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Abstract

Symbolic secrecy of exchanged keys is arguably one of the impsrtant notions of secrecy shown
with automated proof tools. It means that an adversaryicéstrto symbolic operations on terms can
never get the entire key into its knowledge set. Cryptogiakéy secrecy essentially means computa-
tional indistinguishability between the real key and a @nane, given the view of a much more general
adversary.

We provide the first proof of cryptographic key secrecy fa strengthened Yahalom protocol, which
constitutes one of the most prominent key exchange prataowlyzed by means of automated proof
tools. The proof holds in the presence of arbitrary activacks provided that the protocol is imple-
mented using standard provably secure cryptographic fivesi We exploit recent results on linking
symbolic and cryptographic key secrecy in order to perforsymbolic proof of secrecy for the Ya-
halom protocol in a specific setting that allows us to derfedesired cryptographic key secrecy from
the symbolic proof.

1 Introduction

Cryptographic protocols for key establishment are an éstaa technology. Nevertheless, most new net-
working and messaging stacks come with new protocols foh sasks. Since designing cryptographic
protocols is known to be error-prone and, owing to the distdd-system aspects of multiple interleaved
protocol runs, security proofs of such protocols are awkMamake for humans, automation of such proofs
has been studied almost since cryptographic protocolsfitstged. From the start, the actual cryptographic
operations in such proofs were idealized into so-calleceiddao models, following [35] with extensions
in [36, 48], e.g., see [50, 47, 41, 57, 58, 1, 46, 53]. Theseaisaeplace cryptography by term algebras,
e.g., encrypting a messagetwice does not yield a different message from the basic ngessgace but the
termE(E(m)). A typical cancellation rule i®(E(m)) = m for all m. It is assumed that even an adver-
sary can only operate on terms by the given operators andgigitng the given cancellation rules. This
assumption, in other words the use of initial models of thvegiequational specifications, makes it highly
nontrivial to know whether results obtained over a Dolew Yaodel are also valid over real cryptography.
One therefore calls properties and actions in Dolev-Yaoetssymbolicin contrast tacryptographic
Arguably the most important and most common propertiesga@ymbolically are secrecy properties,
as initiated in [35], and in particular key secrecy prog=tiSymbolically, the secrecy of a key is represented
by knowledge sets: The key is secret if the adversary carr g@tehe corresponding symbolic term into

*An earlier version of this work appeared in [21].



its knowledge set. Cryptographically, key secrecy is defimg computational indistinguishability between
the real key and a randomly chosen one, given the view of theradry. Hence symbolic secrecy captures
the absence of structural attacks that make the secret asla lwfown to the adversary, and because of its
simplicity it is accessible to formal proofs tools, whilg/ptographic secrecy constitutes a more fine-grained
notion of secrecy that is much harder to establish.

The Yahalom protocol [33, 54] is one of the most prominent &eghange protocols. Paulson discov-
ered that the original protocol from [33] is insecure andpased a strengthened variant [54]. This was
extensively investigated, e.qg., in [54, 37, 32, 29]. Howega# existing security proofs are restricted to the
Dolev-Yao model. We provide the first security proof of theesgthened Yahalom protocol in the more
comprehensive cryptographic sense, i.e., we show thateaglsanged between two honest users are secret
in the strong sense of indistinguishability from randomskeyhis holds in the presence of arbitrary active
attacks, provided that the Dolev-Yao abstraction of symimencryption is implemented by a symmetric
encryption scheme that is secure against chosen-ciphattaxks and additionally ensures integrity of ci-
phertexts. This is the standard security definition of autibated symmetric encryption [31, 30]. Efficient
symmetric encryptions schemes provably secure in thisesexist under reasonable assumptions [30, 56].

We achieve this result by exploiting recent work on linkingl&-Yao models to the standard model of
cryptography. We analyze the Yahalom protocol based ocnry@ographic libraryof Backes, Pfitzmann,
and Waidner [24, 27, 18], which corresponds to a slightleeaed Dolev-Yao model that can be faithfully
realized using provably secure cryptographic primitivéis.combination with a recent result on linking
symbolic and cryptographic key secrecy [20], this allowsaiperform a symbolic proof of secrecy for the
Yahalom protocol and to derive the desired cryptographicdexrecy from that. This is the first symbolic
proof of a cryptographic protocol that can be exploited toweecryptographic secrecy for the exchanged
keys. (Another such proof was conducted concurrently atheliandently by Canetti and Herzog, cf. below.)

Further Related Work. Cryptographic underpinnings of a Dolev-Yao model were fadtiressed by
Abadi and Rogaway [3]. They only handled passive adveisaia symmetric encryption. The proto-
col language and security properties were extended in [Z&]2but still only for passive adversaries. This
excludes most of the typical ways of attacking protocolsul\dryptographic justification for a Dolev-Yao
model, i.e., for arbitrary active attacks and within aioiyr surrounding interactive protocols, was first given
in [24] with extensions in [27, 18]. Based on that Dolev-Yaodal, the well-known Needham-Schroeder-
Lowe and Otway-Rees protocols as well as a variant of the 3fpnt system were proved in [17, 5, 7].
The first and the third result are entirely authenticationofs and hence does not have to reason about
secrecy aspects. The second one contains a key secrecytypropiethis was reformulated by hand into
a (considerably weaker) integrity property so that thegritg preservation theorem could be used. More-
over, after the initial publication of the current work, angoutationally sound security proof of basic and
public-key Kerberos [6] and of a widely deployed Web Sersipeotocol [14] was achieved in a similar
manner. In general, our result can moreover be seen as a deaimmn of the usefulness of the crypto-
graphic library [24], their extensions [18, 27], and theresponding general theorems for linking symbolic
and cryptographic properties based on this library [11,183316, 20, 4] for establishing secrecy properties
in a cryptographically sound manner. Moreover, automatedfpsupport for the cryptographic library was
recently achieved in [59].

Laud [43] has recently presented a cryptographic undeiminfor a Dolev-Yao model of symmetric
encryption under active attacks. His work enjoys a directnestion with a formal proof tool, but it is
specific to certain confidentiality properties, restridgte surrounding protocols to straight-line programs
in a specific language, and does not address a connectior t@ithaining primitives of the Dolev-Yao
model. Herzog et al. [39] and Micciancio and Warinschi [489)é& recently also given a cryptographic
underpinning under active attacks. Their results are mamrdahan that in [24] since they are specific for



public-key encryption, but consider slightly simpler réaplementations; moreover, the former relies on
a stronger assumption whereas the latter severely resthietclasses of protocols and protocol properties
that can be analyzed using this primitive. Section 6 of [4@fHer points out several possible extensions of
their work which all already exist in the earlier work of [28ince computational soundness has become a
highly active line of research, we exemplarily list furtmecent results in this area without going into further
details [12, 25, 26, 22, 10, 19, 8, 28, 13, 9].

Efforts are also under way to formulate syntactic calculidealing with probabilism and polynomial-
time considerations, in particular [51, 44, 52, 40] and, ss@nd step, to encode them into proof tools. This
approach can not yet handle protocols with any degree ofratton. It is complementary to the approach
of proving simple deterministic abstractions of cryptqadmaand working with those wherever cryptography
is only used in a blackbox way.

