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Abstract

Important properties of many protocols are liveness or availability, i.e., that something
good happens now and then. In asynchronous scenarios, these properties depend on the
scheduler, which is usually considered to be fair in this case. The standard definitions
of fairness and liveness are based on infinite sequences. Unfortunately, this cannot be
applied to most cryptographic protocols since one must restrict the adversary and the runs
as a whole to length polynomial in the security parameter. We present the first general
definition of polynomial fairness and liveness in asynchronous scenarios which can cope
with cryptographic protocols. Furthermore, our definitions provide a link to the common
approach of simulatability which is used throughout modern cryptography: We show that
polynomial liveness is maintained under simulatability. As an example, we present an
abstract specification and a secure implementation of secure message transmission with
reliable channels, and prove them to fulfill the desired liveness property, i.e., reliability of
messages.

1 Introduction

When we analyze arbitrary protocols, two important classes of properties to consider are liveness
and safety [2]. Informally, a liveness property states that something good eventually happens.
A common problem in asynchronous scenarios is that liveness depends on the scheduler: If
the scheduler never schedules certain messages, the good event cannot happen. The standard
solution (see, e.g., [32]) is to concentrate on so-called fair schedulers. Roughly, those guarantee
that every message is delivered at some point in time in every infinite run of the system.

For most cryptographic protocols, definitions based on infinite runs cannot be used since one
must restrict the adversary and the runs as a whole to polynomial and, therefore, finite length.
By polynomial we mean here, as well as in the sequel, polynomial in the security parameter k.

∗An earlier version of this article appeared in [18, 19]



Another problem in the cryptographic case is that one typically assumes that an adversary
can modify messages arbitrarily in transit. For those cases, one can certainly not require that
anything good happens (e.g., the parties agree on a key [40]). Nevertheless, even for protocols
that do consider such arbitrary corruptions, one typically wants a guarantee of the following
form: If certain messages get through unmodified, then certain good things happen. For the
other cases, e.g., the honest participants make progress but do not get each others’ messages,
one may still want at least local termination (in the sense of a timeout message, or a positive
reaction to an abort by the user). In order to cope with these problems, we introduce the notion
of polynomial fairness and polynomial liveness. Polynomial fairness states that the scheduler
will schedule each message after a polynomially bounded number of steps. Now, polynomial
liveness captures that something good will happen after a polynomial number of steps subject
to the condition that the considered scheduler is polynomially fair.

We are aware of only one other approach that handles polynomial liveness properties for
security protocols: Cachin et al. presented an elegant solution for a specific protocol, asyn-
chronous Byzantine agreement in [28]. They show that an adversary cannot make the honest
users (altogether) generate a super-polynomial number of messages for any particular subproto-
col run and that the protocol ensures “deadlock-freeness”, i.e., some progress will eventually be
made. However, their definition is limited to this specific protocol, and applying the approach
more generally presumes a fixed number of subprotocols and the use of session IDs (so that one
can say “all messages associated to an event have been delivered”). We aim at a more general
definition. Thus, the fact that certain messages get through is defined by letting the system
“run empty”, i.e., we consider one particular point in time, so that neither the honest user nor
the adversary produce any outputs after that time. From then on, the only active machines
are the scheduler and the internal machines of the system. The scheduler can then deliver all
messages that have already passed through the adversary (i.e., have not been interrupted in
transit), all messages that have been sent over reliable channels, etc. We speak of polynomial
liveness if the good event happens in a polynomially bounded number of steps of the honest
user counted from the beginning of the “run-empty phase”. This models our intuition that
in real life, every message which has not been interrupted by the adversary will eventually be
delivered to its recipient.

To the best of our knowledge, the approach of letting the system run empty has not been used
before to prove liveness for security protocols. However, if we leave the security community and
take a look at the verification of microprocessors we meet similar techniques. Roughly speaking,
Burch and Dill showed in [27] that certain safety properties of a pipelined microprocessor hold by
letting the pipelines run empty now and then, which they denoted as “flushing the pipeline”.
In the essence, their approach is quite similar to ours, but applied to a completely different
problem.

Moreover, we will show that our definition of liveness behaves well under the concept of sim-
ulatability which has asserted its position as a fundamental concept of cryptography. Precisely,
we show that liveness properties are preserved under simulatability under certain circumstances,
i.e., liveness properties proved for abstract specifications automatically carry over to the con-
crete implementations in this case. This result is particularly interesting since it entails security
under system composition (a property that is known to be very difficult to achieve in general,
see e.g., [34, 31, 35, 36, 37, 33, 29, 25, 6, 22, 8, 23, 15]).

Moreover, out results shares technical similarities to recently proposed preservation results
for computational probabilistic non-interference [13, 5] and, in a broader sense, to the currently
highly active line of computational soundness results for symbolic cryptography [41, 1, 11, 21,
9, 14, 20, 26, 23, 4, 15, 38, 17, 16, 7].



As an example fitting our definition, we present an abstract specification and a concrete im-
plementation of reliable secure message transmission. The reliability is considered as the desired
liveness property, i.e., roughly speaking, every message sent will eventually be delivered. We
prove this liveness property for the abstract specification and transfer it to the implementation
with the preservation theorem.

Outline of the paper. In Section 2 we review the underlying model from [42, 24]. In
Section 3 we present our notion of polynomial fairness and polynomial liveness, starting with
the basic intuition and moving on to the rigorous definitions. In Section 4 we show that liveness
is preserved under simulatability. The example of reliable cryptographic channels is presented
in Section 5. Section 6 summarizes the results.

2 The Model for Reactive Systems

In this section, we recapitulate the model for asynchronous probabilistic reactive systems as
introduced in [42, 22, 24].

Several definitions will only be sketched, whereas those that are important for understanding
our upcoming definitions and proofs are given in full detail. All other details can be looked up
in the original paper.

In particular, we repeat the scheduling model in full detail because it is important for
the fair schedulers. The specific scheduling aspects needed for cryptographic asynchronous
systems are that schedulers are “normal” system machines, so that they schedule with realistic
knowledge, and that different channels may be scheduled by different machines, e.g., so that
local submachines can be represented. This is also useful flexibility for liveness because we only
need to let the fair scheduler schedule certain important channels.

2.1 General System Model

Systems mainly are compositions of several machines. Usually we consider real systems that
are built by a set M̂ of machines {M1, . . . ,Mn}, one for each user u from a set M = {1, . . . , n},
and ideal systems built by one machine {TH}.

Communication between different machines is done via ports using messages composed from
an alphabet Σ. Inspired by the CSP-Notation [30], we write output and input ports as q! and
q? respectively. The ports of a machine M are denoted by ports(M). The subset of input and
output ports are denoted by in(ports(M)) and out(ports(M)), respectively. Channels are defined
implicitly by naming convention, that is port q! sends messages to q?. To achieve asynchronous
timing, a message is not directly sent to its recipient, but it is first stored in a special machine
q̃ called a buffer and waits to be scheduled. If a machine wants to schedule the i-th message
of buffer q̃ (this machine must have the unique clock-out port q⊳!) it simply sends i at q⊳!, see
Figure 1. The buffer then schedules the i-th message and removes it from its internal list. In
our case, most buffers are either scheduled by a master scheduler or the adversary, i.e., one
of those has the clock-out port. Note that in [42] the adversary and the master scheduler are
mostly the same entity. This gives the adversary complete control over the overall scheduling of
network traffic and models the worst-case behavior we usually have to expect in an asynchronous
system. However, to consider liveness we have to make certain assumptions on the well-behavior
of scheduling. Therefore, we separate it here into two entities, a master scheduler enforcing our
assumptions and an adversary with arbitrary behavior.
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Figure 1: Ports and buffers.

After introducing ports, we now focus on the definition of machines. Our machine model
is probabilistic state-transition machines, similar to probabilistic I/O automata as sketched by
Lynch [32]. If a machine is switched, it receives an input tuple at its input ports and performs
its transition function yielding a new state and an output tuple in the deterministic case, or
a finite distribution over the set of states and possible outputs in the probabilistic case. At
each switching step of one particular machine, at most one value can arrive at every input port
and the machine can produce at most one output per port. Furthermore, each machine has
a bound on the length of the considered inputs which allows time bounds independent of the
environment.

