only use the other two send commarels,secret or au-
thentic channels, for key distribution at the beginning.ths channel type is part of
the send-command name, syntactic checks can ensure tlabagidesigned with the
ideal cryptographic library fulfills such requirements.

Local Adversary Commands Thirdly, we have a setadv_local_cmds :=
{adv_garbage, adv_invalid_ciph, adv_transform_sig, adv_parse} of local adversary
commandsThey model tolerable imperfections of the real system, aetions that
may be possible in real systems but that are not requirest, in adversary may cre-
ateinvalid entriesof a certain length; they obtain the tygerbage. Secondlyjnvalid
ciphertextsare a special case because participants not knowing thet &&grcan rea-
sonably ask for their type and query their public key, heregy tcannot be of type
garbage. Thirdly, the security definition of signature schemes dugisexclude that the
adversantransforms signatureby honest participants into other valid signatures on
the same message with the same public key. Finally, we alevativersary to retrieve
all information that we do not explicitly require to be hiagevhich is denoted by a
commanddv_parse. This command returns the type and usually all the abstrgot a
ments of a value (with indices replaced by handles), e.gsipga signature yields the
public key for testing this signature, the signed messaugftze value of the signature
counter used for this message. Only for ciphertexts wheradlversary does not know
the secret key, parsing only returns the length of the d&tihstead of the cleartext
itself.

Adversary Send Commands Fourthly, we have a setdv_send_cmds :=
{adv_send_s, adv_send.r, adv_send_i} of adversary send commandagain modeling
different degrees of security of the channels used. In estito honest send commands,
the sender of a message is an additional input parametes.féhimsecure channels the
adversary can pretend that a message is sent by an arbitraegtruser.

3.3 A Small Example
Assume that a cryptographic protocol has to perform the step
U — V: eNCppe, (SigN s, (M, N1), No),
wherem is an input message amd,, N, are two fresh nonces. Given our library, this is

represented by the following sequence of commands inpwraing, 7. We assume that
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u has already received a hanglec"™ to the public encryption key aof, and created
signature keys, which gave him a hanglig"".

hnd
. m™" < store(m). . .
hnd ( ) 6. lgnd — ||S't($lghnd7 Ngnd).
]de < gen_rllodnce(h).d 7. enc™d < encrypt(pkend, 1hnd).
lln — hSt(m " aNln ) 8 mhnd — |iSt(€nChnd) v
. 5ig""d < sign(skshnd 7hnd), ' '

u H hnd
Nind « gen_nonce(). 9. send.i(v, m™)

GIEERENES

Note that the entire term is constructed by a local inteoactif useru and the ideal
library, i.e., the adversary does not learn anything abaatimteraction until Step 8. In
Step 9, the adversary gets an outfauty, i, m") with a handlenh™ for him to the re-
sulting entry. In the real system described below, the secpief inputs for constructing
and sending this term is identical, but real cryptograppirations are used to build up
a bitstringm until Step 8, andn is sent tov via a real insecure channel in Step 9.

4 Real Cryptographic Library

The real system is parameterized by a digital signhaturenselteand a public-key en-
cryption schemé&. The ranges of all functions af@, 1}~ U{J}. The signature scheme
has to be secure against existential forgery under adagtogen-message attacks [43].
This is the accepted security definition for general-puepsigning. The encryption
scheme has to fulfill that two equal-length messages arstinduishable even in adap-
tive chosen-ciphertext attacks. Chosen-ciphertext ggduas been introduced in [39]
and formalized as “IND-CCAZ2" in [40]. It is the accepted défon for general-purpose
encryption. An efficient encryption system secure in thisssds [41]. Just like the ideal
system, the real system is parameterized by a tipte length functions and bounds.

4.1 Structures

The intended structure of the real cryptographic librarnsists of n machines
{My,...,M,}. EachM, has portdn,? andout,!, so that the same honest users can
connectto the ideal and the real library. E&th has three connectiomst,, ,, ,, to each
M, for x € {s,r,i}. They are called network connections and the corresporpting
network ports. Network connections are scheduled by theradvy.

The actual system is a standard cryptographic system agedéfifiL 7] and sketched
in Section 2. Any subset of the machines may be corruptedang set{ C {1,...,n}
can denote the indices of correct machines. The channellnmmagms that in an actual
structure, an honest intended recipient gets all messagestat network ports of type
s (secret) and (authentic) and the adversary gets all messages outputtatqfdypea
andi (insecure). Furthermore, the adversary makes all inpuasnetwork port of type
i. This is shown in Figure 2.
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Fig. 2. Connections from a correct machine to another in the reéésys

4.2 States of a Machine

The main data structure &4, is a databas®,, that contains implementation-specific
data such as ciphertexts and signatures produced duringtensyun, together with
the handles for, and the type as in the ideal system, and possibly additioneirial
attributes. Thus each entegyc D,, is of the form

(hnd.,, word, type, add_arg).

— hnd, € Ny isthehandleof x and consecutively numbers all entries/iy.

— word € {0,1}, calledword, is the real cryptographic representatior:of

— type € typeset U {null} is thetypeof x, wherenull denotes that the entry has not
yet been parsed.

— add_aryg is a list ofadditional argumentsTypically it is (), only for signing keys it
contains the signature counter.

Similar to the ideal systenM,, maintains a counterurhnd, overN, denoting the
current number of elements in,,. New entriese always receivéind., := curhnd, ++,
andz.hnd,, is never changed.

4.3 Inputs and their Evaluation

Now we describe hoviv,, evaluates individual inputs. Inputs at pait,? should be
basic commands and honest send commands as in the ideahsydide network in-
puts can be arbitrary bitstrings. Often a bitstrings hasetpérsed. This is captured by
a functional algorithnparse, which outputs a paiftype, arg) of a typectypeset and a
list of real arguments, i.e., of bitstrings. This corresg®to the top level of a term, sim-
ilar to the abstract arguments in the ideal datadasBy “parsem""d” we abbreviate
thatM,, calls(type, arg) < parse( D, [m""].word), assigngD,, [m""].type := type if

it was still null, and may then useryg.

Basic CommandsBasic commands are agdotal, i.e., they do not produce outputs at
network ports. The basic commands are implemented by theriyirtg cryptographic
operations with the modifications motivated in Section Edr. general unambiguous-
ness, not only all cryptographic objects are tagged, but @éga and lists. Similar to
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the ideal system, we only show two examples of the evaluatitbasic commands, and
additionally how ciphertexts are parsed. All other comnsacah be found in the full
version [23].

In nonce generation, a real noneéds generated by tagging a random bitstriulg
of a given length with its typ@aonce. Further, a new handle far is assigned and the
handle, the word:, and the type are stored without additional arguments.

— Nonce Generatiom"" «+ gen_nonce().
Letn’ & {0, 1}moncelen(®) "y .= (nonce,n’), n™ := curhnd,++ and D, :<=
(n™d 1, nonce, ().

For the encryption command, IE}, (m) denote probabilistic encryption of a string
m with the public keypk in the underlying encryption systefn The parameters are first
parsed in case they have been received over the networkhamdytpes are verified.
Then the second component of the (tagged) public-key wotdesactual public key
pk, while the messagkeis used as it is. Further, a fresh random valug generated for
additional randomization as explained in Section 1.5.

Recall thatr has to be included both inside the encryption and in the fegded
ciphertextc*.

— Encryption:c"™? < encrypt(pk""d, ("nd),
Parsepk"™ andi". If D, [pktd].type # pke or D, [I"9].type # list, returny.
Else setpk := D, [pk"].word[2], | := D,[I"].word, r <& {0, 1}renceen(k),
encrypt ¢ < Ep((r,1)), and setc* := (enc,pk,c,r). If ¢ = | or
len(c*) > max_len(k) then return|, else set"? := curhnd,++ and D,, <
("4 c* enc, ().

Parsing a ciphertext verifies that the components and Isragthas ire* above, and
outputs the corresponding tagged public key, whereas tlssage is only retrieved by
a decryption command.

