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Abstract

Symbolic secrecy of exchanged keys is arguably one of the most important notions of secrecy shown
with automated proof tools. It means that an adversary restricted to symbolic operations on terms can
never get the entire key into its knowledge set. Cryptographic key secrecy essentially means computa-
tional indistinguishability between the real key and a random one, given the view of a much more general
adversary.

We provide the first proof of cryptographic key secrecy for the strengthened Yahalom protocol, which
constitutes one of the most prominent key exchange protocols analyzed by means of automated proof
tools. The proof holds in the presence of arbitrary active attacks provided that the protocol is imple-
mented using standard provably secure cryptographic primitives. We exploit recent results on linking
symbolic and cryptographic key secrecy in order to perform asymbolic proof of secrecy for the Ya-
halom protocol in a specific setting that allows us to derive the desired cryptographic key secrecy from
the symbolic proof.

1 Introduction

Cryptographic protocols for key establishment are an established technology. Nevertheless, most new net-
working and messaging stacks come with new protocols for such tasks. Since designing cryptographic
protocols is known to be error-prone and, owing to the distributed-system aspects of multiple interleaved
protocol runs, security proofs of such protocols are awkward to make for humans, automation of such proofs
has been studied almost since cryptographic protocols firstemerged. From the start, the actual cryptographic
operations in such proofs were idealized into so-called Dolev-Yao models, following [35] with extensions
in [36, 48], e.g., see [50, 47, 41, 57, 58, 1, 46, 53]. These models replace cryptography by term algebras,
e.g., encrypting a messagem twice does not yield a different message from the basic message space but the
termE(E(m)). A typical cancellation rule isD(E(m)) = m for all m. It is assumed that even an adver-
sary can only operate on terms by the given operators and by exploiting the given cancellation rules. This
assumption, in other words the use of initial models of the given equational specifications, makes it highly
nontrivial to know whether results obtained over a Dolev-Yao model are also valid over real cryptography.
One therefore calls properties and actions in Dolev-Yao modelssymbolicin contrast tocryptographic.

Arguably the most important and most common properties proved symbolically are secrecy properties,
as initiated in [35], and in particular key secrecy properties. Symbolically, the secrecy of a key is represented
by knowledge sets: The key is secret if the adversary can never get the corresponding symbolic term into

∗An earlier version of this work appeared in [21].
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its knowledge set. Cryptographically, key secrecy is defined by computational indistinguishability between
the real key and a randomly chosen one, given the view of the adversary. Hence symbolic secrecy captures
the absence of structural attacks that make the secret as a whole known to the adversary, and because of its
simplicity it is accessible to formal proofs tools, while cryptographic secrecy constitutes a more fine-grained
notion of secrecy that is much harder to establish.

The Yahalom protocol [33, 54] is one of the most prominent keyexchange protocols. Paulson discov-
ered that the original protocol from [33] is insecure and proposed a strengthened variant [54]. This was
extensively investigated, e.g., in [54, 37, 32, 29]. However, all existing security proofs are restricted to the
Dolev-Yao model. We provide the first security proof of the strengthened Yahalom protocol in the more
comprehensive cryptographic sense, i.e., we show that keysexchanged between two honest users are secret
in the strong sense of indistinguishability from random keys. This holds in the presence of arbitrary active
attacks, provided that the Dolev-Yao abstraction of symmetric encryption is implemented by a symmetric
encryption scheme that is secure against chosen-ciphertext attacks and additionally ensures integrity of ci-
phertexts. This is the standard security definition of authenticated symmetric encryption [31, 30]. Efficient
symmetric encryptions schemes provably secure in this sense exist under reasonable assumptions [30, 56].

We achieve this result by exploiting recent work on linking Dolev-Yao models to the standard model of
cryptography. We analyze the Yahalom protocol based on thecryptographic libraryof Backes, Pfitzmann,
and Waidner [24, 27, 18], which corresponds to a slightly extended Dolev-Yao model that can be faithfully
realized using provably secure cryptographic primitives.In combination with a recent result on linking
symbolic and cryptographic key secrecy [20], this allows usto perform a symbolic proof of secrecy for the
Yahalom protocol and to derive the desired cryptographic key secrecy from that. This is the first symbolic
proof of a cryptographic protocol that can be exploited to derive cryptographic secrecy for the exchanged
keys. (Another such proof was conducted concurrently and independently by Canetti and Herzog, cf. below.)

Further Related Work. Cryptographic underpinnings of a Dolev-Yao model were firstaddressed by
Abadi and Rogaway [3]. They only handled passive adversaries and symmetric encryption. The proto-
col language and security properties were extended in [2, 42, 38], but still only for passive adversaries. This
excludes most of the typical ways of attacking protocols. A full cryptographic justification for a Dolev-Yao
model, i.e., for arbitrary active attacks and within arbitrary surrounding interactive protocols, was first given
in [24] with extensions in [27, 18]. Based on that Dolev-Yao model, the well-known Needham-Schroeder-
Lowe and Otway-Rees protocols as well as a variant of the 3KP payment system were proved in [17, 5, 7].
The first and the third result are entirely authentication proofs and hence does not have to reason about
secrecy aspects. The second one contains a key secrecy property but this was reformulated by hand into
a (considerably weaker) integrity property so that the integrity preservation theorem could be used. More-
over, after the initial publication of the current work, a computationally sound security proof of basic and
public-key Kerberos [6] and of a widely deployed Web Services protocol [14] was achieved in a similar
manner. In general, our result can moreover be seen as a demonstration of the usefulness of the crypto-
graphic library [24], their extensions [18, 27], and the corresponding general theorems for linking symbolic
and cryptographic properties based on this library [11, 23,15, 16, 20, 4] for establishing secrecy properties
in a cryptographically sound manner. Moreover, automated proof support for the cryptographic library was
recently achieved in [59].

Laud [43] has recently presented a cryptographic underpinning for a Dolev-Yao model of symmetric
encryption under active attacks. His work enjoys a direct connection with a formal proof tool, but it is
specific to certain confidentiality properties, restricts the surrounding protocols to straight-line programs
in a specific language, and does not address a connection to the remaining primitives of the Dolev-Yao
model. Herzog et al. [39] and Micciancio and Warinschi [49] have recently also given a cryptographic
underpinning under active attacks. Their results are narrower than that in [24] since they are specific for
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public-key encryption, but consider slightly simpler realimplementations; moreover, the former relies on
a stronger assumption whereas the latter severely restricts the classes of protocols and protocol properties
that can be analyzed using this primitive. Section 6 of [49] further points out several possible extensions of
their work which all already exist in the earlier work of [24]. Since computational soundness has become a
highly active line of research, we exemplarily list furtherrecent results in this area without going into further
details [12, 25, 26, 22, 10, 19, 8, 28, 13, 9].

Efforts are also under way to formulate syntactic calculi for dealing with probabilism and polynomial-
time considerations, in particular [51, 44, 52, 40] and, as asecond step, to encode them into proof tools. This
approach can not yet handle protocols with any degree of automation. It is complementary to the approach
of proving simple deterministic abstractions of cryptography and working with those wherever cryptography
is only used in a blackbox way.

Concurrently and independently to our work, Canetti and Herzog [34] have linked ideal functionalities
for mutual authentication and key exchange protocols to corresponding representations in a formal language.
They apply their techniques to the Needham-Schroeder-Loweprotocol by considering the exchanged nonces
as secret keys. Their work is restricted to the mentioned functionalities and in contrast to the universally
composable library [24] hence does not address soundness ofDolev-Yao models in their usual generality.
The considered language does not allow loops and offers public-key encryption as the only cryptographic
operation (symmetric encryption is not considered although the language is used to reason about symmetric
keys). Moreover, their approach to define a mapping between ideal and real traces following the ideas
of [49] only captures trace-based properties (i.e., integrity properties); reasoning about secrecy properties
additionally requires ad-hoc and functionality-specific arguments.

