Saarland University
Faculty of Natural Sciences and Technology I
Computer Science Department
Bachelor’s Program in Computer Science

Bachelor’s Thesis

MD5 collisions on multimedia files

submitted by

Holger Borntrager

Supervisor Prof. Dr. Michael Backes

Advisors Prof. Dr. Michael Backes
Dr. Dominic Unruh

Reviewers Prof. Dr. Michael Backes
Dr. Dominic Unruh

Statement

Hereby I confirm that this thesis is my own work and that I have documented
all sources used.

Saarbriicken, March 14, 2007

Holger Borntriger

Declaration of Consent

Herewith I agree that my thesis will be made available through the library of
the Computer Science Department.

Saarbriicken, March 14, 2007

Holger Borntriger

Contents

Abstract

Introduction

Assumptions

3.1 Packet based multimedia files
3.1.1 Construction L
3.1.2 Fault tolerance

MD5

4.1 Constuction of MD5 o

4.2 Propertiesof MD5

4.3 Collisionson MD5
4.3.1 General collisionson MD5
4.3.2 Meaningful collisions on MD5

Collisions on multimedia files

5.1 Usable collisions
5.1.1 General collision properties
5.1.2 Usable collisions for packet based multimedia files

5.2 Creating colliding multimedia files
5.2.1 Prerequisites
5.2.2 Basicidea L
5.2.3 Interleaving the files
5.2.4 Attaching the collision

5.3 Whyitworks
5.3.1 Interleaving oL
5.3.2 Attaching the collision

5.4 Summary e

Proof of concept - MPEG - Audio

6.1 The MPEG standard
6.2 MPEG audiopacket
6.21 MP3-MPEG 1Layer3
6.3 ID3tagsversionland2
6.3.1 ID3vl
6.3.2 ID3v2
6.4 Algorithm
6.5 Usable collisions for MPEG-audio
6.5.1 Creating usable collisions
6.5.2 Filter
6.6 Preparing the audiofiles L.
6.7 Program
6.7.1 Workflow
6.7.2 Performance
6.8 Result
6.9 Source
6.10 Limitations Lo
6.10.1 Player

6.10.2 Seeking L 19

6.10.3 Filesize 20

7 MPEG - Video 20
7.1 Basic Construction of an MPEG video stream 20
7.2 Collision with basic method 21
7.3 Alternative method 21

8 Conclusion 21
8.1 PHMpegHeader Lo 22
8.1.1 Publicinterface 22

8.2 PHMpegPacket 23
83 PublicInterfaceo 23
8.4 PHCleanedMpegPacket 24
8.4.1 Public interface (additions) 24

85 PHMpegFile. o 24
8.6 Publicinterface o 24
8.7 PHMpegCollision« i 25
8.7.1 Public Interface 25

8.8 PHMpeglnterleaver L. 26
8.9 Publicinterfaceo 26
8.10 PHMd5CollisionAttacher 26

List of Figures

0O Uik Wi

A basic data packet L L L 5
Oneround of MD5 Lo 7
Interleaving packets oL oo 9
Interleaving packed based multimedia files 9
Prepending a valid packet 10
Prepending an invalid packet 10
Collisiondata 10
Attaching a collision to a stream L. 11
Attaching a collision to a stream 2 11
Prepending a valid header, 11
License of Stevens collision finding program 16
Usage of programo 18
Construction of an MPEG video stream 20

1 Abstract

A generic break for MD5 is known some time, but also some other formats can
be broken. In these cases, conditional branch structures are used to decide what
content of the file is used. In this paper, MD5-collisions for some multimedia-
formats are shown. As most of these formats have no branch structures, here
a method will be shown, that uses the fault tolerance systems. It shows how
two files can be interleaved in such a way, that a constructed packet at the
beginning of the file allows to choose between the contents of the two files.
It is also shown, how to construct this initial packet in such a way, that the
multimedia files collide.

2 Introduction

There are some general methods to construct MD5-collisions on several formats:
postscript, applications These collisions are created by merging both possi-
ble outputs in one file. The executed/displayed data is chosen by a conditional
statement, that contains the generic collision.

The method used for multimedia files is similar in the way, that the constructed
files contain the information of both files. The difference to other formats is,
that most multimedia-formats don’t support jumps or branches. This is why
this behavior is simulated using the error correction system. Single packets or
frames of the multimedia file are interleaved, so that every other packet is in-
valid, and thus not played. This leads to the possibility to only play back half
of the data, while keeping all information in the file. The generic collisions on
MD5 are prepended to the file in such a way that, depending on the collision,
one of the interleaved streams is played.

3 Assumptions

Not all multimedia file formats allow the construction used in this paper. To
be considered usable for the methods described here, file formats have to meet
several requirements.

3.1 Packet based multimedia files

The format has to be packed based. Packet based file formats are used to achieve
good fault tolerance for streaming or sending files, as well as the possibility
to start playing the file at any position (i.e. play a stream from it’s current
position).

3.1.1 Construction

A basic packet based format divides the information, be it audio or video, in
small chunks. Every chunk gets it’s own header, that carries all information
needed, to interpret its content data, i.e. bitrate, information about the codec,

(Fig. 1). This means, every packet can be played on it’s own. A packet
based multimedia file or stream is just a chain of such packets. This construc-
tion allows streaming of the media, as an internet radio or internet TV, as no

head data

Figure 1: A basic data packet

entrypoint is needed. Playback can start at any position in the stream, without
knowledge of prior packets, as all information needed is stored in every single
packet.

