
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s Thesis

Rational File Sharing

submitted by

Anton Krohmer

on September 4, 2009

Supervisor

Prof. Dr. Michael Backes

Advisor

M. Sc. Oana–Mădălina Ciobotaru

Reviewers

Prof. Dr. Michael Backes
Dr. Dominique Unruh

Affidavit

I hereby declare that this bachelor’s thesis has been written only by the undersigned and
without any assistance from third parties. Furthermore I confirm that no sources have
been used in the preparation of this thesis other than those indicated in the thesis itself.

Declaration of Consent

Herewith I agree that this thesis will be made available through the library of the Com-
puter Science Department. This consent explicitly includes both the printed, as well as
the electronic form attached to this thesis. I confirm that the electronic and the printed
version are of identical content.

Saarbrücken, September 3, 2009

(Date) (Signature)

2

Acknowledgement

I am deeply grateful to Prof. Dr. Michael Backes, for offering me such an interesting
research topic and for his support during the writing of the thesis. Not to mention the
great lectures and seminars he gave, as those were one main reason why I got interested
in cryptography.

I sincerely thank my advisor, Oana Ciobotaru, for her continuous support during
the writing. She helped me evaluating my ideas and writing the thesis. Moreover, she
proofread the thesis countless times and gave me great feedback such that I always knew
where I was standing.

I also thank Ole Rehmsen and Radu Curticapean, my friends and fellow students, for
proofreading my thesis, and Hendrik Molter for our fruitful discussions and his design
for a logo.

Further on, I would like to thank a few people who had indirect impact on this thesis.
First, I express my deepest gratitude to my family who always supported me morally as
well as financially. Then, I am thankful to all of my friends who made life worthwhile
during my studies.

Finally, I owe special thanks to Lydia Weißbach, who encouraged and supported me
throughout my whole bachelor studies. Her help I always greatly appreciated.

Danksagung

Ich bin Prof. Dr. Michael Backes zutiefst dankbar für das interessante Forschungsthema,
an welchem ich arbeiten durfte, und für seine Hilfe während ich die Bachelorarbeit
schrieb. Ich bin ihm aber auch für die großartigen Vorlesungen und Seminare, welche er
anbot, dankbar, da sie mein Interesse in Cryptography geweckt haben.

Ich danke aufrichtig meiner Betreuerin, Oana Ciobotaru, für ihre anhaltende Unter-
stützung während des Schreibens. Sie half mir, meine Ideen auszuwerten und auf Papier
zu bringen. Außerdem las sie unzählige Male Korrektur und gab mir Rückmeldung was
noch zu erledigen war.

Ich danke außerdem Ole Rehmsen und Radu Curticapean, meinen Freunden und
Kommilitonen, für das Korrekturlesen der Bachelorarbeit, und Hendrik Molter für die
interessanten Diskussionen und sein Design für ein Logo.

Ich möchte weiterhin noch einigen Leuten danken, welche nur indirekt zu dieser
Bachelorarbeit beitrugen. Zuerst möchte ich besonderen Dank gegenüber meiner Familie
ausdrücken, welche mich stets moralisch und finanziell unterstützt hat. Des weiteren bin
ich allen meinen Freunden dankbar, die während dem Studium das Leben lebenswert
gemacht haben.

Schlussendlich möchte ich Lydia Weißbach besonders danken, da sie mich während
des Studiums immer ermutigt und unterstützt hat. Ihre Hilfe habe ich sehr geschätzt.

4

Abstract

Although BitTorrent is a commonly used peer-to-peer file
sharing protocol, it can be easily cheated. We construct
“RatFish”, a new file sharing protocol for rational users
who try to maximize download speed while uploading as
little as possible. We use cryptographic primitves for
building incentives for users to follow the protocol and
we prove rational users cannot cheat. Threats outside
our model are also analyzed, as well as the feasibility of
the protocol in reality.