Concurrently and independently to our work, Canetti andzbigi{34] have linked ideal functionalities
for mutual authentication and key exchange protocols tesponding representations in a formal language.
They apply their techniques to the Needham-Schroeder-lppatecol by considering the exchanged nonces
as secret keys. Their work is restricted to the mentionedtiomalities and in contrast to the universally
composable library [24] hence does not address soundnd3sl®f-Yao models in their usual generality.
The considered language does not allow loops and offerscpkdsy encryption as the only cryptographic
operation (symmetric encryption is not considered altiailng language is used to reason about symmetric
keys). Moreover, their approach to define a mapping betweéeal iand real traces following the ideas
of [49] only captures trace-based properties (i.e., itityegroperties); reasoning about secrecy properties
additionally requires ad-hoc and functionality-specifiguanments.

2 The Strengthened Yahalom Protocol

The Yahalom protocol [33] and its strengthened variant ggé]four-step protocols for establishing a shared
secret encryption key between two users. The protocolsreliea distinguished trusted party and it is
assumed that every useinitially shares a secret kely,,; with T. Expressed in the typical protocol notation
asin, e.g., [45], the strengthened Yahalom works as follows

1. u—v : u,Ny,

2. ’U—>T : 'U,Nv;(u7Nu)Kvt

3. T—ou : Ny, (v,Kuw, Nk (4,0, Ky, No) K,
4. u—v : (u,v, Ky, Ny)K,,-

Useru seeks to share a hew session key with wsér generates a nond¥, and sends it te together with

its identity (first message). Next,generates a new nongg,, creates a new message containing the identity
u and the noncéV,,, and encrypts it with the key it shares with Thenv sends its identity, its nonc¥,,, and

the encryption to the trusted party (second message). Ndecrypts the encryption yielding the identity of

u and the noncev,,, generates a fresh kdy,,,, for v andv, generates a message according to the protocol
description, and sends it to (third message). Then decrypts the first encryption and tests whether the
contained nonce is the one it senttbefore, i.e., to the identity that is contained in this eptign. If so, it
forwards the second encryptionddqfourth message) and terminates the protocol by outpugtingndle to

the shared secret kdy,,,, to its user. Finally decrypts this message, obtains the sharedikgy and tests

1The strengthened protocol presented in [54] further caatan encryption of the nond¥, with K., in the fourth term to
guarantee entity authentication @fto v. We omitted this encryption to concentrate on the key sggoeaperty of the core key
exchange functionality.



Algorithm 1 Evaluation of User Inputs iM,® with v # T (Protocol Start)
Input: (new_prot, Yahalom,v) atKE_in,? with v € {1,...,n}\ {u}.

nnd « gen_nonce().

Nonce,, := Nonce,, U {(n" v 1)}.

uhnd < store(u).

mhnd < list(und, phnd),

u
send_i(v, mind).

if the message contains its own identity and the containedewas previously sent ib. If so, it outputs a
handle to the shared kéy,,,, to its user and terminates the protocol.

2.1 Protocol Details with the Dolev-Yao-style Cryptograplc Library

Almost all formal proof techniques for protocols first needeformulation of the protocol into a more
detailed version than the four steps above. These detallsdi@ necessary tests on received messages, the
types and generation rules for values likand V,,, and a surrounding framework specifying the number
of participants, the possibilities of multiple protocohgj and the adversary capabilities. The same is true
when using the Dolev-Yao-style cryptographic library fr§2d], i.e., it plays a similar role in our proof as
“the CSP Dolev-Yao model” or “the inductive-approach De¥ao model” in other proofs. We now present
the protocol details in this framework, and explain genasglects of the framework in Section 2.2.

We write “:=" for deterministic assignment, andis an error element available as an addition to the
domains and ranges of all functions and algorithms. Thedraonk is automata-based, i.e., protocols are
executed by interacting machines, and event-based, iachimes react on received inputs. B@(E‘ we
denote the Yahalom machine for a participarit can act in the roles of both andv above.

The first type of input thaM}”a can receive is a start messagew_prot, Yahalom, v) from its user
denoting that it should start a protocol run with user The number of users is called? User inputs
are distinguished from network inputs by arriving at a skedaport KE_in,,?. The “?” for input ports
follows the CSP convention, and “KE” stands for key exchabgeause the user interface is the same for
all key exchange protocols. The reaction on this input, thee sending of the first message, is described
in Algorithm 1. The commangen_nonce generates the noncé/)? stores the resulting so-calldgindle
nh"d (a local name that this machine has for the correspondimg)tiera setNonce,, for future comparison
together with the identity and an indicator that this nonce was generated and storedrbthe first step.
The setNonce,, formally consists of triplegn"™, w, j) wheren" is a handlew € {1,...,n}\ {u}, and
j € {1,2,3,4}. Atriple (n",w, j) means thaMY? stored the handle"™ in the j-th protocol step in a
session withw. The commandtore inputs arbitrary application data into the cryptograplicdry, here
the user identity.. The commandist forms a list, and the final commanrdnd_i means thaM)ja sends the
resulting term tov over an insecure channel. The effect is that the adversaansba handle to the term
and can decide what to do with it (such as forwarding iM% or performing Dolev-Yao-style algebraic
operations on the term). The superscifton most parameters denotes that these are handles, i@sgtise
obtain local names for the corresponding terms. This is gortant aspect of [24] because it allows the
same protocol description to be implemented once with D¥ky-style idealized cryptography and once
with real cryptography. The four commands we saw so far aed ifput and output domains belong to the
interface (in the same sense as, e.g., a Java interfaced ohterlying cryptographic library. This interface
is implemented by both the idealized and the real versionthénfirst case, the handles are local names

The set of users i1, ...,n} and the Yahalom protocol is designed such fhag {1,...,n} whereT denotes the trusted
party.



of Dolev-Yao-style terms, in the second case of real crygfolgic bitstrings, on which the adversary can
perform arbitrary bit manipulations. We say more aboute¢hes implementations below.

We now define formally how protocol machines and the trustadlyehave upon receiving an input
from the network. To increase readability we augment therdlgn with comments at its right-hand side
to depict which handle corresponds to which Dolev-Yao tevie further use the haming convention that
ingoing and outgoing messages are labetedvhere outgoing messages have an additional subscript cor-
responding to the protocol step. Ciphertexts are labeldtk encrypted lists are labelédand terms whose
type is still unknown are labelledor z, all with suitable sub- and superscripts.

Network inputs arrive at podut, ? and are of the forntv, u, i, m"9) wherev is the supposed sendér,
denotes that the channel is insecure, arfél is a handle to a list. The posut,,? is connected to the cryp-
tographic library, whose two implementations represeatbtained Dolev-Yao-style term or real bitstring,
respectively, to the protocol in a unified way by the handf@d.

The behavior oM? for v € {1,...,n} is given in Algorithm 2. Upon receiving a network inpu'?
first decomposes the obtained message and checks if it cotglspond to the first, third, or fourth step
of the protocol. (Recall that the second step is only perémiray T.) This is implemented by querying
the type of the first component and by looking up the respeationce in the selNonce,. After that,

MY2 checks if the obtained message is indeed a suitably cotetrunessage for the particular step by
exploiting the content ofVonce,,. If so, MY? constructs a message according to the protocol descrjption
sends it to the intended recipient, updates théVeeice,,, and possibly signals to its user that a key has been
successfully shared with another user. The behavitdBfupon receiving an input, T, i, m"™) from the
cryptographic library at poriutt? is defined similarly.

The formal definition of the behavior of the trusted partyii®g in Algorithm 3. We omit an information
description.

A machine should immediately abort the handling of the aurirgput if a cryptographic command does
not yield the desired result, e.g., if a decryption failsisTis captured by the following convention.

Convention 1 If MY? receives| as the answer of the cryptographic library to a command, thigh aborts
the execution of the current algorithm, except for the conmdirtgpedist_proj or send_i.