For the methods described in this document, it is also required, that the
length of the packets is fixed either by the format, or by the information in
the header. This happens for many formats, as it simplifies parsing as well as
decoding of the packets. It removes the requirements of removing all possible
headers from the content data.

3.1.2 Fault tolerance

The construction as described in 3.1.1 allows a good fault tolerance, by simply
ignoring damaged packets. As a packet only contains some miliseconds worth
of data, a missing or not played packet is normally not perceived by the user.
Additionally the stream is not delayed, by waiting for packets, or re requesting
packets. This also removes the need for the server to store packets that is has
already sent. In most cases, waiting for a corrected packet would have more
impact on the quality than just dropping the data.

A simple, yet effective, error correction algorithm is thus, playing valid packets
and dropping all information of the file, until the next valid packet header is
found. Therefore the header contains some sort of sync information, normally
the first bytes, that allows to identify the next header in the stream. This sync
information can also be the "magic number" that identifies the stream-type. To
allow skipping of packets, every packet header must contain information about
the length of the packet, to allow to seek for the end of the packet. Alternatively
the stream may use a fixed packet-size.

This form of fault tolerance is especialy usefull for web-streams such as online-
radios, as missing packets don’t have to be resent, and no forward error correc-
tion is required.

Additionally it is required, that the data is fault tolerant when it comes to minor
editing, such as changing one bit or byte. This is true for almost any multimedia
format, as minor changes to the data only slightly affect the data itself. It might
decrease the quality of the audio or video information, but it doesn’t.

4 MD5

MD5 (Message-Digest algorithm 5), is a hash-algorithm, that produces 128 bit
hashes.

4.1 Constuction of MD5

This section will not describe MD5 in all detail, but tries to give an overview
about how it actually works.

MD?5 is an algorithm that works in 16 rounds, covering a 512 bit message block.
Every round consists of 16 similar operations.

Each operation works as follows (Fig 2):

1. Divide the 128 bit message in 4 blocks of 128 bit A, B,C, D .
2. Calculate F(B,C, D) and add to A mod 232 .

3. Add state M; mod 232 .

4. Add round constant K; mod 232 .

5. Shift by given amount per round .

6. Add B mod 232 .

The state M; is a given 32 bit value, for the first round of the algorithm, and
then determined, by all previous rounds of the algorithm (also carried over to
the next 512 bit block).

There are four different functions for F', one used for each block of 16 operation
rounds (thus 16 * 4 = 64 rounds).

4.2 Properties of MD5

As seen in 4.1, MD5 only does one pass over a file. i.e. after processing one 512
block of data, this data is not used anymore for the following rounds, except for
the state, that it influenced.

This property means, that two files with identical MD5 hash will also hash to
the same value, when identical data is appended to both files, i.e. if File A and
File B both hash to value h;, after appending File X to File A and File B,
File AX and File BX hash to the same value hs.

Additionally, (not stated in the construction), both files must have the same
size, as MD5 includes the length of the data into the padding of the last packet.
This property is used to construct meaningful collisions, given general (random)
collisions on MD5.

4.3 Collisions on MD5
4.3.1 General collisions on MD5

Several fast methods are known to create collisions on MD5 [?, 7, ?]. These
collisions however are mostly random data. These methods use tunnels in the
MD5 algorithm. This means, there are several known conditions, that, applied
correctly, make it possible, to create data, that has a predictable behavior when
fed into the hash algorithm.

One fast method of creating collisions on MD5 is by Vlastimil Klima[?], another
one by Stevens|?].

Both create collisions by choosing data with certain properties, so that some
bits determine the outcome of the algorithm predictably, i.e. there have to be

A B C
F ®
-
M;
K;
< <KL
L 4
A B C

Figure 2: One round of MD5

two blocks of data, that only differ in these bits, and hash to the same value.

As only 5 bits change, the colliding blocks can be easily determined by brute
force.
4.3.2 Meaningful collisions on MD5

Methods have been shown, to provide collisions on postscript documents|?]
as well as applications[?]. These collisions are realized by using conditional
branches provided by the specification of the document i.e. if then else state-
ments.

Basically they create a pair of colliding data blocks, then use a conditional state-
ment, that says:

if block = collision_block_1 then do first else do second.

If the files collide for the part up to the end of block, they collide completely,
following directly from the properties in 4.2.

5 Collisions on multimedia files

5.1 TUsable collisions

As there are no simple branch conditions available for most multimedia formats,
several special conditions must be met by the collisions, to be considered usable
for the method described in this paper.

5.1.1 General collision properties

Collisions on MD5 created with Stevens algorithm are 128 byte long, plus a
potential initialization file, but they only differ in 5 bits. The rest of the collisions
is rather random, although it has to fulfill some properties required by algorithm.

5.1.2 Usable collisions for packet based multimedia files

For the method described here, the collisons meet several conditions.

e The collision must contain a valid packet header, suitable for the stream.
e The header must contain one of the changing bits.