Definition 2.1 (Machines) A machine is a tuple

M = (nameM,PortsM,StatesM, δM, lM, IniM,FinM)

of a name nameM ∈ Σ+, a finite sequence PortsM of ports (i.e., PortsM = ports(M)), a set
StatesM ⊆ Σ∗ of states, a probabilistic state-transition function δM, a length function lM :
StatesM → (N ∪ {∞})|in(PortsM)|, and sets IniM,FinM ⊆ StatesM of initial and final states. Its
input set is IM := (Σ∗)|in(PortsM)|; the i-th element of an input tuple denotes the input at the i-th
in-port. Its output set is OM := (Σ∗)|out(PortsM)|. The empty word, ǫ, denotes no in- or output
at a port. δM probabilistically maps each pair (s, I) ∈ StatesM×IM of state and inputs to a pair
(s′, O) ∈ StatesM ×OM of successor states and outputs. Following two restrictions apply to δM:
(1) The induced output distribution has to be finite, and (2) if s ∈ FinM or I = (ǫ, . . . , ǫ), then
δM(s, I) maps always to the same state and no output, i.e, (s, (ǫ, . . . , ǫ)). Inputs are ignored
beyond the length bounds, i.e., δM(s, I) = δM(s, I⌈lM(s)) for all I ∈ IM, where R⌈l:= (r⌈l)r∈R
for R ∈ (Σ∗)∗ and r⌈l denotes the l-bit prefix of a sequence r ∈ Σ∗. ✸

In the text, we often write “M” also for nameM. We only briefly state here that these machines
have a natural realization as a probabilistic Turing machine.

A collection Ĉ of machines is a finite set of machines with pairwise different machine names
and disjoint sets of ports. The completion [Ĉ ] of a collection Ĉ is the union of all machines
of Ĉ and the buffers needed for every channel. A port of a collection is called free if its
connecting port is not in the collection. These port will be connected to the users and the
adversary. The free ports of a completion [Ĉ ] are denoted as free([Ĉ ]). A collection Ĉ is
called closed if its completion [Ĉ ] has no free ports except a special master clock-in port clk⊳?,
i.e., free([Ĉ ]) = {clk⊳?}. The master clock-in port clk⊳? is used to give control to the master
scheduler as shown below. By convention, we assume that the master scheduler expects a 1 as
input on this port.

A closed collection represents a “runnable” system. For such a closed collection, a probability
space of runs (sometimes called traces or executions) is defined. Scheduling of machines is done



sequentially, so we have exactly one active machine M at any time. If this machine has clock-
out ports, it is allowed to select the next message to be scheduled as explained above. If that
message exists, it is delivered by the buffer and the unique receiving machine is the next active
machine. If M tries to schedule multiple messages, only one is taken, and if it schedules none
or the message does not exist, the special master scheduler is scheduled. Formally, runs are
defined as follows.

Definition 2.2 (Runs) Given a closed collection Ĉ with master scheduler X and a tuple ini ∈
Ini

Ĉ
:= ×

M∈Ĉ IniM of initial states, the probability space of runs is defined inductively by the
following algorithm. It has a variable r for the resulting run, an initially empty list, a variable
MCS (“current scheduler”) over machine names, initially MCS := X, and treats each port as
a variable over Σ∗, initialized with ǫ except for clk⊳? := 1. Probabilistic choices only occur in
Step (1).

1. Switch current scheduler: Switch machine MCS, i.e., for a given current state s and in-
port values I, set the new state and output (s′, O) to the output of δMCS

(s, I). Then assign
ǫ to all in-ports of MCS.

2. Termination: If X is in a final state, the run stops.

3. Buffer messages: For each simple out-port q! of MCS, in their given order, switch buffer q̃
with input q↔? := q!, cf. Figure 1. Then assign ǫ to all these ports q! and q↔?.

4. Clean up scheduling: If at least one clock out-port of MCS has a value 6= ǫ, let q⊳! denote
the first such port and assign ǫ to the others. Otherwise let clk⊳? := 1 and MCS := X and
go back to Step (1).

5. Scheduled message: Switch q̃ with input q⊳? := q⊳! (cf. Figure 1), set q? := q↔! and
then assign ǫ to all ports of q̃ and to q⊳!. Let MCS := M′ for the unique machine M′ with
q? ∈ ports(M′). Go back to Step (1).

Whenever a machine (this may be a buffer) with name nameM is switched from (s, I) to (s′, O),
we add a step (nameM, s, I ′, s′, O) to the run r for I ′ := I⌈lM(s), except if s is final or I ′ =
(ǫ, . . . , ǫ). This gives a family of random variables indexed by the possible initial states

run
Ĉ
:= (run

Ĉ ,ini
)ini∈Ini

Ĉ
.

For a number l ∈ N, l-step prefixes run
Ĉ ,ini,l

of runs are defined in the obvious way. For a
function l(·) : Ini

Ĉ
→ N, this gives a family run

Ĉ ,l(·) = (run
Ĉ ,ini ,l(ini))ini∈Ini Ĉ . ✸

Definition 2.3 (Views and Restrictions to Ports) The view of a subset M̂ of a closed collection
Ĉ in a run r is the restriction of r to M̂ , i.e., the subsequence of all steps (nameM, s, I, s′, O)
where nameM is the name of a machine M ∈ M̂ . Similarly, for a set S of ports, we define the
restriction r⌈S of a run r to the set S , i.e., for every step of the run, we leave out the name
nameM and the states s, s′, and restrict the sets I and O to the ports in S. This gives two
families of random variables

view
Ĉ
(M̂ ) = (view

Ĉ ,ini
(M̂ ))ini∈Ini

Ĉ
and

run
Ĉ
⌈S= (run

Ĉ ,ini
⌈S )ini∈Ini

Ĉ

and similarly for l-step prefixes. For a singleton M̂ = {H} we write view
Ĉ
(H) instead of

view
Ĉ
({H}) for reasons of readability. ✸



2.2 Security-specific System Model

For security purposes, special collections are needed, because an adversary may have taken over
parts of the initially intended system. Therefore, a system consists of several possible remaining
structures. An example of the typical derivation of these structures from an intended structure
and a trust model will be seen in Section 5. First, the system part is defined and then the
environment, consisting of users and adversaries.

Definition 2.4 (Structures and Systems)

a) A structure is a pair struc = (M̂ ,S ) where M̂ is a collection of simple machines (i.e., with
only normal in- and output ports and clock-out ports) called correct machines, and S ⊆
free([M̂ ]) is called specified ports. If M̂ is clear from the context, let S̄ := free([M̂ ]) \ S.
We call forb(M̂ ,S ) := ports(M̂ ) ∪ S̄ c the forbidden ports.

b) A system Sys is a set of structures. It is polynomial-time iff all machines in all its
collections M̂ are polynomial-time.

✸

The separation of the free ports into specified ports and others is an important feature of the
upcoming security definitions. The specified ports are those where a certain abstract service
is guaranteed. Typical examples of inputs at specified ports are “send message m to id” for a
message transmission system or “pay amount x to id” for a payment system. The ports in S̄
are additionally available for the adversary. The ports in forb(M̂ ,S ) will therefore be forbidden
for an honest user to have. The liveness definition should be tied only to the abstract service
definition and, therefore, will only deal with events at specified ports.

A structure can be completed to a configuration by adding machines H and A, modeling the
joint honest users and the adversary, respectively. The machine H is restricted to the specified
ports S , A connects to the remaining free ports of the structure and both machines can interact,
e.g., in order to model active attacks.

Definition 2.5 (Configurations)

a) A configuration of a system Sys is a tuple conf = (M̂ ,S ,H,A) where (M̂ ,S ) ∈ Sys is a
structure, H is a machine without forbidden ports, i.e., ports(H)∩ forb(M̂ ,S ) = ∅, and the
completion Ĉ := [M̂ ∪ {H,A}] is a closed collection. The set of configurations is written
Conf(Sys).

b) The initial states of all machines in a configuration are a common security parameter k in
unary representation. This means that we consider the families of runs and views of the
collection Ĉ restricted to the subset Ini ′

Ĉ
:= {(1k)

M∈Ĉ |k ∈ N} of Ini
Ĉ
. We write runconf

and viewconf (M̂ ) for the families run
Ĉ

and view
Ĉ
(M̂ ) restricted to Ini ′

Ĉ
, and similar for

l-step prefixes. Furthermore, we identify Ini ′
Ĉ

with N and thus write runconf ,k etc. for the
individual random variables.

c) The set of configurations of Sys with polynomial-time user H and adversary A is called
Confpoly(Sys). The index poly is omitted if it is clear from the context.

✸
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Figure 2: Example of simulatability. The view of H is compared.

We only briefly state here that several machines can be combined into one single machine
(which has the original machines as submachines), cf. [42] for more details. Moreover, the
view of every submachine remains unchanged by this combination. Hence, we can consider
configurations with a set of users instead of a single user-machine H as well, and the upcoming
definitions work as well with these modified configurations.

2.3 Defining Security with Simulatability

As we will see below, the system model provides a powerful instrument to compare two systems
and to assess whether one system securely implements another one. Based on this, our approach
in defining security is as follows: (1) We define the abstract specification of a secure service as
an ideal system Sys id consisting of a single machine TH. Given the simplicity of the idealized
machine, the correctness of the specification is often intuitively clear. Furthermore, we can gain
additional confidence by analyzing TH using formal methods and automated tools [10]. The
power of the model allows us to specify arbitrary integrity and strong confidentiality properties.
(2) Given any concrete real system Sys real implementing the desired service, we then prove its
security by showing that it securely implements Sys id.