Send Commands and Network Inputs Send commands simply output real messages
at the appropriate network ports. We show this for an insgechannel.

— send.i(v, ™) forv € {1,...,n}.
Parsel™d if necessary. IfD,,[I"].type = list, output D, [I"9].word at port
netuw,i!.

Upon receiving a bitstring at a network portet,, ,, .7, machineM,, parses it and
verifies that it is a list. If yes, and ifis new,M,, stores itinD,, using a new handI&",
else it retrieves the existing handté. Then it outputgw, =, I"") at portout,,!.

5 Security Proof
The security claim is that the real cryptographic librarpasssecure as the ideal cryp-

tographic library, so that protocols proved on the basishef deterministic, Dolev-
Yao-like ideal library can be safely implemented with thalreryptographic library.
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To formulate the theorem, we need additional notation::{ge{;fyiid denote the ideal

cryptographic library fom participants and with length functions and bourddsand
sys:;ge;" 1 the real cryptographic library fot participants, based on a secure signa-
ture schemé and a secure encryption schefeand with length functions and bounds
L'. Let RPar be the set of valid parameter tuples for the real system,istimg of
the numbemn € N of participants, secure signature and encryption schefreasd £,
and length functions and bounds. For (n,S,&, L") € RPar, let Sysfl'fs’i‘?"L, be the
resulting real cryptographic library. Further, let theresponding length functions and
bounds of the ideal system be formalized by a funcfios= R2Ipar(S, £, L'), and let
Sys<Y; be the ideal cryptographic library with parameterand L. Using the notation

of Definition 2, we then have

Theorem 1. (Security of Cryptographic Library) For all paramete(s, S,&,L') €
RPar, we have

cry,real cry,id
SySn,S,E,L’ 2 SyS'rL,L7

whereL := R2lpar(S, &, L’). ]

For proving this theorem, we define a simula®ony such that even the combina-
tion of arbitrary polynomial-time useid and an arbitrary polynomial-time adversary
A cannot distinguish the combination of the real machikigsfrom the combination
TH% andSimy (for all sets# indicating the correct machines). We first sketch the
simulator and then the proof of correct simulation.

5.1 Simulator

BasicallySim4 has to translate real messages from the real advefsarp handles

as THy, expects them at its adversary input piott? and vice versa; see Figure 3. In
both directionsSimy, has to parse an incoming messages completely because it can
only construct the other version (abstract or real) bottgmThis is done by recursive
algorithms. In some cases, the simulator cannot produceamgsponding message.
We collect these cases in so-calkedor setsand show later that they cannot occur at

all or only with negligible probability.

H
Sy ===
in,llout, e
o 4 «Basiccmds @— — — — — — — — — — |

+ Adv cmds | Sim_(A) [
THW « Send cmds | |
in, | Sim,, ot (@ |
______ out | o u,v,x A
| D N a > D ! @ |
3 i | + Resuilts of cmds| 1 Da | | net,, |
______ *Receivedmsgs | L———— 1 —
Msg. here: Msg. here:
(u, v, x, Ihndy word /

Fig. 3. Ports and in- and output types of the simulator.
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The state 0bim4 mainly consists of a databagy, similar to the databasés,, but
storing the knowledge of the adversary. The behavi&iefy is sketched as follows.

— Inputs fromTH3,. Assume thaBimy, receives an inputu, v, , ") from THy,.

If a bitstring! for ("™ already exists imD,, i.e., this message is already known to
the adversary, the simulator immediately outpudd portnet,, , ,!. Otherwise, it
first constructs such a bitstririgvith a recursive algorithrid2real. This algorithm
decomposes the abstract term using basic commands andvénisay command
adv_parse. At the same timeid2real builds up a corresponding real bitstring using
real cryptographic operations and enters all new messatgipto D, to recognize
them when they are reused, both i+, and byA.

Mostly, the simulator can construct subterms exactly like €orrect machines
would do in the real system. Only for encryptions with a paldey of a correct
machine adv_parse does not yield the plaintext; thus there the simulator gptsry
a fixed message of equal length. This simulation presuppbaeall new message
parts are of the standard formats, not those resulting fiaal ladversary com-
mands; this is proven correct in the bisimulation.

— Inputs fromA. Now assume thafimy receives a bitstring from A at a port
nety . 7. If [ is not a valid list,Sims; aborts the transition. Otherwise it trans-
lates! into a corresponding handl&™ by an algorithmreal2id, and outputs the
abstract sending commaadv_send_z(w, u, [") at portin,!.

If a handle/"™ for | already exists inD,, thenreal2id reuses that. Otherwise it
recursively parses a real bitstring using the functionakipg algorithm. At the
same time, it builds up a corresponding abstract term in git@dise ol Hy,. This
finally yields the handlé"™d. Furthermorereal2id enters all new subterms into
D,. For building up the abstract terrmeal2id makes extensive use of the special
capabilities of the adversary modeledlifl . In the real system, the bitstring may,
e.g., contain a transformed signature, i.e., a new sigadtura message for which
the correct user has already created another signaturb.sSansformation of a
signature is not excluded by the definition of secure sigeasechemes, hence it
might occur in the real system. Therefore the simulator hésoto be able to insert
such a transformed signature into the databa3éHzf, which explains the need for
the commanddv_transform_signature. Similarly, the adversary might send invalid
ciphertexts or simply bitstrings that do not yield a valigpgywhen being parsed.
All these cases can be covered by using the special cajesbilit

The only case for which no command exists is a forged sigeatader a new
message. This leads the simulator to abort. (Such runsallan error set which
is later shown to be negligible.)

As all the commands used liy2real andreal2id are local, these algorithms give
uninterrupted dialogues betwe8im; andTHy,, which do not show up in the views
of A andH.

Two important properties have to be shown about the simukséore the bisim-
ulation. First, the simulator has to be polynomial-timeh@tvise, the joint machine
Simy (A) of Simy, andA might not be a valid polynomial-time adversary on the ideal
system. Secondly, it has to be shown that the interactiomd®iTH,, andSim4, in the
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recursive algorithms cannot fail because one of the masheshes its runtime bound.
The proof of both properties is quite involved, using an gsialof possible recursion
depths depending on the number of existing handles (seg [23]

5.2 Proof of Correct Simulation

Given the simulator, we show that arbitrary polynomiald¢imsersH and an arbi-
trary polynomial-time adversardk cannot distinguish the combination of the real ma-
chineM,, from the combination offHy and Simy. The standard technique in non-
cryptographic distributed systems for rigorously prowvimagt two systems have identical
visible behaviors is a bisimulation, i.e., one defines a rirappetween the respective
states and shows that identical inputs in mapped statéa teeemapping and produce
identical outputs. We need a probabilistic bisimulationdese the real system and the
simulator are probabilistic, i.e., identical inputs shibyleld mapped states with the
correct probabilities and identically distributed outpuFor the former, we indeed use
mappings, not arbitrary relations for the bisimulatiom.}the presence of cryptography

H H |
S, —[&———J&- SQ—A—..—.A—
A A 4 6.> i,/ s | Enesbededententen K
M, M, A, i TH, — Sim, i A
| THSim_, T
_________________ ]

ICEN
Sy~ ———&-
\ oo
M, M, A
Encw

2. Idealize,\

composition theorem

Fig. 4. Overview of the proof of correct simulation.
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and active attacks however, a normal probabilistic bisatiah is still insufficient for
three crucial reasons. First, the adversary might succeeattacking the real system
with a very small probability, while this is impossible inetideal system. This means
that we have to cope witarror probabilities Secondly, encryption only gives compu-
tational indistinguishability, which cannot be capturgdabbisimulation, because the
actual values in the two systems may be quite different.diyithe adversary might
guess a random value, e.g., a nonce that has already bessddogaome machine but
that the adversary has ideally not yet seen. (Formallygligenot yet seen” just means
that the bisimulation fails if the adversary sends a cerntaine which already exists
in the databases but for which there is no command to givedheraary a handle.) In
order to perform a rigorous reduction proof in this case, asetto show that npartial
informationabout this value has already leaked to the adversary bettaisalue was
contained in a nested term, or because certain operationkiweak partial informa-
tion. For instance, here the proof would fail if we allowebitnary signatures according
to the definition of [43], which might divulge previously sigd messages, or if we did
not additionally randomize probabilistic ciphertexts readth keys of the adversary.

