
Saarland UniversityFa
ulty of Natural S
ien
es and Te
hnology IComputer S
ien
e DepartmentBa
helor's Program in Computer S
ien
e

Ba
helor's ThesisMD5
ollisions on multimedia �lessubmitted byHolger Bornträger

Supervisor Prof. Dr. Mi
hael Ba
kesAdvisors Prof. Dr. Mi
hael Ba
kesDr. Domini
 UnruhReviewers Prof. Dr. Mi
hael Ba
kesDr. Domini
 Unruh

StatementHereby I
on�rm that this thesis is my own work and that I have do
umentedall sour
es used.Saarbrü
ken, Mar
h 14, 2007Holger Bornträger
De
laration of ConsentHerewith I agree that my thesis will be made available through the library ofthe Computer S
ien
e Department.Saarbrü
ken, Mar
h 14, 2007Holger Bornträger

1

Contents1 Abstra
t 42 Introdu
tion 43 Assumptions 43.1 Pa
ket based multimedia �les . 43.1.1 Constru
tion . 43.1.2 Fault toleran
e . 54 MD5 54.1 Constu
tion of MD5 . 64.2 Properties of MD5 . 64.3 Collisions on MD5 . 64.3.1 General
ollisions on MD5 64.3.2 Meaningful
ollisions on MD5 85 Collisions on multimedia �les 85.1 Usable
ollisions . 85.1.1 General
ollision properties 85.1.2 Usable
ollisions for pa
ket based multimedia �les 85.2 Creating
olliding multimedia �les 85.2.1 Prerequisites . 85.2.2 Basi
 idea . 95.2.3 Interleaving the �les . 95.2.4 Atta
hing the
ollision . 105.3 Why it works . 115.3.1 Interleaving . 125.3.2 Atta
hing the
ollision . 125.4 Summary . 136 Proof of
on
ept - MPEG - Audio 136.1 The MPEG standard . 136.2 MPEG audio pa
ket . 136.2.1 MP3 - MPEG 1 Layer 3 146.3 ID3 tags version 1 and 2 . 146.3.1 ID3v1 . 146.3.2 ID3v2 . 156.4 Algorithm . 156.5 Usable
ollisions for MPEG-audio 156.5.1 Creating usable
ollisions 156.5.2 Filter . 176.6 Preparing the audio �les . 176.7 Program . 186.7.1 Work�ow . 186.7.2 Performan
e . 196.8 Result . 196.9 Sour
e . 196.10 Limitations . 196.10.1 Player . 192

6.10.2 Seeking . 196.10.3 Filesize . 207 MPEG - Video 207.1 Basi
 Constru
tion of an MPEG video stream 207.2 Collision with basi
 method . 217.3 Alternative method . 218 Con
lusion 218.1 PHMpegHeader . 228.1.1 Publi
 interfa
e . 228.2 PHMpegPa
ket . 238.3 Publi
 Interfa
e . 238.4 PHCleanedMpegPa
ket . 248.4.1 Publi
 interfa
e (additions) 248.5 PHMpegFile . 248.6 Publi
 interfa
e . 248.7 PHMpegCollision . 258.7.1 Publi
 Interfa
e . 258.8 PHMpegInterleaver . 268.9 Publi
 interfa
e . 268.10 PHMd5CollisionAtta
her . 26

3

List of Figures1 A basi
 data pa
ket . 52 One round of MD5 . 73 Interleaving pa
kets . 94 Interleaving pa
ked based multimedia �les 95 Prepending a valid pa
ket . 106 Prepending an invalid pa
ket . 107 Collision data . 108 Atta
hing a
ollision to a stream 119 Atta
hing a
ollision to a stream 2 1110 Prepending a valid header . 1111 Li
ense of Stevens
ollision �nding program 1612 Usage of program . 1813 Constru
tion of an MPEG video stream 20

4

1 Abstra
tA generi
 break for MD5 is known some time, but also some other formats
anbe broken. In these
ases,
onditional bran
h stru
tures are used to de
ide what
ontent of the �le is used. In this paper, MD5-
ollisions for some multimedia-formats are shown. As most of these formats have no bran
h stru
tures, herea method will be shown, that uses the fault toleran
e systems. It shows howtwo �les
an be interleaved in su
h a way, that a
onstru
ted pa
ket at thebeginning of the �le allows to
hoose between the
ontents of the two �les.It is also shown, how to
onstru
t this initial pa
ket in su
h a way, that themultimedia �les
ollide.2 Introdu
tionThere are some general methods to
onstru
t MD5-
ollisions on several formats:posts
ript, appli
ations These
ollisions are
reated by merging both possi-ble outputs in one �le. The exe
uted/displayed data is
hosen by a
onditionalstatement, that
ontains the generi

ollision.The method used for multimedia �les is similar in the way, that the
onstru
ted�les
ontain the information of both �les. The di�eren
e to other formats is,that most multimedia-formats don't support jumps or bran
hes. This is whythis behavior is simulated using the error
orre
tion system. Single pa
kets orframes of the multimedia �le are interleaved, so that every other pa
ket is in-valid, and thus not played. This leads to the possibility to only play ba
k halfof the data, while keeping all information in the �le. The generi

ollisions onMD5 are prepended to the �le in su
h a way that, depending on the
ollision,one of the interleaved streams is played.3 AssumptionsNot all multimedia �le formats allow the
onstru
tion used in this paper. Tobe
onsidered usable for the methods des
ribed here, �le formats have to meetseveral requirements.3.1 Pa
ket based multimedia �lesThe format has to be pa
ked based. Pa
ket based �le formats are used to a
hievegood fault toleran
e for streaming or sending �les, as well as the possibilityto start playing the �le at any position (i.e. play a stream from it's
urrentposition).3.1.1 Constru
tionA basi
 pa
ket based format divides the information, be it audio or video, insmall
hunks. Every
hunk gets it's own header, that
arries all informationneeded, to interpret its
ontent data, i.e. bitrate, information about the
ode
,... (Fig. 1). This means, every pa
ket
an be played on it's own. A pa
ketbased multimedia �le or stream is just a
hain of su
h pa
kets. This
onstru
-tion allows streaming of the media, as an internet radio or internet TV, as no5