6

Contents

1 Introduction 9
1.1 BitTorrent . 9
1.2 Exploiting BitTorrent . 12
1.3 Related Work . 13
1.4 Our Contribution . 14
1.5 Overview . 15

2 Related Definitions 16
2.1 Game Theory . 16
2.2 Cryptography . 18

3 Idealistic Setting 21
3.1 Model . 21
3.2 Our Protocol . 23
3.3 Proofs . 28

4 Realistic Setting 31
4.1 Motivation . 31
4.2 The Model . 31
4.3 The Protocol . 33
4.4 Proofs . 39

5 Further Mitigation Techniques 47
5.1 Coalitions . 47
5.2 Frequent Rejoining . 49
5.3 Border Cases . 50

6 Feasibility Study 52
6.1 Seeder’s Overhead . 52
6.2 Leecher’s Overhead . 53
6.3 Tracker’s Overhead . 54

7 Conclusion 56
7.1 Summary . 56
7.2 Future Work . 57

A Detailed Protocols 58

8

1
Introduction

BitTorrent is a common file sharing protocol. Based on incentives, it tries to take into
account the rational behavior of users as well as their altruism. Experience has shown
that BitTorrent yields extraordinaire results compared to previous peer-to-peer applica-
tions. However, the protocol behaves only this well because the commonly used clients
are implemented to be honest. There exist several clients that bypass the incentives
which BitTorrent should provide. As long as most of the people are using fair-minded
implementations of the protocol, this might not be a problem. However, if for example
the music industry wants to get rid of this particular file sharing protocol, they just
need to distribute clients that abuse BitTorrent’s weaknesses. Every user would have an
incentive to use malicious clients, as the individual download rates get better. However,
if everyone starts using such a malicious client, the protocol will not work anymore.

1.1 BitTorrent
In this section, we want to explain how BitTorrent works and look at the reason why it
works so much better than previous file sharing applications.

1.1.1 History of File Sharing

Before BitTorrent, a lot of other approaches on file sharing existed. The easiest and most
common one is internet hosting. That is, a server offers the file which clients can simply
download. Of course, this works only if the server offers reasonable download rates, if
the file is not too big and if not too many users want the file. Otherwise, the download
rates for every single user decrease to a non-acceptable amount. This imposes a problem
especially for new and popular files which have a big file size, for example a new Linux
kernel or the latest World of Warcraft patch. Sometimes also a normal internet user
wants to share a file with other people. Clearly, he can’t afford an expensive server for
this. This is when people began using peer-to-peer file sharing.

The first peer-to-peer applications, like Kazaa or eDonkey, did only secondarily tackle
the missing upload speed. These applications were used to offer files to other users. If
a file is offered by many users, then the download speed for this particular file is high.
However, people were not given any incentive to share. A lot of users just downloaded
their desired file without contributing to the system. This was the main problem with all

9

1.1. BITTORRENT

of those protocols, because there was a tremendous amount of users downloading files,
but only a few of them were altruistic and also offering some. Often, those networks
were also used to illegally distribute pirated copies. Then, this effect was even more
amplified because a lot of users were afraid of being sued. Therefore, all the peer-to-peer
approaches basically suffered from the same problems as server-based file sharing.

1.1.2 BitTorrent’s Design

The author of BitTorrent, Bram Cohen, tried to address exactly these issues. First of
all, he changed the basic model of file sharing. He separated the file search from the file
download. While you could use the the preceding peer-to-peer applications to actively
search for files, in BitTorrent there is a network of its own for every file shared. Clearly,
this means that you can only effectively share files with at least a mediocre popularity
and a reasonably big file size, usually between 100 MB and several GB. However, for files
which are not popular or significantly smaller you can still safely use internet hosting.

Now that we have a file which is reasonably big and that a lot of people want, we
need a mechanism that ensures scalability of the system. This means, the more people
are trying to download, the bigger the overall throughput should get. In the end, this is
achieved by enforcing the people who download the file to upload it at the same time,
even when their download is not yet complete. This is possible by splitting the file into
small pieces (usually of size 256 kB). Then, every downloader (leecher from now on)
simply acts rational: He uploads to those people who upload to him. This way, every
leecher in the system has a strong incentive to upload pieces, as he will otherwise receive
a poor download speed. We look in detail at the exact mechanisms in the next sections.

1.1.3 The Metainfo File

As already pointed out, in BitTorrent, every shared file has its own network. To be able
to join such a network, one needs a metainfo file, the so-called torrent file (the name is
derived from the fact that such files hold the file extension “.torrent”). The contents of
the torrent file are further on used to provide the properties of the shared file. It consists
of

• the URL of the tracker,

• the length of the file,

• the name of the file,

• the number of bytes per piece

• and a 20-byte SHA-1 hash for every piece of the file.

Using the URL of the tracker, a new client is able to locate the network which was
created for the particular file he wants to download. The SHA-1 hashes are used by the
client to verify the integrity of pieces he obtains while participating in the BitTorrent
protocol.