We meet these challenges by first factoring out the compumialtaspects by a spe-
cial treatment of ciphertexts. Then we use a new bisimuiaiehnique that includes
a static information-flow analysis, and is followed by theneening cryptographic re-
ductions. The rigorous proof takes 30 pages [23]; hence wenly give a very brief
overview here, see also Figure 4.

— Introducing encryption machinegve use the two encryption machinesc;; and
Encsim,2¢ from [17] to handle the encryption and decryption needs efsystem.
Roughly, the first machine calculates the correct encrypifoevery message,
whereas the second one always encrypts the fixed messggéen(m) and an-
swers decryption requests for the resulting ciphertextsablie look-up. By [17],
Ency is at least as secure Bacgim 2. We rewrite the machindd,, such that they
useEncy (Step 1 in Figure 4); this yields modified machirid§. We then replace
Ency; by its idealized counterpaincim, 7, (Step 2 in Figure 4) and use the compo-
sition theorem to show that the original system is at leaseasre as the resulting
system.

— Combined systemVe now want to compare the combinatibly, of the machines
M!, andEncgim 7, With the combinatiom HSim4,; of the machine3 Hy;, andSimy,.
However, there is no direct invariant mapping between tatestof these two joint
machines. Hence we defining an intermediate systgenwith a state space com-
bined from both these systems (Step 3 in Figure 4).

— Bisimulations with error sets and information-flow anaty$e show that the joint
view of H andA is equal in interaction with the combined machifig and the two
machines HSim, andMy,, except for certain runs, which we collectérror sets
We show this by performing two bisimulations simultanegStep 4 in Figure 4).
Transitivity and symmetry of indistinguishability theneyd the desired result for
THSimy, andMy,. Besides several normal state invariant<’f, we also define
and prove an information-flow invariant on the variable<gf.

— Reduction proofsVe show that the aggregated probability of the runs in ety s
is negligible, as we could otherwise break the underlyingtagraphy. l.e., we
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perform reduction proofs against the security definitiohthe primitives. For sig-
nature forgeries and collisions of nonces or ciphertelese are relatively straight-
forward proofs. For the fact that the adversary cannot glafisial” nonces as
well as additional randomizers in signatures and ciphéntexuse the information-
flow invariant on the variables afy; to show that the adversary has no partial in-
formation about such values in situations where correcssgjng would put the run

in an error set. This proves thislt,, is computationally at least as secure as the ideal
system (Step 5 in Figure 4).

Finally, simulatability is transitive [17]. Hence the oirigl real system is also as secure
as the ideal system (Step 6 in Figure 4).

6 The Needham-Schroeder-Lowe Protocol

The original Needham-Schroeder public-key protocol and/id’s variant consist of
seven steps. Four steps deal with key generation and pkeofidistribution. They are
usually omitted in a security analysis, and it is simply ased that keys have already
been generated and distributed. We do this as well to keeprtid short. However,
the underlying cryptographic library offers commands fadaling these steps as well.
The main part of the Needham-Schroeder-Lowe public-keyoga consists of the
following three steps, expressed in the typical protoct¢étion, as in, e.g., [33].

1. u—=v: Epy, (Ny,u)
2. v—u: Epku (NquNU)v)
3. u—v: Epk,, (Nv)-

Here, user seeks to establish a session with usdile generates a nondg, and sends
it to v together with his identity, encrypted witkis public key (first message). Upon
receiving this message,decrypts it to obtain the nond¥,. Thenv generates a new
nonceN, and sends both nonces and her identity back, tencrypted withu’s public
key (second message). Upon receiving this messadecrypts it and tests whether the
contained identity equals the sender of the message and whetkarlier sent the first
contained nonce to user If yes,u sends the second nonce backitencrypted with
v's public key (third message). Finally, decrypts this message; andvithad earlier
sent the contained noncedgthenv believes to speak with.

7 The Needham-Schroeder-Lowe Protocol Using the
Dolev-Yao-style Cryptographic Library

Almost all formal proof techniques for protocols such as deen-Schroeder-Lowe
first need a reformulation of the protocol into a more dethilersion than the three
steps above. These details include necessary tests ona@eeéssages, the types and
generation rules for values likeand V,,, and a surrounding framework specifying the
number of participants, the possibilities of multiple el runs, and the adversary
capabilities. The same is true when using the Dolev-Yatestgyptographic library
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from [1], i.e., it plays a similar role in our proof as “the C8Blev-Yao model” or “the
inductive-approach Dolev-Yao model” in other proofs. Otatpcol formulation in this
framework is given in Algorithms 1 and®2We first explain this formulation, and then
consider general aspects of the surrounding framework a@sfaeeded in our proofs.

7.1 Detailed Protocol Descriptions

Recall that the underlying framework is automata-based,protocols are executed by
interacting machines, and event-based, i.e., machinesoraeceived inputs. ByINS
we denote the Needham-Schroeder machine for a participiasain act in the roles of
bothwu andv above.

The first type of input thaMN> can receive is a start messagew_prot, v) from
its user denoting that it should start a protocol run withruselrhe number of users
is calledn. User inputs are distinguished from network inputs by amgvat a port
EA_in, 7. The “EA’ stands for entity authentication because the us@rface is the
same for all entity authentication protocols. The reactiorthis input, i.e., the sending
of the first message, is described in Algorithm 1.

Algorithm 1 Evaluation of User Inputs itvINS
Input: (new_prot, v) atEAin,? withv € {1,...,n} \ {u}.
: nh" « gen_nonce().
. Noncey,s := Noncey,, U {n"}.
D uM™ < store(u).
I8 st (nind ) ).
A encrypt(pke
s mim e list (i),

: send_i(v, mi").

hnd l?nd)-

v,u?

NoasrwNnE

The commanden_nonce generates the nonckN> adds the result"™ to a set
Nonce,,, for future comparison. The commastbre inputs arbitrary application data
into the cryptographic library, here the user identity'he commandst forms a list and
encrypt is encryption. The final commarnsnd_i means thaM"° attempts to send the
resulting term ta over an insecure channel. Ths operation directly before sending
is a technicality: recall that only lists are allowed to batsa this library because the
list operation concentrates verifications that no seceetstare put into messages.

The behavior of the Needham-Schroeder machine of partitipapon receiving a
network input is defined similarly in Algorithm 2. The inputiges at porbut,, 7 and is
of the form(v, u, i, m""¢) wherew is the supposed sendéedenotes that the channel is
insecure, aneh"" is a handle to a list. The postit,,? is connected to the cryptographic
library, whose two implementations represent the obtaibwldv-Yao-style term or real
bitstring, respectively, to the protocol in a unified way blyandle.

4 For some frameworks there are compilers to generate thésiéedeprotocol descriptions, e.g.,
[88]. This should be possible for this framework in a simikay.
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Algorithm 2 Evaluation of Network Inputs itvI\S

Input: (v, u,i,m
1

12:
13:
14:
15:

16

.

EFEC0ooNOOd®WwN

hndy atout,? withw € {1,...,n} \ {u}.

hnd « Jist_proj(m™?, 1)
. lhnd

— decrypt(skei™, ™)

hnd « list_proj({"™,4) fori = 1,2, 3.
Dif 2 £ L Al £ | A zi™ = | then {First Message is inpiit

Ta + retrieve(zh™).

if xo # vthen
Abort

end if
nir® « gen_nonce().
Noncey,» := Nonceqy,, U {ntl"d .

u™ — store(u).