head dataFigure 1: A basi
 data pa
ketentrypoint is needed. Playba
k
an start at any position in the stream, withoutknowledge of prior pa
kets, as all information needed is stored in every singlepa
ket.For the methods des
ribed in this do
ument, it is also required, that thelength of the pa
kets is �xed either by the format, or by the information inthe header. This happens for many formats, as it simpli�es parsing as well asde
oding of the pa
kets. It removes the requirements of removing all possibleheaders from the
ontent data.3.1.2 Fault toleran
eThe
onstru
tion as des
ribed in 3.1.1 allows a good fault toleran
e, by simplyignoring damaged pa
kets. As a pa
ket only
ontains some milise
onds worthof data, a missing or not played pa
ket is normally not per
eived by the user.Additionally the stream is not delayed, by waiting for pa
kets, or re requestingpa
kets. This also removes the need for the server to store pa
kets that is hasalready sent. In most
ases, waiting for a
orre
ted pa
ket would have moreimpa
t on the quality than just dropping the data.A simple, yet e�e
tive, error
orre
tion algorithm is thus, playing valid pa
ketsand dropping all information of the �le, until the next valid pa
ket header isfound. Therefore the header
ontains some sort of syn
 information, normallythe �rst bytes, that allows to identify the next header in the stream. This syn
information
an also be the "magi
 number" that identi�es the stream-type. Toallow skipping of pa
kets, every pa
ket header must
ontain information aboutthe length of the pa
ket, to allow to seek for the end of the pa
ket. Alternativelythe stream may use a �xed pa
ket-size.This form of fault toleran
e is espe
ialy usefull for web-streams su
h as online-radios, as missing pa
kets don't have to be resent, and no forward error
orre
-tion is required.Additionally it is required, that the data is fault tolerant when it
omes to minorediting, su
h as
hanging one bit or byte. This is true for almost any multimediaformat, as minor
hanges to the data only slightly a�e
t the data itself. It mightde
rease the quality of the audio or video information, but it doesn't.4 MD5MD5 (Message-Digest algorithm 5), is a hash-algorithm, that produ
es 128 bithashes.
6

4.1 Constu
tion of MD5This se
tion will not des
ribe MD5 in all detail, but tries to give an overviewabout how it a
tually works.MD5 is an algorithm that works in 16 rounds,
overing a 512 bit message blo
k.Every round
onsists of 16 similar operations.Ea
h operation works as follows (Fig 2):1. Divide the 128 bit message in 4 blo
ks of 128 bit A, B, C, D .2. Cal
ulate F (B, C, D) and add to A mod 232 .3. Add state Mi mod 232 .4. Add round
onstant Ki mod 232 .5. Shift by given amount per round .6. Add B mod 232 .The state Mi is a given 32 bit value, for the �rst round of the algorithm, andthen determined, by all previous rounds of the algorithm (also
arried over tothe next 512 bit blo
k).There are four di�erent fun
tions for F , one used for ea
h blo
k of 16 operationrounds (thus 16 ∗ 4 = 64 rounds).4.2 Properties of MD5As seen in 4.1, MD5 only does one pass over a �le. i.e. after pro
essing one 512blo
k of data, this data is not used anymore for the following rounds, ex
ept forthe state, that it in�uen
ed.This property means, that two �les with identi
al MD5 hash will also hash tothe same value, when identi
al data is appended to both �les, i.e. if File A andFile B both hash to value h1, after appending File X to File A and File B,File AX and File BX hash to the same value h2.Additionally, (not stated in the
onstru
tion), both �les must have the samesize, as MD5 in
ludes the length of the data into the padding of the last pa
ket.This property is used to
onstru
t meaningful
ollisions, given general (random)
ollisions on MD5.4.3 Collisions on MD54.3.1 General
ollisions on MD5Several fast methods are known to
reate
ollisions on MD5 [?, ?, ?℄. These
ollisions however are mostly random data. These methods use tunnels in theMD5 algorithm. This means, there are several known
onditions, that, applied
orre
tly, make it possible, to
reate data, that has a predi
table behavior whenfed into the hash algorithm.One fast method of
reating
ollisions on MD5 is by Vlastimil Klima[?℄, anotherone by Stevens[?℄.Both
reate
ollisions by
hoosing data with
ertain properties, so that somebits determine the out
ome of the algorithm predi
tably, i.e. there have to be7

A B C D

A B C D

F

<<<

Mi

Ki

Figure 2: One round of MD5
8

two blo
ks of data, that only di�er in these bits, and hash to the same value.As only 5 bits
hange, the
olliding blo
ks
an be easily determined by brutefor
e.4.3.2 Meaningful
ollisions on MD5Methods have been shown, to provide
ollisions on posts
ript do
uments[?℄as well as appli
ations[?℄. These
ollisions are realized by using
onditionalbran
hes provided by the spe
i�
ation of the do
ument i.e. if then else state-ments.Basi
ally they
reate a pair of
olliding data blo
ks, then use a
onditional state-ment, that says:if blo
k =
ollision_blo
k_1 then do first else do se
ond.If the �les
ollide for the part up to the end of blo
k, they
ollide
ompletely,following dire
tly from the properties in 4.2.5 Collisions on multimedia �les5.1 Usable
ollisionsAs there are no simple bran
h
onditions available for most multimedia formats,several spe
ial
onditions must be met by the
ollisions, to be
onsidered usablefor the method des
ribed in this paper.5.1.1 General
ollision propertiesCollisions on MD5
reated with Stevens algorithm are 128 byte long, plus apotential initialization �le, but they only di�er in 5 bits. The rest of the
ollisionsis rather random, although it has to ful�ll some properties required by algorithm.5.1.2 Usable
ollisions for pa
ket based multimedia �lesFor the method des
ribed here, the
ollisons meet several
onditions.� The
ollision must
ontain a valid pa
ket header, suitable for the stream.� The header must
ontain one of the
hanging bits.In pra
ti
e, the �rst
ondition is normally met, by en
oding the multimedia �lesin a way, that
orresponds to the
ollision, as �nding an appropriate
ollision forone spe
ial stream requires a sequen
e of several bytes to be met in the
ollisionblo
k, whi
h is harder to a
hive.5.2 Creating
olliding multimedia �les5.2.1 Prerequisites� an MD5
ollision meeting the requirements of 5.1.2� two �les with the same header as in the
ollision blo
ks9