In practice, the first condition is normally met, by encoding the multimedia files
in a way, that corresponds to the collision, as finding an appropriate collision for
one special stream requires a sequence of several bytes to be met in the collision
block, which is harder to achive.

5.2 Creating colliding multimedia files
5.2.1 Prerequisites
e an MD5 collision meeting the requirements of 5.1.2

e two files with the same header as in the collision blocks

% body % body
% body i\;\\% body s

Figure 3: Interleaving packets

filel file 2 filel file 2 filel
packet 1 packet 2 packet 1 packet 2 packet 3

Figure 4: Interleaving packed based multimedia files

5.2.2 Basic idea

The final result will be constructed in a way, similar to those used for postscript
documents or executables. However, as most multimedia formats don’t contain
any branch structures, this has to be realized by other means.

The basic concept is, that we interleave the packets in such a way, that only
every other packet is played by the player. This is done, by invalidation every
other packet, if the previous one was played, causing the error correction to skip
this invalidated block. This method will create some sort of condition, that can
be used, to create meaningful collisions on multimedia files.

In this case, the generic collision block is used, to switch between the two packet
streams, and thus influencing, what content is played.

5.2.3 Interleaving the files

As stated in 3, for the method described here, we need multimedia formats, that
contain all information required in the packet header of the individual packets.
Also, it is important, that the packets either have a fixed length, or the length
is computed from the packet header.

The construction as in figure 3 works as follows:

Every packet is shortened by a fixed amount of bytes. This leads to the fact,
that the header of the next packet starts at a position, that is in the body of
the previous packet. As a result, all packets overlap.

As the second packet in this construction becomes invalid, it should be
dropped by the error correction. Though the error correction doesn’t see it
as an invalid packet but as random data. Dropping data up to the next header
again, causes the third packet to be played correctly.

Using this effect, two files can be interleaved in an alternating manner (Fig. 4),
so that on playback, there will be almost no difference to the first file, hiding
the second file contained in the first one.

With this construction, a conditional element can be introduced in a format
that didn’t contain such an element in it’s design, by using the error correction
mechanisms. This is done by prepending and overlapping an addtitional packet.
If this packet is valid (Fig. 5), it will be played back, and the first packet of
the stream, belonging to the first file, is not played back. If this happens, the

10

\\&\\K\\ bogus data \\\k\&\ﬂ{\ first packet

Figure 5: Prepending a valid packet

bogus data &%\ first packet

Figure 6: Prepending an invalid packet

Z

Z

second packet is played, skipping all the packets of the first file. Following this
chain, only packets from the second file will be played.

On the other hand, if the prepended packet is not valid (Fig. 6)(i.e. does not
contain a valid header), the packet will be ignored and the first valid packet is
the first packet of the first file.

5.2.4 Attaching the collision

Up to this point, we only combined the two original files into one larger file.
With the "switch-packet" prepended however, these two files do not collide on
MD5.

Now, from the given collisions on MD5 (see 5.2.1 and 5.1), two sets of data are
constructed that:

e let both files have the same MD5 hash (collision)
e one of them causes packets from file 1 to be played
e the other causes packets from file 2 to be played

Figure 7 shows one of the two collision blocks, namely the one that contains
a valid packet header. As all collisions created have a fixed length of 128 bytes,
they can fit in a stream packet as a whole (128 byte is too short for virtually
any multimedia file format).

Such an collision block can be prepended to the file. As of the properties of
MD5, if the beginnings of two files collide, and the rest of the file is identical,
then either the files are a collision on MD5 or both files are identical (See 4.2).
The collision can now be prepended to the interleaved file as in figure 8. The
collision block is padded in such a way, that the length from the header up to
the end of the padding is just the size of a normal packet minus one byte. The
missing byte is just where the so created packet overlaps with the first packet
of the actual stream. Although the data in this packet does not contain any
meaningful audio-data, it is a valid packet, and thus played back. From this,

7557 s

Figure 7: Collision data

11

collision % collision | padding \% packet data

L]
packet length

Figure 8: Attaching a collision to a stream

collision collision | padding \% packet data

L J
packet length

Figure 9: Attaching a collision to a stream 2

the first byte of the first real packet is missing, so the first packet is not played.
As described in 5.2.3, this causes the playback of the second file.

The collision could also be the one without a valid header (Fig. 9). In this
case, the first packet and thus the first file should be played.

As the files now start with two different blocks that form a collision on MD5,
keeping the rest of the file identical, both files will now have the same checksum.
On playback, the files will have completely different output (identically to either
file one or file two).

This is a collision on MD5 for two multimedia files.

There is an additional method, to improve the compatibility of this con-

struction with other players, but it makes it harder to find a usable collision, as
it fixes the medias parameters and then searches a usable collision.
What can be done, is to add the beginning of a valid packet, s the part of the
collision that is in front of the header is contained in this packet. This allows
the file to run on players that require a valid header at the beginning of the file.
The construction would be, first a valid header for a packet of the stream, fol-
lowed by some filling data and then the collision (Fig. 10). From there the
construction is as shown above.

5.3 Why it works

Now a more exact analysis will be given, why the methods given in 5.2 are
working.