10

1.1. BITTORRENT

1.1.4 The Tracker

To coordinate all actions which happen in BitTorrent, a server, the so-called tracker is
used. Obviously, the workload on the tracker is much smaller than on a server who shares
the whole file. Basically, the tracker is used for one task: Introducing peers to each other.
A joining leecher therefore sends a HTTP GET request to the tracker, who responds
with a random subset of all users known to him which are currently participating in the
protocol.

In addition to this rather simple task, trackers usually keep track of the downloaded
and uploaded amount of users. This is often used by registered torrents (i.e., one has to
register to a site before being able to download a torrent) to keep track of your global
share ratio. People who do not share enough in comparison to their download can then
be excluded by the tracker. On a side note, those statistics are sent in by the clients
themselves. This makes it trivial to forge yourself a good share ratio. However, this
problem is beyond the scope of the thesis.

Also, some clients offer ways to run BitTorrent without a tracker. Azureus, a popular
BitTorrent client, first used a DHT (distributed hash table) implementation to create a
distributed database. Some time later the original BitTorrent client added an incompat-
ible DHT implementation on its own, which now most clients like µTorrent or BitComet
support. Moreover, clients also use the so-called “peer exchange” where two parties
exchange their known IPs of other users.

1.1.5 Peers

A peer is a user who participates in the BitTorrent protocol. The set of peers is the
union of all leechers, who are still downloading, and all seeders, who obtained the file
and just stay in the system for altruistic purposes. Because the systems tend to be
quite large (up to 10,000 peers), a peer does not have connections to everybody else
but to a random subset of all other participants, who form his local neighborhood. This
local neighborhood is initially received from the tracker and then extended by further
requests to the tracker or by peer exchanges with other users. The typical size of such
a neighborhood is between 20 and 50 connections. A client then uses only his local
neighborhood for downloading pieces.

From all existing connections not every one is used. In general, there are only a
few (around 4-10) connections actively used to transmit data. The others, currently
idle connections, are said to be choked. Consequently, the ongoing transmissions are
unchoked.

1.1.6 The Uploading Strategy

It is crucial to understand how the uploading strategy of peers works in order to under-
stand the popularity of BitTorrent.

11

1.2. EXPLOITING BITTORRENT

Piece Selection Algorithm

A leecher always has to choose which piece he wants to download next. This is achieved
using a simple but effective strategy, called rarest first. Here, the leecher looks at the
availability of pieces in his local neighborhood and requests the rarest piece he still needs
and his partner can offer. This intuitively minimizes the probability of being stuck or,
put it more precisely, not having any piece to offer to his neighbors. If there are several
pieces which fulfill the rarest first requirement he just chooses a random one.

Reciprocation

Here, we will discuss to whom a leecher will upload. Again, the idea behind this is
simple. If a leecher has a neighbor who gives him good download speed, he does not
want this peer to leave. Therefore, he starts reciprocating to the other leecher, which
means that he also uploads data back to convince the other leecher to stay with him.

A leecher splits his overall upload speed into n equal parts. A common value for n
is 4. This is called the equal split, because a leecher always reciprocates using the same
speed. Then, he picks from all his neighbors those n − 1 leechers from which he gets
the fastest download speed and starts uploading to them. This is reevaluated every 10
seconds.

Every 30 seconds, the leecher additionally starts uploading data to someone at ran-
dom in his neighborhood. This optimistic unchoke has two purposes. First, it is supposed
to find someone who gives the leecher even more download speed than his current part-
ners. Second, it helps newcomers to join the system, as they don’t have any pieces to
offer.

1.2 Exploiting BitTorrent
So far, BitTorrent’s mechanisms seemed to give good incentives for following the protocol:
Intuitively, as long as you want some good download speed, you also have to offer
something back. However, there are two points that immediately seem prone to misuse.

1.2.1 Free Riding

Free riding means that you download from a system without giving something back.
In [LMSW06], Locher et al. presented a malicious client, BitThief, which works with
uploading absolutely nothing while still being almost as fast as the original BitTorrent
client. In general, it abuses the optimistic unchokes of leechers, and of course the seeders’
altruism.

First, BitThief connects several times anew to the tracker to get a much bigger
neighborhood than usual. With a bigger neighborhood, also the chances of getting an
optimistic unchoke vastly increase. Then, the client just needs to wait to be optimistically
unchoked over and over again until he completed the download.