2.2 Overall Framework and Adversary Model

The framework that determines how machines such as our dahalachines and the machines of the ide-
alized or real cryptographic library execute is taken fr@8][ The basis is an asynchronous probabilistic
execution model with distributed scheduling and with a wielfined Turing-machine refinement for com-
plexity considerations. We already used implicitly abdvat tfor term construction and parsing commands
to the cryptographic library, so-called local scheduliagléfined, i.e., a result is returned immediately. The
idealized or real network sending via this library, howew@scheduled by the adversary.

When protocol machines such 5?2 there is no guarantee that all these machines are correctisi t
model determines for what subséisof {1,...,n, T} we want to guarantee anything; here these are the
subsets that contain at least the trusted party: We provewecf keys shared by andv wheneven, v € ‘H
and thus whenevev> andM? are correct. Incorrect machines disappear and are repiydbe adversary.
Each set of potential correct machines together with its uderface is called a structure, and the set of
these structures is called the system. When consideringethity of a structure, an arbitrary probabilistic
machineH is connected to the user interface to represent all usetdsamrarbitrary probabilistic machine
A is connected to the remaining free ports (typically the eklvand toH to represent the adversary. In
polynomial-time security proofd] and A are polynomial-time. This setting implies that any numbkr o



Algorithm 2 Evaluation of Network Inputs itv1Y? with u # T

Input: (v, u,i,m") atout,? withv € {1,...,n} \ {u} U{T}
1 ¢« Jist_proj(m"nd,4) fori = 1,2, 3.
2: typepna get_type(thnd).
3 if typeyoa = data Av # T AVj: (thrd v, §) & Nonce, then {First Message is inpit

4 typeyne get_type(th"?).

5 1 ¢ retrieve(th").

6 ift1#£vV type e = nonce then Abort end if

7. nhd < gen_nonce().

8: Nonceu := Nonce, U {(nh" v,2)}.

9:  ud < store(u).

10: 159 < list(¢hnd, ¢hnd), {Ibnd ~ (v, N,)}
11 h”d + sym encrypt(skseﬂ”—,‘i,lh”d). {ehrd ~ (v, Ny) K, }
12: h”d + list(uMnd phnd chndy, {mbrd ~ (u, Ny, (v, Ny)k,,)}
13: send_ (T, mbnd).

14: else iftypet?nd = nonce A v = T then {Third Message is input

150 [hnd sym_decrypt(sksezt‘%th"d). {1 ~ (v, Ky, Ny}
16: oM« list_proj(i"d, i) fori = 1,2, 3.

17. @1 + retrieve(zi"d).

18:  type,ma < get _type(zhnd).

19: typethnd + get_type(thd).

20: if (x h”d,azl, 1) & Noncey V type ma # skse V type,ms # symenc then Abort end if

21:  Nonce,, := (Nonce,, \ {(a:g”d,xl, P U {(xhd 2, 3)}.

22: mZ”d — |iSt(t§nd). {man ~ (U,U, Kuva NU)K'Ut}
23:  Output(ok_initiator, Yahalom, z, z5") atKE _out,,!.

24:  send_i(z1, m]").

25: else |ftyp€t}£nd = symenc A v # T then {Fourth Message is inppt

260 [ sym_decrypt(sksezt‘%t?"d). {1hnd (v, 1, Ky, Ny )}

27 2« list_proj(i"™d, 7) fori = 1,2, 3, 4.

28: a:z + retrieve(zh"d) fori = 1, 2.

290 type,ma < get _type(zhnd).

30:  if xg 7& vV #uV type, hd # skse V (2" x1,2) & Nonce, then Abort end if
31:  Noncey, := (Nonce, \ {(x} nd ,21,2) D) U {(2rd 21, 4)1.

32: Output(ok_responder,Yahalom,3:1, xhnd) atKE _out,!.

33: else

34:  Abort

35: end if




Algorithm 3 Behavior of the Trusted Pariiyl¥a

Input: (v, T,i,m"d) atoutt? with v € {1,...,n}.
1 thnd o Jist_proj(m"nd,4) fori = 1,2, 3.
2. 1 + retrieve(thnd). {t1 = v}
3. typepma < get_type(thnd).
. 7hnd hnd thnd hnd
4: 1" « sym_decrypt(skset’y, t3"). {IM9 ~ (u, Ny)}
5. i < list_proj(IMd,4) for i = 1, 2.
6. 11 + retrieve(z "), {z1 = u}
70 typema get_type(zh"?).
8: if type = nonce V type g #nonceVity #v Ve €{1,...,n}\ {v} then Abort end if
9: sksed < gen_symenc_key(). {skse"™ ~ K, }
hnd hnd
10: l:(gl) <« list(thnd | sksehnd zhnd), {lél) ~ (v, Kyy, Nu) }
C hnd 5(1)" (1)
11: ¢y < sym_encrypt(skset'y,, I3’ ). {es ~ (v, Ky, Nu) K, }
hnd hnd
12: l:(f) <+ list(znd ¢hnd gk gehnd ¢hnd), léQ) ~ (u,v, Ky, Ny)}
13: 0(2)hnd s hnd (2)hnd (2)hnd N
D cy ym_encrypt(sk:(se-r,y,l3 ). {c3 ~ (u, v, Kyy, Ny) Ky, }
Chnd  Jis(¢hnd (DM (2™ hnd ~ (N KN KN
14: mg ™~ < ISt( 9 ,C3 , C3 ) {m3 ~ ( vy (’U, uvy u)Kuta (U,’U, UV v)Kvt)}
15: send_i(zq, mi™).

concurrent protocol runs with the honest participants Aedatlversary are considered becatssdA can
arbitrarily interleave protocol start inpugsew_prot, Yahalom, v) with the delivery of network messages.
For a setH of honest participants, the user interface of the Yahaloatoppl machines i§7§E =

{KE.in,?,KE_out,! | u € H\ {T}}. The ideal and real Yahalom protocol serving this interfditfer only
in the cryptographic library, i.e., the Yahalom machineghezirely on a seﬂ?[;{y = {M%, | u € H} of
real cryptographic machines or an ideal machii€; calledtrusted host With M,\f‘ = {MY¥? | u € H},
the ideal system iSys">™ .= {(M?? U {THS}, SKE) | {T} € H C {1,...,n,T}}, and the real system
is Syspe™® = {(MY* U M;Y,SKE) | {T} € # C {1,...,n,T}}, whereSE denotes the symmetric
encryption scheme used.

On Polynomial Runtime. In order to be valid users of the real cryptographic libraing machinesvY?
have to be polynomial-time. We therefore define that eachhinad}® maintains explicit polynomial
bounds on the accepted message lengths and the number &f agmepted at each port. As this is done
exactly as in the cryptographic library, we omit the rigaaurite-up.

3 The Key Secrecy Property

In the following, we formalize the key secrecy property o€ tideal and real Yahalom protocols. The
property is an instantiation of a general key secrecy defmitor arbitrary protocols based on the ideal
cryptographic library. It was introduced in [20] and is syatib, based on the typical notion that a term
is not an element of the adversary’s knowledge set. In thengdolev-Yao-style library, the adversary’s
knowledge set is the set of all terms to which the adversasyahzandle.

We start this section by defining the possible states of thal idnd real cryptographic library as needed
for formulating the property, and then define the property.