\1% padding | collision \% collision

packet length

Figure 10: Prepending a valid header

12

5.3.1 Interleaving

A parser with high fault tolerance should basically work in the following steps:
1. drop bytes until valid packet header is found
2. interpret packet header
3. read all bytes that belong to the packet
4. repeat until end of file.

This simple system allows to drop damaged packets on internet streams, as well
as in damaged files, with nearly no loss of data, as each packet only contains
very limited amounts of data, that are not needed to play the following packets.

Assuming a parser with this properties, the construction in 5.2.3 works as
follows:
Right at the beginning of the file, the parser finds the first packet header. It
interprets the header, and calculates the length of the header. Then it reads
remaining packet data (i.e. the number of bytes calculated). In the modified
file, this includes the first bytes of the header of the second packet. This packet
is send to the decoder.
Now, trying to read the second packet, the parser doesn’t find a valid header, as
the header of the second packet is missing it’s first bytes. So the parser assumes
there is some random data to be dropped, and does so. The next valid packet
header that can be found, is the header of the third packet, i.e the complete
second packet /first packet of the second stream is droped. The same process is
done for all following packets, thus dropping every other packet, stripping all
the data from the second file.

5.3.2 Attaching the collision

Again, the same parser as in 5.3.1 is assumed. Now with the prepended collision,
the start of the parsing is slightly different. There are two possible beginnings
of the file:

Either the file starts with a valid header, as the beginning of the collision is
wrapped in a valid packet, or it starts with the beginning of the collision.

This only differs in the point, that in the first case, the parser reads a complete
bogus packet, that is played back, then finds the header inside of the collision.
In the second case, the parser would start finding random data, thus dropping
it up to the first valid header.

From the point, where the header contained in the collision block is, there are
two possible ways to go.

Valid header in collision If the collision file with the valid header is used,
the parser reads the header, interprets it and thus reads the calculated number
of bytes. As of the construction in 5.2.4, the bogus packet of the header in the
collision, is shorter then it should be. This causes the parser to interpret the
beginning of the first real packet as part of the bogus packet. Now the mechanics
explained in 5.3.1 kick in again. The first packet has no valid header (due to

13

the missing bytes), and is dropped entirely by the parser. The second packet is
the first valid packet played. The rest of the construction again follows 5.3.1.

no valid header in collision If no valid header is present in the collision,
all of it’s data is dropped, as the parser can’t find a packet it belongs to. This
causes the header of the first packet to be the first valid header in the stream.
Starting right from this point, everything works exactly as in 5.3.1.

5.4 Summary

By using the fault tolerance of players, two packet based multimedia files can
be interleaved in such a way, that on playback only data from one of them is
used. When adding a matching collision block to such a file, the appropriate
stream can be chosen. Due to the properties of MD5, the two files (one for each
of the two parts of the two colliding blocks) hash to the exactly same value, but
have different output when played back.

6 Proof of concept - MPEG - Audio

The MPEG(source needed] format is a packet based format for video and audio
data. It fulfills the requirements as in 3.1. MPEG files consist of packets, identi-
fied by packet headers. They allow for multiplexing audio and video, as well as
audio and video only streams. The MPEG standard does not provide the pos-
sibility for conditional or unconditional jumps, but must be played sequentialy.
Only the player may implement seeking functionality. Only MPEG-audio will
be discussed here in detail, for MPEG-video, the packet headers are different,
but it allows for the same methods.

6.1 The MPEG standard

The MPEG standard[?] describes no file format for audio or video. Instead
only the packet format is described. This is possible, due to the fact, that every
packet contains all information needed for playback. Streams and files have the
same format, they both are just a sequence of packets.

The MPEG standard contains no default method for fault tolerance or error
correction, so the implementation of these features is up to the author of the
player.

6.2 MPEG audio packet

The basic construction of an MPEG audio packet consists of a header and the
audio data itself.

In the MPEG standard, these packets are called frames, this paper will call
them packets, for consistency of the document.

For now only the header is of interest. It consists of 32 bits/4 bytes. The
construction is (ignoring the unofficial standard MPEG version 2.5 which uses
the last frame sync bit as version indicator):

e 12 bit FrameSync (all bits set)

14

1 bit MPEG version (version 1 or 2)

e 2 bit audio layer (1, 2 or 3)

1 bit flag if header CRC check is present

4 bit bitrate index

2 bit sampling frequency

1 bit flag if packet is padded

1 bit flag free for personal use (private bit)

2 bit channel mode (mono, stereo, joint stereo, dual stereo)

1 bit flag data is copyrighted

1 bit flag if media is original media or copy
¢ 2 bit for emphasis (used when decoding the data).

The information given in the header allows to compute the size of the packet,
as for every standard, there is a fixed formula for the length the packet has to
have. For example in case of MP3 this formula would be

FrameLengthInBytes = 144 x BitRate/SampleRate + Padding.

This allows a player to read one complete packet, then look for the next packet.
Some data of the header is only additional information for the player/user.
Such fields are the private bit and the information about copyright and original
media. Other parts are fixed for all packets of all streams, for example the 12
bit FrameSync (11 bit for MPEG 2.5 which is not an official standard).

6.2.1 MP3 - MPEG 1 Layer 3

The most widely known application of the MPEG file or stream format is MP3,
which is MPEG version 1 audio layer 3, an audio format.
It uses the packet and packet header format as shown in 6.2.