2 The Strengthened Yahalom Protocol

The Yahalom protocol [33] and its strengthened variant [54]are four-step protocols for establishing a shared
secret encryption key between two users. The protocol relies on a distinguished trusted partyT, and it is
assumed that every useru initially shares a secret keyKut with T. Expressed in the typical protocol notation
as in, e.g., [45], the strengthened Yahalom works as follows.1

1. u→ v : u,Nu

2. v → T : v,Nv , (u,Nu)Kvt

3. T→ u : Nv, (v,Kuv , Nu)Kut
, (u, v,Kuv , Nv)Kvt

4. u→ v : (u, v,Kuv , Nv)Kvt
.

Useru seeks to share a new session key with userv. It generates a nonceNu and sends it tov together with
its identity (first message). Next,v generates a new nonceNv, creates a new message containing the identity
u and the nonceNu, and encrypts it with the key it shares withT. Thenv sends its identity, its nonceNv, and
the encryption to the trusted party (second message). NowT decrypts the encryption yielding the identity of
u and the nonceNu, generates a fresh keyKuv for u andv, generates a message according to the protocol
description, and sends it tou (third message). Thenu decrypts the first encryption and tests whether the
contained nonce is the one it sent tov before, i.e., to the identity that is contained in this encryption. If so, it
forwards the second encryption tov (fourth message) and terminates the protocol by outputtinga handle to
the shared secret keyKuv to its user. Finallyv decrypts this message, obtains the shared keyKuv, and tests

1The strengthened protocol presented in [54] further contains an encryption of the nonceNv with Kuv in the fourth term to
guarantee entity authentication ofu to v. We omitted this encryption to concentrate on the key secrecy property of the core key
exchange functionality.
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Algorithm 1 Evaluation of User Inputs inMYa
u with u 6= T (Protocol Start)

Input: (new prot,Yahalom, v) atKE inu? with v ∈ {1, . . . , n} \ {u}.
1: nhnd

u ← gen nonce().
2: Nonceu := Nonceu ∪ {(n

hnd
u , v, 1)}.

3: uhnd ← store(u).
4: mhnd

1 ← list(uhnd, nhnd
u ).

5: send i(v,mhnd
1 ).

if the message contains its own identity and the contained nonce was previously sent toT. If so, it outputs a
handle to the shared keyKuv to its user and terminates the protocol.

2.1 Protocol Details with the Dolev-Yao-style Cryptographic Library

Almost all formal proof techniques for protocols first need areformulation of the protocol into a more
detailed version than the four steps above. These details include necessary tests on received messages, the
types and generation rules for values likeu andNu, and a surrounding framework specifying the number
of participants, the possibilities of multiple protocol runs, and the adversary capabilities. The same is true
when using the Dolev-Yao-style cryptographic library from[24], i.e., it plays a similar role in our proof as
“the CSP Dolev-Yao model” or “the inductive-approach Dolev-Yao model” in other proofs. We now present
the protocol details in this framework, and explain generalaspects of the framework in Section 2.2.

We write “:=” for deterministic assignment, and↓ is an error element available as an addition to the
domains and ranges of all functions and algorithms. The framework is automata-based, i.e., protocols are
executed by interacting machines, and event-based, i.e., machines react on received inputs. ByMYa

i we
denote the Yahalom machine for a participanti; it can act in the roles of bothu andv above.

The first type of input thatMYa
i can receive is a start message(new prot,Yahalom, v) from its user

denoting that it should start a protocol run with userv. The number of users is calledn.2 User inputs
are distinguished from network inputs by arriving at a so-called port KE inu?. The “?” for input ports
follows the CSP convention, and “KE” stands for key exchangebecause the user interface is the same for
all key exchange protocols. The reaction on this input, i.e., the sending of the first message, is described
in Algorithm 1. The commandgen nonce generates the nonce.MYa

u stores the resulting so-calledhandle
nhnd
u (a local name that this machine has for the corresponding term) in a setNonceu for future comparison

together with the identityv and an indicator that this nonce was generated and stored byu in the first step.
The setNonceu formally consists of triples(nhnd, w, j) wherenhnd is a handle,w ∈ {1, . . . , n} \ {u}, and
j ∈ {1, 2, 3, 4}. A triple (nhnd, w, j) means thatMYa

u stored the handlenhnd in the j-th protocol step in a
session withw. The commandstore inputs arbitrary application data into the cryptographic library, here
the user identityu. The commandlist forms a list, and the final commandsend i means thatMYa

u sends the
resulting term tov over an insecure channel. The effect is that the adversary obtains a handle to the term
and can decide what to do with it (such as forwarding it toMYa

v or performing Dolev-Yao-style algebraic
operations on the term). The superscripthnd on most parameters denotes that these are handles, i.e., theusers
obtain local names for the corresponding terms. This is an important aspect of [24] because it allows the
same protocol description to be implemented once with Dolev-Yao-style idealized cryptography and once
with real cryptography. The four commands we saw so far and their input and output domains belong to the
interface (in the same sense as, e.g., a Java interface) of the underlying cryptographic library. This interface
is implemented by both the idealized and the real version. Inthe first case, the handles are local names

2The set of users is{1, . . . , n} and the Yahalom protocol is designed such thatT 6∈ {1, . . . , n} whereT denotes the trusted
party.
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of Dolev-Yao-style terms, in the second case of real cryptographic bitstrings, on which the adversary can
perform arbitrary bit manipulations. We say more about these two implementations below.

We now define formally how protocol machines and the trusted party behave upon receiving an input
from the network. To increase readability we augment the algorithm with comments at its right-hand side
to depict which handle corresponds to which Dolev-Yao term.We further use the naming convention that
ingoing and outgoing messages are labeledm, where outgoing messages have an additional subscript cor-
responding to the protocol step. Ciphertexts are labeledc, the encrypted lists are labeledl, and terms whose
type is still unknown are labelledt or x, all with suitable sub- and superscripts.

Network inputs arrive at portoutu? and are of the form(v, u, i,mhnd) wherev is the supposed sender,i

denotes that the channel is insecure, andmhnd is a handle to a list. The portoutu? is connected to the cryp-
tographic library, whose two implementations represent the obtained Dolev-Yao-style term or real bitstring,
respectively, to the protocol in a unified way by the handlemhnd.

The behavior ofMYa
u for u ∈ {1, . . . , n} is given in Algorithm 2. Upon receiving a network inputMYa

u

first decomposes the obtained message and checks if it could correspond to the first, third, or fourth step
of the protocol. (Recall that the second step is only performed byT.) This is implemented by querying
the type of the first component and by looking up the respective nonce in the setNonceu. After that,
MYa

u checks if the obtained message is indeed a suitably constructed message for the particular step by
exploiting the content ofNonceu. If so, MYa

u constructs a message according to the protocol description,
sends it to the intended recipient, updates the setNonceu, and possibly signals to its user that a key has been
successfully shared with another user. The behavior ofMYa

T upon receiving an input(v,T, i,mhnd) from the
cryptographic library at portoutT? is defined similarly.

The formal definition of the behavior of the trusted party is given in Algorithm 3. We omit an information
description.

A machine should immediately abort the handling of the current input if a cryptographic command does
not yield the desired result, e.g., if a decryption fails. This is captured by the following convention.

Convention 1 If MYa
u receives↓ as the answer of the cryptographic library to a command, thenMYa

u aborts
the execution of the current algorithm, except for the command typeslist proj or send i.

2.2 Overall Framework and Adversary Model

The framework that determines how machines such as our Yahalom machines and the machines of the ide-
alized or real cryptographic library execute is taken from [55]. The basis is an asynchronous probabilistic
execution model with distributed scheduling and with a well-defined Turing-machine refinement for com-
plexity considerations. We already used implicitly above that for term construction and parsing commands
to the cryptographic library, so-called local scheduling is defined, i.e., a result is returned immediately. The
idealized or real network sending via this library, however, is scheduled by the adversary.

When protocol machines such asMYa
u there is no guarantee that all these machines are correct. A trust

model determines for what subsetsH of {1, . . . , n,T} we want to guarantee anything; here these are the
subsets that contain at least the trusted party: We prove secrecy of keys shared byu andv wheneveru, v ∈ H
and thus wheneverMYa

u andMYa
v are correct. Incorrect machines disappear and are replacedby the adversary.