head

head

head

head

body body

body bodyFigure 3: Interleaving pa
kets
file1 file1 file1file 2 file 2

packet 1 packet 2 packet 3packet 1 packet 2
b b bFigure 4: Interleaving pa
ked based multimedia �les5.2.2 Basi
 ideaThe �nal result will be
onstru
ted in a way, similar to those used for posts
riptdo
uments or exe
utables. However, as most multimedia formats don't
ontainany bran
h stru
tures, this has to be realized by other means.The basi

on
ept is, that we interleave the pa
kets in su
h a way, that onlyevery other pa
ket is played by the player. This is done, by invalidation everyother pa
ket, if the previous one was played,
ausing the error
orre
tion to skipthis invalidated blo
k. This method will
reate some sort of
ondition, that
anbe used, to
reate meaningful
ollisions on multimedia �les.In this
ase, the generi

ollision blo
k is used, to swit
h between the two pa
ketstreams, and thus in�uen
ing, what
ontent is played.5.2.3 Interleaving the �lesAs stated in 3, for the method des
ribed here, we need multimedia formats, that
ontain all information required in the pa
ket header of the individual pa
kets.Also, it is important, that the pa
kets either have a �xed length, or the lengthis
omputed from the pa
ket header.The
onstru
tion as in �gure 3 works as follows:Every pa
ket is shortened by a �xed amount of bytes. This leads to the fa
t,that the header of the next pa
ket starts at a position, that is in the body ofthe previous pa
ket. As a result, all pa
kets overlap.As the se
ond pa
ket in this
onstru
tion be
omes invalid, it should bedropped by the error
orre
tion. Though the error
orre
tion doesn't see itas an invalid pa
ket but as random data. Dropping data up to the next headeragain,
auses the third pa
ket to be played
orre
tly.Using this e�e
t, two �les
an be interleaved in an alternating manner (Fig. 4),so that on playba
k, there will be almost no di�eren
e to the �rst �le, hidingthe se
ond �le
ontained in the �rst one.With this
onstru
tion, a
onditional element
an be introdu
ed in a formatthat didn't
ontain su
h an element in it's design, by using the error
orre
tionme
hanisms. This is done by prepending and overlapping an addtitional pa
ket.If this pa
ket is valid (Fig. 5), it will be played ba
k, and the �rst pa
ket ofthe stream, belonging to the �rst �le, is not played ba
k. If this happens, the10

head headbogus data first packetFigure 5: Prepending a valid pa
ket
headbogus data first packetFigure 6: Prepending an invalid pa
ketse
ond pa
ket is played, skipping all the pa
kets of the �rst �le. Following this
hain, only pa
kets from the se
ond �le will be played.On the other hand, if the prepended pa
ket is not valid (Fig. 6)(i.e. does not
ontain a valid header), the pa
ket will be ignored and the �rst valid pa
ket isthe �rst pa
ket of the �rst �le.5.2.4 Atta
hing the
ollisionUp to this point, we only
ombined the two original �les into one larger �le.With the "swit
h-pa
ket" prepended however, these two �les do not
ollide onMD5.Now, from the given
ollisions on MD5 (see 5.2.1 and 5.1), two sets of data are
onstru
ted that:� let both �les have the same MD5 hash (
ollision)� one of them
auses pa
kets from �le 1 to be played� the other
auses pa
kets from �le 2 to be playedFigure 7 shows one of the two
ollision blo
ks, namely the one that
ontainsa valid pa
ket header. As all
ollisions
reated have a �xed length of 128 bytes,they
an �t in a stream pa
ket as a whole (128 byte is too short for virtuallyany multimedia �le format).Su
h an
ollision blo
k
an be prepended to the �le. As of the properties ofMD5, if the beginnings of two �les
ollide, and the rest of the �le is identi
al,then either the �les are a
ollision on MD5 or both �les are identi
al (See 4.2).The
ollision
an now be prepended to the interleaved �le as in �gure 8. The
ollision blo
k is padded in su
h a way, that the length from the header up tothe end of the padding is just the size of a normal pa
ket minus one byte. Themissing byte is just where the so
reated pa
ket overlaps with the �rst pa
ketof the a
tual stream. Although the data in this pa
ket does not
ontain anymeaningful audio-data, it is a valid pa
ket, and thus played ba
k. From this,

headcollision collisionFigure 7: Collision data11

packet length

headheadcollision packet datapaddingcollisionFigure 8: Atta
hing a
ollision to a stream
packet length

headcollision packet datapaddingcollisionFigure 9: Atta
hing a
ollision to a stream 2the �rst byte of the �rst real pa
ket is missing, so the �rst pa
ket is not played.As des
ribed in 5.2.3, this
auses the playba
k of the se
ond �le.The
ollision
ould also be the one without a valid header (Fig. 9). In this
ase, the �rst pa
ket and thus the �rst �le should be played.As the �les now start with two di�erent blo
ks that form a
ollision on MD5,keeping the rest of the �le identi
al, both �les will now have the same
he
ksum.On playba
k, the �les will have
ompletely di�erent output (identi
ally to either�le one or �le two).This is a
ollision on MD5 for two multimedia �les.There is an additional method, to improve the
ompatibility of this
on-stru
tion with other players, but it makes it harder to �nd a usable
ollision, asit �xes the medias parameters and then sear
hes a usable
ollision.What
an be done, is to add the beginning of a valid pa
ket, s the part of the
ollision that is in front of the header is
ontained in this pa
ket. This allowsthe �le to run on players that require a valid header at the beginning of the �le.The
onstru
tion would be, �rst a valid header for a pa
ket of the stream, fol-lowed by some �lling data and then the
ollision (Fig. 10). From there the
onstru
tion is as shown above.5.3 Why it worksNow a more exa
t analysis will be given, why the methods given in 5.2 areworking.
headcollision collisionhead