6.3 ID3 tags version 1 and 2

ID3 tags are the common method to attach additional information, such as
author, title... to an MPEG audio file. The two versions differ in format as well
as integration into the file.

6.3.1 ID3v1

Version 1 of the ID3 standard is attached to end of the file, thus giving no
problem when interleaving the files. The ID3 tag, if present, must be the last
128 bytes, so only one tag is possible. The tag has to be identical for both files
in the end, to allow the creation of the collision. It can be simply appended to
the interleaved files in the end.

15

6.3.2 ID3v2

Version 2 is attached to the beginning of the file. If a ID3v2 tag has to be
present in the created file, then the collisions must be created with this tag as
initial vector. This makes it impossible to create the collisions before the data
is known. While this doesn’t harm the method, it slows down the process of
collision finding. If possible, the ID3v2 tag could be replaced with version 1.

6.4 Algorithm

The algorithm follows strictly the principle from 5.2. For the special case of
MPEG-audio the packets only have to overlap by one byte (the first byte of the
sync).

6.5 Usable collisions for MPEG-audio

For MPEG-audio, the collisions have to contain a valid 4 byte MPEG audio
header. Additionally this header can only be correct in one of the two collisions.
Only the first 12 bits are the same in every packet header, the rest of the bits
create a valid MPEG header for almost any possible combination. For this
reason only collisions where the changing bit is contained in the first 12 bits are
considered usable.

There are some additional requirements for the collisions to be considered usable.
If a changing bit is in the first 12 bits, the rest of the packet has to be valid, i.e.
contain valid values for all the fields. For instance, a bitrate index of 0z0 is not
valid. additionally some combinations of emphasis, channel mode and bitrate
are not valid for MPEG audio.

As a final requirement headers that have the CRC flag set are not considered
usable, as this would require an additional 16 bit CRC following the header,
that also must be contained correctly in the collision. As this case is rare, it
was not considered when searching usable collisions.

6.5.1 Creating usable collisions

The collision files where created using brute force. Steven’s implementation of
his method, described in [?], was used to create collision pairs. These collision
pairs were passed to a filter, that analyzed them for MPEG headers, to decide if
the collision is usable. The collision program was run in parallel several times,
to use the full computing power of the server it ran on (A system with two
dual-core Xeon CPU’s).

The collision files were passed to a filter, that decided, if there were potentially
usable collisions in them.

In this step only a very simple filter is used, that checked for the following
constraints:

e 12 bit frame sync is valid (i.e. 0xFFF)
o the CRC flag is not set
e it is either MPEG version 1 or 2 and layer 1,2 or 3

e a valid bit rate and sampling was chosen.

16

Version

version 1.0.0.5, April 2006.

Copyright

M. Stevens, 2006. All rights reserved.

Disclaimer

This software is provided as is. Use is at the user’s risk.

No guarantee whatsoever is given on how it may function or
malfunction.

Support cannot be expected.

This software is meant for scientific and educational

purposes only.

It is forbidden to use it for other than scientific or
educational purposes.

In particular, commercial and malicious use is not allowed.
Further distribution of this software, by whatever means, is not
allowed

without our consent.

This includes publication of source code or executables in
printed form,

on websites, newsgroups, CD-ROM’s, etc.

Changing the (source) code without our consent is not allowed.
In all versions of the source code this disclaimer, the copyright
notice and the version number should be present.

Figure 11: License of Stevens collision finding program

The filter also writes all usable collisions it finds to a log file.

A perl script runs the collision finder, takes the output and passes it to the
filter. The script is also used, to send mails containing the current status of the
system, especially if usable collisions are found, to a pre-defined email address.
This is useful, as the collision finder runs over several days on a server.

Steven’s implementation As of the license of stevens code, it only allows
the use of the software as is, and only for educational purposes.

The license also does not allow to redistribute the code without their consent.
(11). For this reason, neither source nor compiled program of Steven’s imple-
mentation are distributed with the source of the programs described in 6.5.2,
and 6.7, as till the deadline, no reply to the request was received. The source
of the program can be downloaded from the hashclash website [?], for the use
according to the license.

17

Klima’s Implementation Klima’s implementation is under a similar license
as Steven’s, also not allowing the distribution of the source or the program.
Additionally it is only for Microsoft Windows, as it requires Windows only
headers, and would have to be changed to run on linux servers or other operating
systems.

Choice of program Steven’s version was chosen for several reasons:

e The implementation is portable, using the platform independent boost
library.

e It is fast, which improves the performance greatly, when used in the brute
force search, as many runs are needed.

e The source is clean and well readable.

Especially the last point is an advantage, as Klima states in his source:

Note: I am very sorry, the program is very bad.
I am not a programmer.
On the other hand, there is a possibility to improve it
and to speed up the collision search.

6.5.2 Filter

As the simple filter from 6.5.1 does not check if the mpegMPEG header is really
valid, but only if it meets some constraints, an additional filter is needed, that
parses the files, checks the headers and also outputs human readable informa-
tion about it. This information is needed to be able to encode the audio data
to the same format. The program takes one collision pair, and the position
where the valid MPEG header is. The program is mostly build from the same
components used for the interleaving program. It uses the same header class as
the interleaver, passes the 4 bytes of the header (8.1) into it, and checks if the
header is valid.