Each set of potential correct machines together with its user interface is called a structure, and the set of
these structures is called the system. When considering thesecurity of a structure, an arbitrary probabilistic
machineH is connected to the user interface to represent all users, and an arbitrary probabilistic machine
A is connected to the remaining free ports (typically the network) and toH to represent the adversary. In
polynomial-time security proofs,H andA are polynomial-time. This setting implies that any number of
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Algorithm 2 Evaluation of Network Inputs inMYa
u with u 6= T

Input: (v, u, i,mhnd) atoutu? with v ∈ {1, . . . , n} \ {u} ∪ {T}.
1: thndi ← list proj(mhnd, i) for i = 1, 2, 3.
2: typethnd

1

← get type(thnd1 ).

3: if type thnd
1

= data ∧ v 6= T ∧ ∀j : (thnd2 , v, j) 6∈ Nonceu then {First Message is input}

4: type thnd
2

← get type(thnd2 ).

5: t1 ← retrieve(thnd1 ).
6: if t1 6= v ∨ typethnd

2

6= nonce then Abort end if

7: nhnd
u ← gen nonce().

8: Nonceu := Nonceu ∪ {(n
hnd
u , v, 2)}.

9: uhnd ← store(u).
10: lhnd2 ← list(thnd1 , thnd2 ). {lhnd2 ≈ (v,Nv)}
11: chnd2 ← sym encrypt(sksehndu,T, l

hnd
2 ). {chnd2 ≈ (v,Nv)Kut

}

12: mhnd
2 ← list(uhnd, nhnd

u , chnd2 ). {mhnd
2 ≈ (u,Nu, (v,Nv)Kut

)}
13: send i(T,mhnd

2 ).
14: else iftype thnd

1

= nonce ∧ v = T then {Third Message is input}

15: lhnd ← sym decrypt(sksehndu,T, t
hnd
2 ). {lhnd ≈ (v,Kuv , Nu)}

16: xhndi ← list proj(lhnd, i) for i = 1, 2, 3.
17: x1 ← retrieve(xhnd1 ).
18: typexhnd

2

← get type(xhnd2 ).

19: type thnd
3

← get type(thnd3 ).

20: if (xhnd3 , x1, 1) 6∈ Nonceu ∨ typexhnd
2

6= skse ∨ type thnd
3

6= symenc then Abort end if

21: Nonceu := (Nonceu \ {(x
hnd
3 , x1, 1)}) ∪ {(x

hnd
3 , x1, 3)}.

22: mhnd
4 ← list(thnd3 ). {mhnd

4 ≈ (u, v,Kuv , Nv)Kvt
}

23: Output(ok initiator,Yahalom, x1, x
hnd
2 ) atKE outu !.

24: send i(x1,m
hnd
4 ).

25: else iftype thnd
1

= symenc ∧ v 6= T then {Fourth Message is input}

26: lhnd ← sym decrypt(sksehndu,T, t
hnd
1 ). {lhnd ≈ (v, u,Kuv , Nu)}

27: xhndi ← list proj(lhnd, i) for i = 1, 2, 3, 4.
28: xi ← retrieve(xhndi ) for i = 1, 2.
29: typexhnd

3

← get type(xhnd3 ).

30: if x1 6= v ∨ x2 6= u ∨ typexhnd
3

6= skse ∨ (xhnd4 , x1, 2) 6∈ Nonceu then Abort end if

31: Nonceu := (Nonceu \ {(x
hnd
4 , x1, 2)}) ∪ {(x

hnd
4 , x1, 4)}.

32: Output(ok responder,Yahalom, x1, x
hnd
3 ) atKE outu !.

33: else
34: Abort
35: end if
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Algorithm 3 Behavior of the Trusted PartyMYa
T

Input: (v,T, i,mhnd) atoutT? with v ∈ {1, . . . , n}.
1: thndi ← list proj(mhnd, i) for i = 1, 2, 3.
2: t1 ← retrieve(thnd1 ). {t1 ≈ v}
3: typethnd

2

← get type(thnd2 ).

4: lhnd ← sym decrypt(sksehndT,v , t
hnd
3 ). {lhnd ≈ (u,Nu)}

5: xhndi ← list proj(lhnd, i) for i = 1, 2.
6: x1 ← retrieve(xhnd1 ). {x1 ≈ u}
7: typexhnd

2

← get type(xhnd2 ).
8: if type thnd

2

6= nonce ∨ typexhnd
2

6= nonce ∨ t1 6= v ∨ x1 6∈ {1, . . . , n} \ {v} then Abort end if

9: sksehnd ← gen symenc key(). {sksehnd ≈ Kuv}

10: l
(1)hnd

3 ← list(thnd1 , sksehnd, xhnd2 ). {l
(1)hnd

3 ≈ (v,Kuv , Nu)}

11: c
(1)hnd

3 ← sym encrypt(sksehndT,x1
, l

(1)hnd

3 ). {c
(1)hnd

3 ≈ (v,Kuv , Nu)Kut
}

12: l
(2)hnd

3 ← list(xhnd1 , thnd1 , sksehnd, thnd2 ). {l
(2)hnd

3 ≈ (u, v,Kuv , Nv)}

13: c
(2)hnd

3 ← sym encrypt(sksehndT,v , l
(2)hnd

3 ). {c
(2)hnd

3 ≈ (u, v,Kuv , Nv)Kvt
}

14: mhnd
3 ← list(thnd2 , c

(1)hnd

3 , c
(2)hnd

3 ). {mhnd
3 ≈ (Nv , (v,Kuv , Nu)Kut

, (u, v,Kuv , Nv)Kvt
)}

15: send i(x1,m
hnd
3 ).

concurrent protocol runs with the honest participants and the adversary are considered becauseH andA can
arbitrarily interleave protocol start inputs(new prot,Yahalom, v) with the delivery of network messages.

For a setH of honest participants, the user interface of the Yahalom protocol machines isSKE
H :=

{KE inu?,KE outu ! | u ∈ H \ {T}}. The ideal and real Yahalom protocol serving this interfacediffer only
in the cryptographic library, i.e., the Yahalom machines either rely on a set̂M cry

H := {Mcry
u,H | u ∈ H} of

real cryptographic machines or an ideal machineTH
cry
H calledtrusted host. With M̂ Ya

H := {MYa
u | u ∈ H},

the ideal system isSysYa,id := {(M̂ Ya
H ∪ {TH

cry
H },S

KE
H ) | {T} ⊆ H ⊆ {1, . . . , n,T}}, and the real system

is Sys
Ya,real
SE := {(M̂ Ya

H ∪ M̂
cry
H ,SKE

H ) | {T} ⊆ H ⊆ {1, . . . , n,T}}, whereSE denotes the symmetric
encryption scheme used.

On Polynomial Runtime. In order to be valid users of the real cryptographic library,the machinesMYa
u

have to be polynomial-time. We therefore define that each machine MYa
u maintains explicit polynomial

bounds on the accepted message lengths and the number of inputs accepted at each port. As this is done
exactly as in the cryptographic library, we omit the rigorous write-up.

3 The Key Secrecy Property

In the following, we formalize the key secrecy property of the ideal and real Yahalom protocols. The
property is an instantiation of a general key secrecy definition for arbitrary protocols based on the ideal
cryptographic library. It was introduced in [20] and is symbolic, based on the typical notion that a term
is not an element of the adversary’s knowledge set. In the given Dolev-Yao-style library, the adversary’s
knowledge set is the set of all terms to which the adversary has a handle.

We start this section by defining the possible states of the ideal and real cryptographic library as needed
for formulating the property, and then define the property.
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3.1 Overview and States of the Ideal Cryptographic Library

The ideal cryptographic library administrates Dolev-Yao-style terms and allows each user to operate on them
via handles, i.e., via local names specific to this user. The handles also contain the information that knowl-
edge sets give in other Dolev-Yao formalizations: The set ofterms that a participantu knows, including
u = a for the adversary, is the set of terms with a handle foru. The terms are typed; for instance, decryption
only succeeds on ciphertexts and projection only on lists. Moreover, the terms are globally numbered by
a so-called index. Each term is represented by its type (i.e., root node) and its first-level arguments, which
can be indices of earlier terms. This enables easy distinction of, e.g., which of many nonces is encrypted in
a larger term. These global indices are never visible at the user interface. The indices and the handles for
each participant are generated by one counter each.