packet length

padding

Figure 10: Prepending a valid header
12

5.3.1 InterleavingA parser with high fault toleran
e should basi
ally work in the following steps:1. drop bytes until valid pa
ket header is found2. interpret pa
ket header3. read all bytes that belong to the pa
ket4. repeat until end of �le.This simple system allows to drop damaged pa
kets on internet streams, as wellas in damaged �les, with nearly no loss of data, as ea
h pa
ket only
ontainsvery limited amounts of data, that are not needed to play the following pa
kets.Assuming a parser with this properties, the
onstru
tion in 5.2.3 works asfollows:Right at the beginning of the �le, the parser �nds the �rst pa
ket header. Itinterprets the header, and
al
ulates the length of the header. Then it readsremaining pa
ket data (i.e. the number of bytes
al
ulated). In the modi�ed�le, this in
ludes the �rst bytes of the header of the se
ond pa
ket. This pa
ketis send to the de
oder.Now, trying to read the se
ond pa
ket, the parser doesn't �nd a valid header, asthe header of the se
ond pa
ket is missing it's �rst bytes. So the parser assumesthere is some random data to be dropped, and does so. The next valid pa
ketheader that
an be found, is the header of the third pa
ket, i.e the
ompletese
ond pa
ket/�rst pa
ket of the se
ond stream is droped. The same pro
ess isdone for all following pa
kets, thus dropping every other pa
ket, stripping allthe data from the se
ond �le.5.3.2 Atta
hing the
ollisionAgain, the same parser as in 5.3.1 is assumed. Now with the prepended
ollision,the start of the parsing is slightly di�erent. There are two possible beginningsof the �le:Either the �le starts with a valid header, as the beginning of the
ollision iswrapped in a valid pa
ket, or it starts with the beginning of the
ollision.This only di�ers in the point, that in the �rst
ase, the parser reads a
ompletebogus pa
ket, that is played ba
k, then �nds the header inside of the
ollision.In the se
ond
ase, the parser would start �nding random data, thus droppingit up to the �rst valid header.From the point, where the header
ontained in the
ollision blo
k is, there aretwo possible ways to go.Valid header in
ollision If the
ollision �le with the valid header is used,the parser reads the header, interprets it and thus reads the
al
ulated numberof bytes. As of the
onstru
tion in 5.2.4, the bogus pa
ket of the header in the
ollision, is shorter then it should be. This
auses the parser to interpret thebeginning of the �rst real pa
ket as part of the bogus pa
ket. Now the me
hani
sexplained in 5.3.1 ki
k in again. The �rst pa
ket has no valid header (due to13

the missing bytes), and is dropped entirely by the parser. The se
ond pa
ket isthe �rst valid pa
ket played. The rest of the
onstru
tion again follows 5.3.1.no valid header in
ollision If no valid header is present in the
ollision,all of it's data is dropped, as the parser
an't �nd a pa
ket it belongs to. This
auses the header of the �rst pa
ket to be the �rst valid header in the stream.Starting right from this point, everything works exa
tly as in 5.3.1.5.4 SummaryBy using the fault toleran
e of players, two pa
ket based multimedia �les
anbe interleaved in su
h a way, that on playba
k only data from one of them isused. When adding a mat
hing
ollision blo
k to su
h a �le, the appropriatestream
an be
hosen. Due to the properties of MD5, the two �les (one for ea
hof the two parts of the two
olliding blo
ks) hash to the exa
tly same value, buthave di�erent output when played ba
k.6 Proof of
on
ept - MPEG - AudioThe MPEG[sour
e needed℄ format is a pa
ket based format for video and audiodata. It ful�lls the requirements as in 3.1. MPEG �les
onsist of pa
kets, identi-�ed by pa
ket headers. They allow for multiplexing audio and video, as well asaudio and video only streams. The MPEG standard does not provide the pos-sibility for
onditional or un
onditional jumps, but must be played sequentialy.Only the player may implement seeking fun
tionality. Only MPEG-audio willbe dis
ussed here in detail, for MPEG-video, the pa
ket headers are di�erent,but it allows for the same methods.6.1 The MPEG standardThe MPEG standard[?℄ des
ribes no �le format for audio or video. Insteadonly the pa
ket format is des
ribed. This is possible, due to the fa
t, that everypa
ket
ontains all information needed for playba
k. Streams and �les have thesame format, they both are just a sequen
e of pa
kets.The MPEG standard
ontains no default method for fault toleran
e or error
orre
tion, so the implementation of these features is up to the author of theplayer.6.2 MPEG audio pa
ketThe basi

onstru
tion of an MPEG audio pa
ket
onsists of a header and theaudio data itself.In the MPEG standard, these pa
kets are
alled frames, this paper will
allthem pa
kets, for
onsisten
y of the do
ument.For now only the header is of interest. It
onsists of 32 bits/4 bytes. The
onstru
tion is (ignoring the uno�
ial standard MPEG version 2.5 whi
h usesthe last frame syn
 bit as version indi
ator):� 12 bit FrameSyn
 (all bits set) 14