B list (2P, i, o),

A encrypt(pke:':i, 15,
mi — list(ch™).

send_i(v, m3™).

celseifz™ £ | Aah™ £ | Al £ | then {Second Message is ingut

17:  x3 + retrieve(zh™).

18: ifaxs#vV x}{"d & Nonce,,, then
19: Abort

20: endif

21 I8 list(afm).

22: encrypt(pke:':i, 1and)y,

23 mi™ « list(c™).

24:  send.i(v,mi™).

25: else ifzi™ € Noncey,, A i = 2™ = | then {Third Message is inpyt
26:  Output(ok, v) atEA_out,!.

27: endif
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In this algorithm, the protocol machine first decrypts tisediontent using its secret
key; this yields a handlé™ to an inner list. This list is parsed into at most three
components using the commaitist_proj. If the list has two elements, i.e., it could
correspond to the first message of the protocol, and if itaioetthe correct identity,
the machine generates a new nonce and stores its handlesattNence,, ... Then it
builds up a new list according to the protocol descriptiamrgpts it and sends it to
userw. If the list has three elements, i.e., it could corresponthtosecond message
of the protocol, the machine tests whether the third listnelet equals and the first
list element is contained in the sdbnce, .. If one of these tests does not succeed,
MNS aborts. Otherwise, it again builds up a term according tgtisocol description
and sends it to user. Finally, if the list has only one element, i.e., it could @apond
to the third message of the protocol, the machine tests ih#imglle of this element is
contained inNonce,, ,,. If so, MN> outputs(ok, v) at EA_out,,!. This signals to usex
that the protocol with user has terminated successfully, i.e.believes to speak with
V.

Both algorithms should immediately abort the handling & turrent input if a
cryptographic command does not yield the desired resgt, #.a decryption fails.
For readability we omitted this in the algorithm descrip8pinstead we impose the
following convention on both algorithms.

Convention 1 If MNS receives| as the answer of the cryptographic library to a com-
mand, thervIN> aborts the execution of the current algorithm, except ferdcbmmand
typeslist_proj or send_i.

We refer to Step of Algorithm j as Stepj.i.

7.2 Overall Framework and Adversary Model

When protocol machines such B&'S for certain users: € {1,...,n} are defined,
there is no guarantee that all these machines are correaisfrhodel determines for
what subset${ of {1,...,n} we want to guarantee anything; in our case this is es-
sentially for all subsets: We aim at entity authenticati@weenu andv whenever
u,v € H and thus wheneveWN> andMN® are correct. Incorrect machines disappear
and are replaced by the adversary. Each set of potenti@atarachines together with
its user interface constitute a structure, and the set skteructures is called the sys-
tem, cf. Section 2.2. Recall further that when considerhggecurity of a structure,
an arbitrary probabilistic machirté is connected to the user interface to represent all
users, and an arbitrary machifés connected to the remaining free ports (typically the
network) and toH to represent the adversary, see Fig. 5. In polynomial-tieoel sty
proofs,H andA are polynomial-time.

This setting implies that any number of concurrent protoaak with both honest
participants and the adversary are considered be¢has€eA can arbitrarily interleave
protocol start inputgnew_prot, v) with the delivery of network messages.

For a setH of honest participants, the user interface of the ideal &adl cryp-
tographic library is the port sef;” := {in,?, out,! | u € H}. This is where the
Needham-Schroeder machines input their cryptographicwamads and obtain results
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SySNS,{id,real}

>

Syscry,{id,real}

out ! in,? out ! in,?
Ideal or real cryptographic library

Fig. 5. Overview of the Needham-Schroeder-Lowe Ideal System

and received messages. In the ideal case this interfacevisdskby just one machine

TH4 called trusted host which essentially administrates Ddlao-style terms un-

der the handles. In the real case, the same interface iscsbwea setM;’ :=

{M3%, | u € #} of real cryptographic machines. The corresponding sysémsalled

fys“y’id :}z}{({THH}, S H CAL,...,n}} andSys=re .= {(M;jy, SiY) I HC
1,...,n}}.

The user interface of the Needham-Schroeder machines atheyentity authenti-
cation protocol isSEA := {EA_in,?, EA_out,! | u € H}. The ideal and real Needham-
Schroeder-Lowe systems serving this interface differ amthe cryptographic library.
With MNS .= {MNS | u € H}, they areSysN> = {(MN® U {THy}, SEA) | H C
{1,...,n}} andSysN>rea .= {(M?’js U ng, SEMY | H C{1,...,n}}.

7.3 Initial State

We have assumed in the algorithms that each Needham-SemnwethineMNs al-

ready has a handlee"™ to its own secret encryption key and handiés™™ to the

corresponding public keys of every participantThe cryptographic Iibrarﬂl can also
represent key generation and distribution by normal contesarormally, this assump-
tion means that for each participantwo entries of the following form are added i»

whereH = {u,...,um}:

skey, type := ske, arg := (), hnd, = ske,, ,len := 0);
k ki hnd ketmd ] 0
hnd

(TRTPR IR

.= pke™  hnd, := pke™, len = pke_len* (k).

U, Upn, u,a

(pkey, type := pke, arg := (), hnd,, := pke
hnd

Uy,

Here ske,, and pke,, are two consecutive natural numbers aihd_len* is the length
function for public keys. Treating the secret key lengtl) &s a technicality in [1] and
will not matter here. Further, each machiié’> contains the bitstring. denoting its
identity, and the family Nonce.,»)ve(1,...,n) Of initially empty sets of (nonce) handles.
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7.4 On Polynomial Runtime

In order to be valid users of the real cryptographic libraing machinesv\s have
to be polynomial-time. We therefore define that each mackiffé maintains explicit
polynomial bounds on the accepted message lengths andnitgenof inputs accepted
at each port. As this is done exactly as in the cryptograjitviaty, we omit the rigorous
write-up.

8 The Security Property

Our security property states that an honest participantly successfully terminates a
protocol with an honest participantif v has indeed started a protocol withi.e., an
output(ok, u) at EA_out,! can only happen if there was a prior indutw_prot, v) at
EA_in, 7. This property and also the actual protocol does not consajeay attacks,
i.e., a user could successfully terminate a protocol withmultiple times whileu
started a protocol withr only once. However, this can easily be avoided as follows: If
MNS receives a message fromcontaining one of its own nonces, it additionally re-
moves this nonce from the corresponding set, i.e., it remoy¥ from Nonce,, ,, after
Steps2.20 and2.25. Proving freshness given this change and mutual authéintica
useful future work, but better done once the proof has beemaated. Warinschi proves
these properties [75]. The even stronger property of magchonversations from [9]
that he also proves makes constraints on events within stersy not only at the inter-
face. We thus regard it as an overspecification in an approaséd on abstraction.

Integrity properties in the underlying model are formaltssof traces at the user
interfaces of a system, i.e., here at the port éég% Intuitively, an integrity property
Req contains the “good” traces at these ports. A trace is a segueisets of events.
We write an evenp?m or p!m, meaning that message occurs at in- or output port
p. Thet-th step of a trace is writtenr,; we speak of the step at timeThe integrity
requirementReq™ for the Needham-Schroeder-Lowe protocol is defined asvisllo
meaning that ifv believes to speak with at timet;, then there exists a past ting
whereu started a protocol with:

Definition 3. (Entity Authentication Requirement) A tracds contained inReq®* if
forall u,v € H:

Vt1 € N: EAout,!(ok, u) € 1y,
= Jtg < t1: EALin,?(new_prot, v) € 14,.

<

The notion of a systensys fulfilling an integrity propertyReq essentially comes in
two flavors [59].Perfect fulfillment Sys =Pe" Req, means that the integrity property
holds for all traces arising in runs &fys (a well-defined notion from the underlying
model [17]).Computational fulfillmentSys =P°Y Req, means that the property only
holds for polynomially bounded users and adversaries, lzatchatnegligible error prob-
ability is permitted. Perfect fulfillment implies computatal fulfillment.