The data structure storing the terms in [24] is a databaseD. Generally, a databaseD is a set of functions,
called entries, each over a finite domain called attributes.For an entryx ∈ D, the value at an attributeatt is
writtenx.att . For a predicatepred involving attributes,D[pred ] means the subset of entries whose attributes
fulfill pred . If D[pred ] contains only one element, we use the same notation for this element. Adding an
entry x to D is abbreviatedD :⇐ x. Moreover, we write the list operation asl := (x1, . . . , xj), and
argument retrieval asl[i] with l[i] = ↓ if i > j. In the specific term databaseD, each entryx can have
arguments(ind , type , arg , hndu1

, . . . , hndum
, hnd a, len), for {u1, . . . , um} = H and the arguments have

the following types and meaning:

• x.ind is the global index of an entry. Its typeINDS is isomorphic toN and distinguishes index
arguments from others. The index is used as a primary key attribute of the database, i.e., we write
D[i] for the selectionD[ind = i].

• x.type ∈ typeset is thetypeof x. We use the typesnonce, list, data (for payload data),skse andpkse
(for symmetric encryption keys and corresponding “public-key identifiers”, see below), andsymenc

(for symmetric encryptions).

• x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Arguments of typeINDS are indices
of other entries (subterms); we sometimes distinguish themby a superscript “ind”.

• x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are handles, wherex.hndu = ↓ means thatu does not
know this entry andHNDS is another set isomorphic toN. We always use a superscript “hnd” for
handles.

• x.len ∈ N0 denotes the length of the entry.

The machineTHH has a countersize ∈ INDS for the current size ofD and counterscurhndu (current
handle) for the handles, all initialized with0.

In order to capture that keys shared between users and the trusted party have already been generated and
distributed, we assume that suitable entries for the keys already exist in the database. We denote the handle
of u to the secret key shared withv, where eitheru ∈ {1, . . . , n} andv = T or vice versa, bysksehndu,v .

3.2 The Real Cryptographic Library

In the real implementation of the cryptographic library, each user has its own machine. This machine con-
tains a databaseDu with only three main attributes: the handlehndu for this useru, the real cryptographic
bitstringword , and the typetype . The users can use exactly the same commands as with the ideallibrary,
e.g., en- or decrypt a message etc. These commands now trigger real cryptographic operations. The op-
erations essentially use standard cryptographically secure primitives, but with certain additional tagging,
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randomization etc. Send commands now trigger the actual sending of bitstrings between machines and/or to
the adversary.

3.3 Definition of the Key Secrecy Property

The first step towards defining symbolic key secrecy is to consider one state of the ideal Dolev-Yao-style
library and to define that a handle points to a symmetric key, that the key is symbolically unknown to the
adversary, and that it has not been used for encryption or authentication. These are the symbolic conditions
under which we can hope to prove that the corresponding real key is indistinguishable from a fresh random
key for the adversary. Note that the operations that the Yahalom protocol performs on new keys are allowed
in this sense. For Condition(3) in the definition, note that the arguments of a ciphertext term are(l, pk )
wherel is the plaintext index andpk the index of the public tag of the secret key, withpk = sk − 1 for the
secret key index.

Definition 3.1 (Symbolically Secret Encryption Keys [20])Let {T} ⊆ H ⊆ {1, . . . , n,T}, a database state
D of THcry

H , and a pair(u, lhnd) ∈ H × HNDS of a user and a handle be given. Leti := D[hndu =
lhnd].ind be the corresponding database index. Theterm under(u, lhnd) (1) is a symmetric encryption key
iff D[i].type = skse, (2) is symbolically unknown (to the adversary)iff D[i].hnd a = ↓, (3)has not been used
for encryption, or shortis unused, iff for all indices j ∈ N we haveD[j].type = symenc ⇒ D[j].arg [2] 6=
i− 1, and (4)is a symbolically secret keyiff it has the three previous properties. ✸

A secret-key belief function is a general way to designate the keys whose secrecy should be proved. The
underlying theory from [20] is based on such functions. We instantiate them for the Yahalom protocol
and thus essentially for all individual key exchange protocols. A secret key belief function maps the user
view to a set of triples(u, lhnd, t) of a user, a handle, and a type, pointing to the supposedly secret keys.
For the Yahalom protocol, we define secret-key belief functions seckeys initiator Ya for the initiator and
seckeys responder Ya for the responder that designate the exchanged keys.

Definition 3.2 (Secret-key Belief Functions for the Yahalom Protocol)A secret-key belief functionfor a set
H is a functionseckeys that maps each viewview of the user to an element of(H×HNDS × {skse})∗.

Thesecret-key belief functionsseckeys initiator Ya andseckeys responder Ya of the Yahalom protocol
map each element(ok initiator,Yahalom, v, sksehnd) respectively(ok responder,Yahalom, v, sksehnd) of
view arriving at portKE outu? in the users view to(u, sksehnd, skse) if u ∈ H, and toǫ otherwise. Elements
of view that are not of this form are also mapped toǫ. ✸

We now define symbolic key secrecy for such a function. In addition to the conditions for individual keys,
we require that all elements point to different terms, so that we can expect the corresponding list of crypto-
graphic keys to be entirely random.

Definition 3.3 (Symbolic Key Secrecy Generally and for the Yahalom Protocol) Let a userH∗ suitable for a
structure({THcry

H },S
cry
H ) of the cryptographic librarySyscry,id and a secret-key belief functionseckeys for

H be given. The ideal cryptographic library with this userkeeps the keys inseckeys strictly symbolically
secretiff for all configurationsconf = ({THcry

H },S
cry
H ,H,A) of this structure, everyv ∈ viewconf (H), and

every element(ui, lhndi , ti) of the setseckeys(v), the term under(ui, lhndi ) is a symbolically secret key of
typeti, andD[hndui

= lhndi ].ind 6= D[hnduj
= lhndj ].ind for all i 6= j.

The ideal Yahalom protocolkeeps the exchanged keys of honest users strictly symbolically secret iff
the ideal cryptographic library keeps the keys inseckeys initiator Ya and seckeys responder Ya strictly
symbolically secret with all usersH∗ that are the combination of the machinesMYa

u for u ∈ H and a userH
of those machines. ✸
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General cryptographic key secrecy requires that no polynomial-time adversary can distinguish the keys
designated by the functionseckeys from fresh keys. The cryptographic key secrecy of the Yahalom protocol
is the instantiation forseckeys initiator Ya andseckeys responder Ya and the configurations of the Yahalom
protocol.

Definition 3.4 (Cryptographic Key Secrecy Generally and for the Yahalom Protocol)Let a polynomial-time
configurationconf = (M̂ cry

H ,S
cry
H ,H,A) of the real cryptographic librarySyscry,realSE and a secret-key belief

function seckeys for H be given. LetgenSE denote the key generation algorithm. This configurationkeeps
the keys inseckeys cryptographically secretiff for all probabilistic-polynomial time algorithmsDis (the
distinguisher), we have

|Pr[Dis(1k, va, keysreal ) = 1]− Pr[Dis(1k, va, keysfresh ) = 1]| ∈ NEGL

whereNEGL denotes the negligible function of the security parameterk and the used random variables
are defined as follows: Forr ∈ runconf , let va := viewconf (A)(r) be the view of the adversary, let
(ui, l

hnd
i , ti)i=1,...,n := seckeys(viewconf (H)(r)) be the user-handle-type triples of presumably secret keys,

and let the keys bekeysreal := (ski )i=1,...,n with

ski := Dui
[hndui

= lhndi ].word if Dui
[hndui

= lhndi ].type = ti, elseǫ;

andkeysfresh := (sk ′i )i=1,...,n with sk ′i ← genA(1
k) if ti = ska, elsesk ′i ← ǫ.