� 1 bit MPEG version (version 1 or 2)� 2 bit audio layer (1, 2 or 3)� 1 bit �ag if header CRC
he
k is present� 4 bit bitrate index� 2 bit sampling frequen
y� 1 bit �ag if pa
ket is padded� 1 bit �ag free for personal use (private bit)� 2 bit
hannel mode (mono, stereo, joint stereo, dual stereo)� 1 bit �ag data is
opyrighted� 1 bit �ag if media is original media or
opy� 2 bit for emphasis (used when de
oding the data).The information given in the header allows to
ompute the size of the pa
ket,as for every standard, there is a �xed formula for the length the pa
ket has tohave. For example in
ase of MP3 this formula would be
FrameLengthInBytes = 144 ∗ BitRate/SampleRate + Padding.This allows a player to read one
omplete pa
ket, then look for the next pa
ket.Some data of the header is only additional information for the player/user.Su
h �elds are the private bit and the information about
opyright and originalmedia. Other parts are �xed for all pa
kets of all streams, for example the 12bit FrameSyn
 (11 bit for MPEG 2.5 whi
h is not an o�
ial standard).6.2.1 MP3 - MPEG 1 Layer 3The most widely known appli
ation of the MPEG �le or stream format is MP3,whi
h is MPEG version 1 audio layer 3, an audio format.It uses the pa
ket and pa
ket header format as shown in 6.2.6.3 ID3 tags version 1 and 2ID3 tags are the
ommon method to atta
h additional information, su
h asauthor, title... to an MPEG audio �le. The two versions di�er in format as wellas integration into the �le.6.3.1 ID3v1Version 1 of the ID3 standard is atta
hed to end of the �le, thus giving noproblem when interleaving the �les. The ID3 tag, if present, must be the last128 bytes, so only one tag is possible. The tag has to be identi
al for both �lesin the end, to allow the
reation of the
ollision. It
an be simply appended tothe interleaved �les in the end. 15

6.3.2 ID3v2Version 2 is atta
hed to the beginning of the �le. If a ID3v2 tag has to bepresent in the
reated �le, then the
ollisions must be
reated with this tag asinitial ve
tor. This makes it impossible to
reate the
ollisions before the datais known. While this doesn't harm the method, it slows down the pro
ess of
ollision �nding. If possible, the ID3v2 tag
ould be repla
ed with version 1.6.4 AlgorithmThe algorithm follows stri
tly the prin
iple from 5.2. For the spe
ial
ase ofMPEG-audio the pa
kets only have to overlap by one byte (the �rst byte of thesyn
).6.5 Usable
ollisions for MPEG-audioFor MPEG-audio, the
ollisions have to
ontain a valid 4 byte MPEG audioheader. Additionally this header
an only be
orre
t in one of the two
ollisions.Only the �rst 12 bits are the same in every pa
ket header, the rest of the bits
reate a valid MPEG header for almost any possible
ombination. For thisreason only
ollisions where the
hanging bit is
ontained in the �rst 12 bits are
onsidered usable.There are some additional requirements for the
ollisions to be
onsidered usable.If a
hanging bit is in the �rst 12 bits, the rest of the pa
ket has to be valid, i.e.
ontain valid values for all the �elds. For instan
e, a bitrate index of 0x0 is notvalid. additionally some
ombinations of emphasis,
hannel mode and bitrateare not valid for MPEG audio.As a �nal requirement headers that have the CRC �ag set are not
onsideredusable, as this would require an additional 16 bit CRC following the header,that also must be
ontained
orre
tly in the
ollision. As this
ase is rare, itwas not
onsidered when sear
hing usable
ollisions.6.5.1 Creating usable
ollisionsThe
ollision �les where
reated using brute for
e. Steven's implementation ofhis method, des
ribed in [?℄, was used to
reate
ollision pairs. These
ollisionpairs were passed to a �lter, that analyzed them for MPEG headers, to de
ide ifthe
ollision is usable. The
ollision program was run in parallel several times,to use the full
omputing power of the server it ran on (A system with twodual-
ore Xeon CPU's).The
ollision �les were passed to a �lter, that de
ided, if there were potentiallyusable
ollisions in them.In this step only a very simple �lter is used, that
he
ked for the following
onstraints:� 12 bit frame syn
 is valid (i.e. 0xFFF)� the CRC �ag is not set� it is either MPEG version 1 or 2 and layer 1,2 or 3� a valid bit rate and sampling was
hosen.16

Version=======version 1.0.0.5, April 2006.Copyright=========M. Stevens, 2006. All rights reserved.Dis
laimer==========This software is provided as is. Use is at the user's risk.No guarantee whatsoever is given on how it may fun
tion ormalfun
tion.Support
annot be expe
ted.This software is meant for s
ientifi
 and edu
ationalpurposes only.It is forbidden to use it for other than s
ientifi
 oredu
ational purposes.In parti
ular,
ommer
ial and mali
ious use is not allowed.Further distribution of this software, by whatever means, is notallowedwithout our
onsent.This in
ludes publi
ation of sour
e
ode or exe
utables inprinted form,on websites, newsgroups, CD-ROM's, et
.Changing the (sour
e)
ode without our
onsent is not allowed.In all versions of the sour
e
ode this dis
laimer, the
opyrightnoti
e and the version number should be present.Figure 11: Li
ense of Stevens
ollision �nding programThe �lter also writes all usable
ollisions it �nds to a log �le.A perl s
ript runs the
ollision �nder, takes the output and passes it to the�lter. The s
ript is also used, to send mails
ontaining the
urrent status of thesystem, espe
ially if usable
ollisions are found, to a pre-de�ned email address.This is useful, as the
ollision �nder runs over several days on a server.Steven's implementation As of the li
ense of stevens
ode, it only allowsthe use of the software as is, and only for edu
ational purposes.The li
ense also does not allow to redistribute the
ode without their
onsent.(11). For this reason, neither sour
e nor
ompiled program of Steven's imple-mentation are distributed with the sour
e of the programs des
ribed in 6.5.2,and 6.7, as till the deadline, no reply to the request was re
eived. The sour
eof the program
an be downloaded from the hash
lash website [?℄, for the usea