12

1.3. RELATED WORK

This rather simple attack poses a serious threat to BitTorrent. If everyone starts to
use BitThief, the BitTorrent protocol breaks down immediately, because there is no one
left to upload data. Currently, one can only speculate about the reason why nobody uses
BitThief. Either people feel altruistic enough to share data, or nobody uses malicious
clients due to their small degree of popularity.

1.2.2 Strategic Clients

Considering that we are able to be as fast as the original BitTorrent client without
uploading, one could ask how much faster one can get if one additionally uploads. This
brings us to our second point of attack, which is the equal split strategy. The original
client does not distinguish between clients to whom he uploads, he always uploads with
the same speed to the first n− 1 people who give him the fastest download speed.

Piatek et. al. developed a so–called strategic client in [PIA+07], which abuses this
fact. To understand how it works, imagine being a user with 400 kB/s upstream and
the original BitTorrent implementation. Then, your equal split is 100 kB/s and you
reciprocate to 3 people and have one connection for optimistic unchoking. Further on,
imagine that 4 people are uploading to you with respectively 300 kB/s, 200 kB/s, 40
kB/s and 10 kB/s.

Now, assume a new client joins the system who has 2000 kB/s overall upload speed.
If he split his capacity using equal split, he would upload with 500 kB/s to us, and thus
being reciprocated. However, to obtain the reciprocation, he does not need to upload
with 500 kB/s, but only with 41 kB/s, because then he still is in our personal top 3
concerning upload speed. This way, he saved 459 kB/s upload stream which he can use
for other leechers.

Piatek et. al. showed that using such a strategic client, they are able to obtain a
median performance gain of about 70%. Again, one can only speculate why only few
people use this client, since it is freely available for download.

1.3 Related Work
BitTorrent was invented and implemented by Bram Cohen, who describes its key ideas
in [Coh03]. As we already mentioned, Piatek et. al. examined whether the incentives in
BitTorrent really suffice and showed in [PIA+07] that using some simple ideas, one can
easily exploit the system. Similarly, Locher et. al. provided a client in [LMSW06] which
works without contributing to the system at all, by announcing himself several times to
the tracker. A little bit more general is the concept of the Sybil attack [Dou02], where
an attacker on a peer-to-peer network creates several identities.

Further on, Shneidman examined how to exploit BitTorrent using backtracing in
[SPM04]. Aside from the attack points we discussed, he found out that one should
reconnect upon getting choked, because the chances of being optimistically unchoked
then increase. Additionally, he showed that uploading garbage can help, because even
if the garbage is detected, it still counts as valid incoming traffic. This especially comes

13

1.4. OUR CONTRIBUTION

in handy when you just joined a system and have nothing to offer yet.
Thommes and Coates give some sophisticated techniques on how to make BitTorrent

more robust against these attacks in [TC05]. For example, they propose to choke those
connections where the fairness (the fraction of downloaded over uploaded data) is too
small. However, those modifications are just mitigation techniques.

Hales and Patarin give their explanation on why BitTorrent is so popular and effective
although it is easily exploited in [HP06]. According to them, this is due to the fact that
every shared file creates its own small network. People are more likely to act social for
local networks they benefit from compared to global systems where every single user’s
influence is just a negligible fraction.

Finally, Qiu and Srikant created a fluid model of BitTorrent in [QS04], which they
use for giving expressions for the average downloading time. They show a Nash equi-
librium point exists, but they prove this by looking at different aspects than in this
thesis. Namely, they show what happens in BitTorrent if everyone wants to maximize
his download speed while being able to alter his upload speed and sticking to the pro-
tocol. According to their paper, users build groups such that in every group all users
approximately have the same upload speed.

The cryptographic primitives we are going to use are all taken from Goldreich’s
reference books [Gol01] and [Gol04]. The basic definition and intuition on game theory
as well as rational cryptography is given in [Kat08].

1.4 Our Contribution
We build a new file sharing protocol “RatFish”. This is partially based on the ideas
of BitTorrent but enhanced such that it provides stronger incentives. Furthermore, we
prove that our protocol cannot be cheated by rational users.

For this, we first define a model in theory: We use rational cryptography, which itself
is a combination of game theory and cryptography. This makes sense because one can
model rational file sharing users well using utility functions as in game theory. On the
other hand, we have strong tools from cryptography to make RatFish non-cheatable.

The utility functions basically say that every user wants to minimize the upload
capacity as well as the time needed to complete a download. In the protocol, we will
then secure certain steps, for example the piece exchange between two leechers, using
cryptography. We stick to basic cryptographic tools such that our protocol is feasible in
reality.