A polynomial-time configuration(M̂ cry
H ∪M̂

Ya
H ,SKE

H ,H,A) of the real Yahalom protocolSysYa,real keeps
the exchanged keys of honest users cryptographically secret iff the configuration(M̂ cry

H ,S
cry
H , {H}∪M̂ Ya

H ,A)
keeps the keys inseckeys initiator Ya andseckeys responder Ya cryptographically secret. ✸

The following theorem captures the security of the Yahalom protocol.

Theorem 3.1 (Security of the Yahalom Protocol)The ideal Yahalom systemSysYa,id from Section 2.2 keeps
the exchanged keys of honest users strictly symbolically secret, and all polynomial-time configurations of
the real systemSysYa,real keep the exchanged keys of honest users cryptographically secret. ✷

4 Proof of the Cryptographic Realization from the Idealization

As discussed in the introduction, the idea of our approach isto prove Theorem 3.1 for the protocol using the
ideal Dolev-Yao-style cryptographic library. Then the result for the real system follows automatically. The
notion that a systemSys1 securely implements another systemSys2 in the sense of reactive simulatability
(recall the introduction), is writtenSys1 ≥

poly
sec Sys2 (in the computational case). The main result of [24, 27,

18] is therefore
Syscry,real ≥poly

sec Syscry,id. (1)

If symmetric encryption is present, this result is additionally subject to the condition that the surrounding
protocol, in our case the Yahalom protocol, does not raise a so-called commitment problem for symmetric
encryption. It is a nice obseration that this condition can immediately concluded from the overall proof; we
give the formal argument in Appendix A. For technical reasons, one further has to ensure that the protocol
does not create encryption cycles (such as encrypting a key with itself); this is needed even for much weaker
properties than simulatability, see [3]. This property clearly holds for the Yahalom protocol.

Once we have shown that the considered keys are symbolicallysecret and that the commitment problem
does not occur for the Yahalom protocol, we can exploit the key-secrecy preservation theorem of [20]: If
for certain honest usersH and a secret-key belief functionseckeys the ideal cryptographic library keeps the
keys inseckeys strictly symbolically secret, then every configuration ofH with the real cryptographic library
keeps the keys inseckeys cryptographically secret.
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5 Proof in the Ideal Setting

This section finally contains the proof of the ideal part of Theorem 3.1: We prove that the Yahalom protocol
with the ideal, Dolev-Yao-style cryptographic library keeps the exchanged keys of honest users strictly
symbolically secret. The proof idea is the following: If an honest useru successfully terminates a session
run with another honest userv, we first show that the established key has been created by thetrusted party.
Then we exploit that the trusted party and the honest users only send this key within an encryption generated
with a key shared betweenu andT respectivelyv andT, and we conclude that the adversary never gets a
handle to the key. The main challenge is to find suitable invariants on the state of the ideal Yahalom system.
This is similar to formal proofs using other Dolev-Yao model, and the similarity supports our hope that the
new, sound cryptographic library can be used like other Dolev-Yao models in automated tools. We now
present the invariants of the systemSysYa,id. Their proof is postponed to Appendix B.

The first invariants,correct nonce ownerandunique nonce use, are easily proved. They essentially state
that handlesnhnd where(nhnd, ·, ·) is contained in a setNonceu point to entries of type nonce and that no
nonce is in two such sets.

Invariant 1 (Correct Nonce Owner)For allu ∈ H\{T}, v ∈ {1, . . . , n}, j ∈ {1, 2, 3, 4} and(nhnd, v, j) ∈
Nonceu, we haveD[hndu = nhnd] 6= ↓ andD[hndu = nhnd].type = nonce.

Invariant 2 (Unique Nonce Use)For allu, v ∈ H\{T}, all w,w′ ∈ {1, . . . , n}, all j, j′ ∈ {1, 2, 3, 4}, and
all i ≤ size: If (D[i].hndu , w, j) ∈ Nonceu and(D[i].hndv , w

′, j′) ∈ Noncev, then(u,w) = (v,w′).

The invariantencrypted-key secrecystates that a key shared between honestu and v as well as all lists
containing this key can only be known tou, v, andT. Moreover, it states that such lists only occur within
symmetric encryptions created with the key shared betweenu andT respectively betweenv andT.

Invariant 3 (Encrypted-Key Secrecy)For allu, v ∈ H\{T} and alli ≤ size with D[i].type = symenc: Let
l ind := D[i].arg [1], pkse ind := D[i].arg [2], x ind

t := D[l ind].arg [t], andxt := D[x ind
t ].arg [1] for t = 1, 2, 3.

If D[l ind].type = list ∧ pkse ind = pkseu ∧ x1 = v ∧D[x ind
t ].type = skse for somet ∈ {1, 2, 3} then

a) D[x ind
t ].hndw = ↓ andD[l′ind].hndw = ↓ for (H \ {u, v,T}) ∪ {a} and for all l′ind with x ind

t ∈
D[l′ind].arg .

b) For all l′, k ≤ size such thatD[l′].type = list ∧ x ind
t ∈ D[l′].arg , we have thatl′ ∈ D[k] only if

D[k].type = symenc andD[k].arg [2] ∈ {pkseu, pksev}.

The invariantcorrect encryption ownerfinally states that certain protocol messages can only be constructed
by the “intended” users or by the trusted party, respectively. We refer to Stepi of Algorithm j as Stepj.i.

Invariant 4 (Correct Encryption Owner)For allu ∈ H \ {T} and alli ≤ size with D[i].type = symenc:
Let l indk := D[i].arg [2k − 1] and pkse indk := D[i].arg [2k] for 1 ≤ k ≤ |D[i].arg|

2 (entries of type
symenc have an even number of arguments by construction). Let further x ind

k,t := D[l indk ].arg [t] and

xhndk,t,u := D[x ind
k,t ].hndu for t = 1, 2, 3, 4, andxk,t := D[x ind

k,t ].arg [1] for t = 1, 2.

a) If pkse indk = pkseu , xk,1 ∈ H, D[x ind
k,2 ].type = skse, and(xhndk,3,u, xk,1, j) ∈ Nonceu for somej ∈

{1, 3} and somek ∈ {1, . . . , |D[i].arg|
2 }, thenD[i] was created byMYa

T in Step 3.11.

b) If pkse indk = pkseu , xk,1 ∈ H, xk,2 = u, D[x ind
k,3 ].type = skse, and(xhndk,4,u, xk,1, j) ∈ Nonceu for

somej ∈ {2, 4} and somek ∈ {1, . . . , |D[i].arg|
2 }, thenD[i] was created byMYa

T in Step 3.13.
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5.1 Proof of the Key Secrecy Property

To increase readability, we partition the proof into several steps with explanations in between. Assume that
u, v ∈ H and thatMYa

u outputs(ok initiator,Yahalom, v, sksehndu ) or (ok responder,Yahalom, v, sksehndu )
to its user. We first show that this implies thatMYa

u has received a message corresponding to the third
or fourth protocol step so that the contained encryptions are of the form that allows us to applycorrect
encryption ownerto show that they were created byMYa

T . After that we will exploitencrypted-key secrecy
to show that keys created byMYa

T and to be shared amongstu andv will remain secret to the adversary. The
following property ofTHH proven in [24] will be useful in this proof to show that properties proven for one
time also hold at another time.

Lemma 5.1 The ideal cryptographic librarySyscry,id has the following property: The only modifications
to existing entriesx in D are assignments to previously undefined attributesx.hndu (except for counter
updates in entries for signature keys, which we do not have toconsider here), and appending new elements
to the list of arguments of symmetric encryptions. ✷

Proof. (Ideal part of Theorem 3.1) Assume thatMYa
u outputs (ok initiator,Yahalom, v, sksehndu ) or

(ok responder,Yahalom, v, sksehndu ) at KE outu ! for u, v ∈ H at timet3, and letskse ind := D[hndu =
sksehndu ].ind . By definition of Algorithms 1 and 2, this output can only happen in Step 2.23 respec-
tively 2.32, and only after there was an input(w, u, i,m3hnd

u ) respective(w, u, i,m4hnd
u ) at a timet2 < t3.