ording to the li
ense.
17

Klima's Implementation Klima's implementation is under a similar li
enseas Steven's, also not allowing the distribution of the sour
e or the program.Additionally it is only for Mi
rosoft Windows, as it requires Windows onlyheaders, and would have to be
hanged to run on linux servers or other operatingsystems.Choi
e of program Steven's version was
hosen for several reasons:� The implementation is portable, using the platform independent boostlibrary.� It is fast, whi
h improves the performan
e greatly, when used in the brutefor
e sear
h, as many runs are needed.� The sour
e is
lean and well readable.Espe
ially the last point is an advantage, as Klima states in his sour
e:Note: I am very sorry, the program is very bad.I am not a programmer.On the other hand, there is a possibility to improve itand to speed up the
ollision sear
h.6.5.2 FilterAs the simple �lter from 6.5.1 does not
he
k if the mpegMPEG header is reallyvalid, but only if it meets some
onstraints, an additional �lter is needed, thatparses the �les,
he
ks the headers and also outputs human readable informa-tion about it. This information is needed to be able to en
ode the audio datato the same format. The program takes one
ollision pair, and the positionwhere the valid MPEG header is. The program is mostly build from the same
omponents used for the interleaving program. It uses the same header
lass asthe interleaver, passes the 4 bytes of the header (8.1) into it, and
he
ks if theheader is valid.The header is written to stdout in a human readable form. Again a perl s
riptis used to automati
ally feed all possibly usable
ollisions into the program.This s
ript also writes the output to a log�le, that
an be sear
hed for a headerthat �ts the needs of the appli
ation, i.e. a useful bit rate or a spe
i�
 MPEGversion...6.6 Preparing the audio �lesTo allow better
ompatibility, the audio �les are �rst en
oded with an en
odingthat mat
hes the one found in the
hosen
ollision. Although MPEG audio al-lows variable bit rate, at least the MPEG version and layer have to be
onstantthrough the �le.This is a
hieved by re-en
oding the audio �les. For the test runs, the free LAMEmp3 en
oder was used, as it allows setting most header �ags separately by theuser, though only en
oding as MP3 (MPEG version 1 audio layer 3) is supported.18

Usage:mpegInterleave <mpegFile1> <mpegFile2> <
ollisionFile1><
ollisionFile2> <
ollisionPosition> [outFile℄Figure 12: Usage of program6.7 ProgramThe program was written in C++ using only standard header �les, for
ompati-bility reasons. It takes six arguments (�ve mandatory, one optional) and
reatesthe
olliding �les from them (Fig. 12). Besides the two audio �les prepared asin 6.6 and the
ollision pair, the program also requieres the o�set of the headerin the
ollision �le. Last optional parameter is a name for the output �les.6.7.1 Work�owFirst both MPEG �les are parsed, and stored as lists of pa
kets 8.5 (also 8.2).The audio data is not de
oded but
opied as is, only the pa
ket headers areparsed into a header stru
ture as in 8.1. While parsing the pa
kets, they arealso "
leaned", i.e. ex
ept for the headers, every o

urren
e of 0xFF in thepa
ket is repla
ed by 0xFE. This is done, to keep the player from jumping whenreading stru
tures that look like headers while seeking the beginning of the nextpa
ket. If not done, players simply try to read the pa
ket, thus leaving the
ur-rent audio stream played. In most Cases this leads to nearly identi
al output ofboth �les.The
ollision �les are parsed in their own stru
ture (8.7),
ontaining all infor-mation needed, su
h as if they
ontain a valid pa
ket header and the position ofthe header (also the in
omplete header where it would be). In this pro
ess theyalso parse the
ontained header, if available, to allow to
al
ulate the length thepa
ket should have.After all data is parsed, the
onstru
tion of the
olliding �les itself begins.The interleaver (8.8 shortens all pa
kets by one byte (the last), then
reatesa new list of pa
kets, by alternating between the two input lists. This basi
ally
reates a MPEG �le that
orresponds to 5.2.3. As the output of the interleaveris a MPEG �le stru
ture (8.5), it
ould be output at this position, generating a�le that on playba
k sounds like the �rst input �le.If one of the two �les is larger then the other, the shorter �le is padded with it'slast pa
ket (this
ould also be
hanged to some bogus pa
ket).At this point only one �le was
reated, as the
ollision is the only thingdi�ering in the output �les.The next step is to atta
h the
ollisions. For this, the
ollision blo
ks are paddedby the
ollision atta
her (??), so that the length from the beginning of the
on-tained header (or where it would be, dependend if the
ollision
ontains a validheader) to the end of the blo
k is exa
tly the length the pa
ket should haveminus one byte (for the overlapping). The padded
ollisions are then en
apsu-lated into MPEG pa
ket stru
tures (8.2) and then prepended to the interleaved19

MPEG �le.This step is repeated for the se
ond
ollision blo
k.Finally the results of this operations are written to disk, as two �les, one forea
h part of the
ollision pair. These �les
ollide on MD5.6.7.2 Performan
eThe whole pro
ess takes less then half a se
ond on a 2GHz notebook, for two4 minute songs, i.e. if the
ollision is present, the �les
an be
reated very e�-
iently. This espe
ially means, that with given
ollisions, or a
ollision database,su
h
ollisions
an be
reated on the �y.6.8 ResultAfter running the program on the �les, the two �les indeed
ollided on MD5.Some players did not play the �les. Others played it well. XMMS implementsthe des
ribed in 5.3.1. The playba
k results are a near perfe
t mat
h of the twooriginal �les. This in
onsistent behavior of the players is mainly
aused by thela
k of a de�nition of the parser for su
h
ases in the MPEG standard [?℄ (See6.1).6.9 Sour
eThe sour
e of the programs (ex
ept the parts that
an't be in
luded due toli
ense restri
tions) are on CD, and will hopefully be availabe.6.10 LimitationsAs this method relies on the implementation of the player, there are some limi-tations in the fun
tionality.6.10.1 PlayerAs stated in 6.1, the error
orre
tion and fault toleran
e is
ompletely up to theplayer for plain MPEG streams and �les. This leads to an in
onsistent behaviorof the
reated �les a
ross di�erent players.Some players, like iTunes don't play the �le at all, others play them well. Anexample for the latter
ase is XMMS, that delivers a "perfe
t" result.6.10.2 SeekingAnother drawba
k o

urs when seeking in the �le. Normally seeking is doneby jumping to an other position in the �le. This may lead to a swit
h of thestreams, when the �rst valid pa
ket found after
hanging the position in the �leis a pa
ket from the other stream.
20