The following theorem captures the security of the NeedIsaimroeder-Lowe pro-
tocol; we prove it in the rest of the paper.
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Theorem 2. (Security of the Needham-Schroeder-Lowe Protocol) ForNBedham-
Schroeder-Lowe systems from Section 7.2 and the integapepy of Definition 3, we
haveSysN>d =perf RegFA and SysNSrea! (=poly RegFA. O

9 Proof of the Cryptographic Realization from the Idealization

As discussed in the introduction, the idea of our approac¢h @ove Theorem 2 for
the protocol using the ideal Dolev-Yao-style cryptogradiirary. Then the result for
the real system follows automatically. As this paper is thst finstantiation of this
argument, we describe it in detail.

The notion that a systerfiys, securely implements another systéys, reactive
simulatability (recall the introduction), is writteSys, >P°Y Sys, (in the computational
case). The main result of [1] is therefore

Syscry,real Z;S);:Iy Syscry,id. (1)
SinceSys"> ! andSys"°>' are compositions of the same protocol witgs*” "= and
Sys<', respectively, the composition theorem of [17] and (1) impl

SySNS,reaI Zspeocly SySNS’id. (2)

Showing the theorem’s preconditions is easy since the masM"\> are polynomial-
time (see Section 7.4). Finally, the integrity preservatibeorem from [59] and (2)
imply for every integrity requiremernieq that

(SySNS,id ’:poly Req) = (SySNS,reéﬂ ’:poly Req) (3)

Hence if we proveSysM>'® [=Pef Req™, we immediately obtairsysN>"®' j=polv
RquA.

10 Proofinthe Ideal Setting

This section contains the proof of the ideal part of TheorenW2 prove that the
Needham-Schroeder-Lowe protocol implemented with thaljdaolev-Yao-style cryp-
tographic library perfectly fulfills the integrity requireentReq=*. The proof idea is to
go backwards in the protocol step by step, and to show thaeeifgpoutput always
requires a specific prior input. For instance, when wsanccessfully terminates a pro-
tocol with useru, thenu has sent the third protocol message tdhusv has sent the
second protocol messageitpand so on. The main challenge in this proof was to find
suitable invariants on the state of the ideal Needham-®&demlLowe system.

We start by formulating the invariants and then prove theaVentity authentica-
tion requirement from the invariants. Finally we prove theariants, after describing
detailed state transitions of the ideal cryptographialifpras needed in that proof.
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10.1 Invariants

This section contains invariants of the syst&ps™>“, which are used in the proof of

Theorem 2. The first invariantsprrect nonce owneandunique nonce usare easily
proved and essentially state that handles contained in A®ete,, ,, indeed point to
entries of typenonce, and that no nonce is in two such sets. The next two invariants
nonce secrecgndnonce-list secregydeal with the secrecy of certain terms. They are
mainly needed to prove the last invariaatrrect list owney which establishes who
created certain terms.

— Correct Nonce Ownefor allu € H,v € {1,...,n} andz"™d € Nonce, ,, we
haveD[hnd, = x"].type = nonce.
— Unique Nonce Useror allu,v € H, allw,w’ € {1,...,n}, and allj < size: If

D[j].hnd, € Nonce, ., andD]j].hnd, € Nonce,, -, then(u, w) = (v,w").

Nonce secrecgtates that the nonces exchanged between honestwaadw remain
secret from all other users and from the adversary, i.et,ttreaother users and the
adversary have no handles to such a nonce:

— Nonce Secrecyeor allu,v € H and allj < size: If D[j].hnd, € Nonce,,, then
Dlj].hnd,, = forallw € (HU {a}) \ {u,v}.

Similarly, the invarianhonce-list secrecgtates that a list containing such a nonce can
only be known tou andwv. Further, it states that the identity fields in such lists are
correct for Needham-Schroeder-Lowe messages. Morebsach a list is an argument
of another entry, then this entry is an encryption with thbljmkey of v or v.

— Nonce-List Secrecyor allu,v € H and allj < size with D[j].type = list: Let
2" := D[j].arg[i] fori = 1,2,3. If D[z{"].hnd, € Nonce,,, then:
a) D[j].hnd, = forallw € (HU{a})\ {u,v}.
b) If D[z ].type = data, thenD|[z/"%].arg = (u).
c) For all k < size we havej € Di[k].arg only if D[k].type = enc and
DIk].arg[1] € {pkey, pkey}.

The invariantcorrect list ownerstates that certain protocol messages can only be con-
structed by the “intended” users. For instance, if a datbasy is structured like the
cleartext of a first protocol message, i.e., it is of tyigg its first argument belongs to
the setNonce,, ,,, and its second argument is non-cryptographic, i.e., af égpa, then

it has been created by userSimilar statements exist for the second and third protocol
message.

— Correct List OwnerFor allu,v € H and allj < size with D[j].type = list: Let
2" := Dl[j].arg[i] andaf"y := D[z/"].hnd, fori =1,2.
a) If 2" € Nonce,,, andD[z].type = data, thenD[j] was created by}}>
in Step 1.4.
b) If D[z"].type = nonce andz"¢ € Nonce,, ., thenD[j] was created by’
in Step 2.12.

c) If 2"¢ € Nonce,,, andzi™ = |, thenD[;] was created b} in Step 2.21.

u
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This invariant is key for proceeding backwards in the protoEor instance, i ter-
minates a protocol with user, thenv must have received a third protocol message.
Correct list ownerimplies that this message has been generated bypw v only con-
structs such a message if it received a second protocol ges&pplying the invariant
two more times shows thatindeed started a protocol with The proof described be-
low will take care of the details. Formally, the invariandetive above statements is
captured in the following lemma.

Lemma 1. The statementsorrect nonce owngmunique nonce usenonce secregy
nonce-list secregyandcorrect list owneare invariants ofSysN>, i.e., they hold at all
times in all runs of MNS | w € H} U {THy} forall # C {1,...,n}. i

The proof is postponed to Section 10.4.

10.2 Entity Authentication Proof

To increase readability, we partition the proof into sel/etaps with explanations in
between. Assume that v € H and thatMS outputs(ok, ) to its user, i.e., a protocol
betweenu andv has terminated successfully. We first show that this imghasMS
has received a message corresponding to the third protmmlise., of the form that
allows us to applyorrect list ownerto show that it was created ByN>. The following
property ofTH4 proven in [1] will be useful in this proof to show that progestproven
for one time also hold at another time.

Lemma 2. In the ideal cryptographic libranSys<™-', the only modifications to exist-
ing entriese in D are assignments to previously undefined attributés.d,, (except for
counter updates in entries for signature keys, which we ddawee to consider here).
a

Proof. (Ideal part of Theorem 2) Assume thst\> outputs(ok, ) at EA out,! for
u,v € ‘H at timet,. By definition of Algorithms 1 and 2, this can only happen iété
was an inputu, v, i, m> h"d) atout,? atatimets < t4. Here and in the sequel we use the
notation of Algorithm 2, but we distinguish the variablegrfr its different executions
by a superscript indicating the number of the (claimed)ik@ckeprotocol message, here
3, and give handles an additional subscript for their ownereh.

The execution of Algorithm 2 for this input must have givénh"d # | in Step
2.2, since it would otherwise abort by Convention 1 without trgpan output. Let
13" .= D[hnd, = 13""].ind. The algorithm further implie®[13""].type = list. Let
23" .= D[3"™).arg[i] for i = 1,2 at the time of Step2.3. By definition of list_proj
and since the condition of St@®5 is true immediately after Steh3, we have

t’l,‘:l;’:)nd _ D[{L_;l;ind].hndv at timety (4)

and hnd ind
xiv € Noncey,y, A a:g'" = | attimety, (5)

since:cgﬂh)"d = | after Ste®.3 implies@ind = .
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This first part of the proof shows that\°> has received a list corresponding to a third

protocol message. Now we appigrrect list ownerto the list entryD[l3'"d] to show
that this entry was created ByN>. Then we show tham> only generates such an
entry if it has received a second protocol message. To shaithlts message contains
a nonce fromv, as needed for the next applicationamirrect list owneywe exploit the
fact thatv accepts the same value as its nonce in the third messagd) whi&now
from the first part of the proof.