Here and in the sequel we use the notation of Algorithm 1, 2, and 3 but we distinguish the variables from its
different executions by an additional superscript indicating the number of the (claimed) received protocol
message, here3 and4, and give handles an additional subscript for their owner, hereu.

Case 1: Output in Step 2.23. Assume thatMYa
u outputs(ok initiator,Yahalom, v, skse3

hnd

u ) atKE outu !
for u, v ∈ H in Step 2.23 at timet3. Hence the execution of Algorithm 2 for this input must have given
l3

hnd

u 6= ↓ in Step 2.15, since the algorithm would otherwise abort by Convention 1 without creating an output.

Let t32
ind

:= D[hndu = t3
hnd

2,u ].ind , l3ind := D[hndu = l3
hnd

u ].ind and(l1, pkse1, l2, pkse2, . . . , lj , pksej) :=

D[t32
ind

].arg (which is the general argument format for symmetric encryption entries). The definition of

sym decrypt then impliesD[l3
ind

].type = list andD[t32
ind

].type = symenc, and further that there exists

some uniquek with 1 ≤ k ≤ j such thatD[t32
ind

].arg [2k − 1] = l3
ind, and

D[t32
ind

].arg [2k] = pkseu. (2)

Let x3i
ind

:= D[l3
ind

].arg [i] for i = 1, 2, 3 at the time of Step 2.16. By Step 2.17 and the definition of
retrieve we have

D[x31
ind

].arg [1] = x31 = v. (3)

By definition of list proj andget type, and since the condition of Step 2.20 is false, we finally have

x3
hnd

1,u = D[x31
ind

].hndu at timet3, (4)

(x3
hnd

3,u , x31, 3) ∈ Nonceu ∧D[x32
ind

].type = skse at timet3, (5)

and
(x3

hnd

3,u , x31, 1) ∈ Nonceu ∧D[x32
ind

].type = skse at timet2. (6)
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Case 2: Output in Step 2.32. This case is similar to the first one: Assume thatMYa
u outputs

(ok responder,Yahalom, v, skse4
hnd

u ) atKE outu ! for u, v ∈ H in Step 2.32 at timet3. The execution of Al-
gorithm 2 for this input must have givenl4

hnd

u 6= ↓ in Step 2.26, since the algorithm would otherwise abort by
Convention 1 without creating an output. Lett41

ind
:= D[hndu = t4

hnd

1,u ].ind , l4ind := D[hndu = l4
hnd

u ].ind

and (l1, pkse1, l2, pkse2, . . . , lj , pksej) := D[t41
ind

].arg . The definition of sym decrypt then implies

D[l4
ind

].type = list andD[t41
ind

].type = symenc, and further that there exists a uniquek with 1 ≤ k ≤ j

such thatD[t41
ind

].arg [2k − 1] = l4
ind, and

D[t41
ind

].arg [2k] = pkseu. (7)

Let x4i
ind

:= D[l4
ind

].arg [i] for i = 1, 2, 3, 4 at the time of Step 2.27. By Step 2.28 and the definition of

retrieve we havex4i = D[x4i
ind

].arg [1] for i = 1, 2 and

D[x41
ind

].arg [1] = x41 = v. (8)

By definition of list proj andget type, and because of the conditions of Step 2.25 and 2.30, we have

x42 = u, (9)

x4
hnd

1,u = D[x41
ind

].hndu at timet3, (10)

(x4
hnd

4,u , x41, 4) ∈ Nonceu ∧D[x43
ind

].type = skse at timet3, (11)

and
(x4

hnd

4,u , x41, 2) ∈ Nonceu ∧D[x43
ind

].type = skse at timet2. (12)

This first part of the proof shows thatMYa
u has received an encryption of a specific form as part of a thirdor

fourth protocol message. Now we applycorrect encryption ownerto the encryption entryD[t32
ind

] for the

first case respectively toD[l41
ind

] for the second case to show that this entry was created byMYa
T .

Proof. (cont’d) Equations (2), (4) and (5) respectively (7), (10) and (11) are the preconditions for Part a)
respectively Part b) ofcorrect encryption owner. Hence the entryD[t32

ind
] was created byMYa

T in Step 3.11

respectively the entryD[t41
ind

] was created byMYa
T in Step 3.13.

In both cases, the algorithm execution must have started with an input(w′,T, i,m2hnd

T ) atoutT? at a time

t1 < t2 with w′ ∈ {1, . . . , n}. We concludel2
hnd

T 6= ↓ in Step 3.4 because of Convention 1 and setl2
ind

:=

D[hndT = l2
hnd

T ].ind . The definition ofsym decrypt impliesD[l2
ind

].type = list, D[t23
ind

].type = symenc,

l2
ind

= D[t23
ind

].arg [2k′ − 1] andpksew′ = D[t23
ind

].arg [2k′] for some uniquek′ ∈ {1, . . . , |D[t23
ind

].arg |,

cf. the first part of the proof. Letx2i
ind

:= D[l2
ind

].arg [i] for i = 1, 2 at the time of Step 3.5.
As the condition of Step 3.8 is false immediately afterwards, we obtainx2

hnd

i,T 6= ↓ for i = 1, 2. The
definitions oflist proj andget type together with Lemma 5.1 imply

x2
hnd

i,T = D[x2i
ind

].hndT for i = 1, 2 at timet3. (13)

Step 3.8 further ensurest21 = w′ andx21 ∈ {1, . . . , n} \ {w
′}. By definition gen symenc key we obtain

skse2
hnd

6= ↓ and

D[skse2
ind

].type = skse (14)
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in Step 3.9 forskse2
ind

:= D[hndT = skse2
hnd

].ind . Now we exploit thatMYa
T creates the entryD[t32

ind
]

in Step 3.11 with the inputsym encrypt(skse2
hnd

T,x1
, l

(1),2hnd

3,T ) respectively the entryD[t41
ind

] in Step 3.13 with

the inputsym encrypt(skse2
hnd

T,w′ , l
(2),2hnd

3,T ). In particular, this impliesk = 1 in Equtations (2) and (7) by the

definition ofsym encrypt. Let l(i),23

ind
:= D[hndT = l

(1),2hnd

3,T ].ind for i = 1, 2. With the definitions oflist

andlist proj this impliesl(1),23

ind
= l3

ind respectivelyl(2),23

ind
= l4

ind. Together with Equations (3), (8), (9)
and (13), this implies

skseind = x32
ind

= x22
ind

= skse2
ind
∧ x22

ind
= x33

ind
∧ t21 = x31 = v ∧ x21 = u, (15)

wherex21 = u follows from pksex2

1

= D[l
(1),2
3

ind
].arg [2] = D[l3

ind
].arg [2] = pkseu, respectively

skseind = x42
ind

= x22
ind

= skse2
ind
∧ x21

ind
= x42

ind
∧ t21 = x42 = u ∧ x21 = x41 = v, (16)

wheret21 := D[t21
ind

].arg [1]. Thus Equations (3), (4) and (6) imply

(x2
hnd

2,u , v, 1) ∈ Nonceu ∧D[x22
ind

].type = skse at timet2 (17)

respectively Equations (8), (10) and (12) imply

(x2
hnd

1,u , v, 2) ∈ Nonceu ∧D[x22
ind

].type = skse at timet2. (18)

After this second part of the proof, we will finally derive that the terms selected byseckeys initiator Ya

andseckeys responder Ya are symbolically unused symmetric keys that have furthermore not been used for
encryption yet.