3.1 Overview and States of the Ideal Cryptographic Library

The ideal cryptographic library administrates Dolev-¥sgle terms and allows each user to operate on them
via handles, i.e., via local names specific to this user. Emglles also contain the information that knowl-
edge sets give in other Dolev-Yao formalizations: The sdeohs that a participani knows, including

u = a for the adversary, is the set of terms with a handlefoFhe terms are typed; for instance, decryption
only succeeds on ciphertexts and projection only on listerddver, the terms are globally numbered by
a so-called index. Each term is represented by its type oet node) and its first-level arguments, which
can be indices of earlier terms. This enables easy distimai, e.g., which of many nonces is encrypted in
a larger term. These global indices are never visible at see imterface. The indices and the handles for
each participant are generated by one counter each.

The data structure storing the terms in [24] is a datalbas&enerally, a databade is a set of functions,
called entries, each over a finite domain called attribUkes.an entryr € D, the value at an attributett is
writtenz.att. For a predicatered involving attributes,D[pred] means the subset of entries whose attributes
fulfill pred. If D[pred] contains only one element, we use the same notation for fdnsemt. Adding an

entry z to D is abbreviatedD :< x. Moreover, we write the list operation &s:= (z1,...,z;), and
argument retrieval ag:] with {[;] = | if ¢ > j. In the specific term databade, each entryr can have
argumentdind, type, arg, hnd., , . .., hnd,,, , hnd,, len), for {uy, ..., u,} = H and the arguments have

the following types and meaning:

e x.ind is the global index of an entry. Its ty@@\ DS is isomorphic toN and distinguishes index
arguments from others. The index is used as a primary kdbwtrof the database, i.e., we write
D3] for the selectionD[ind = 1.

e z.type € typeset is thetypeof . We use the typesonce, list, data (for payload data)kse andpkse
(for symmetric encryption keys and corresponding “pubky-identifiers”, see below), argymenc
(for symmetric encryptions).

e z.arg = (a1, as,...,a;)is apossibly empty list of arguments. Arguments of t§géDS are indices
of other entries (subterms); we sometimes distinguish thyia superscriptithd”.

e v.hnd, € HNDS U {]} for u € H U {a} are handles, where.hnd,, = | means that. does not
know this entry and{ DS is another set isomorphic f§. We always use a superscrigtid” for
handles.

e z.len € Ny denotes the length of the entry.

The machin€THy has a countegize € ZNDS for the current size oD and counters:urhnd, (current
handle) for the handles, all initialized with

In order to capture that keys shared between users and tednparty have already been generated and
distributed, we assume that suitable entries for the kegady exist in the database. We denote the handle
of u to the secret key shared with where eithew, € {1,...,n} andv = T or vice versa, by;kseh”d

u,v "

3.2 The Real Cryptographic Library

In the real implementation of the cryptographic librarycleaser has its own machine. This machine con-
tains a databasP,, with only three main attributes: the handied,, for this useru, the real cryptographic
bitstring word, and the typeype. The users can use exactly the same commands as with thdiles},
e.g., en- or decrypt a message etc. These commands now fregdecryptographic operations. The op-
erations essentially use standard cryptographically reegtimitives, but with certain additional tagging,



randomization etc. Send commands now trigger the actudirsgof bitstrings between machines and/or to
the adversary.

3.3 Definition of the Key Secrecy Property

The first step towards defining symbolic key secrecy is to idensne state of the ideal Dolev-Yao-style
library and to define that a handle points to a symmetric ke, the key is symbolically unknown to the
adversary, and that it has not been used for encryption beatitation. These are the symbolic conditions
under which we can hope to prove that the corresponding sgaiskindistinguishable from a fresh random
key for the adversary. Note that the operations that the lgaharotocol performs on new keys are allowed
in this sense. For Conditio(8) in the definition, note that the arguments of a ciphertexntare(, pk)
wherel is the plaintext index angk the index of the public tag of the secret key, with = sk — 1 for the
secret key index.

Definition 3.1 (Symbolically Secret Encryption Keys [2Qt {T} C H C {1,...,n, T}, a database state
D of TH3Y, and a pair(u, ™) € % x HN'DS of a user and a handle be given. liet= D[hnd, =
1Md].ind be the corresponding database index. ®wen under(u, ") (1) is a symmetric encryption key
iff D[i].type = skse, (2)is symbolically unknown (to the adversaiff) D[i].hnd, = |, (3) has not been used
for encryption or shortis unusediff for all indices j € N we haveD[j].type = symenc = D[j].arg[2] #
1 — 1, and (4)is a symbolically secret keif it has the three previous properties. &

A secret-key belief function is a general way to designagekitlys whose secrecy should be proved. The
underlying theory from [20] is based on such functions. Waadntiate them for the Yahalom protocol
and thus essentially for all individual key exchange protec A secret key belief function maps the user
view to a set of triplegu, "™, ¢) of a user, a handle, and a type, pointing to the supposedhgtseys.
For the Yahalom protocol, we define secret-key belief fumdiseckeys_initiator_Ya for the initiator and
seckeys_responder_Ya for the responder that designate the exchanged keys.

Definition 3.2 (Secret-key Belief Functions for the Yahalom Protoéofecret-key belief functiofor a set
H is a functionseckeys that maps each viewiew of the user to an element ¢H x HAN'DS x {skse})*.
The secret-key belief functiorseckeys_initiator_Ya andseckeys_responder_Ya of the Yahalom protocol
map each elemerfbk_initiator, Yahalom, v, skse"™) respectively(ok_responder, Yahalom, v, skse™d) of
view arriving at portE_out,, ? in the users view tou, skse, skse) if u € H, and toe otherwise. Elements
of view that are not of this form are also mappedto &

We now define symbolic key secrecy for such a function. Intaatdito the conditions for individual keys,
we require that all elements point to different terms, sé Wecan expect the corresponding list of crypto-
graphic keys to be entirely random.

Definition 3.3 (Symbolic Key Secrecy Generally and for the Yahalom Prijtde a useH* suitable for a
structure({TH3;}, S;%) of the cryptographic libraryys<¥'4 and a secret-key belief functiarckeys for
‘H be given. The ideal cryptographic library with this u&eeps the keys iseckeys strictly symbolically
secretiff for all configurationsconf = ({TH3;'}, S3,Y, H, A) of this structure, every € view .,y (H), and
every elementu;, 1™, ¢;) of the setseckeys(v), the term undefu;, I™) is a symbolically secret key of
typet;, andD[hnd,, = I!™].ind # D[hnd,,; = ("].ind for all i # j.

The ideal Yahalom protocdteeps the exchanged keys of honest users strictly synilyobearetiff
the ideal cryptographic library keeps the keysséakeys_initiator_Ya and seckeys_responder_Ya strictly
symbolically secret with all useid* that are the combination of the machind$? for v € H and a useH
of those machines. &



General cryptographic key secrecy requires that no polyaletime adversary can distinguish the keys
designated by the functiareckeys from fresh keys. The cryptographic key secrecy of the Yahghootocol

is the instantiation foseckeys_initiator_Ya andseckeys_responder_Ya and the configurations of the Yahalom
protocol.

Definition 3.4 (Cryptographic Key Secrecy Generally and for the Yahalootdol) Let a polynomial-time
configurationconf = (M;,”, S5, H, A) of the real cryptographic librangys 5% and a secret-key belief
functionseckeys for 7 be given. Lefgengg denote the key generation algorithm. This configurakeaps
the keys irseckeys cryptographically secretff for all probabilistic-polynomial time algorithm®is (the

distinguisher), we have
|Pr[Dis(1¥, va, keys,eq) = 1] — Pr[Dis(1¥, va, keyspesn) = 1]| € NEGL

where NEGL denotes the negligible function of the security paramétand the used random variables
are defined as follows: Far € runcons, let va = view..ns(A)(r) be the view of the adversary, let
(u;, 1P ¢,)iz1,.n := seckeys(view qons(H)(r)) be the user-handle-type triples of presumably secret keys,
and let the keys beys,c,; = (sk;)i=1,...n With

ski = Dy [hndy, = 1" word if Dy, [hnd.,, = 1"™9].type = t;, elsee;

andkeysgresy, = (sk!)i=1,...n With sk] < gena(1%) if t; = ska, elsesk! « e.