Proof (cont'd with 3rd messagelquations (4) and (5) are the preconditions for Part
c) of correct list ownerHence the entr)D[l3i“d] was created by in Step 2.21.

This algorithm execution must have started with an injutu, i, m? h"d) atout,?
atatimety < t3 with w # u. As above, we conclud@ " # | in Step2.2, set?™ .=
D[hnd, =12 hnd].z'nd, and ObtainD[lzind].type = list. Let x%ind = D[ZQind].arg[i] for
1 =1,2,3 at the time of Stef.3. As the condition of Step.16 is true immediately af-
terwards, we obtaimi;"d # | fori € {1,2,3}. The definition oflist_proj and Lemma 2
imply

220" = D[a?"™].hnd, fori € {1,2,3} at timet,. (6)

hnd . .
Step2.18 ensures:3 = w andxiu € Nonce, .. Thuscorrect nonce ownemplies

D[x%ind].type = nonce. (7)
Now we exploit thatMNS creates the entnyD[13™] in Step 2.21 with the input
list(z2 ™). With the definitions oflist andlist_proj this impliesz2™ = 23" Thus

Equations (4) and (5) imply
D[l‘gind].hnd@ € Nonce, , attimet,. (8)

We have now shown thai\S has received a list corresponding to the second protocol
message. We appborrect list ownerto show thatviN® created this list, and again we
can show that this can only happerMf'> received a suitable first protocol message.
Further, the next part of the proof shows that= v and thusMN°> got the second
protocol message fromN>, which remained open in the previous proof part.

Proof (cont'd with 2nd messagejquations (6) to (8) are the preconditions for Part b)
of correct list owner Thus the entr;@[ﬂ'"d] was created byINS in Step 2.12. The
construction of this entry in Stes11 and2.12 implies 22 = v and henceav = v
(using the definitions oftore andretrieve, andlist andlist_proj). With the results from
before Equation (7) and Lemma 2 we therefore obtain

hnd .
arg =vA x%u € Nonce,,, attimet,. 9)

The algorithm execution wher@\S creates the entryD[lQi"d] must have started
1 hnd

with an input(w’,v,i,m, ) at out,? at atimet; < ¢ with w’' # v. As above,
we concludell ™ # | in Step2.2, set!!™ := D[hnd, = 1}"].ind, and obtain

v
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D™ type = list. Let 2™ = D[1¥™.arg[i] for i = 1,2,3 at the time of Step

2.3. As the condition of Stef.4 is true, we obtairzr:}’:"d # J fori € {1,2}. Thenthe
definition oflist_proj and Lemma 2 yield

1 hnd

2! ™ = Dlx!™).hnd, for i € {1,2} at timet,. (10)

7,0

WhenMNS creates the entrp[12™™] in Step 2.12, its input iﬁst(x}";"d, phnd yhnd),

This impliesz!™ = 22™ (as above). Thus Equations (6) and (9) imply

D[a:%ind].hndu € Nonce, ,, attimet,. (11)

The test in Ste.6 ensures thatl = w’ # |. This implieSD[x%ind].type = data by
the definition ofretrieve, and therefore with Lemma 2,

D[;Léind].type = data at timet,. (12)

We finally applycorrect list owneragain to show thatiN> has generated this list cor-
responding to a first protocol message. We then show thatissage must have been
intended for usev, and thus uses has indeed started a protocol with user

Proof. (cont'd with 1st message) Equations (10) to (12) are thegum@itions for Part
a) of correct list owner Thus the entr;D[ll'“d] was created byNS in Step 1.4. The
construction of this entry in Stefs3 and1.4 impliesz3 = « and hencev’ = w.

The execution of Algorithm 1 must have started with an inpuw_prot, w”) at
EA.in,? at a timety < t;. We have to show” = v. WhenMNS creates the entry

D[ll'“d] in Step 1.4, its input isist(nh"d, 4""d) with nh"d =£ | . Hence the definition of
list_proj impliesD[a:{'"d].hndu = nhnd ¢ Nonce,, . With Equation (11) andinique
nonce useve concludey” = v.

In a nutshell, we have shown that for all timeswhere MN> outputs(ok, ) at
EA_ out,!, there exists a tim&, < t4 such thatMN> receives an inputnew_prot, v) at

EA_in, 7 at timetq. This proves Theorem 2.

10.3 Command Evaluation by the Ideal Cryptographic Library

This section contains the definition of the cryptographimotands used for modeling
the Needham-Schroeder-Lowe protocol, and the local admecommands that model
the extended capabilities of the adversary as far as neegedve the invariants. Recall
that we deal with top levels of Dolev-Yao-style terms, andttbommands typically
create a new term with its index, type, arguments, handles,length functions, or
parse an existing term. We present the full definitions ofctiamands, but the reader
can ignore the length functions, which have nameésn. Note that we already defined
the commands for generating a nonce and for public-key @tiory in Section 3.2,
hence we do not repeat them here.

Each inputc at a portin,,? with « € H U {a} should be a lis{emd, z1, ..., z;)
with ¢md from a fixed list of commands and certain parameter domaimsugdally
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write ity < cmd(z1, ..., ;) with a variabley designating the result thatH,, returns
atout,!. The algorithmi"™ := ind2hnd, (i) (with side effect) denotes thatH,, de-
termines a handl€™ for useru to an entryD[i]: If i" := D[i].hnd, # |, it returns
that, else it sets and returif§? := D[i].hnd,, := curhnd,++. On non-handles, it is
the identity function. The functiomd2hnd;, appliesind2hnd,, to each element of a list.

In the following definitions, we assume that a cryptogragummand is input at
portin,, ? with u € H U {a}. First, we describe the commands for storing and retrieving
data via handles.

— Storing:m"™ < store(m), for m € {0, 1}m>len(k),
If i := Dltype = data A arg = (m)].ind # | then returnmh™® =
ind2hnd,, (7). Otherwise ifdata_len*(len(m)) > max_len(k) return|. Else set
md .= curhnd,++ and

D < (ind := size++, type := data, arg := (m),
hnd.,, :=m"™, len := data_len*(len(m))).

— Retrieval:m < retrieve(m""?).
m := D[hnd, = m"™ A type = data].arg[1].

Next we describe list creation and projection. Lists carinolude secret keys of the
public-key systems (entries of tygke, sks) because no information about those must
be given away.

— Generate a listi"™ « list(«i", ..., 2"), for 0 < j < max_len(k).
Letx; := D[hnd, = 2M].ind fori = 1,...,j. If any D[xz;].type € {sks, ske},
set/Md := |If | := Dltype = list A arg = (x1,...,2;)].ind # |, then return
[Pd .= ind2hnd,(1). Otherwise, selength := list_len*(D][x1].len, ..., D]x;].len)
and return|. if length > max_len(k). Else set"™ := curhnd,++ and

D < (ind := size++, type := list, arg := (21, .. .,
xj), hnd,, = 1Md Jen = length).

— i-th projection:z" « list_proj(I"™d ), for 1 < i < max_len(k).
If D[hnd, = 1" A type = list].arg = (x1,...,z;) with j > 4, thenghnd .=
ind2hnd,, (z;), otherwiserd := |.

Further, we used a command for decrypting a list.

— Decryption:i"™ « decrypt(sk"d, chnd).
Let sk := D[hnd, = sk A type = ske].ind and ¢ := D[hnd, = ™ A
type = enc].ind. Return| if ¢ = | or sk = | or pk := D]c]|.arg[1] # sk + 1 or
| := Dlc].arg[2] = |. Else returni™ := ind2hnd,,({).