Proof. (cont’d) Note that the entriesD[t32
ind

] andD[t41
ind

] fulfill the requirements ofencrypted-key se-

crecywith respect to key entryD[skse2
ind

], which impliesD[skse2
ind

].hnd a = ↓. Because ofskse2ind =

skseind we haveD[skseind].hnd a = D[skse2
ind

].hnd a = ↓, i.e., the term under(u, sksehndu ) is symbol-

ically unknown. Moreoverskse2ind = skseind together with Equation (14) implyD[skseind].type =

D[skse2
ind

].type = skse, i.e., the term under(u, sksehndu ) is a symmetric key.
It remains to show that the key is unused at timet3. The only way to create an entryD[j] with

D[j].type = symenc andD[j].arg [2] = skseind − 1 is by inputting a commandencrypt at port inw?
such thatD[skseind].hndw 6= ↓. Since we have shown thatD[skseind].hndw 6= ↓ only if w ∈ {u, v,T},
hence we only have to show that neither of them enters such a command until timet3. By inspection of Al-
gorithm 3, this clearly holds forT, since this may only happen in Steps 3.11 or 3.13. In both cases, the key
used is one of those that were iniatially distributed, i.e.,D[j].arg [2] = sksew − 1 for somew ∈ {1, . . . , n}.
Since we have shown that each key selected byseckeys initiator Ya or seckeys responder Ya is newly gen-
erated byMYa

T , we in particular havesksew 6= skseind. Similar reasoning can be applied to Algorithm 1
and 2 ofMYa

u to show that the only used keys are the ones shared betweenu andT respectively betweenv
andT.
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A Absence of the Commitment Problem for the Yahalom Protocol

As the name suggests, a “commitment problem” in simulatability proofs captures a situation where the sim-
ulator commits itself to a certain message and later has to change this commitment to allow for a correct
simulation. In the case of symmetric encryption, the commitment problem occurs if the simulator learns
in some abstract way that a ciphertext was sent and hence has to construct an indistinguishable ciphertext,
knowing neither the secret key nor the plaintext used for thecorresponding ciphertext in the real world. To
simulate the missing key, the simulator will create a new secret key, or rely on an arbitrary, fixed key if the
encryption systems guarantees indistinguishable keys, see [3]. Instead of the unknown plaintext, the simula-
tor will encrypt an arbitrary message of the correct length,relying on the indistinguishability of ciphertexts
of different messages. So far, the simulation is fine. It evenstays fine if the message becomes known later
because secure encryption still guarantees that it is indistinguishable that the simulator’s ciphertext contains
a wrong message. However, if the secret key becomes known later, the simulator runs into trouble, because,
learning abstractly about this fact, it has to produce a suitable key that decrypts its ciphertext into the correct
message. It cannot cheat with the message because it has to produce the correct behavior towards the honest
users. This is typically not possible.

The solution for this problem taken in [18] for the cryptographic library is to leave it to the surrounding
protocol to guarantee that the commitment problem does not occur, i.e., the surrounding protocol must
guarantee that keys are no longer sent in a form that might make them known to the adversary once an
honest participant has started using them. To exploit the simulatability results of [18], we hence have to
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prove this condition for the Yahalom protocol. Formally, wehave to show that the following property
NoComm does not occur: “If there exists an input from an honest user that causes a symmetric encryption
to be generated such that the corresponding key is not known to the adversary, then future inputs may only
cause this key to be sent within an encryption that cannot be decrypted by the adversary”. This event can
be rigorously defined using temporal logics but we omit the rigorous definition due to space constraints and
refer to [18]. The eventNoComm is equivalent to the event “if there exists an input from an honest user
that causes a symmetric encryption to be generated such thatthe corresponding key is not known to the
adversary, the adversary never gets a handle to this key” butNoComm has the advantage that it can easily
be inferred from the abstract protocol description withoutpresupposing knowledge about handles of the
cryptographic library. For the Yahalom protocol the eventNoComm can easily be verified by inspection of
the abstract protocol description, and a detailed proof based on Algorithms1-3 can also easily be performed
by exploiting the invariants we will present in Section 5.

Technically, the eventNoComm is an integrity property, and the notion thatSysYa,id perfectly fulfills
NoComm, written SysYa,id |=perf NoComm means that the property holds with probability one (over the
probability spaces of runs, a well-defined notion from the underlying model [55]) for all honest users and
for all adversaries.

Lemma A.1 (Absence of the Commitment Problem for the Yahalom Protocol) The ideal Yahalom system
SysYa,id perfectly fulfills the propertyNoComm, i.e.,SysYa,id |=perf NoComm. ✷

Proof. Note first that the secret key shared initially between a userand the trusted party will never be sent
by definition in case the user is honest, and it is already known to the adversary when it is first used in case
of a dishonest user. The interesting cases are thus the keys generated by the trusted party in the protocol
sessions.

Let i ≤ size, D[i].type = skse such thatD[i] was created byMYa
T in Step 3.9, where, with the notation

of Algorithm 3, we havex1 = u and t1 = v for x1, t1 ∈ {1, . . . , n}. If u or v were dishonest, then the
adversary would get a handle forD[i] afterMYa

T finishes its execution, i.e., in particular beforeD[i] has
been used for encryption for the first time, since the adversary knows the keys shared between the dishonest

users and the trusted party. If bothu andv are honest,encrypted-key secrecyapplied to the entryD[c
(1)
3

ind
]

created in Step 3.11 in the same execution ofMYa
T then immediately impliesD[i].hnd a = ↓ for all time t,

which finishes the proof.

B Proof of the Invariants

In the following we provecorrect nonce owner, unique nonce use, correct encryption owner, andencrypted-
key secrecyby induction. Hence assume that all invariants hold at a particular timet in a run of the system,
and we have to show that they still hold at timet+ 1.

We start with the proof ofcorrect nonce owner.

Proof. (Correct nonce owner) Let (nhnd, v, j) ∈ Nonceu for u ∈ H \ {T}, v ∈ {1, . . . , n}, andj ∈
{1, 2, 3, 4}. By construction, this entry has been added toNonceu by MYa

u in Step 1.2, Step 2.8, Step 1.21,
or Step 1.31. In the last two cases, the entry(nhnd, v, j−2) was already contained inNonceu at timet, hence
the claim follows by induction hypothesis ofcorrect nonce owner. Thus consider the first two cases. In both
casesxhnd has been generated by the commandgen nonce() at some timet, input at portinu? of THcry

H .
Convention 1 impliesnhnd 6= ↓, asMYa

u would abort otherwise and not add the entry to the setNonceu. The
definition ofgen nonce then impliesD[hndu = nhnd] 6= ↓ andD[hndu = xhnd].type = nonce at timet.
Because of Lemma 5.1 this also holds at all later timest′ > t, which finishes the proof.
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The following proof ofunique nonce useis quite similar.

Proof. (Unique Nonce Use) Assume for contradiction that bothx1 := (D[i].hndu , w, j) ∈ Nonceu and
x2 := (D[i].hndv , w

′, j′) ∈ Noncev at some timet. Without loss of generality, lett + 1 be the first
such time and letx2 6∈ Noncev at timet. By construction,x2 is thus added toNoncev at timet + 1 by
Step 1.2, Step 2.8, Step 1.21, or Step 1.31. In the last two cases, the entry(xhnd, w′, j − 2) was already
contained inNonceu (for the same handlexhnd and the same identityw′) and the claim follows by induction
hypothesis forunique nonce useagain. In the first two cases,D[i].hndv has been generated by the command
gen nonce() at timet. The definition ofgen nonce implies thatD[i] is a new entry andD[i].hndv its only
handle at timet, and thus also at timet + 1. With correct nonce ownerthis impliesu = v. Further,
x2 = (D[i].hndv , w

′, j′) is the only entry that is put intoNoncev at timest andt + 1. Thus alsow = w′.
This is a contradiction.

Proof. (Correct encryption owner) Let u ∈ H \ {T}, i ≤ size with D[i].type = symenc. Let l indk :=

D[i].arg [2k − 1] andpkse indk := D[i].arg [2k] for k ∈ {1, . . . , |D[i].arg|
2 }. Let furtherx ind

k,q := D[l indk ].arg [q]

andxhndk,q,u := D[x ind
k,q ].hndu for q = 1, 2, 3, 4, andxk,1 := D[x ind

k,1 ].arg [1]. Assume that for somek we

havepkse indk = pkseu, and assume further that(xhndk,3,u, xk,1, j) ∈ Nonceu for somej ∈ {1, 3} or that

(xhndk,4,u, xk,1, j) ∈ Nonceu for somej ∈ {2, 4}.
The only possibilities to violate the invariantcorrect encryption ownerare that (1) the entryD[i] is

created at timet+1 or that (2) the handleD[i].hndu orD[x ind
k,q ].hndu for q = 3 in part a) orq = 4 in part b)

is created at timet+1 for an entryD[i] that already exists at timet or that (3) the handle(xhndk,q,u, xk,1, j) for

q ∈ {3, 4} is added toNonceu at timet+1 such that(xhndk,q,u, x1, j−2) was not contained inNonceu at time
t (i.e., we have to considerj ∈ {1, 2}). In all other cases the invariant holds by the induction hypothesis for
correct encryption ownerand Lemma 5.1.