The definition of one system securely implementing another one is based on the common
concept of simulatability. The notion of simulatability was introduced in [43] and has asserted
its position as a fundamental concept of modern cryptography. Simulatability essentially means
that whatever might happen to an honest user in a concrete system Sys real can also happen
in an ideal system Sys id. As by definition only good things can happen in the ideal system,
simulatability guarantees that no bad things can happen in the real system. More precisely,
for every configuration conf 1 ∈ Conf(Sys real), there exists a configuration conf 2 ∈ Conf(Sys id)
yielding indistinguishable views of the same user in both configurations. We abbreviate this by
Sys real ≥sec Sys id and we say that Sys real is “at least as secure” as the system Sys id. A typical
situation is illustrated in Figure 2.

However, we do not want to compare a structure (M̂1,S1) ∈ Sys real with arbitrary structures
of Sys id, but only with certain “suitable” ones. What suitable actually means can be defined
by a mapping f from Sys real to the powerset of Sys id. The mapping f is called valid if it maps
structures with the same set of specified ports.

The upcoming simulatability definition is based on indistinguishability of views.

Definition 2.6 (Indistinguishability) Two families (vark)k∈N and (var′k)k∈N of random variables
(or probability distributions) on common domains Dk are

a) perfectly indistinguishable (“=”) if for each k, the two distributions vark and var′k are
identical.



b) statistically indistinguishable (“≈SMALL”) for a class SMALL of functions from N to R≥0

if the distributions are discrete and their statistical distances

∆(vark, var
′
k) :=

1

2

∑

d∈Dk

|P (vark = d)− P (var′k = d)| ∈ SMALL

(as a function of k). SMALL should be closed under addition, and with a function g also
contain every function g′ ≤ g. Typical classes are EXPSMALL containing all functions
bounded by Q(k) · 2−k for a polynomial Q, and the (larger) class NEGL, cf. part c) of the
definition.

c) computationally indistinguishable (“≈poly”) if for every algorithm Dis (the distinguisher)
that is probabilistic polynomial-time in its first input,

|P (Dis(1k, vark) = 1)− P (Dis(1k, var′k) = 1)|

∈ NEGL.

Intuitively, given the security parameter and an element chosen according to either vark
or var′k, Dis tries to guess which distribution the element came from. The class NEGL
denotes the set of all negligible functions, i.e., g : N → R≥0 ∈ NEGL if for all positive
polynomials Q, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k).

We write ≈ if we want to treat all three cases together. ✸

We now present the simulatability definition.

Definition 2.7 (Simulatability) Let systems Sys1 and Sys2 with a valid mapping f be given.

a) We say Sys1 ≥f,perf
sec Sys2 (perfectly at least as secure as) if for every configuration

conf 1 = (M̂1,S ,H,A1) ∈ Conff (Sys1), there exists a configuration conf 2 = (M̂2,S ,
H,A2) ∈ Conf(Sys2) with (M̂2,S ) ∈ f(M̂1,S ) (and the same H) such that

viewconf 1
(H) = viewconf 2

(H).

b) We say Sys1 ≥
f,SMALL
sec Sys2 ( statistically at least as secure as) for a class SMALL if the

same as in a) holds with viewconf 1,l
(H) ≈SMALL viewconf 2,l

(H) for all polynomials l, i.e.,
statistical indistinguishability of all families of l-step prefixes of the views.

c) We say Sys1 ≥f,poly
sec Sys2 ( computationally at least as secure as) if the same as in a)

holds with configurations from Conf
f
poly(Sys1) and Confpoly(Sys2) and computational in-

distinguishability of the families of views.

In all cases, we call conf 2 an indistinguishable configuration for conf 1. Where the difference
between the types of security is irrelevant, we simply write ≥f

sec, and we omit the indices f and
sec if they are clear from the context. ✸

3 Expressing Polynomial Fairness and Liveness

In this section, we introduce our definitions of polynomial fairness and polynomial liveness in
asynchronous reactive systems. At first, we concentrate on fairness.



3.1 Polynomial Fairness

Usually, a scheduler is called fair if it schedules every process infinitely often unless this process
is only finitely often enabled (see, e.g., [32]). As we already stated in the introduction, this
definition is not suited for most cryptographic protocols, since both the adversary and the
honest user are polynomially bounded, and, therefore the runs are finite.

What we would like to express is that an enabled process will be scheduled by the master
scheduler X after at most J(k) of the scheduler’s steps where J(k) is a polynomial in the security
parameter k. This should hold all the time unless the scheduler reaches its runtime bound. We
start with an intuitive description of how this can be formalized.

Starting from the t-th switching step of X in one particular run r, we search for the first
future scheduling step m > t of X such that the first message of q̃ is scheduled. Thus, if the
buffer is non-empty, a message will be scheduled from it. Moreover, we always demand that it
is the first clock-out port with non-empty value (so it will not be ignored by the run algorithm,
cf. Definition 2.2).

We denote this number of switching steps of X (i.e., m− t) by wait(t, r, q⊳!). Moreover, in
order to cope with the final state of X, we explicitly define this number to be infinite if the
master scheduler never enters a final state, and if there exists no such output at q⊳!. If the
master scheduler enters a final state after its m-th switching step without ever outputting 1 at
q⊳! we define this number to be m− t.

We denote the scheduler as J-fair for a function J : N → N if the maximum of these waiting
times is bounded by J as a function of k.

Moreover, we demand that X does not connect to an unspecified port of the system, i.e.,
we have ports(X) ∩ forb(M̂ ,S ) = ∅. This condition is essential for relating the definition of
polynomial fairness to simulatability, since the master scheduler can be defined as part of the
honest user in this case, and hence, can remain unchanged in simulatability. However, note
that this restriction does not limit the expressive power of the model.

Let us now turn to the formal definition.

Definition 3.1 (Polynomial Fairness) Let an arbitrary system Sys be given. Then a master
scheduler X is called J-fair for a structure (M̂ ,S ) ∈ Sys and a function J : N → N if and only
if the following holds:

• X does not connect to an unspecified port of the system, i.e., we have ports(X) ∩
forb(M̂ ,S ) = ∅.

• Let Ot,r and St,r be X’s output and state after the t-th switching of X, respectively, in
every considered run r of the configuration. Moreover, let FinX denote the set of final
states of X and let the predicate Ot,r⌈q⊳! denote whether the buffer q̃ will be scheduled in
the next round. Now we define

wait(t, r, q⊳!) := ∞

if for all m ∈ N : Ot+m,r⌈q⊳! 6= 1 and St+m,r 6∈ FinX, and otherwise

wait(t, r, q⊳!) := minm∈N{Ot+m,r⌈q⊳!= 1 ∨ St+m,r ∈ FinX}.

Then we require that
wait(t, r, q⊳!) ≤ J(k)

holds for the security parameter k, all runs r of the configuration, all t ∈ N and q⊳! ∈
ports(X).



If a master scheduler is J-fair for a polynomial J , we call it polynomially fair. ✸

Remark 3.1. Our definition of J-fairness implies the common definition of fairness based on
infinite sequences (i.e., processes which are infinitely often enabled have to be scheduled in-
finitely often). By “a process or machine M is enabled”, we define that an ingoing buffer q̃

of the machine M has non-empty content, and the master scheduler could schedule this buffer
at the moment (i.e., the master scheduler is switched, and it has the corresponding clock-out
port q⊳! for scheduling this buffer). Now according to our definition, this buffer will always be
scheduled after at most J(k) steps, i.e., after a finite number of steps. Moreover, if the machine
is enabled infinitely often, then the master scheduler must also be switched infinitely often, so
it will schedule the corresponding buffer, and therefore the machine infinite times. ◦

3.2 Polynomial Liveness

After introducing the notion of polynomially fair master schedulers, we can now turn our
attention to expressing polynomial liveness. Intuitively speaking, polynomial liveness means
that some good things will happen after a polynomial number of steps of the honest user.

However, we cannot expect this to hold for arbitrary configurations. Imagine an honest
user and an adversary which are communicating over the system all the time, without ever
giving control to the (fair) master scheduler. In this case we cannot guarantee that good things
happen since the fairness condition of the master scheduler is irrelevant. Instead, we define that
certain good things happen if the system is “run empty”. More precisely, we consider situations
where neither the user nor the adversary produce any outputs any further from one particular
point in time. We then require that there exists a polynomial QH such that the good event will
happen in at most QH(k) switching steps of H, counted from that special point in time.

Thus, in order to define polynomial liveness for the overall system, we restrict ourselves to
those configurations which prevent outputs of both the user and the adversary after a particular
number of switching steps of H. More precisely, we let the honest user count the number of
times it has been switched. If it reaches the “critical” time tstop(k), it outputs a command
(stop) to the adversary and both machines do not produce outputs any further. We call these
configurations liveness configurations.