From the set of local adversary commands, which capturetiaddl commands
for the adversary at poit,?, we only describe the commandv_parse. It allows the
adversary to retrieve all information that we do not exgliicrequire to be hidden.
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This command returns the type and usually all the abstrgcinaents of a value (with
indices replaced by handles), except in the case of ciptiertAbout the remaining
local adversary commands, we only need to know that they douput handles to
already existing entries of typat or nonce.

— Parameter retrieval{(type, arg) <+ adv_parse(m""?).
Let m := D[hnd, = m"].ind and type := D|m].type. In most cases, set
arg := ind2hnd}(D[m].arg). (Recall that this only transforms arguments in
INDS.) The only exception is fotype = enc andD[m)].arg of the form(pk, ) (a
valid ciphertext) and[pk — 1].hnd, = | (the adversary does not know the secret
key); thenarg := (ind2hnd,(pk), D[l].len).

We finally describe the command that allows an adversary rid seessages on
insecure channels. In the command, the adversary senéifdist pretending to be.

— adv_send_i(u,v,1"™), foru € {1,...,n} andv € H at portin,?.
Let ™ = Dlhnd, = "™ A type = listl.ind. If 1™ # |, output
(u, v, i,ind2hnd, (I")) atout,!.

10.4 Proof of the Invariants
We start with the proof oforrect nonce owner

Proof (Correct nonce owngrLet 2" € Nonce,, , foru € H andv € {1,...,n}. By
constructiong"" has been added tgonce,, , by MNS in Step 1.2 or Step 2.10. In both
casesgz"™ has been generated by the commaatlnonce() at some time, input at
portin,? of THz. Convention 1 implieg" £ |, asMN° would abort otherwise and
not addz""? to the setNonce,, ,. The definition ofgen_nonce then impliesD[hnd, =
2] #£ | and D[hnd, = x""].type = nonce at timet. Because of Lemma 2 this also
holds at all later time¢' > ¢, which finishes the proof.

The following proof ofunique nonce uss quite similar.

Proof (Unique Nonce Use Assume for contradiction that bottD[j].hnd, €
Nonce,, ., and D[j].hnd, € Nonce, . at some time. Without loss of generality,
let ¢ be the first such time and I1&]j].And, ¢ Nonce, . at timet — 1. By construc-
tion, D[j].hnd, is thus added t&Vonce, ., at timet by Step 1.2 or Step 2.10. In both
casesD|[j].hnd, has been generated by the commagadlnonce() at timet — 1. The
definition ofgen_nonce implies thatD[j] is a new entry and|j].hnd, its only handle
at timet — 1, and thus also at time With correct nonce ownethis impliesu = v.
Further,Nonce, ., is the only set into which the new handl¥;].hnd, is put at times
t — 1 andt. Thus alsav = w’. This is a contradiction.

In the following, we provesorrect list ownernonce secregyandnonce-list secrecy
by induction. Hence we assume that all three invariants ab&dparticular time in a
run of the system, and show that they still hold at titme 1.
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Proof (Correct list ownex. Letu,v € H, j < size with D[j].type = list. Let zi"d :=
Dlj].argli] anda! := D[z}"].hnd, for i = 1,2 and assume that""! € Nonce,,
fori=1o0ri =2 attimet + 1.

The only possibilities to violate the invariatrrect list ownerare that (1) the entry
DJj]is created at time+1 or that (2) the handI®]j].hnd,, is created at time+1 for an
entry D[j] that already exists at timteor that (3) the handlef? is added taVonce,
at timet + 1. In all other cases the invariant holds by the induction higpsis and
Lemma 2.

We start with the third case. Assume th&f¢ is added taVonce,, at timet + 1.
By construction, this only happens in a transition\> in Step 1.2 and Step 2.10.
However, here the entrp[z/"!] has been generated by the commgad nonce input
atin,,? attimet, hencer;" cannot be contained as an argument of an ebfry at time
t. Formally, this corresponds to the fact thatis well-formed i.e., index arguments of
an entry are always smaller than the index of the entry jtd&l has been shown in [1].
Since a transition of1\S does not modify entries ifiH3,, this also holds at time+- 1.

For proving the remaining two cases, assume fgt.hnd,, is created at time+ 1
for an already existing entrip[;] or thatD[;] is generated at time+ 1. Because both
can only happen in a transition @Hy, this impIieSx?}’;jj € Nonce,, , already at time,
since transitions of Hy, cannot modify the seVonce,, ,,. Because of;, v € H, nonce
secrecyimplies D[z"].hnd,, # | only if w € {u,v}. Lists can only be constructed
by the basic commaniist, which requires handles to all its elements. More precjsely
if w € H U {a} creates an entry[;'] with D[j'].type = list and (z},...,z}) =
D[j].arg attimet + 1 thenD|[z}].hnd,, # | fori =1,..., k already at time. Applied
to the entryD|j], this implies that either or v have created the entiy[;].

We now only have to show that the entB}{;] has been created hyin the claimed
steps. This can easily be seen by inspection of Algorithmsdl2a We only show it in
detail for the first part of the invariant; it can be provenitamty for the remaining two
parts.

Let #i"¢ € Nonce,,, and D[zi"].type = data. By inspection of Algorithms 1
and 2 and becaus®|[j].type = list, we see that the entr®[j] must have been created
by eitherMNS or MNS in Step 1.4. (The remaining list generation commands eithbr
have one element, which implieg™® = | and henceD[zi"].type # data, or we have
DI[zir].type = nonce by construction.) Now assume for contradiction that theyent
D[j] has been generated BN, This implies that also the entrf?[z{"] has been
newly generated by the commageh_nonce input atin,, 7. However, onlyMN> can add
a handle to the sé¥once,, , (itis the local state of1NS), but every nonce thatiNS adds
to the setNonce,, , is newly generated by the commageh_nonce input by MNS by
construction. This implies*l‘f‘fj ¢ Nonce, , at all times, which yields a contradiction
to 2" € Nonce,,, attimet + 1. HenceD[;j] has been created by user
Proof (Nonce secregy Let u,v € H, j < size with D[j].hnd, € Nonce,, and
w € (HU/{a})\ {u,v} be given. Because aforrect nonce ownerwe know that
DJj].type = nonce. The invariant could only be affected if (1) the handlgj].hnd,, is
putinto the seVonce,, , at timet + 1 or (2) if a handle forw is added to the entrp[;]
attimet + 1.
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For proving the first case, note that the 8&itnce,, ., is only extended by a handle
nind by MNS in Steps 1.2 and 2.10. In both case&’® has been generated ByHy
at timet since the commangen_nonce was input atin,,? at timet. The definition of
gen_nonce immediately implies thaD[j].hnd,, = | at timet if w # u. Moreover, this
also holds at time + 1 since a transition oMN> does not modify handles ifiHy,,
which finishes the claim for this case.

For proving the second case, we only have to consider thasenemds that add
handles forw to entries of typenonce. These are only the commandst_proj or
adv_parse input atin,,?, whereadv_parse has to be applied to an entry of tyfist,
since only entries of typ#st can have arguments which are indices to nonce entries.
More precisely, if one of the commands violated the invariare would exist an entry
DJi] at timet such thatD[i].type = list, D[i].hnd,, # | andj € (zi™,... z") =
Dli].arg. However, both commands do not modify the 8&tnce, ,, hence we have
D[j].hnd, € Nonce,,, already at time. Now nonce secrecyields D[j].hnd,, = |
at timet¢ and hence also at all times ¢ because of Lemma 2. This implies that the
entry D[i] must have been created by eitheor v, since generating a list presupposes
handles for all elements (cf. the previous proof). Assuntbovit loss of generality that
DJi] has been generated hy By inspection of Algorithms 1 and 2, this immediately
impliesj € (z™, zi"), since handles to nonces only occur as first or second element
in a list generation by.. Because of € D[i].arg[1, 2] andD|[j].hnd, € Nonce,, at
time ¢, nonce-list secrecfor the entryD[i] implies thatD[i].hnd,, = | at timet. This
yields a contradiction.