A polynomial-time configuratiofM;” U M)?, SKE, H, A) of the real Yahalom protocdlys > keeps
the exchanged keys of honest users cryptographically tiédree configuration( M., Sy, {HYUM?, A)
keeps the keys iseckeys_initiator_Ya andseckeys_responder_Ya cryptographically secret. &

The following theorem captures the security of the Yahalootgzol.

Theorem 3.1 (Security of the Yahalom Protocdljie ideal Yahalom systeisys "¢ from Section 2.2 keeps
the exchanged keys of honest users strictly symbolicaltyeseand all polynomial-time configurations of
the real systensys Y2 keep the exchanged keys of honest users cryptographicalhets O

4 Proof of the Cryptographic Realization from the Idealization

As discussed in the introduction, the idea of our approath psove Theorem 3.1 for the protocol using the
ideal Dolev-Yao-style cryptographic library. Then theule$or the real system follows automatically. The
notion that a systemys,; securely implements another systéiys, in the sense of reactive simulatability
(recall the introduction), is writtelys, >£%Y Sys, (in the computational case). The main result of [24, 27,
18] is therefore

Syscry,real Zggcly Syscry,id' (l)

If symmetric encryption is present, this result is addisiliy subject to the condition that the surrounding
protocol, in our case the Yahalom protocol, does not raise@ied commitment problem for symmetric
encryption. Itis a nice obseration that this condition camiediately concluded from the overall proof; we
give the formal argument in Appendix A. For technical reasamne further has to ensure that the protocol
does not create encryption cycles (such as encrypting a kbytself); this is needed even for much weaker
properties than simulatability, see [3]. This propertyachg holds for the Yahalom protocol.

Once we have shown that the considered keys are symbolgsihet and that the commitment problem
does not occur for the Yahalom protocol, we can exploit thedexrecy preservation theorem of [20]: If
for certain honest uset$ and a secret-key belief functieackeys the ideal cryptographic library keeps the
keys inseckeys strictly symbolically secret, then every configuratiortHodvith the real cryptographic library
keeps the keys iseckeys cryptographically secret.
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5 Proof in the Ideal Setting

This section finally contains the proof of the ideal part oedtem 3.1: We prove that the Yahalom protocol
with the ideal, Dolev-Yao-style cryptographic library ksethe exchanged keys of honest users strictly
symbolically secret. The proof idea is the following: If aonest user, successfully terminates a session
run with another honest user we first show that the established key has been created lsugted party.
Then we exploit that the trusted party and the honest uséysend this key within an encryption generated
with a key shared betweanandT respectivelyy and T, and we conclude that the adversary never gets a
handle to the key. The main challenge is to find suitable iams on the state of the ideal Yahalom system.
This is similar to formal proofs using other Dolev-Yao mqdeid the similarity supports our hope that the
new, sound cryptographic library can be used like other B¥ko models in automated tools. We now
present the invariants of the systefgs "9, Their proof is postponed to Appendix B.

The first invariantscorrect nonce owneandunique nonce usare easily proved. They essentially state
that handles:""® where(n"¢, ., .) is contained in a selonce, point to entries of type nonce and that no
nonce is in two such sets.

Invariant 1 (Correct Nonce Owneffjor allu € H\{T},v € {1,...,n},j € {1,2,3,4} and(n", v, j) €
Nonce,, we haveD[hnd, = n"] +# | andD[hnd, = n"9].type = nonce.

Invariant 2 (Unique Nonce Usdjor allu,v € H\ {T}, allw,w’ € {1,...,n}, all j,5' € {1,2,3,4}, and
all i < size: If (D[i].hndy,w,j) € Nonce, and(D][i].hnd,,w’,j") € Nonce,, then(u,w) = (v,w").

The invariantencrypted-key secrecstates that a key shared between honeand v as well as all lists
containing this key can only be known tQ v, andT. Moreover, it states that such lists only occur within
symmetric encryptions created with the key shared betwesmd T respectively betweenandT.

Invariant 3 (Encrypted-Key Secrecipr allu, v € H\{T} and alli < size with D[i].type = symenc: Let
Ind .= Dli].arg[1], pkse™ := Dli].arg(2], znd .= D[I"].arg[t], andz; := D[z]"].arg[1] for t = 1,2, 3.
If D[I"].type = list A pkse™ = pkse, A z1 = v A D[z]"].type = skse for somet € {1,2, 3} then

a) D[z"].hnd,, = | and D[I"™].hnd,, = | for (% \ {u,v,T}) U {a} and for all’"™ with #j"! ¢
D[I"™.arg.

b) For alll’,k < size such thatD[l'].type = list A ;" € D[l'].arg, we have that’ € D[k] only if
DIk].type = symenc and D|k].arg[2] € {pkse,,, pkse,}.

The invariantcorrect encryption ownefinally states that certain protocol messages can only b&tieared
by the “intended” users or by the trusted party, respectivdle refer to Step of Algorithm j as Stepj.i.

Invariant 4 (Correct Encryption Ownerlror allu € H \ {T} and alli < size with D[i].type = symenc:
Let i := Dli].arg[2k — 1] and pksel!® := Dli].arg[2k] for 1 < k < 2Ll (entries of type
symenc have an even number of arguments by construction). Letédurffy' := D[}"].argt] and
xzt‘fu = D[x,i:’:f].hndu fort =1,2,3,4, andxy ; := D[x,i:’:f].arg[l] fort =1,2.
a) If pksei™ = pkse,, 1 € H, D[x,ig'jg].type = skse, and(a:,';"‘gu,xk,l,j) € Nonce, for somej €
{1,3} and somé&: € {1, ..., M}, thenD[i] was created by1¥* in Step 3.11.

b) If pk’se}:d = pksey, v11 € H, T2 = u, D[x,ig'jg].type = skse, and(a:,';"‘fyu,xk,l,j) € Nonce,, for

somej € {2,4} and somé& € {1,..., M}, thenD[i] was created bjI¥? in Step 3.13.
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5.1 Proof of the Key Secrecy Property

To increase readability, we partition the proof into selstaps with explanations in between. Assume that
u,v € H and thatMY? outputs(ok_initiator, Yahalom, v, skse™) or (ok_responder, Yahalom, v, skse™)

to its user. We first show that this implies tHul;fa has received a message correspondlng to the third
or fourth protocol step so that the contained encryptiomscdrthe form that allows us to applorrect
encryption owneto show that they were created b2 After that we will exploitencrypted-key secrecy
to show that keys created \T/a and to be shared amongstandwv will remain secret to the adversary. The
following property ofTH, proven in [24] will be useful in this proof to show that propes proven for one
time also hold at another time.