From that special point in time, the master scheduler and the machines of the system are
the only active machines in the configuration, so the master scheduler can try to empty the
system, e.g., to deliver those messages that have already passed through the adversary and now
wait to be scheduled to their recipient, and those that have been sent over reliable channels.
In the real world, this models that all messages that the adversary has already let through
will eventually be delivered, just what we expect if we consider sending messages over the net:
If the adversary explicitly let the message through (or he does not, or cannot, interrupt the
transmission) then the message will be delivered.

However, there is one more problem we have to take care of. Clearly, we cannot expect
the event to happen if the master scheduler or the honest user enter a final state too early.
Therefore, we assume that the master scheduler and the honest user run sufficiently long, i.e.,
we augment our definition of liveness configurations with lower bounds QX, QH on the number
of switching steps of the master scheduler and the honest user.

Definition 3.2 (Liveness Configuration) Let an arbitrary system Sys and four functions
tstop, J,QX, QH : N → N be given. Furthermore, let a configuration conf = (M̂ ,S , {H} ∪
{Xfair},A) ∈ Conf(Sys) be given where Xfair is a J-fair scheduler for (M̂ ,S ). We call this
configuration a (tstop, J , QX, QH)-liveness configuration if the following holds:



• The honest user H has special ports stopH!, stopH
⊳! which are connected to the adversary,

i.e., {stopH!, stopH
⊳!} ⊆ ports(H) and stopH? ∈ ports(A).

• The user H has an internal counter count over the naturals initialized with 0. The user
first increases this counter every time it switches, and then checks whether the counter
equals tstop (k). In this case it outputs (stop) at stopH!, 1 at stopH

⊳!. From now on, the
user only reads its inputs, but no longer produces outputs. Similarly, if the adversary gets
an input (stop) at stopH?, it only reads its inputs in the future without producing any
outputs.

• The user H does not output anything at stopH! except in the above case.

• The number of switching steps of the master scheduler and the honest user is lower-
bounded by QX(k) and QH(k), respectively, for every run of the configuration.

Liveness configurations will be denoted by conf live = (M̂ ,S , {H} ∪ {Xfair},A)
live and the set of

all liveness configurations of a system Sys by Conf live(Sys). ✸

Thus, for a given run r of a (tstop, J , QX, QH)-liveness configuration, we will not have any
further outputs of both the user and the adversary after the tstop(k)-th switching of the user.
We use this point in time to split the run into two parts, a prefix r≤i and a tail r>i , so that we
obtain r = r≤i ◦ r>i . The tail r>i is called the extended run or the run-empty phase.

We can now turn our attention to the actual definition of polynomial liveness.

Definition 3.3 (Polynomial Liveness Properties) A polynomial liveness property of a structure
(M̂ ,S ) ∈ Sys consists of three components:

1. First, we have an integrity property Req (i.e., the good event which we would like to
happen) which is represented as a function that assigns to each set S with (M̂ ,S ) ∈ Sys
a set of runs at the ports in S. Informally speaking, Req(S ) states which are the “good”
runs for the given structure (M̂ ,S ). More precisely, such a run is a sequence (vi)i∈I of
values over port names and Σ∗ with I = {1, . . . , l} for l ∈ N or I = N, i.e., sets of
port-value pairs so that vi is of the form vi :=

⋃
p∈S′{p : vp,i} for a subset S ′ ⊆ S and

vp,i ∈ Σ∗. For more details on how integrity properties are expressed and how they behave
under simulatability in the asynchronous case, we refer the reader to [3].

2. The second component {p1
⊳!, . . . , pn

⊳!} is a subset of the complement of the specified ports
of the structure, i.e., {p1

⊳!, . . . , pn
⊳!} ⊆ S c. It indicates which ports have to be scheduled

by the fair master scheduler such that the event Req will eventually happen.

3. The third component is a function ts : N → N. Intuitively, a system can only run empty
and finally fulfill the desired property if it has not yet run for too long. In this case, it
might exceed its runtime bounds during the extended run of the configuration before the
event Req occurs. Therefore, we have to bound the point in time at which the extended
run may begin. Obviously, the runtime of the system depends on the security parameter
k, so this bound is represented as a function of k, too.

Finally, a liveness property of a system Sys is a mapping

ϕSys : Sys → LiveProp

(M̂ ,S ) 7→ (Req , {p1
⊳!, . . . , pn

⊳!}, ts)(M̂ ,S)

that assigns each structure (M̂ ,S ) a liveness property which is defined on (M̂ ,S ). ✸



Remark 3.2. This definition might look surprising at first sight as the polynomial-time aspects
are somewhat missing. In particular, Req contains potentially arbitrarily long runs and basically
corresponds to runs of a general liveness property. However, the purpose of the polynomial
liveness property is only to list all “good” traces and define some technicalities. The polynomial-
time aspects and restrictions come mainly into play in the following definition of fulfillment.
◦

After introducing what polynomial liveness properties are, we have to define what it means
that a system fulfills them. Essentially, our subsequent definition states that a structure fulfills
the liveness property (Req , {p1

⊳!, . . . , pn
⊳!}, ts) if the following holds: If the ports {p1

⊳!, . . . , pn
⊳!}

are scheduled by a J-fair master scheduler for an arbitrary polynomial J , and if we do not
proceed too far in time (i.e., we only consider tstop-liveness configurations for tstop(k) < ts(k))
then there are polynomials QX, QH such that the event Req will happen within a polynomial
number of switching steps of the honest user.

This will be expressed by using prefixes of the whole run restricted to those ports that
connect to the honest user in the considered configuration, i.e., we write runconf ,k,l(k)⌈SH with

SH := {q ∈ S | qc ∈ ports(H)} and a polynomial l (cf. Definition 2.3). In slight abuse of
notation, we write Req(SH) instead of Req(S )⌈SH , i.e., we restrict the run to the ports in SH.

A system fulfills the overall liveness property if all of its structures fulfill their liveness
properties. Moreover, we will see that there are different grades of fulfillment. We distinguish
between perfect, statistical and computational fulfillment depending on whether the good event
will always happen, or only with overwhelming probability, i.e., the probability of failure should
be statistically small or negligible in polynomial-time configurations, respectively.

There is one more technicality that has to be taken care of. Consider a system that initially
needs several steps for distributing keys. Now an integrity property might state that certain
properties hold subject to the condition that the keys have already been distributed. However,
keeping the polynomials QH and QX small ensures that each run will always stop before the key
distribution can be completed, hence any system would then fulfill this property. Obviously,
a meaningful definition of liveness should exclude this. The solution is that both polynomials
have to be chosen large enough such that the integrity property indeed could be violated. For
an integrity property Req for a structure (M̂ ,S ), we hence define min(Req ,S ) := min(|I| | v =
(vi)i∈I ∧ v 6∈ Req(S )}, with vi as in Definition 3.3.

Definition 3.4 (Fulfillment of Polynomial Liveness) Let an arbitrary system Sys and a poly-
nomial liveness property ϕSys for Sys be given. Then a structure (M̂ ,S ) ∈ Sys fulfills its

polynomial liveness property LiveReq := (Req , {p1
⊳!, . . . , pn

⊳!}, ts) := ϕSys(M̂ ,S )

• perfectly ((M̂ ,S ) |=perf LiveReq) iff ∀ polynomials J, tstop with tstop < ts ∃ polynomi-
als QX, QH ≥ min(Req ,S ) such that for all (tstop, J , QX, QH)-liveness configurations
conflive = (M̂ ,S , {H}∪{Xfair},A)

live ∈ Conf live(Sys) with {p1
⊳!, . . . , pn

⊳!} ⊆ ports(Xfair) the
following holds: all QH(k)-prefixes of the restriction of the run to the ports in SH lie in
Req(SH). In formulas,

[(runconflive,k,QH(k)⌈SH)] ⊆ Req(SH)

for all k, where [·] denotes the carrier set of a probability distribution.

• statistically ((M̂ ,S ) |=SMALL LiveReq) iff ∀ polynomials J, tstop with tstop < ts ∃ polyno-
mials QX, QH ≥ min(Req ,S ) such that for all (tstop, J , QX, QH)-liveness configurations



conflive = (M̂ ,S , {H}∪{Xfair},A)
live ∈ Conf live(Sys) with {p1

⊳!, . . . , pn
⊳!} ⊆ ports(Xfair) the

following holds: the probability that Req(SH) is not fulfilled after QH(k) steps is small,
i.e.,

P (runconflive,k,QH(k)⌈SH 6∈ Req(SH)) ∈ SMALL.

The class SMALL must be closed under addition and making functions smaller.

• computationally ((M̂ ,S ) |=poly LiveReq) iff ∀ polynomials J, tstop with tstop(k) < ts(k)
∃ polynomials QX, QH ≥ min(Req ,S ) such that for all polynomial-time (tstop, J , QX,
QH)-liveness configurations with {p1

⊳!, . . . , pn
⊳!} ⊆ ports(Xfair) the following holds: The

probability, that Req(SH) is not fulfilled after QH(k) steps is negligible, i.e.,

P (runconflive,k,QH(k)⌈SH 6∈ Req(SH)) ∈ NEGL.