Proof (Nonce-list secredylLetu,v € H, j < size with D[j].type = list. Letz]"d :=
Dlj].argli] anda! := D[z/"].hnd, fori = 1,2, andw € (H U {a}) \ {u,v}. Let
;L';'},d € Nonce,,, fori =1o0ri = 2.

We first show that the invariant cannot be violated by addiveyhandlexh™ to

Nonce,,, attimet + 1. This can only happen in a transitiondf\> in Step 1.2 or 2.10.
As shown in the proof o€orrect list owney the entryD[z/"!] has been generated by
TH5, at timet. SinceD is well-formed, this implies that™ ¢ D[j].arg for all entries
DJj] that already exist at timeé This also holds for all entries at time+ 1, since
the transition oMN° does not modify entries 6FHy. This yields a contradiction to
2" = D[j].argli]. Hence we now know that™"® € Nonce, ,, already holds at time
Part a) of the invariant can only be affected if a handleufds added to an entry
DJj] that already exists at time (Creation ofD[j] at timet with a handle forw is
impossible as above because that presupposes handlearguatients, in contradiction
to nonce secrecy The only commands that add new handlesdaio existing entries
of typelist arelist_proj, decrypt, adv_parse, send_i, andadv_send_i applied to an entry
D[k] with j € D[k].arg. Nonce-list secrecyor the entryD(j] at timet then yields
D[k].type = enc. Thus the commandsst_proj, send_i, andadv_send_i do not have
to be considered any further. Moreoveance-list secrecglso yieldsD|k].arg[1] €
{pke., pke,}. The secret keys of. andv are not known tow ¢ {u,v}, formally
D[hnd,, = ske"™™] = D[hnd, = ske"™] = |; this corresponds to the invariakey
secrecyof [1]. Hence the commandkcrypt does not violate the invariant. Finally, the
commanddv_parse applied to an entry of typenc with unknown secret key also does
not give a handle to the cleartext list, i.e.,[20k].arg[2], but only outputs its length.
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Part b) of the invariant can only be affected if the list enffryj] is created at time
t + 1. (By well-formedness, the argument enfpyz/"", ] cannot be created afté?[;].)
As in Part a), it can only be created by a parte {u, v} because other parties have no
handle to the nonce argument. Inspection of Algorithms 12asttbws that this can only
happen in Steps 1.4 and 2.12, because all other comntisinkdave only one argument,

while our preconditions implyi™® £ |.

— If the creation is in Step 1.4, the preceding Step 1.2 impli¥si™].hnd, €
Nonce,, .+ for somew’ and Step 1.3 implieD[zi"d].type = data. Thus the
preconditions of Part b) of the invariant can only hold for= 1, and thus
D[zi™].hnd, € Nonce, ,. Now unique nonce usimpliesu = w. Thus Steps
1.3 and 1.4 yieldD[zi"].arg = (u).

— If the creation is in Step 2.12, the preceding steps 2.10 ddighply that the pre-
conditions of Part b) of the invariant can only hold for 2. Then the precondition,
Step 2.10, andinique nonce usienply u = w. Finally, Steps 2.11 and 2.12 yield
DiziM].arg = (u).

Part c) of the invariant can only be violated if a new enfifk] is created at time
t + 1 with j € D[k].arg (by Lemma 2 and well-formedness). A%j] already exists
at timet, nonce-list secrecjor D[j] implies D[j].hnd,, = | for w & {u,v} at time
t. We can easily see by inspection of the commands that the new B[k] must
have been created by one of the commadisd®ndencrypt (or by sign, which creates
a signature), since entries newly created by other commeawtisot have arguments
that are indices of entries of typiet. Since all these commands entered at a pQft
presupposeD|[j].hnd, # |, the entryDI[k] is created byw € {u,v} at timet + 1.
However, the only steps that can create an efitfy] with j € D[k].arg (with the
properties demanded for the enfpyj]) are Steps 1.5, 2.13, and 2.22. In all these cases,
we haveD|[k].type = enc. Further, we haveD[k].arg[1] = pke,, wherew’ denotes
w’s current believed partner. We have to show that {u,v}.

— Case 1:D[k] is created in Step 1.5. By inspection of Algorithm 1, we sex the
precondition of this proof can only be fulfilled far= 1. Then D[zi"].hnd, €
Nonce,, , andD[z{"].hnd,, € Nonce,, ., andunique nonce usenply w’ = v.

— Case 2:D[k] is created in Step 2.13, arid= 2. ThenD|[zi"].hnd, € Nonce, .
andD[zi"].hnd,, € Nonce,, .., andunique nonce usenply v’ = v.

— Case 3:D[k] is created in Step 2.13, anid= 1. This execution of Algorithm 2
must givel™d £ | in Step2.2, since it would otherwise abort by Convention 1. Let
I"d .= D[hnd,, = ("].ind. The algorithm further implie®[I""].type = list. Let
20" .= D[] arg[i] for i = 1,2,3 at the time of Step.3, and Ietx?’;”d be the
handles obtained in Step3. As the algorithm does not abort in Step5 and2.7,
we haveD[xgmd].type = data andD[;L'gmd].arg = (w').

Further, the reuse of{ . in Step 2.12 implies?"™ = zi"d. Together with the
preconditionD[zi"].hnd,, € Nonce, ., the entryD[I™] therefore fulfills the con-
ditions of Part b) ohonce-list secrecwith i = 1. This impliesD[z9"™].arg = (u),
and thusw’ = u.

— Case 4:D[k] is created in Step 2.22. With Step 2.21, this implig¥ = | and
thusi = 1. As in Case 3, this execution of Algorithm 2 must gifé? +# | in
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Step2.2, we setl™ := D[hnd, = I"].ind, and we haveD[I"].type = list.
Let z0"™ := D[i"].arg[i] for i = 1,2,3 at the time of Ste.3, and Ietxg;"d be
the handles obtained in Steg3. As the algorithm does not abort in Step$7 and
2.19, we haveD[;L'gind].type = data andD[xgind].arg = (w').

Further, the reuse cnfg’:,:d in Step 2.21 implies:y™ = zind. Together with the
preconditionD[zi"].hnd,, € Nonce,, ., the entryD|[I"""] therefore fulfills the con-
dition of Part b) ofnonce-list secrecwith ¢ = 2. This impliesD[a:gi"d].arg = (u),
and thusw’ = u.

Hence in all cases we obtained = u, i.e., the list containing the nonce was indeed
encrypted with the key of an honest participant.

11 Conclusion

We have shown that an ideal cryptographic library, whictstitutes a slightly extended
Dolev-Yao model, is sound with respect to the commonly atszepryptographic def-
initions under arbitrary active attacks and in arbitrargtpcol environments. The ab-
straction is deterministic and does not contain any crygtolgic objects, hence it is
abstract in the sense needed for theorem provers. Soundsitiedrwe can implement
the abstraction securely in the cryptographic sense, $s@tbperties proved for the ab-
straction carry over to the implementation without anytertwork. We provided one
possible implementation whose security is based on prgweaulure cryptographic sys-
tems. We already showed that the library can be extended indaular way by adding
symmetric authentication [24] and symmetric encryptiosi[2

This soundness of the cryptographic library now allows foneaningful analysis
of protocol properties on the abstract level. We demoredrétis with a proof of the
well-known Needham-Schroeder-Lowe public-key proto€airther, the abstractness
of the library makes such an analysis accessible for formafigation techniques. As
many protocols commonly analyzed in the literature can tpeessed with our library,
this enables the first formal, machine-aided verificatiotheke protocols which is not
only meaningful for Dolev-Yao-like abstractions, but whosecurity guarantees are
equivalent to the security of the underlying cryptograpkyis bridges the up-to-now
missing link between cryptography and formal methods foiteary attacks.
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