Lemma 5.1 The ideal cryptographic librangys<¥:'9 has the following property: The only modifications
to existing entriesc in D are assignments to previously undefined attributés.d,, (except for counter
updates in entries for signature keys, which we do not haeensider here), and appending new elements
to the list of arguments of symmetric encryptions. O

Proof. (Ideal part of Theorem 3.1) Assume thBtY? outputs (ok_initiator, Yahalom, v, skse™) or
(ok_responder, Yahalom, v, skse™) at KE_out, ! for u,v € H at timets, and Ietskse'”d := D[hnd, =
sk:seh”d] ind. By definition of Algorithms 1 and 2, this output can only happin Step 2.23 respec-
tively 2.32, and only after there was an ingut, v, i,mih"d) respective(w, u, i,mih"d) at atimety < ts.
Here and in the sequel we use the notation of Algorithm 1, @ 3but we distinguish the variables from its
different executions by an additional superscript indigathe number of the (claimed) received protocol
message, hereand?, and give handles an additional subscript for their ownereh.

Case 1: Output in Step 2.23. Assume thaMY? outputs(ok_initiator, Yahalom, v, skseih“d) at KE_out,!
for u,v € H in Step 2.23 at times. Hence the execution of Algorithm 2 for this input must haweeg
l?’h"d = ] in Step 2.15, since the algorithm would otherwise abort bgweation 1 without creating an output.

Lett3"™ := Dihnd, = 3 |.ind, 1" := D[hnd, = 13" ).ind and (L., pkse1, lo, pkses, - . ., 1j, phse;) :=
D[t%'” ].arg (which is the general argument format for symmetric endoypentries). The definition of
sym_decrypt then impliesD[13"™].type = list and D[t3"™].type = symenc, and further that there exists
some unique: with 1 < k < j such thatD[t3"™).arg[2k — 1] = 13™, and

D[t%’ind].arg [2k] = pkse,,. (2

Let 23" = D[13"™).arg[i] for i = 1,2,3 at the time of Step 2.16. By Step 2.17 and the definition of
retrieve we have _
D[a::l)’md].arg[l] =23 = . 3)

By definition oflist_proj andget_type, and since the condition of Step 2.20 is false, we finally have

2 = Dlw 3'”d] hnd, attimets, (4)
T hnd,x ,3) € Nonce, N\ D|x .type = skse at timets, 5
gu 1
and - o
) ,x7,1) € Nonce, N\ D]z .type = skse at timets.
a3, ,23,1) € N D[z3" kse at t 6
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Case 2: Output in Step 2.32. This case is similar to the first one: Assume thd}® outputs
(ok_responder, Yahalom, v, skse hnd) atKE _out,! for u,v € H in Step 2.32 at timés. The execution of Al-
gorithm 2 for this input must have glvéf; # | in Step 2.26, since the algorithm would otherwise abort by
Convention 1 without creating an output. 1#{" := D[hnd,, = t{" ].ind, 14" .= Dlhnd, = 13"].ind
and (I, pkseq, lo, pkse,, . . ., lj,pkse ) o= D[t4md] arg. The definition ofsym_decrypt then implies
D[I4™).type = list and D[t4"].type = symenc, and further that there exists a unighiavith 1 < k < j
such thatD[t4"™).arg[2k — 1] = 1*™ and

D[t‘llind].arg [2k] = pkse,,. (7)

Let 24" .= DA™ arg[i] for i = 1,2,3,4 at the time of Step 2.27. By Step 2.28 and the definition of
retrieve we haver? = D[z4").arg[1] for i = 1,2 and

DA™ arg[1] = a1 = v. (8)

By definition of list_proj andget_type, and because of the conditions of Step 2.25 and 2.30, we have

x5 = u, 9)
4hnd 4ind .
ry, = Dlr] ].hnd at timets, (10)
(a:ﬁhu ,xt,4) € Nonce, A D[z5 ].type = skse at timets, (11)
and .
(1, u ,x1,2) € Nonce, A D[z4 ].type = skse at timets. (12)
[

This first part of the proof shows thitY? has received an encryption of a specific form as part of a third
fourth protocol message. Now we applgrrect encryption owneto the encryption entryD|¢ 3'”d] for the
first case respectively tD[l4'”d] for the second case to show that this entry was creatéd 8y
Proof. (contd) Equations (2), (4) and (5) respectively (7), (16)15(11) are the preconditions for Part a)
respectively Part b) oforrect encryption ownerHence the entnp|t; ¢3ind | was created bWI in Step 3.11
respectively the entry[t4"] was created bjY? in Step 3.13.
In both cases, the algorithm execution must have startédamitnput(w’, T, i, m?rh“d) atoutt? atatime

ty <ty withw' € {1,...,n}. We concludg2™ + | in Step 3.4 because of Convention 1 and/¥&t :=

D[hndt = l2hnd] ind. The definition ofsym_decrypt ImpIIeSD[Zde] type = list, D[t2'nd] type = symenc,
12" = D[2"™).arg[2k' — 1] and pkse,,, = D[t2"™].arg[2k] for some unique’ € {1,. .., |D[3""].arg|,
cf. the first part of the proof. Let>™ := D[12"].arg[i] for i = 1,2 at the time of Step 3 5.

As the condition of Step 3.8 is false immediately afterwarde obtaln:zci,T # | fori =1,2. The
definitions oflist_proj andget_type together with Lemma 5.1 imply

2hnd

zi1 =Dz 20 hnd for i = 1,2 at timets. (13)

Step 3.8 further ensure$ = w' andx? € {1,...,n} \ {«w'}. By definition gen_symenc_key we obtain
skse?™ = | and _
D[sksede].type = skse (14)
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in Step 3.9 forskse2™ = D[hndt = skse?™].ind. Now we exploit thatvi¥? creates the entry[t3™]
in Step 3.11 with the inputym encrypt(skse-r zl,l(l) ) respectively the entry/)[t‘fi”d] in Step 3.13 with
the inputsym encrypt(skseT w,,l(2) ) In particular, this impliek = 1 in Equtations (2) and (7) by the
definition ofsym_encrypt. Let lg) := D[hndt = lg%’thd].z’nd for i = 1, 2. With the definitions ofist

. c e (1),2ind aind : (2),2indJind : :
andlist_proj this impliesis = 1" respectivelyl; = [*"". Together with Equations (3), (8), (9)
and (13), this implies

skse™ = :cg’md = x%'nd = skse?™ A x%'nd = Smd At =2 =vAx? =, (15)
ind ;
wherez? = u follows from pkse > = D[V arg[2] = D[1¥™).arg[2] = pkse,, respectively
skse™ = J:%md = med = skse?™ x%ind = 4md A3 =23 =ula? =af=v, (16)

wheret? := D[t2""].arg[1]. Thus Equations (3), (4) and (6) imply

(x%t];d, v,1) € Nonce, N\ D[z 2md] type = skse at timet, a7
respectively Equations (8), (10) and (12) imply

(z %h;d, ,2) € Nonce, A D[a:%ind].type = skse at timets. (18)

After this second part of the proof, we will finally derive ththe terms selected bseckeys_initiator_Ya
andseckeys_responder_Ya are symbolically unused symmetric keys that have furtheemot been used for
encryption yet.

Proof. (contd) Note that the entrle@[t3'”d] and D[t4™] fulfill the requirements ofencrypted-key se-
crecywith respect to key entry)[skse?™], which impliesD[skse?™].hnd, = |. Because ofkse?™ =
skse™ we haveD[skse™].hnd, = D[skstend].hnda = |, i.e., the term undefu, skse"™) is symbol-
ically unknown Moreoverskse?™ = skse™ together with Equation (14) imphp[skse™].type =
Dlskse®™].type = skse, i.€., the term undefu, skse"™) is a symmetric key.