We write (M̂ ,S ) |= LiveReq if we want to treat all three cases together.
Finally, a system Sys fulfills a liveness property ϕSys perfectly, statistically, or computation-

ally iff each (M̂ ,S ) ∈ Sys fulfills ϕSys(M̂ ,S ) perfectly, statistically, or computationally. In this
case, we write Sys |=perf ϕSys , etc. ✸

Remark 3.3. Our definition of polynomial liveness (fulfillment) closely resembles the common
definition of liveness, i.e., for any finite run prefix r1 there exists an extended run r2 such
that r1 ◦ r2 is a valid run of the system. It should become clear if we ignore for a moment
the polynomials J , QX, and QH, which are technicalities necessary to deal with the underlying
system model, and focus on tstop(k). By all-quantifying over all tstop(k) and considering the
point in time when H sends (stop) to A, we consider all, in our case not only finite but also
polynomially-bounded, prefixes r1 . Similar to the common definition, our definition also guar-
antees valid runs by requiring that r1 ◦ r2 must be contained in Req(SH) for all extended runs
r2 . ◦

Remark 3.4. Our definition requires that a user will never be able to produce any outputs
again after exceeding the time tstop(k). In real life, the user will usually resume outputting
messages after the good event has happened, e.g., to send reply-messages. Our definitions
could be modified such that both the honest user and the adversary are “switched on” again
after the good event has happened. However, on the one hand, this task is tedious because it
significantly complicates our definitions and the preservation theorem of Section 4. On the other
hand, this extension is also not really necessary. The “run-empty” phase is a conceptual artifact
to express that at any given point in time t (the point H sends (stop)), the good events could
happen eventually when progress can be guaranteed, e.g., the network schedules fairly. Insofar,
it looks rather unnatural to “switch-on” adversaries and users afterwards. Furthermore, our
model already covers “continuous liveness” implicitly. Take a particular liveness configuration
where we show that the good thing has happened after a trigger at time tstop(k) and where
we would desire a service resumption, e.g., for a reply. There will be another similar liveness
configuration which differs only as follows: (1) tstop(k) is replaced by a larger t′stop(k); (2) H

does not send (stop) at time tstop(k) but H (and A) behave like (stop) would have been sent
until the good thing has happened; (3) From then on A behave arbitrarily awaiting the real
(stop), and H restarts its activity, e.g., by sending a reply, and eventually at time t′stop(k) sends
the real tstop(k). Clearly, this configuration provides exactly the extended service, i.e, sending
a reply. Furthermore, by essentially all-quantifying over all H, A and tstop(k), our definition
should also guarantee that our system provides liveness in delivering the reply. ◦



4 Preservation of Polynomial Liveness under Simulatability

In this section, we show that our definition of polynomial liveness behaves well under simu-
latability under certain circumstances. Usually, defining a cryptographic system starts with an
abstract specification stating what the system should do. After that, this specification can be
refined stepwise with respect to simulatability, which finally yields a secure implementation.
Such a specification is usually monolithic, i.e., it consists of only one idealized machine which
does not contain any probabilism and has the desired properties by construction. Thus, it can
be validated by formal proof systems, at least if is not too complex. At this time, we may
wonder whether or not the verification of these properties made for the ideal specification car-
ries over to the concrete implementation. This is essential for modular proofs. We can answer
this question in the affirmative under reasonable assumptions yielding the preservation theorem
presented below.

In the following, we assume two systems Sys1, Sys2 to be given, such that Sys1 ≥f Sys2
holds for a valid mapping f . Moreover, we assume that Sys2 fulfills an arbitrary liveness
property ϕSys2

. Unfortunately, we cannot expect the liveness property to automatically carry
over to Sys1 if both systems are completely unrestricted. Let us assume that we are given
a valid (tstop,·,·,·)-liveness configuration1 conf live1 ∈ Conf live(Sys1). Therefore, there has to be
an indistinguishable configuration conf 2 ∈ Conf(Sys2) because of Sys1 ≥f Sys2. However,
it is clear that conf 2 is not necessarily a (tstop,·,·,·)-liveness configurations again, since the
adversary is not forced to stop outputting messages at that particular point in time; in fact, he
is not forced to do so at all. Given this observation, we have to restrict our attention to those
systems in which simulatability respects (tstop,·,·,·)-liveness configurations, i.e., simulatability
yields indistinguishable (tstop,·,·,·)-liveness configurations by construction. We speak of liveness
simulatability in this case.

At first glance, this seems to be a quite severe restriction to the considered set of possible
systems. However, indistinguishable configurations are typically derived using the simulatabil-
ity variant of blackbox simulatability. This means that the adversary A′ of the indistinguishable
configuration is derived by the original adversary A and a simulator Sim which is inserted be-
tween the original adversary and the system. This does not change the communication between
A and the honest user, so A′ handles incoming (stop)-signals just as the original adversary A.
Moreover, the machine Sim usually only transmits values from the adversary to the system
and vice versa; especially it does not produce any outputs alone by itself. Thus, the complete
adversary A′, i.e., A and Sim, will not produce outputs any further if the original adversary
does not, yielding the desired liveness configuration. Our example of Section 5 belongs to that
kind of system. All other examples which have been proved so far, e.g., secure channels [12],
fair exchange protocols [39], and secure group key exchange [40], belong to that kind of system
as well. Formally, liveness simulatability is introduced as follows.

Definition 4.1 (Liveness Simulatability) Let two arbitrary systems Sys1 and Sys2 be given
such that Sys1 ≥

f Sys2 holds for a valid mapping f . We then call Sys1 “at least as secure as”
Sys2 “with respect to liveness” (written Sys1 ≥f,live Sys2) if the following holds: For a given
(tstop, J , QX, QH)-liveness configuration conf live1 = (M̂1,S1, {H}∪{Xfair},A1)

live ∈ Conf live(Sys1)
there exists a (tstop, J , QX, QH)-liveness configuration conf live2 = (M̂2,S2, {H}∪{Xfair},A2)

live ∈

1As the last three parameters are of no importance in this discussion, we omit them here. Furthermore, note
that all parameters of a liveness configuration must remain unchanged under simulatability since they are part
of the honest user.



Conf live(Sys2) yielding indistinguishable views for the honest user. As usual, we distinguish
between perfect, statistical, and computational indistinguishability. ✸

We will now show that liveness properties automatically carry over in case of liveness simulata-
bility. Before we turn our attention to the actual preservation theorem, we state the following
well-known lemma which we will need during the theorem’s proof.

Lemma 4.1 The statistical distance ∆(φ(vark), φ(var
′
k)) for any function φ of random variables

is at most ∆(vark, var
′
k). ✷

Theorem 4.1 (Preservation of Polynomial Liveness) Let an arbitrary system Sys2 and
a polynomial liveness property ϕSys

2
be given such that Sys2 |= ϕSys

2
holds. Furthermore, let a

system Sys1 and a valid mapping f be given with Sys1 ≥f,live Sys2. Then Sys1 |= ϕSys
1
for all

ϕSys1
with ϕSys1

(M̂1,S1) := ϕSys2
(M̂2,S2) for an arbitrary structure (M̂2,S2) ∈ f(M̂1,S1).

This holds in the perfect case and in the statistical case. It holds in the computational case
if additionally, membership in Req(S ) is decidable in polynomial time for all S . ✷

Proof. At first, we show that ϕSys
1
is a well-defined liveness property for Sys1. Let an arbitrary

structure (M̂1,S1) ∈ Sys1 be given. Simulatability implies that for every structure (M̂1,S1) ∈
Sys1 there exists (M̂2,S2) ∈ f(M̂1,S1). ϕSys2

is a well-defined liveness property for Sys2, so

ϕSys
2
(M̂2,S2) =: (Req , {p1

⊳!, . . . , pn
⊳!}, ts) is a liveness property for (M̂2,S2). By the definition

of valid mappings, we have S1 = S2, so the integrity requirement Req is well-defined on (M̂1,S1).
Moreover, we have {p1

⊳!, . . . , pn
⊳!} ⊆ S c

1 if and only if {p1
⊳!, . . . , pn

⊳!} ⊆ S c
2 . Therefore, the

liveness property ϕSys1
(M̂1,S1) is defined on the structure (M̂1,S1), so ϕSys1

is a well-defined
liveness property of Sys1. We now have to show that Sys1 fulfills ϕSys1

. The actual proof will
be done by contradiction, i.e., we will show that if Sys1 did not fulfill the liveness property, the
two systems could be distinguished.