gop picture
header header header

slice
body
slice

header
slice

body
slice gop

header
b b bFigure 13: Constru
tion of an MPEG video stream6.10.3 FilesizeA third problem is the �lesize. The �les basi
ly double their size when beeing
ombined. As multimedia �les are rather large in their original form, the in-
reased size
an be noti
ed by the user.7 MPEG - VideoAlthough the
onstru
tion of MPEG 2 video is similar to that of MPEG audio,it is not possible to
onstru
t a simple
ollision with the methods above.7.1 Basi
 Constru
tion of an MPEG video streamSimpli�ed, a MPEG stream is build of 3 types of pa
ket. There are a
tuallysome more, but for the matter given, the simpli�ed version with these threetypes is enough.� Sequen
e header,
ontaining most of the information needed for de
odingthe pi
tures, su
h as as
pe
t ratio resolution and framerate.� Pi
ture, a pi
ture
onsists of several sli
es of data, the pi
ture header
ontains information ne
essary to de
ode the image.� Sli
e, a sli
e
ontains a part of the a
tual image information, it's headeris only needed to lo
ate the beginning of the sli
e.The
onstru
tion is a

ording to �gure 13. The stream must begin witha sequen
e header, identi�ed by the pre�x 0x000001B3, spe
ifying frame rate,aspe
t ratio and resolution of the video. Without this information, playba
k ofthe video is impossible.After this initial information, normally, a group of pi
tures starts (header:0x000001B8. As the group of pi
ture header does not
ontain information vitalfor the playba
k, it is ignored here.The
ontent of a group of pi
tures, in this
ase the rest of the �le,
onsists ofpi
tures. The pi
ture header, (0x00000100) is needed, for it's sequen
e numberas well as to know where a pi
ture begins or ends.Ea
h sli
e of a pi
ture (0x00000101 - 0x000001AF)
ontains a part of the in-formation of the
urrent pi
ture.This minimum setting is played by most MPEG Video players. It should alsobe said, that sli
es do not seem to have a minimum length, so the video alsoplays with shortened sli
es (even if some bytes are removed at the end of ea
hsli
e, this only a�e
ts the pi
ture quality.21

7.2 Collision with basi
 methodAs stated in 7.1, shortening sli
es by one or several bytes, only de
rea
es im-age quality, without dropping the aditional frame. Therefore, it is impossibleto
onstru
t a
hoi
e me
hanism as des
ribed in ??. The only level possiblyallowing
ollisions would be pi
ture level. However, there are methods to allowlimited support for
ollisions.It has to be said, that the
onstru
tion does not follow the requirements in 3,as it doesn't
onsist of individually playable pa
kets, but requires the sequen
eheader to be playable.7.3 Alternative methodWhile it is impossible to hide one video
ompletely with the given method, itis possible to have one video dominant. This is done, by interleaving two �leswith di�erent resolutions. The video with the same resolution as stated in thesequen
e header, is more dominant in the resulting video, as the other pi
tureswill be disrupted. due to the fa
t that they do not align with the resolution.By
ontaining the header similar to the way done in ??, it would be possibleto
reate two
olliding videos with di�erent
ontent. However, as the Sequen
eheader is 11 bytes long, it is hard to �nd a usable
ollision for this s
enario.8 Con
lusionThe methods in this paper allow the
onstru
tion of
olliding multimedia �leson MD5. The same method
an also be applied with any other hash algorithmthat only does a single pass over the data, i.e. that has the same propertiesas des
ribed for MD5 in 4.2. Although only the exa
t methods for MPEG arespe
i�ed, many other pa
ket based formats may be usable in this way.With regard to the hash algorithm, MD5 is not the only algorithm allowing forthis type of atta
k. Every algorithm that only does one pass over the data,similar to MD5,
an be used in the same way, as soon as it is broken for thegeneral
ase, providing random
ollision pairs.For some hash algorithms, this
an most likely be done right now [?℄:� SHA0� HAVAL� MD4� RIPEMD� and as shown here MD5.Also, as almost all hash algorithms do only one pass over a �le, this methodshould be adaptable for most hash fun
tions as soon as they are broken.
22

Annex A - Do
umentation of the sour
eThis se
tion
ontains a referen
e to the Classes of the programs.8.1 PHMpegHeaderA
lass to manage MPEG audio headers.The
lass
an parse 4 byte MPEG audio headers and makes the informationavailable through it's interfa
e.8.1.1 Publi
 interfa
ePHMpegHeader() The default
onstru
tor,
reating an empty header. Thisheader is not
onsidered a valid header.PHMpegHeader(unsigned
har* header) A
onstru
tor, that takes a 4byte array of unsigned
hara
ters and tries to interpret it as an MPEG header.The byteheader is kept along the parsed information. This removes the needfor a later synthesis of the header.Parameter� header a pointer to a unsigned
har array of length 4
ontaining anMPEG audio header in byte format.PHMpegHeader(
onst PHMpegHeader &two) The
opy
onstru
tor forPHMpegHeader.Print(std::ostream &o) The fun
tion prints the header in a human readableform to o.Parameter� o a stream.InterpretHeader(unsigned
har* header)Parameter� header a pointer to a unsigned
har array of length 4
ontaining anMPEG audio header in byte format.This method takes a 4 byte array and interprets it as a MPEG audio header.The byteheader is kept along the parsed information. This removes the needfor a later synthesis of the header.GetByteHeader() 23

Returns� returns a pointer to a unsigned
har, pointing to a
opy of the byte-header.Returns a pointer to a 4 byte representation of the header;IsValidHeader() Returns true if the header is a valid MPEG audio header.Returns� bool a boolead value, indi
ating if the header is valid.GetPa
ketSize() The size of the whole pa
ket (based on the information inthe header).Returns� unsigned int the length of the pa
ket.== and != == and !=, the equal and the not equal operators are imple-mentet for the
lass PHMpegHeader8.2 PHMpegPa
ketThis
lass en
apsulates a
omplete MPEG audio pa
ket in
luding header.8.3 Publi
 Interfa
ePHMpegPa
ket(PHMpegHeader _header,unsigned
har* _body,unsignedint _size) Constru
tor with three arguments,
reates a new pa
ket from apa
ket header, the pa
ket data as an array and the size of the pa
ket. Thedefault method for
reating PHMpegPa
ketsParameter� _header a PHMpegHeader, the header of the pa
ket.� _body a pointer to an array of unsigned
har
ontaining the pa
ket� _size an unsigned int the size of the pa
ket in bytes.PHMpegPa
ket(
onst PHMpegPa
ket &pa
ket) The
opy
onstru
torfor PHMpegPa
ket.GetBytePa
ket() Returns a pointer to a
opy of the pa
ket data.Returns� unsigned
har* a pointer to a
opy of the pa
ket data.24