It remains to show that the key is unused at titge The only way to create an ent®[j] with
D[j].type = symenc and D[j].arg[2] = skse™ — 1 is by inputting a commandncrypt at portin,,?
such thatD[skse™].hnd,, # |. Since we have shown th#[skse™|.hnd,, # | only if w € {u,v, T},
hence we only have to show that neither of them enters sucleeod until timet;. By inspection of Al-
gorithm 3, this clearly holds fof, since this may only happen in Steps 3.11 or 3.13. In bothscéise key
used is one of those that were iniatially distributed, i[&j].arg[2] = skse,, — 1 for somew € {1,...,n}.
Since we have shown that each key selectesebkeys_initiator_Ya or seckeys_responder_Ya is newly gen-
erated byMY¥?, we in particular havekse,, # skse™. Similar reasoning can be applied to Algorithm 1
and 2 ofMY? to show that the only used keys are the ones shared betwardT respectively between
andT. [
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A Absence of the Commitment Problem for the Yahalom Protocol

As the name suggests, a “commitment problem” in simuldtglgloofs captures a situation where the sim-
ulator commits itself to a certain message and later hasdogghthis commitment to allow for a correct
simulation. In the case of symmetric encryption, the commaitt problem occurs if the simulator learns
in some abstract way that a ciphertext was sent and hence leagdtruct an indistinguishable ciphertext,
knowing neither the secret key nor the plaintext used forctreesponding ciphertext in the real world. To
simulate the missing key, the simulator will create a newetdey, or rely on an arbitrary, fixed key if the
encryption systems guarantees indistinguishable kegg3$elnstead of the unknown plaintext, the simula-
tor will encrypt an arbitrary message of the correct lengglying on the indistinguishability of ciphertexts
of different messages. So far, the simulation is fine. It estags fine if the message becomes known later
because secure encryption still guarantees that it istindisshable that the simulator’s ciphertext contains
awrong message. However, if the secret key becomes knoamtla¢ simulator runs into trouble, because,
learning abstractly about this fact, it has to produce abigtkey that decrypts its ciphertext into the correct
message. It cannot cheat with the message because it haslt@weithe correct behavior towards the honest
users. This is typically not possible.

The solution for this problem taken in [18] for the cryptaging library is to leave it to the surrounding
protocol to guarantee that the commitment problem does oatrpi.e., the surrounding protocol must
guarantee that keys are no longer sent in a form that mighertam known to the adversary once an
honest participant has started using them. To exploit tmeilsitability results of [18], we hence have to
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prove this condition for the Yahalom protocol. Formally, Wwave to show that the following property
NoComm does not occur: “If there exists an input from an honest usardauses a symmetric encryption
to be generated such that the corresponding key is not knowretadversary, then future inputs may only
cause this key to be sent within an encryption that cannotelbeydted by the adversary”. This event can
be rigorously defined using temporal logics but we omit tigendus definition due to space constraints and
refer to [18]. The evenNoComm is equivalent to the event “if there exists an input from andsi user
that causes a symmetric encryption to be generated suclththaorresponding key is not known to the
adversary, the adversary never gets a handle to this keyN&dGdmm has the advantage that it can easily
be inferred from the abstract protocol description withprésupposing knowledge about handles of the
cryptographic library. For the Yahalom protocol the evlaComm can easily be verified by inspection of
the abstract protocol description, and a detailed procédhas Algorithmsl-3 can also easily be performed
by exploiting the invariants we will present in Section 5.

Technically, the evenlloComm is anintegrity property and the notion thasys Y perfectly fulfills
NoComm, written SysY*'¢ =Pef NoComm means that the property holds with probability one (over the
probability spaces of runs, a well-defined notion from thdartying model [55]) for all honest users and
for all adversaries.

Lemma A.1 (Absence of the Commitment Problem for the Yahalom Prgtddw ideal Yahalom system
Sys Y214 perfectly fulfills the propertfloComm, i.e., Sys "> =Pef NoComm. O

Proof. Note first that the secret key shared initially between a asdrthe trusted party will never be sent
by definition in case the user is honest, and it is already kntovthe adversary when it is first used in case
of a dishonest user. The interesting cases are thus the keysaged by the trusted party in the protocol
sessions.

Leti < size, DJi|.type = skse such thatD[:] was created bj)(/I\T(a in Step 3.9, where, with the notation
of Algorithm 3, we haver; = v andt; = v for z1,¢; € {1,...,n}. If u or v were dishonest, then the
adversary would get a handle féi] after MY? finishes its execution, i.e., in particular befaf#i] has
been used for encryption for the first time, since the advgisazows the keys shared between the dishonest

ind
users and the trusted party. If battandv are honestencrypted-key secre@pplied to the entr)D[cgl) ]
created in Step 3.11 in the same executioMgf then immediately implieD|[i].hnd, = | for all time ¢,
which finishes the proof. [

B Proof of the Invariants

In the following we provecorrect nonce ownelnique nonce useorrect encryption ownemandencrypted-
key secrecpy induction. Hence assume that all invariants hold at dquéar timet in a run of the system,
and we have to show that they still hold at time 1.

We start with the proof oforrect nonce owner

Proof. (Correct nonce owngrLet (™4 v, j) € Nonce, foru € H\ {T}, v € {1,...,n}, andj €
{1,2,3,4}. By construction, this entry has been addedVieuce,, by M? in Step 1.2, Step 2.8, Step 1.21,
or Step 1.31. In the last two cases, the e}, v, j —2) was already contained iNonce., at timet, hence
the claim follows by induction hypothesis obrrect nonce ownerThus consider the first two cases. In both
casesz"™ has been generated by the commaaalLnonce() at some timet, input at portin,? of TH;EV.
Convention 1 implies" = |, asMY? would abort otherwise and not add the entry to theMégtce,,. The
definition of gen_nonce then impliesD[hnd, = n"™] # | and D[hnd, = xz"].type = nonce at timet.
Because of Lemma 5.1 this also holds at all later tities ¢, which finishes the proof. n
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The following proof ofunique nonce usis quite similar.

Proof. (Unique Nonce UgeAssume for contradiction that botly := (D[i|.hnd,,w,j) € Nonce, and

x9 = (D[i].hnd,,w',j") € Nonce, at some time.. Without loss of generality, let + 1 be the first
such time and lets ¢ Nonce, at timet. By construction,zs is thus added tdVonce, at timet + 1 by
Step 1.2, Step 2.8, Step 1.21, or Step 1.31. In the last twescétse entryz", w’,j — 2) was already
contained inNonce,, (for the same handle"™ and the same identity’) and the claim follows by induction
hypothesis founique nonce usagain. In the first two case$)[i|.hnd, has been generated by the command
gen_nonce() at timet. The definition ofgen_nonce implies thatD[i] is a new entry and[i].hnd, its only
handle at timet, and thus also at time+ 1. With correct nonce ownethis impliesu = v. Further,

x9 = (Dli].hnd,,w’, j') is the only entry that is put intd/once,, at timest andt + 1. Thus alsow = w'.
This is a contradiction. [

Proof. (Correct encryption owndrLet u € H \ {T}, i < size with D[i].type = symenc. Let " :=

Dli].arg[2k — 1] andpksel™ := Dli].arg[2Kk] for k € {1,.. ., 211 Mg‘} Let furtherz;"! := D[™].arg[q]
andzp™! = D[z"%].hnd, for ¢ = 1,2,3,4, anday, = D[x,;”f] arg[1]. Assume ‘that for somé we

have pksel™ = pkse,, and assume further thae)"  2x1,j) € Nonce, for somej € {1,3} or that
(a:znfu,:ck 1,J) € Nonce,, for somej € {2,4}.