Assume that Sys1 does not fulfill its liveness property. Thus, there exist polynomials J, tstop
with tstop < ts such that for every polynomials QX, QH ≥ min(Req ,S1) there exists a (tstop,
J , QX, QH)-liveness configuration conf live1 so that the good event does not occur within QH(k)
switching steps of the honest user. Because of Sys1 ≥f,live Sys2 there is a (tstop, J , QX, QH)-
liveness configuration conf live2 = (M̂2,S2, {H} ∪ {Xfair},A2)

live ∈ Conf live(Sys2) for (M̂2,S2) ∈
f(M̂1,S1) such that

viewconf live
1

({H} ∪ {Xfair}) ≈ viewconf live
2

({H} ∪ {Xfair})

holds. For the sake of readability we abbreviate {H}∪{Xfair} by H′ and set S := S1 := S2. Since
H is a submachine of H′, we can apply Lemma 4.1 which yields viewconf live

1

(H) ≈ viewconf live
2

(H).

Moreover, the view of H in both configurations contains the run at SH, i.e., the run is a function
of the view, so we finally obtain

runconf live
1

⌈SH≈ runconf live
2

⌈SH .

As usual we have to distinguish between the perfect, statistical and computational case. In the
computational case, both configurations have to be polynomial-time.

In the perfect case we have viewconf live
1

(H′) = viewconf live
2

(H′) because of Sys1 ≥f,live,perf

Sys2, i.e., the distributions of the views are identical which yields runconf live
1

⌈SH= runconf live
2

⌈SH .



Because of (M̂2,S2) |=perf (Req , {p1
⊳!, . . . , pn

⊳!}, ts), there exist two polynomials Q′
X, Q′

H ≥
min(Req ,S ) such that

[(runconf live
2

,k,Q′

H
(k)⌈SH)] ⊆ Req(SH)

holds for every (tstop, J , Q′
X, Q′

H)-liveness configuration conf live2 . Thus, for every given
(tstop, J , Q

′
X, Q

′
H)-liveness configuration conf live1 , we have an indistinguishable (tstop, J , Q

′
X,

Q′
H)-liveness configuration conf live2 of (M̂2,S2) with the above property. Assume now that

(M̂1,S1) does not fulfill (Req , {p1
⊳!, . . . , pn

⊳!}, ts). This immediately contradicts the assump-
tion that [(runconf live

1
,k,Q′

H
(k)⌈SH)] 6⊆ Req(SH) while [(runconf live

2
,k,Q′

H
(k)⌈SH)] ⊆ Req(SH), since

runconf live
1

⌈SH= runconf live
2

⌈SH holds.

In the statistical case, we have viewconf live
1

(H′) ≈SMALL viewconf live
2

(H′), which again

yields runconf live
1

⌈SH ≈SMALL runconf live
2

⌈SH . Thus, the statistical distance ∆(runconf live
1

,k,l(k)⌈SH ,

runconf live
2

,k,l(k)⌈SH) is a function g(k) ∈ SMALL for all polynomials l. We apply Lemma 4.1 to
the characteristic function 1v⌈

SH 6∈Req(SH) on such views v. This gives

|P (runconf live
1

,k,l(k)⌈SH 6∈ Req(SH))

− P (runconf live
2

,k,l(k)⌈SH 6∈ Req(SH))|

≤ g(k).

for every polynomial l. If we use the above inequality with l := Q′
H we obtain

|P (runconf live
1

,k,Q′

H
(k)⌈SH 6∈ Req(SH))

− P (runconf live
2

,k,Q′

H
(k)⌈SH 6∈ Req(SH))|

≤ g(k).

As SMALL is closed under addition and under making functions smaller, this gives the desired
contradiction.

In the computational case, we define a distinguisher Dis as follows: Given a view of machine
H, it extracts the Q′

H(k) prefix of the user’s view restricted to SH and verifies if the result
lies in Req(SH). If yes, it outputs 0, otherwise 1. This distinguisher is polynomial-time (in the
security parameter k) because the view of H is of polynomial length, and membership in Req(S )
(and therefore also in Req(SH)) was required to be polynomial-time decidable. Its advantage
in distinguishing is

|P (Dis(1k, viewconf live
1

,k) = 1)

− P (Dis(1k, viewconf live
2

,k) = 1)|

= |P (runconf live
1

,k,Q′

H
(k)⌈SH 6∈ Req(SH))

− P (runconf live
2

,k,Q′

H
(k)⌈SH 6∈ Req(SH))|.

If this difference were negligible, then the first term would have to be negligible because the
second term is and NEGL is closed under addition. Again this is the desired contradiction.

5 An Example: Secure Message Transmission with Reliable

Channels

In the following, we present a specification for secure message transmission with reliable chan-
nels. Here, reliability is considered as a liveness property which the system will be proved to



fulfill. Moreover, we present a secure implementation.
We start with a brief review on standard cryptographic systems and composition (cf. [42]

for more details). We model the real life by assigning to every user u a single machine Mu and
assume this machine to be correct if and only if the user is honest. The machine Mu of user u
has special ports inu? and outu ! for connecting to the user u. A standard cryptographic system
Sys can now be derived by a trust model. The trust model consists of an access structure ACC
and a channel model χ. If n denotes the number of all participants, then ACC is a set of subsets
H ⊆ {1, . . . , n} denoting the possible sets of correct machines. For each set H there will be
exactly one structure consisting of the machines belonging to the set H. The channel model
classifies every connection as either secure (private and authentic), authenticated, or insecure
and derives the correspondent network connectivity. These changes can easily be done via port
renaming and duplication (cf. [42]).

For a fixed set H and a fixed channel model we obtain modified machines for every machine
Mu which we refer to as Mu,H. We denote the set of them by M̂H (i.e., M̂H := {Mu,H | u ∈ H}),

so real systems are given by Sys real = {(M̂H,SH) | H ∈ ACC}. Ideal systems typically are of
the form Sys id = {({THH},SH) | H ∈ ACC} with the same sets SH as in the corresponding real
system Sysreal. The machine THH is called trusted host.

After this brief review we can turn our attention to the actual system. Both the ideal and
real system are based on the systems for secure message transmission introduced in [42] that
we will modify to fit our requirements.

5.1 The Ideal System

We start with a brief description of the ideal system for secure message transmission. The sys-
tem is of the typical form Sys id = {({THH},SH)|H ∈ ACC}, ACC is the powerset of {1, . . . , n}.
The system is illustrated in the upper part of Figure 3. The ideal machine THH models initial-
ization, sending and receiving of messages. A user u can initialize communications with other
users by inputting a command of the form (snd init) to the port inu? of THH. In real systems,
initialization corresponds to key generation and authenticated key exchange. Sending of mes-
sages to a user v is triggered by a command (send,m, v). If v is honest, the message is stored in
an internal array of THH and a command (send blindly, i, l, v) is output to the adversary, l and
i denote the length of the message m and its position in the array, respectively. This models
that the adversary will see that a message has been sent and he might also be able to know
the length of that message. The authors speak of tolerable imperfections that are explicitly
granted to the adversary. Because of the underlying asynchronous timing model, THH has to
wait for a special term (receive blindly, u, i) or (rec init, u) sent by the adversary signaling that
the i-th stored message sent by u to v should be delivered or that a channel between u and v
should be initialized, respectively. The user v will receive inputs of the form (receive, u,m) and
(rec init, u), respectively. If v is dishonest, THH will simply output (send,m, v) to the adversary.
Finally, the adversary can send a message m to a user v by sending a command (receive, u,m)
to the port from advv? of THH for a corrupted user v, and he can also stop the machine of
any user by sending a command (stop)2 to a corresponding port of THH which corresponds to
exceeding the machine’s runtime bounds in the real world.

Necessary Modification of the System. Roughly speaking, we model reliable channels by
providing the trusted host with additional self-loop channels relu,v , modeling the “reliable net”

2Note that this stop is completely unrelated to the stop which a H contained in a liveness configuration sends
to A after tstop(k) scheduling steps!
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Figure 3: Transformation of ideal system Sys id into modified system Sys relid . (Exemplarily, we
only consider one self-loop port relu,v , and we sketched that this port is scheduled by the master
scheduler Xfair.)



in the real world. This is illustrated in the lower part of Figure 3.
More precisely, we assume a set IH ⊆ H2 of pairs of users where (u, v) ∈ IH states that

there is a reliable channel for sending messages from user u to user v. Note, that we do not
restrict ourselves to a symmetric relation IH.

Coming back to our specification, we model reliable channels for every pair (u, v) ∈ IH
by providing the trusted host with additional self-loop channels {relu,v !, relu,v?} ⊆ ports(THH).
The corresponding clock port relu,v

⊳! remains free at first; it will later be connected to the fair
master scheduler to achieve the desired liveness property. If now user u sends a message to user
v, THH outputs this message at relu,v !. This might also be an initialization command, since its
corresponding part in the real world is key exchange which obviously requires sending the keys
to user v. Moreover, the (blinded) message is additionally output to the adversary as usual. By
now, the blinded message resides in the self-loop channel buffer and waits to be scheduled. If
it is eventually scheduled by the master scheduler, the trusted host outputs the message to its
recipient. Intuitively, we can expect some kind of liveness property, since all of these messages
contained in the self-loops will eventually be delivered, at least if the master scheduler is fair
and runs sufficiently long.