GetSize() The size of the pa
ket in bytes.Returns� unsigned int the size of the pa
ket in bytes.GetHeader() The header of the pa
ket as a header obje
t.Returns� PHMpegHeader the header of the pa
ket.Print(std::ostream&o) Writes the byte version of the pa
ket! to the stream.Parameter� o a referen
e to a stream.SetSize(unsigned int newsize) Sets the size of the pa
ket, used to shortenthe pa
kets.Parameter� newsize a unisgned int, the new size of the pa
ket.8.4 PHCleanedMpegPa
ketInheriting from PHMpegPa
ket (8.2), adds a fun
tionality to repla
e all 0xFF inthe body of the pa
ket (not in the header for obvious reasons).8.4.1 Publi
 interfa
e (additions)Clean() Repla
es all o

urren
es of 0xFF with 0xFE ex
ept in the pa
ketheader.8.5 PHMpegFileThis
lass
ontains a whole MPEG audio stream, parsed in pa
kets.8.6 Publi
 interfa
ePHMpegFile() Default
onstru
or used to get an empty �le.PHMpegFile(
onst PHMpegFile &one) The
opy
onstru
tor for PHMpegFile.PHMpegFile(std::string �leName) Reads the �le fileName and parsesit's
ontents into the newly
reated PHMpegFile.Parameter� fileName a std::string the path to the �le.25

ResetPosition() Resets the position of the internal pointer used for travers-ing the �le.GetNextPa
ket() Returns the
urrent pa
ket and advan
es the pointer.Returns� PHMpegPa
ket The
urrent pa
ket in the �le.bool Eof() True if the last pa
ket has been read.Returns� bool last pa
ket read.AddPa
ket(PHMpegPa
ket pa
ket) Appends the PHMpegPa
ket pa
ketto the end of the File.Parameter� pa
ket a PHMpegPa
ket to be added to the �le.WriteToFile(std::string �leName) Writes the
ontent of the PHMpegFileto the �le fileName.Parameter� fileName a std::string with the path to the �le to write the
ontentsto.GetHeader()Returns the header of the �rst pa
ket of the �le.Returns� PHMpegHeader The header of the �rst pa
ket of the �le.8.7 PHMpegCollisionA
lass to parse and
ontain a
ollision.8.7.1 Publi
 Interfa
ePHMpegColisionstd::string �leName,int position Reads a MD5
olli-sion from the �le fileName and tries to parse a header at positio position.Parameter� fileName a std::string, the path to the
ollision �le.� position a int, the position of the MPEG header in the
ollision.26

HasValidHeader() True if the
ollision �le
ontained a valid MPEG header.Returns� bool �ag if the header is valid.GetHeader() Returns the header
ontained in the
ollision.Returns� PHMpegHeader the header
ontained in the
ollision.unsigned int GetPosition() Returns the position where the header in the
ollision starts (should start).Returns� unsigned int the position of the header in the
ollision8.8 PHMpegInterleaverContains the fa
ilitys to interleave two PHMpegFile.8.9 Publi
 interfa
eInterleave(PHMpegFile &one, PHMpegFile &two) Takes two PHMpegFileand interleaves their pa
kets, while redu
ing their length by one (and thus over-lapping the pa
kets by one byte).Parameter� one, a PHMpegFile, the �rst of the two �les to interleave.� two, a PHMpegFile, the se
ond of the two �les to interleave.Returns� PHMpegFile
ontaining the two interleaved PHMpegfiles.8.10 PHMd5CollisionAtta
herAtta
hes a
ollision to an PHMpegFilePubli
 interfa
ePHMpegFile Atta
h(PHMpegFile &�le,PHMpegCollision &
olli-sion) Creates a PHMpegPa
ket from a PHMpegCollision and prepends it tothe PHMpegFile.
27

Parameter� file a referen
e to a PHMpegFile, the interleaved �le to prepend the
ollision to�
ollision a referen
e to a PHMpegCollision,
ontaining the
ollisiondata to be atta
hed.Returns� PHMpegFile the �le with the
ollision prepended.

28

Referen
es[1℄ Information te
hnology -
oding of moving pi
tures and asso
iated audiofor digital storage media at up to about 1,5 mbit/s. INTERNATIONALSTANDARD ISO/IEC 11172, 08 1993. Available from: http://www.iso.org.[2℄ M. Daum and S. Lu
ks. Hash
ollisions (the poisoned message atta
k)"the story of ali
e and her boss". Available from: http://th.informatik.uni-mannheim.de/people/lu
ks/HashCollisions/.[3℄ V. Klima. Tunnels in hash fun
tions: Md5
ollisions within a minute,.Cryptology ePrint Ar
hive, Report 2006/105, 2006. Available from: http://eprint.ia
r.org/2006/105.[4℄ J. Randall and M. Szydlo. Collisions for sha0, md5, haval, md4, and ripemd,but sha1 still se
ure. Available from: http://www.rsa.
om/rsalabs/node.asp?id=2738 [
ited April 11 2008℄.[5℄ P. Selinger. Available from: http://www.mathstat.dal.
a/~selinger/md5
ollision/ [
ited April 11,2008℄.[6℄ M. Stevens. Fast
ollision atta
k on md5. Cryptology ePrint Ar
hive, Report2006/104, Mar
h 2006. Available from: http://eprint.ia
r.org/2006/104.pdf.[7℄ M. Stevens, A. Lenstra, and B. de Weger. Hash
lash. Available from: http://www.win.tue.nl/hash
lash/ [
ited April 11, 2008℄.[8℄ X. Wang and H. Yu. How to break md5 and other hash fun
tions. EURO-CRYPT, 2005. Available from: http://www.infose
.sdu.edu.
n/paper/md5-atta
k.pdf.

29