The header is written to stdout in a human readable form. Again a perl script
is used to automatically feed all possibly usable collisions into the program.
This script also writes the output to a logfile, that can be searched for a header
that fits the needs of the application, i.e. a useful bit rate or a specific MPEG
version...

6.6 Preparing the audio files

To allow better compatibility, the audio files are first encoded with an encoding
that matches the one found in the chosen collision. Although MPEG audio al-
lows variable bit rate, at least the MPEG version and layer have to be constant
through the file.

This is achieved by re-encoding the audio files. For the test runs, the free LAME
mp3 encoder was used, as it allows setting most header flags separately by the
user, though only encoding as MP3 (MPEG version 1 audio layer 3) is supported.

18

Usage:
mpegInterleave <mpegFilel> <mpegFile2> <collisionFilel>
<collisionFile2> <collisionPosition> [outFile]

Figure 12: Usage of program

6.7 Program

The program was written in C++ using only standard header files, for compati-
bility reasons. It takes six arguments (five mandatory, one optional) and creates
the colliding files from them (Fig. 12). Besides the two audio files prepared as
in 6.6 and the collision pair, the program also requieres the offset of the header
in the collision file. Last optional parameter is a name for the output files.

6.7.1 Workflow

First both MPEG files are parsed, and stored as lists of packets 8.5 (also 8.2).
The audio data is not decoded but copied as is, only the packet headers are
parsed into a header structure as in 8.1. While parsing the packets, they are
also "cleaned", i.e. except for the headers, every occurrence of OxFF in the
packet is replaced by 0xFE. This is done, to keep the player from jumping when
reading structures that look like headers while seeking the beginning of the next
packet. If not done, players simply try to read the packet, thus leaving the cur-
rent audio stream played. In most Cases this leads to nearly identical output of
both files.

The collision files are parsed in their own structure (8.7), containing all infor-
mation needed, such as if they contain a valid packet header and the position of
the header (also the incomplete header where it would be). In this process they
also parse the contained header, if available, to allow to calculate the length the
packet should have.

After all data is parsed, the construction of the colliding files itself begins.

The interleaver (8.8 shortens all packets by one byte (the last), then creates
a new list of packets, by alternating between the two input lists. This basically
creates a MPEG file that corresponds to 5.2.3. As the output of the interleaver
is a MPEG file structure (8.5), it could be output at this position, generating a
file that on playback sounds like the first input file.

If one of the two files is larger then the other, the shorter file is padded with it’s
last packet (this could also be changed to some bogus packet).

At this point only one file was created, as the collision is the only thing
differing in the output files.
The next step is to attach the collisions. For this, the collision blocks are padded
by the collision attacher (?7), so that the length from the beginning of the con-
tained header (or where it would be, dependend if the collision contains a valid
header) to the end of the block is exactly the length the packet should have
minus one byte (for the overlapping). The padded collisions are then encapsu-
lated into MPEG packet structures (8.2) and then prepended to the interleaved

19

MPEG file.
This step is repeated for the second collision block.

Finally the results of this operations are written to disk, as two files, one for
each part of the collision pair. These files collide on MD5.

6.7.2 Performance

The whole process takes less then half a second on a 2GHz notebook, for two
4 minute songs, i.e. if the collision is present, the files can be created very effi-
ciently. This especially means, that with given collisions, or a collision database,
such collisions can be created on the fly.

6.8 Result

After running the program on the files, the two files indeed collided on MD5.
Some players did not play the files. Others played it well. XMMS implements
the described in 5.3.1. The playback results are a near perfect match of the two
original files. This inconsistent behavior of the players is mainly caused by the
lack of a definition of the parser for such cases in the MPEG standard [?] (See
6.1).

6.9 Source

The source of the programs (except the parts that can’t be included due to
license restrictions) are on CD, and will hopefully be availabe.

6.10 Limitations

As this method relies on the implementation of the player, there are some limi-
tations in the functionality.

6.10.1 Player

As stated in 6.1, the error correction and fault tolerance is completely up to the
player for plain MPEG streams and files. This leads to an inconsistent behavior
of the created files across different players.

Some players, like iTunes don’t play the file at all, others play them well. An
example for the latter case is XMMS, that delivers a "perfect" result.

6.10.2 Seeking

Another drawback occurs when seeking in the file. Normally seeking is done
by jumping to an other position in the file. This may lead to a switch of the
streams, when the first valid packet found after changing the position in the file
is a packet from the other stream.

20

gop picture dice dice dice dice gop
header header | header body | header body header |°®°®*®

Figure 13: Construction of an MPEG video stream

6.10.3 Filesize

A third problem is the filesize. The files basicly double their size when beeing
combined. As multimedia files are rather large in their original form, the in-
creased size can be noticed by the user.

7 MPEG - Video

Although the construction of MPEG 2 video is similar to that of MPEG audio,
it is not possible to construct a simple collision with the methods above.