After presenting the main ideas, we can now turn our attention to the actual modifications
of the system. Let n ∈ N and M := {1, . . . , n} denote the number of participants and the set
of indices, respectively. Throughout the following, let an arbitrary H ∈ ACC together with the
set IH be given. As we already stated above, the standard trusted host THH mainly has to
be modified in the “send message” and “send initialization” transitions. Moreover, we have to
define what THH does if it receives an input at one of the special new ports relu,v? yielding the
following modifications:

• If THH receives an input (snd init) at port inu?, it additionally outputs (snd init) at relu,v !
for all v with (u, v) ∈ IH. However, it still schedules the output intended for the adversary.

• If THH receives an input (send,m, v) at port inu?, it checks whether (u, v) ∈ IH. In this
case it additionally outputs (send blindly, i, l, v) at relu,v !, but it still schedules the output
intended for the adversary.

• If THH receives an input (snd init) at relu,v? it does the same checks as in the “receive-
initialization” stage (the adversary tries to schedule the keys), i.e., it checks that the
machine of user v has not been stopped so far, that the connection has already been
initialized and so on. If all these checks succeed, it outputs (rec init, u) at outv !.

• If THH receives an input (send blindly, i, l, v) at relu,v?, it acts similarly as in the above
case, i.e., it performs the test of the “receive-message” stage, and if all tests succeed it
outputs (receive, u,m) at outv !.

After this rather informal definition which we hope to increase basic understanding, we now
rigorously define our system. After that, we briefly sketch the concrete implementation for
secure message transmission along with the necessary modification to preserve the “at least as
secure as” relation.

Scheme 5.1 (Reliable Secure Message Transmission) Let n ∈ N, a finite index set Σ,
and a polynomial L ∈ N[x] be given. L(k) bounds the length of the messages for the security
parameter k. Let M := {1, . . . , n} denote the set of possible participants, and let the access
structure ACC be the powerset of M. Moreover, let a family of sets (IH)H∈ACC be given such



that IH ⊆ H × H. Our specification for secure message transmission with reliable channels is
now a standard ideal system

Sys relid = {({THH},SH) | H ∈ ACC}.

As in the standard definition, we have S c
H ⊇ {inu !, outu?, inu

⊳! | u ∈ H}, but additionally, there
are specified ports relu,v

⊳! for every pair (u, v) ∈ IH. Thus, we obtain

S c
H = {inu !, outu?, inu

⊳! | u ∈ H}

∪ {relu,v
⊳! | (u, v) ∈ IH}.

The machine THH is defined as follows. When H is clear from the context, let A := M \ H
denote the indices of corrupted machines. The ports of THH are {inu?, outu !, outu

⊳! | u ∈ H} ∪
{relu,v !, relu,v? | (u, v) ∈ IH} ∪ {from advu?, to advu !, to advu

⊳! | u ∈ H}.
Internally, THH maintains arrays (init∗u,v)u,v∈M and (stopped ∗

u)u∈M over {0, 1}, both ini-
tialized with 0 everywhere, and an array (deliver ∗u,v)u,v∈M of lists, all initially empty. The
state-transition function of THH is defined by the following rules, written in a pseudo-code
language. For the sake of readability, we exemplarily annotate the first part of the definition,
the “send initialization” transition, i.e., key generation in the real world.

Initialization.

• Send initialization: Assume, that the user u wants to generate its encryption and
signature keys and distribute the corresponding public keys over authenticated channels.
He can do so by sending a command (snd init) to THH. Now, the system checks that the
user’s machine itself has not reached its runtime bound (i.e., it has not been stopped),
and that no key generation of this user has already occurred in the past. These two
checks correspond to stopped ∗

u = 0, and init∗u,u = 0, respectively. If both checks hold, the
keys are distributed over authenticated channels, modeled by an output (snd init) to the
adversary. After receiving this command, the adversary can decide whether it schedules
the keys immediately, later on, or even leave them on the channels forever. Moreover,
the keys are additionally sent over all reliable channels relu,v for (u, v) ∈ IH. In our
pseudo-code language this is expressed as follows:

On input (snd init) at inu?: If stopped ∗
u = 0 and init∗u,u = 0, set init∗u,u := 1. After that,

output (snd init) at relu,v ! for every (u, v) ∈ IH, (snd init) at to advu !, and 1 at to advu
⊳!.

• Receive initialization. On input (rec init, u) at from advv? with u ∈ M, v ∈ H or
(snd init) at relu,v?: If stopped ∗

v = 0 and init∗u,v = 0 and [u ∈ H ⇒ init∗u,u = 1], set
init∗u,v := 1 and output (rec init, u) at outv !.

Sending and receiving messages.

• Send. On input (send,m, v) at inu? with m ∈ Σ+, l := len(m) ≤ L(k), and v ∈ M\ {u}:
If stopped ∗

u = 0, init∗u,u = 1, and init∗v,u = 1: If v ∈ A then { output (send,m, v)
at to advu ! } else { i := size(deliver ∗u,v) + 1; deliver∗u,v[i] := m. If (u, v) ∈ IH it outputs
(send blindly, i, l, v) at relu,v !, (send blindly, i, l, v) at to advu ! and 1 at to advu

⊳!. Otherwise
it outputs (send blindly, i, l, v) at to advu !, 1 at to advu

⊳!. }.



• Receive from honest party u. On input (receive blindly, u, i) at from advv? with u, v ∈
H, i ∈ N or (send blindly, i, l, v) at relu,v?: If stopped ∗

v = 0, init∗v,v = 1, init∗u,v = 1, and
m := deliver∗u,v[i] 6= ↓, then output (receive, u,m) at outv !.

• Receive from dishonest party u. On input (receive, u,m) at from advv? with u ∈ A,
m ∈ Σ+, len(m) ≤ L(k), and v ∈ H: If stopped ∗

v = 0, init∗v,v = 1 and init∗u,v = 1, output
(receive, u,m) at outv !.

• Stop. On input (stop) at from advu? with u ∈ H, set stopped ∗
u = 1 and output (stop) at

outu !.

✸

After presenting the abstract specification, we now briefly sketch the concrete implementation
for secure message transmission, and the necessary modifications to preserve the “at least as
secure as” relation.

5.2 The Real System

To understand the following reasoning, it is sufficient to give a brief review of Sys real. The
system is a standard cryptographic system of the form Sys real = {(M̂H,SH) | H ∈ ACC}. ACC
is the powerset of M, i.e., any subset of participants may be dishonest. It uses asymmetric
encryption and digital signatures as cryptographic primitives. A user u can let his machine
create signature and encryption keys that are sent to other users over authenticated channels
autu,v . Furthermore, messages sent from user u to user v will be signed and encrypted by Mu

and sent to Mv over an insecure channel netu,v , representing the net in the real world. The
adversary is able to schedule the communication between the users, and he can furthermore
send arbitrary messages m to arbitrary users u for a dishonest sender v.

We now have to implement the modification of the ideal system in our concrete implementa-
tion. This can simply be achieved by providing additional channels between every pair (Mu,Mv)
of machines with (u, v) ∈ IH, and let the master scheduler schedule them. Now the machine
Mu behaves just as THH does, i.e., it additionally sends messages over these reliable channels.
Obviously, these channels precisely correspond to the channels relu,v of the ideal specification, so
both system still provide the same functional behavior for their environment, i.e., for the honest
user and the adversary. It would even be closer to the real world if we distinguished between
reliable authentic channels for initialization commands and reliable but non-authentic channels
for usual message transmission. We already succeeded in this task, cf. [3], but we omit it here
since quite a lot preparatory work (e.g, a new channel type representing reliable non-authentic
channels) is additionally needed for that. We will denote the modified real system by Sys relreal.

Moreover, if we take a look at the security proof of [42] we can see that the concrete
implementation is derived using blackbox simulatability of the right form (see Section 4), so
our preservation theorem can be applied. Looking at the proof, it is immediately obvious that
this still holds for our modified systems.

5.3 Proof of Liveness

After introducing the specification, we now want to show that it in fact fulfills the desired
liveness property, i.e., that messages sent by the honest user over reliable channels will eventually
be received unless some internal checks of THH fail (e.g., the user has not initialized itself, its
machine has been stopped, etc.).