Afterwards, we prove that a user who is covered by our utility functions cannot
increase his utility by deviating from the given protocol, as long as everyone else sticks
to it. This is a basic concept from game theory, namely the Nash equilibrium.

We also reason that RatFish is applicable in reality. Finally, our protocol defends
against all attacks that we mentioned in this chapter and we believe it can successfully
replace BitTorrent.

14

1.5. OVERVIEW

1.5 Overview
This thesis presents a file sharing protocol that cannot be cheated by rational players.
We construct such a protocol in two different models where the first model is idealistic
but intuitive and the second model is close to reality.

• All necessary prerequisites, i.e., definitions from game theory and cryptography,
are given in Chapter 2.

• Chapter 3 introduces the idealistic model, which is unrealistic but gives good in-
tuition on what will await us in the next chapter.

• Chapter 4 is the main part of the thesis. It describes a model which is close to
reality and gives a rational file sharing protocol, inspired by BitTorrent, along with
a proof that a rational player cannot get better by deviating from the protocol.

• Chapter 5 discusses what happens if the assumptions which we required in the
realistic setting are violated.

• Chapter 6 will reason why the protocol which we worked out in theory is also
feasible in reality by using constraints of modern server architecture and personal
computers.

• Chapter 7 concludes our thesis by summarizing our achievements and giving an
outlook on what still needs to be done.

15

2
Related Definitions

We want to make this thesis as self-contained as possible. Clearly, by only reading
these definitions one probably will not understand the key concepts of game theory
and cryptography. Nevertheless, we need these definitions in our proofs, and therefore
introduce them here along with short explanations such that the reader does not have
to consult any other source if he does not want to.

2.1 Game Theory
We use the basic ideas of game theory, namely the Nash equilibrium concept in a slightly
altered form which is suitable for computational purposes.

2.1.1 Nash Equilibrium

A Nash Equilibrium indicates the situation when all parties of a game will stick to their
actions because they do not gain more payoff by deviating. We introduce the pure-
strategy Nash equilibrium for reasons of understanding. Later, we will only refer to the
computational Nash equilibrium. The definitions are taken from [Kat08].

Definition 1 (Nash Equilibrium). Let Γ = ({Ai}ni=1, {ui}ni=1) be a Game, i.e. Ai is the
set of actions player i can play and ui : A1 × . . . × An → R is the utility function for
player i. Furthermore, let a−i := (a1, . . . , ai−1, ai+1, . . . , an) for arbitrary aj ∈ Aj. A
Nash equilibrium is a vector of actions a = (a1, . . . , an) ∈ (A1 × . . . × An), such that
∀i ∈ {1, . . . , n}, ∀a′i ∈ Ai :

ui(a′i,a−i) ≤ ui(a).

Basically, this means, that no player can get a better payoff by deviating from the
action given by the Nash equilibrium, if every other player sticks to his designated
action. To make this more intuitive, we show a simple example for such a game in figure
2.1. Here, we have two players where both of them have either the possibility to play
“chicken”, which means to be on the safe side, or to play “dare” which can be interpreted
as “wanting all or nothing”. Player one’s actions are depicted on the left and player two’s
actions on the top, and the left side of a tuple represents the payoff for player one while
the right side shows the payoff for player two.

16

2.1. GAME THEORY

C D

C (3, 3) (1, 5)

D (5, 1) (0, 0)

Figure 2.1: An example game, usually called chicken or dare.

One can check that we have two Nash equilibria here, namely the actions (C,D) and
(D,C). Basically, this means that one player has to play “dare” while the other one
chickens. Those outcomes are Nash equilibria, because if e.g. the player who chickens
decides to play “dare”, he gets 0 instead of 1 payoff, and if the player who has “dare”
switches to “chicken”, he obtains a reward of 3 instead of 5.

2.1.2 Computational Nash Equilibrium

Using the Nash equilibrium, we face several problems when players are represented by
probabilistic polynomial-time interactive Turing machines (ITM from now on). First, the
actions in a Nash equilibrium are chosen deterministically whereas such a Turing machine
is probabilistic. We therefore do not talk about actions anymore but call the different
Turing machines strategies for a player. Such a strategy will not deterministically pick
an action to play but rather create a probability distribution over all possible actions of
the player.

Second, one might need superpolynomial time for computing the best strategy, but we
just have polynomial time to decide. To fix these issues, we introduce the computational
game.