The only possibilities to violate the invarianbrrect encryption owneare that (1) the entny[i] is
created at time+ 1 or that (2) the handl®|:].hAnd,, or D]z, '”d] hnd,, for ¢ = 3in part a) org = 4 in part b)
is created at timeé+ 1 for an entryD[:] that already exists at timor that (3) the handler,';”;u, xy1,7) for

q € {3,4} is added tVonce, at timet + 1 such tha(z}"? , x;, j — 2) was not contained iVonce,, at time
t (i.e., we have to considgre {1, 2}). In all other cases the invariant holds by the inductiondtlgpsis for
correct encryption owneand Lemma 5.1.

We start with the third case. Assume thaf"? .24 1,7) for ¢ € {3,4} andj € {1,2} is added to
Nonce, attimet + 1. By construction, this only happens in a transition\df® in Step 1.2 and Step 2.8.
However, here the entrp|z, '”d] has been generated by the commagd_nonce input atin,? at timet,
hencegc,;,”d cannot be contained as an argument of an ePi] at timet. Formally, this corresponds to
the fact thatD is well-formed i.e., index arguments of an entry are always smaller thariritiex of the
entry itself; this has been shown in [24]. Since a transitbY? does not modify entries |'n"HCry this
also holds at time + 1.

For proving the remaining two cases, assume iat And,, or D[z '”d] hnd,, is created at time+ 1 for

an already existing entrip|i orD[l'”d] or thatD[i] is generated at timet 1. Because both can only happen
in a transition of THZ, this implies(a:,';”;u, T1,]) € Nonce, already at time, since transitions of H3)”
cannot modify the selNonce,,. Now correct nonce owneimplies 2" = D[;"9].hnd,, # | already at
time¢ and thus also at time+ 1 by Lemma 5.1. Symmetric encryptions can only be generatetieolasic
commandsym_encrypt, which requires handles to all its elements. More precisely € H U {a} creates
an entryD[i'] with D[i'].type = symenc and(z!, ..., x],) := D[i].arg attimet + 1 thenD|x}].hnd,, # |
fori =1,...,m already at time. In particular, we have thdD[x}, |.ind = D|[pksei™].ind = pkse,. The
definition ofsym_encrypt then impliesD|skse,,].hnd,, # | and hence[i] must have been created by either
uorT,.

We finally have to show that the entfy[i] has been created by in the claimed steps. This can easily
be seen by inspection of Algorithms 1, 2, and 3. We only shaw detail for the first part of the invariant;
it can be proven similarly for second part. L@t ,xx1,5) € Nonce, and D[z5].type = skse. By
inspection of Algorithms 1, 2, and 3 and becaﬂs{e'] type = symenc, we see that the ent®[i] must have
been created by eithé4Y? in Step. 2 11 or byvi¥2 in Step 3.11 or 3.13. The list encrypted in Step 2.11 only
has two elements, which impli s =14 and hencez:h”d = ], and bycorrect nonce ownethis gives a
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contradiction to(«}"s' , x1,1,7) € Nonce,. Similarly, if the entryD[i] were created in Step 3.13 then we

had D[x,LTg].type = data as the algorithm would have aborted otherwise in Step 3.heydefinition of
retrieve and Convention 1. m

Finally, we proveencrypted-key secrecy

Proof. (Encrypted-key secrepyet u,v € H, i < size with D[i].type = symenc. Let " := DJi].arg[1],
pkse™ = Dli].arg[2], :E]i-”d = D[lI™].arg[j], andz; := DI[z\"™].arg[1] for t = 1,2,3. Assume
D[I"M].type = list, pkse™ = pkse,, z1 = v, andD[:EJi-”d].type = skse for someyj.

Part a) of the invariant can only be affected if a handlefas added to an entrp[1™™] or D[xji.”d] that

already exist at time. (Creation ofD [l/i”d] at timet with a handle forw is impossible as above because that
presupposes handles to all argumentﬁ){if'”d], i.e., in particular toD[x]‘-”d], which contradictencrypted-
key secrecyat timet; creation of D[zi"d] at timet with a handle forw would yield a contraction ta:
being an argument di" at timet + 1 since D is well-formed cf. the proof ofcorrect encryption owner
Thus we only have to consider those commands that add hafmilles to entries of typdist and skse
that already existed at time The only commands that add handles {orto D[l‘”d], i.e., a list entry,
are list_proj, decrypt, adv_parse, send_i, andadv_send_i applied to an entryD[k] with '™ ¢ D[k].ary.
Encrypted-Key secredygr the entryD[!’] at timet then yieldsD|[k].type = symenc. Thus the commands
list_proj, send_i, andadv_send_i do not have to be considered any further. Moreogacrypted-key secrecy
also yieldsD[k].arg[2] € {pkse,, pkse,}. The keys shared betweenand T respectively between and
T are not known tav & {u,v, T}, formally D|skse,|.hnd,, = D|[skse,].hnd,, = |; Hence the command
sym_decrypt input atin,,? does not violate the invariant. Finally, the commadd_parse applied to an entry
of typesymenc with unknown secret key also does not give a handle to thetelddist, i.e., toD[k].arg[1],
but only outputs its length and the key identifier.

The only commands that add handles forto D[xji.”d], i.e., a symmetric key entry, ail&t_proj or
adv_parse input atin,,?, whereadv_parse has to be applied to an entry of typiet, since only entries of
type list can have arguments which are indices to symmetric key entfiéore precisely, if one of the
commands violated the invariant there would exist an ehify] at timet such thatD[l””d].type = list,
D[I"™).hndy, # | andz™ € D[I"™].arg. Encrypted-key secredgr the entryD[I""] at time¢ implies
D["™].hnd,, = |, which yields a contradiction.

Part c) of the invariant can only be violated if a new erfir;| is created at time+ 1 with I’ € D[k].arg
such thatz;j‘.”d € DJ[l'].arg (by Lemma 5.1 and well-formedness). Agl’| already exists at timg encrypted-
key secrecyor D[l'] implies D[l'].hnd,, = | for w ¢ {u,v, T} at timet. We can easily see by inspection of
the commands that the new enipfk] must have been created by one of the comméisidandsym _encrypt
(or by encrypt or sign, which create an asymmetric encryption or a signature eisely), since entries
newly created by other commands cannot have argumentsrehaidices of entries of typkst. Since all
these commands entered at a oyt presuppos®|j].hnd, # |, the entryD|k] is created byv € {u,v, T}
attimet + 1. However, the only steps that can create an ebtiyy] with I € D[k].arg (with the properties
demanded for the entrp[l’]) are Steps 3.11 and 3.13. In all these cases, we Bakptype = symenc.
Further, we haveD[k|.arg[2] = pkse,, wherew’ denotesw’s current believed partner. We have to show
thatw’ € {u,v}. Letti" := D[hndt = lél)hnd].arg[l] andt; := D[ti™].arg[1] at the time of Step 3.10.

Since the entnyD|[z"] is created immediately before in Step 3.9, we have that tivg é1k] has been
created in Step 3.11 is the first database entry with the piepelemanded fab|[%]. If i = k, then we have
w’ = u by construction and we are done.il# k then nothing has to be shown since no erbiy| exists
yet for which we have to show something.

If D[k] has been created in Step 3.13 we only have to show somethiij]ihas been created be-
fore in Step 3.11. In this case Step 3.2 and the check in S&pBply w' = t; = D[t].arg[1] =
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DI[zi"].arg[1] = 21 = v by definition of D[i].
Hence in both cases we obtained € {u,v}, i.e., the list containing the symmetric key was indeed
encrypted with the key of either or v. [
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