We start with the third case. Assume that(xhndk,q,u, xk,1, j) for q ∈ {3, 4} andj ∈ {1, 2} is added to

Nonceu at timet + 1. By construction, this only happens in a transition ofMYa
u in Step 1.2 and Step 2.8.

However, here the entryD[x ind
k,q ] has been generated by the commandgen nonce input at inu? at time t,

hencex ind
k,q cannot be contained as an argument of an entryD[l indk ] at timet. Formally, this corresponds to

the fact thatD is well-formed, i.e., index arguments of an entry are always smaller than the index of the
entry itself; this has been shown in [24]. Since a transitionof MYa

u does not modify entries inTHcry
H , this

also holds at timet+ 1.
For proving the remaining two cases, assume thatD[i].hndu orD[x ind

k,q ].hndu is created at timet+1 for

an already existing entryD[i] orD[l indk ] or thatD[i] is generated at timet+1. Because both can only happen
in a transition ofTHcry

H , this implies(xhndk,q,u, xk,1, j) ∈ Nonceu already at timet, since transitions ofTHcry
H

cannot modify the setNonceu. Now correct nonce ownerimpliesxhndk,q,u = D[x ind
k,q ].hndu 6= ↓ already at

time t and thus also at timet+1 by Lemma 5.1. Symmetric encryptions can only be generated bythe basic
commandsym encrypt, which requires handles to all its elements. More precisely, if w ∈ H ∪ {a} creates
an entryD[i′] with D[i′].type = symenc and(x′1, . . . , x

′
m) := D[i].arg at timet+ 1 thenD[x′i].hndw 6= ↓

for i = 1, . . . ,m already at timet. In particular, we have thatD[x′2k].ind = D[pkse indk ].ind = pkseu. The
definition ofsym encrypt then impliesD[skseu].hndw 6= ↓ and henceD[i] must have been created by either
u orT.

We finally have to show that the entryD[i] has been created byT in the claimed steps. This can easily
be seen by inspection of Algorithms 1, 2, and 3. We only show itin detail for the first part of the invariant;
it can be proven similarly for second part. Let(xhndk,3,u, xk,1, j) ∈ Nonceu andD[x ind

k,2 ].type = skse. By
inspection of Algorithms 1, 2, and 3 and becauseD[i].type = symenc, we see that the entryD[i] must have
been created by eitherMYa

u in Step 2.11 or byMYa
T in Step 3.11 or 3.13. The list encrypted in Step 2.11 only

has two elements, which impliesx ind
k,3 = ↓ and hencexhndk,3,u = ↓, and bycorrect nonce ownerthis gives a
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contradiction to(xhndk,3,u, xk,1, j) ∈ Nonceu. Similarly, if the entryD[i] were created in Step 3.13 then we

hadD[x ind
k,2 ].type = data as the algorithm would have aborted otherwise in Step 3.2 by the definition of

retrieve and Convention 1.

Finally, we proveencrypted-key secrecy.

Proof. (Encrypted-key secrecy) Let u, v ∈ H, i ≤ size with D[i].type = symenc. Let l ind := D[i].arg [1],
pkse ind := D[i].arg [2], x ind

j := D[l ind].arg [j], and xj := D[x ind
t ].arg [1] for t = 1, 2, 3. Assume

D[l ind].type = list, pkse ind = pkseu, x1 = v, andD[x ind
j ].type = skse for somej.

Part a) of the invariant can only be affected if a handle forw is added to an entryD[l′ind] orD[x ind
j ] that

already exist at timet. (Creation ofD[l′ind] at timet with a handle forw is impossible as above because that
presupposes handles to all arguments ofD[l′ind], i.e., in particular toD[x ind

j ], which contradictsencrypted-
key secrecyat timet; creation ofD[x ind

2 ] at timet with a handle forw would yield a contraction tox ind
2

being an argument oflind at timet + 1 sinceD is well-formed, cf. the proof ofcorrect encryption owner.
Thus we only have to consider those commands that add handlesfor w to entries of typelist and skse

that already existed at timet. The only commands that add handles forw to D[l ind], i.e., a list entry,
are list proj, decrypt, adv parse, send i, andadv send i applied to an entryD[k] with l′

ind ∈ D[k].arg .
Encrypted-Key secrecyfor the entryD[l′] at timet then yieldsD[k].type = symenc. Thus the commands
list proj, send i, andadv send i do not have to be considered any further. Moreover,encrypted-key secrecy
also yieldsD[k].arg [2] ∈ {pkseu, pksev}. The keys shared betweenu andT respectively betweenv and
T are not known tow 6∈ {u, v,T}, formally D[skseu].hndw = D[sksev].hndw = ↓; Hence the command
sym decrypt input atinw? does not violate the invariant. Finally, the commandadv parse applied to an entry
of typesymenc with unknown secret key also does not give a handle to the cleartext list, i.e., toD[k].arg [1],
but only outputs its length and the key identifier.

The only commands that add handles forw to D[x ind
j ], i.e., a symmetric key entry, arelist proj or

adv parse input at inw?, whereadv parse has to be applied to an entry of typelist, since only entries of
type list can have arguments which are indices to symmetric key entries. More precisely, if one of the
commands violated the invariant there would exist an entryD[i′] at timet such thatD[l′ind].type = list,
D[l′ind].hndw 6= ↓ andx ind

j ∈ D[l′ind].arg . Encrypted-key secrecyfor the entryD[l′ind] at timet implies

D[l′ind].hndw = ↓, which yields a contradiction.
Part c) of the invariant can only be violated if a new entryD[k] is created at timet+1 with l′ ∈ D[k].arg

such thatx ind
j ∈ D[l′].arg (by Lemma 5.1 and well-formedness). AsD[l′] already exists at timet, encrypted-

key secrecyfor D[l′] impliesD[l′].hndw = ↓ for w 6∈ {u, v,T} at timet. We can easily see by inspection of
the commands that the new entryD[k] must have been created by one of the commandslist andsym encrypt

(or by encrypt or sign, which create an asymmetric encryption or a signature, respectively), since entries
newly created by other commands cannot have arguments that are indices of entries of typelist. Since all
these commands entered at a portinz? presupposeD[j].hndz 6= ↓, the entryD[k] is created byw ∈ {u, v,T}
at timet+ 1. However, the only steps that can create an entryD[k] with l′ ∈ D[k].arg (with the properties
demanded for the entryD[l′]) are Steps 3.11 and 3.13. In all these cases, we haveD[k].type = symenc.
Further, we haveD[k].arg [2] = pksew′ wherew′ denotesw’s current believed partner. We have to show

thatw′ ∈ {u, v}. Let t ind1 := D[hndT = l
(1)hnd

3 ].arg [1] andt1 := D[t ind1 ].arg [1] at the time of Step 3.10.
Since the entryD[x ind

t ] is created immediately before in Step 3.9, we have that the entry D[k] has been
created in Step 3.11 is the first database entry with the properties demanded forD[k]. If i = k, then we have
w′ = u by construction and we are done. Ifi 6= k then nothing has to be shown since no entryD[i] exists
yet for which we have to show something.

If D[k] has been created in Step 3.13 we only have to show something ifD[i] has been created be-
fore in Step 3.11. In this case Step 3.2 and the check in Step 3.8, imply w′ = t1 = D[t ind1 ].arg [1] =
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D[x ind
1 ].arg [1] = x1 = v by definition ofD[i].
Hence in both cases we obtainedw′ ∈ {u, v}, i.e., the list containing the symmetric key was indeed

encrypted with the key of eitheru or v.
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