If there exists l1, l2 ∈ N, such that

{inu !
c : (snd init), inu

⊳!c : 1} ⊆ rl1 # Key generation of u in rl1
{inv !

c : (snd init), inv
⊳!c : 1} ⊆ rl2 # Key generation of v in rl2

and l3 > l1, l4 > l2 such that

(outv?
c : (rec init, u)) ∈ rl3 # Connection established from u to v in rl3

(outu?
c : (rec init, v)) ∈ rl4 # Connection established from v to u in rl4

then the following must hold. At first, set l := max{l3, l4}. Then for every t ∈ N,

{inu !
c : (send,m, v), inu

⊳!c : 1} ⊆ rt # If u sends and schedules a message m to v

∧ t > l # after the connection has been established

∧m ∈ Σ+ ∧ len(m) < L(k) # and the message is valid

∧ ∀t1 < t : (outu?
c : (stop)) 6∈ rt1 # and the sender’s machine is not stopped

=⇒ # then(
∃t2 ∈ N : (outv?

c : (stop)) ∈ rt2 # the receiver’s machine is either stopped

∨ ∃t3 > t : # or there is a future time t3 such that

(outv?
c : (receive, u,m)) ∈ rt3

)
# the message m will be delivered in rt3

Figure 4: The formula for Req(SH).

At first, we have to rigorously define the liveness property ϕSys relid
. Let an arbitrary structure

({THH},SH) ∈ Sys relid be given. Then the three components of ϕSys relid
({THH},SH) are defined

as follows.

• Its first component, the integrity requirement Req , is defined as follows. Consider two
users u, v, u 6= v such that (u, v) ∈ IH. Informally, a run is contained in the requirement
if the following holds: if both users u and v have established a connection (i.e., they
have initialized themselves, and both users have received the corresponding keys), and
the user u has not been stopped so far, then a valid message sent from u to v will either
be eventually delivered, or the recipient v has been or will be stopped.

Formally, this is captured as follows. As usual, the lth step of the run r is denoted by
rl. For the considered set SH of specified ports, we define that a run r of an arbitrary
configuration is contained in Req(SH) if the formula of Figure 4 holds.

• Secondly, we have to specify the set of ports that should be scheduled by the fair master
scheduler. For a given set SH, we define this set to be {relu,v

⊳! | (u, v) ∈ IH}.

• At last, the function ts can be chosen arbitrarily as long as it is bounded by a polynomial,
i.e., ts(k) ∈ O(kc) for a natural number c.

We can now state our main theorem.

Theorem 5.1 The system Sys relid fulfills the polynomial liveness property ϕSysrelid
perfectly, i.e.,

in formulas Sys relid |=perf ϕSysrelid
. ✷



Proof. Let an arbitrary structure ({THH},SH) ∈ Sys relid , arbitrary polynomials J, tstop with
tstop < ts be given. Note that min(Req ,SH) is constant since there exists a sequence of length five
which is not contained in Req(SH). (Four steps are needed for key generation and distribution,
the last step contains a send-command for a valid message.) We then define QX(k) := QH(k) :=
tstop(k) + J(k) · kx + min(Req ,SH). Now, let conf live = ({THH},SH, {H} ∪ {Xfair},A)

live ∈
Conf live(Sys relid ) denote an arbitrary (tstop, J , QX, QH)-liveness configuration. We have to show
that all QH(k) prefixes of the restriction of the run to the ports SH

H lie in Req(SH
H).

In our particular case, this means the following: let an arbitrary pair (u, v) ∈ IH be given,
and assume that the preconditions of Req(SH) are fulfilled, i.e., both users u and v have ini-
tialized themselves and a connection has been established between them at time l. Now, user
u sends a command (send,m, v) at THH at time t > l and schedules it. Moreover, the message
is valid and the machine of user u has not been stopped so far.

If we take a look at the “send” transition of the machine THH, we can see that all of its
internal checks will succeed by our above preconditions. Thus, it will output (send blindly, i, l, v)
at relu,v !. By construction of THH it only outputs anything at relu,v ! if it obtains inputs of the
form (snd init) or (send, ·, v) at inu?. Since these inputs must come from the user u and the
overall honest user H will stop outputting messages after its tstop(k)-th switching step, there

can be at most tstop(k) messages stored in the buffer r̃elu,v . By precondition, the function ts
(as a function of k) is bounded by kx for a natural number x, so tstop(k) < ts(k) implies that

the number of messages stored in r̃elu,v is also bounded by kx.
We now distinguish two cases. First, let us assume that the user v is stopped before the

overall user H stops outputting messages, i.e., before the run-empty phase begins. In this
case, THH will output a command (stop) at outv ! and schedule it by construction, so we have
(outv?

c : (stop)) ∈ rt2 for one particular t2 ∈ N. Hence, the requirement is fulfilled in this case,
even before the run-empty phase begins. Second, let us assume that the machine of v has not
been stopped before the run-empty phase begins. Since the adversary does not produce outputs
any further, and THH may only stop a machine after it has been scheduled by the adversary,
the machine of v will not be stopped during the whole run. In this case, we have to prove that
the message m will in fact be delivered.

As we already stated above, the desired message m (more precisely, the term

(send blindly, i, l, v), which corresponds to m) has been stored in the buffer r̃elu,v . Moreover, this
buffer can contain at most a polynomial number of messages (bounded by kx). By precondition,
the master scheduler Xfair is J-fair, hence it schedules the first message of every of its connected
buffers again and again, each one always after at most J(k) steps. Since relu,v

⊳! ∈ ports(Xfair)

holds by assumption, the buffer r̃elu,v has to be scheduled after at most J(k) switching steps of
Xfair, so the term (send blindly, i, l, v) will be scheduled after at most J(k) · kx switching steps
of Xfair. If we now take a closer look at the behavior of THH in this case, we will see that all
internal checks will succeed by assumption (the user v is initialized, a connection is established,
its machine has not been stopped, and the message m has been stored in deliver∗u,v [i] before).
Thus, THH outputs (receive, u,m) at outv !, so we have (outv?

c : (receive, u,m)) ∈ rt3 for one
particular time t3 > t. Note that our choice of QX and QH additionally ensures that both Xfair

and H run sufficiently long for this event to happen.
Now, we are almost finished. The only thing left to show is that this input occurs after a

polynomial number of switching steps of the user ; by now we only showed that it will happen
after a polynomial number of switching steps of the master scheduler. However, since the user
H does not produce any outputs any further, the master scheduler will always be scheduled
immediately after the honest user. Thus, the number of switching steps the honest user can



perform in the run-empty phase is bounded by the number of switching steps of Xfair. Therefore,
the message will be received after at most J(k) ·kx switching steps of the honest users, counted
from the beginning of the run-empty phase, i.e., after at most tstop(k)+J(k) ·kx ≤ QH switching
steps in total, which finishes the proof.

After proving the liveness property for the ideal specification, we now concentrate on the con-
crete implementation.

Theorem 5.2 The real system Sys relreal fulfills the polynomial liveness property ϕSys relreal
compu-

tationally, with ϕSys relreal
given as in Theorem 4.1. In formulas, Sys relreal |=

poly ϕSys relreal
. ✷

Proof. Naturally, perfect fulfillment of polynomial liveness implies fulfillment in the computa-
tional case. Thus, using Theorem 5.1, we know that Sys idrel |=

poly ϕSys idrel
. As we already stated

above, the concrete implementation is at least as secure as the abstract specification with re-
spect to liveness in the computational case, i.e., Sysrelreal ≥

f,live,poly Sys relid . Now the claim follows
with Theorem 4.1.

6 Summary

We have presented the first general definition of polynomial fairness and polynomial liveness
in asynchronous reactive systems. We considered three grades of fulfilling a given polynomial
liveness property: perfect (denoting usual fulfillment), statistical (denoting fulfillment up to a
statistically small error probability) and computational (denoting fulfillment up to a negligible
error probability, if all machines have polynomial runtime). Especially the computational case
is essential to cope with real cryptography, since usually we can only ensure that good things
happen if the underlying cryptographic primitives have not been broken, which might happen
with negligible probability. Our approach might help to make the important concept of liveness
better accessible for systems involving real cryptographic primitives. We have shown that
polynomial liveness properties behave well under simulatability under certain conditions which
enables step-wise refinement and modular proofs. Moreover, properties of abstract specifications
can be validated by formal proof tools more easily than concrete implementations, although the
polynomial-time limits ts and J might make that more complicated for polynomial liveness than
it is for safety properties. As an example fitting our definition, we have presented a specification
of secure message transmission with reliable channels. Here, reliability is considered as the
desired liveness property, and we have shown that the abstract specification in fact fulfills this
property. Moreover, we have presented a concrete implementation, and, using our preservation
theorem of the previous section, we have concluded that the implementation also fulfills this
liveness property.

The concrete protocol considered in this paper was rather simple. On the long run, we
might aim at proving polynomial liveness for more complex protocols, mainly focusing on those
protocols which are in fact used in practice. Furthermore, so far our definitions are based on
strict polynomial-time algorithms as used in the underlying system model [42]. As a number
of problems, e.g., the reliable asynchronous broadcast considered in [28], admit only expected
polynomial-time solutions, it is an interesting avenue of future research to extend the underlying
system model to expected polynomial-time algorithms and verify whether our liveness definition
applies also there.
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