7.1 Basic Construction of an MPEG video stream

Simplified, a MPEG stream is build of 3 types of packet. There are actually
some more, but for the matter given, the simplified version with these three
types is enough.

e Sequence header, containing most of the information needed for decoding
the pictures, such as ascpect ratio resolution and framerate.

e Picture, a picture consists of several slices of data, the picture header
contains information necessary to decode the image.

e Slice, a slice contains a part of the actual image information, it’s header
is only needed to locate the beginning of the slice.

The construction is according to figure 13. The stream must begin with
a sequence header, identified by the prefix 0x000001B3, specifying frame rate,
aspect ratio and resolution of the video. Without this information, playback of
the video is impossible.
After this initial information, normally, a group of pictures starts (header:
0x000001B8. As the group of picture header does not contain information vital
for the playback, it is ignored here.
The content of a group of pictures, in this case the rest of the file, consists of
pictures. The picture header, (0x00000100) is needed, for it’s sequence number
as well as to know where a picture begins or ends.
Each slice of a picture (0x00000101 - 0x000001AF) contains a part of the in-
formation of the current picture.
This minimum setting is played by most MPEG Video players. It should also
be said, that slices do not seem to have a minimum length, so the video also
plays with shortened slices (even if some bytes are removed at the end of each
slice, this only affects the picture quality.

21

7.2 Collision with basic method

As stated in 7.1, shortening slices by one or several bytes, only decreaces im-
age quality, without dropping the aditional frame. Therefore, it is impossible
to construct a choice mechanism as described in ??. The only level possibly
allowing collisions would be picture level. However, there are methods to allow
limited support for collisions.

It has to be said, that the construction does not follow the requirements in 3,
as it doesn’t consist of individually playable packets, but requires the sequence
header to be playable.

7.3 Alternative method

While it is impossible to hide one video completely with the given method, it
is possible to have one video dominant. This is done, by interleaving two files
with different resolutions. The video with the same resolution as stated in the
sequence header, is more dominant in the resulting video, as the other pictures
will be disrupted. due to the fact that they do not align with the resolution.

By containing the header similar to the way done in 7?7, it would be possible
to create two colliding videos with different content. However, as the Sequence
header is 11 bytes long, it is hard to find a usable collision for this scenario.

8 Conclusion

The methods in this paper allow the construction of colliding multimedia files
on MD5. The same method can also be applied with any other hash algorithm
that only does a single pass over the data, i.e. that has the same properties
as described for MD5 in 4.2. Although only the exact methods for MPEG are
specified, many other packet based formats may be usable in this way.

With regard to the hash algorithm, MD5 is not the only algorithm allowing for
this type of attack. Every algorithm that only does one pass over the data,
similar to MD5, can be used in the same way, as soon as it is broken for the
general case, providing random collision pairs.

For some hash algorithms, this can most likely be done right now [?]:

e SHAO

e HAVAL

e MD4

e RIPEMD

e and as shown here MD5.

Also, as almost all hash algorithms do only one pass over a file, this method
should be adaptable for most hash functions as soon as they are broken.

22

Annex A - Documentation of the source

This section contains a reference to the Classes of the programs.

8.1 PHMpegHeader

A class to manage MPEG audio headers.
The class can parse 4 byte MPEG audio headers and makes the information
available through it’s interface.

8.1.1 Public interface

PHMpegHeader() The default constructor, creating an empty header. This
header is not considered a valid header.

PHMpegHeader(unsigned char* header) A constructor, that takes a 4
byte array of unsigned characters and tries to interpret it as an MPEG header.
The byteheader is kept along the parsed information. This removes the need
for a later synthesis of the header.

Parameter

e header a pointer to a unsigned char array of length 4 containing an
MPEG audio header in byte format.

PHMpegHeader(const PHMpegHeader &two) The copyconstructor for
PHMpegHeader.

Print(std::ostream &o) The function prints the header in a human readable
form to o.

Parameter

® 0 a stream.

InterpretHeader (unsigned char* header)

Parameter

e header a pointer to a unsigned char array of length 4 containing an
MPEG audio header in byte format.

This method takes a 4 byte array and interprets it as a MPEG audio header.
The byteheader is kept along the parsed information. This removes the need
for a later synthesis of the header.

GetByteHeader()

23

Returns

e returns a pointer to a unsigned char, pointing to a copy of the byte-
header.

Returns a pointer to a 4 byte representation of the header;
IsValidHeader() Returns true if the header is a valid MPEG audio header.

Returns

e bool a boolead value, indicating if the header is valid.

GetPacketSize() The size of the whole packet (based on the information in
the header).

Returns

e unsigned int the length of the packet.

—=— and != == and !=, the equal and the not equal operators are imple-
mentet for the class PHMpegHeader

8.2 PHMpegPacket

This class encapsulates a complete MPEG audio packet including header.

8.3 Public Interface

PHMpegPacket(PHMpegHeader header,unsigned char* body,unsigned
int _size) Constructor with three arguments, creates a new packet from a
packet header, the packet data as an array and the size of the packet. The
default method for creating PHMpegPackets

Parameter
e _header a PHMpegHeader, the header of the packet.
e _body a pointer to an array of unsigned char containing the packet

e _size an unsigned int the size of the packet in bytes.

PHMpegPacket(const PHMpegPacket &packet) The copyconstructor
for PHMpegPacket.

GetBytePacket() Returns a pointer to a copy of the packet data.

Returns

e unsigned char* a pointer to a copy of the packet data.

24

GetSize() The size of the packet in bytes.

Returns

e unsigned int the size of the packet in bytes.
GetHeader() The header of the packet as a header object.

Returns

e PHMpegHeader the header of the packet.
Print(std::ostream &o) Writes the byte version of the packet! to the stream.

Parameter

e o a reference to a stream.

SetSize(unsigned int newsize) Sets the size of the packet, used to shorten
the packets.

Parameter

e newsize a unisgned int, the new size of the packet.

8.4 PHCleanedMpegPacket

Inheriting from PHMpegPacket (8.2), adds a functionality to replace all 0xFF in
the body of the packet (not in the header for obvious reasons).

8.4.1 Public interface (additions)

Clean() Replaces all occurrences of 0xFF with OxFE except in the packet
header.

8.5 PHMpegFile

This class contains a whole MPEG audio stream, parsed in packets.

8.6 Public interface
PHMpegFile() Default construcor used to get an empty file.

PHMpegFile(const PHMpegFile &one) The copyconstructor for PHMpegFile.

PHMpegFile(std::string fileName) Reads the file fileName and parses
it’s contents into the newly created PHMpegFile.

Parameter

o fileName a std::string the path to the file.

25

ResetPosition() Resets the position of the internal pointer used for travers-
ing the file.

GetNextPacket() Returns the current packet and advances the pointer.

Returns

e PHMpegPacket The current packet in the file.
bool Eof() True if the last packet has been read.

Returns

e bool last packet read.

AddPacket(PHMpegPacket packet) Appends the PHMpegPacket packet
to the end of the File.

Parameter

e packet a PHMpegPacket to be added to the file.

WriteToFile(std::string fileName) Writes the content of the PHMpegFile
to the file fileName.

Parameter

o fileName a std::string with the path to the file to write the contents
to.

GetHeader()
Returns the header of the first packet of the file.

Returns

e PHMpegHeader The header of the first packet of the file.

8.7 PHMpegCollision

A class to parse and contain a collision.

8.7.1 Public Interface

PHMpegColisionstd::string fileName,int position Reads a MD5 colli-
sion from the file fileName and tries to parse a header at positio position.

Parameter
e fileName a std::string, the path to the collision file.

e position a int, the position of the MPEG header in the collision.

26

HasValidHeader() True if the collision file contained a valid MPEG header.

Returns

e bool flag if the header is valid.
GetHeader() Returns the header contained in the collision.

Returns

e PHMpegHeader the header contained in the collision.

unsigned int GetPosition() Returns the position where the header in the
collision starts (should start).

Returns

e unsigned int the position of the header in the collision

8.8 PHMpeglnterleaver
Contains the facilitys to interleave two PHMpegFile.

8.9 Public interface

Interleave(PHMpegFile &one, PHMpegFile &two) Takes two PHMpegFile
and interleaves their packets, while reducing their length by one (and thus over-
lapping the packets by one byte).

Parameter
e one, a PHMpegFile, the first of the two files to interleave.

e two, a PHMpegFile, the second of the two files to interleave.

Returns

e PHMpegFile containing the two interleaved PHMpegfiles.

8.10 PHMd5CollisionAttacher
Attaches a collision to an PHMpegFile

Public interface

PHMpegFile Attach(PHMpegFile &file, PHMpegCollision &colli-
sion) Creates a PHMpegPacket from a PHMpegCollision and prepends it to
the PHMpegFile.

27

Parameter

e file a reference to a PHMpegFile, the interleaved file to prepend the
collision to

e collision a reference to a PHMpegCollision, containing the collision
data to be attached.

Returns

e PHMpegFile the file with the collision prepended.

28

References

[1]

2]

3]

[4]

[5]

[6]

7]

8]

Information technology - coding of moving pictures and associated audio
for digital storage media at up to about 1,5 mbit/s. INTERNATIONAL
STANDARD ISO/IEC 11172, 08 1993. Available from: http://www.iso.

org.

M. Daum and S. Lucks. Hash collisions (the poisoned message attack)
"the story of alice and her boss". Available from: http://th.informatik.
uni-mannheim.de/people/lucks/HashCollisions/.

V. Klima. Tunnels in hash functions: Md5 collisions within a minute,.
Cryptology ePrint Archive, Report 2006/105, 2006. Available from: http:
//eprint.iacr.org/2006/105.

J. Randall and M. Szydlo. Collisions for sha0, md5, haval, md4, and ripemd,
but shal still secure. Available from: http://www.rsa.com/rsalabs/node.
asp?id=2738 [cited April 11 2008].

P. Selinger. Available from: http://www.mathstat.dal.ca/~selinger/
md5collision/ [cited April 11,2008].

M. Stevens. Fast collision attack on md5. Cryptology ePrint Archive, Report
2006/104, March 2006. Available from: http://eprint.iacr.org/2006/
104.pdf.

M. Stevens, A. Lenstra, and B. de Weger. Hashclash. Available from: http:
//www.win.tue.nl/hashclash/ [cited April 11, 2008].

X. Wang and H. Yu. How to break md5 and other hash functions. EURO-
CRYPT, 2005. Available from: http://www.infosec.sdu.edu.cn/paper/
md5-attack.pdf.

29