Definition 2 (Computational Game). A computational game Γ is a Game, where the
played action of each participant i is computed by a probabilistic polynomially bounded
ITM Mi, and where the utility ui of each player i is polynomial-time computable.

Instead of choosing a deterministic action, each player i now decides on a Turing
machine Mi (from the set of all probabilistic Turing machines) and runs it. The Turing
machine then outputs the action which eventually will be played by player i.

Definition 3 (Computational Nash Equilibrium). Let Γ = ({Ai}ni=1, {ui}ni=1) be a com-
putational Game and k the security parameter. A strategy vector consisting of ITMs
M = (M1, . . . ,Mn) is a computational Nash equilibrium if for all i and any probabilistic
polynomial-time ITM M ′i there exists a negligible function ε such that

ui(k,M ′i ,M−i)− ui(k,M) ≤ ε(k).

Note that the utility functions ui are now giving the expected payoff, because we
have probabilistic strategies.

17

2.2. CRYPTOGRAPHY

If you further on compare the inequality with Definition 1, you see that it is almost
the same. The only difference is that you now also can play strategies which give you a
worse payoff up to a negligible difference. If this was not allowed, the best strategy for
players would be to always break cryptographic primitives, like encryptions. The chance
for this to happen is still negligible, but if it succeeds, the payoff is in general huge.
Therefore, we need this small addition in order not to force players into brute forcing
cryptographic primitives.

We also introduce the outcome of a game, which basically is a transcript of everything
that happened during an entire game. The notation of the utility function is overloaded.
Whereas it describes the expected payoff for a strategy vector, it gives the exact payoff
when applied on an outcome. This makes sense, as an outcome basically shows a finished
game where every player can view his payoff directly.

Definition 4 (Outcome). An outcome of a computational Game consists of the players’
inputs and the actions taken by them. In other words, an outcome is a complete transcript
of a computational Game.

2.2 Cryptography
As already pointed out, we use several standard cryptographic tools. Here, our defini-
tions are close to those in [Gol01] and [Gol04], but taken from [Bac09].

2.2.1 Symmetric Encryptions

The most basic tool is an encryption of a secret message. For this, two parties need to
share the same key (thus symmetric).

Definition 5 (Symmetric Encryption Scheme). An encryption scheme with indistin-
guishable encryptions is a triple (G,E,D) of probabilistic polynomial-time algorithms
satisfying the following three conditions:

1. On input 1n, algorithm G (called key-generator) outputs a bit string.

2. For every k in the range of G(1n), and for every α ∈ {0, 1}∗, algorithm E (encryp-
tion) and D (decryption) satisfy

Pr[α = α′ : α′ ← D(k,E(k, α))] = 1.

3. For every polynomial-size circuit family {Cn}, there is a negligible function µ, such
that for every x, y ∈ {0, 1}poly(n) (i.e., |x| = |y|):

|Pr [b = 1 : k ← G(1n), b← Cn(E(k, x))]
− Pr [b = 1 : k ← G(1n), b← Cn(E(k, y))] | ≤ µ(n).

This means that an adversary getting some cipher text c cannot tell whether this
resulted from an encryption of messagem or of messagem′, provided that both messages
have the same length.

18

2.2. CRYPTOGRAPHY

2.2.2 Digital Signatures

Also, we will use digital signatures to validate statements. A digital signature is used to
express that a certain signer approves of a message. Of course, no one should be able
to create a digital signature except for the signer himself, but everyone has to be able
to check the validity. Therefore, the signer needs a key pair, a public key and the secret
key.

Definition 6 (Digital Signatures). An unforgeable signature scheme is a triple (G, S,V)
of probabilistic polynomial-time algorithms fulfilling the following conditions:

1. On input 1n, G outputs a pair of bit-strings (s, v), called signature key and verifi-
cation key, respectively.

2. For every x ∈ {0, 1}∗, the algorithms S (signing) and V (verification) satisfy

Pr[V(v, x,S(s, x)) = 1 : (s, v)← G(1n)] = 1.

3. For every probabilistic polynomial-time machine M with access to an oracle O (de-
noted by MO) it holds that

Pr
[
Vv(x, y) = 1 ∧ x 6∈ QSs

M (1n, v) : (s, v)← G(1n), (x, y)← MSs(1n, v)
]

is negligible in n, where QO
M(x) is the set of queries M issues to the oracle O, when

given the input x.

The second condition says that having the key s is needed for signing, but for verifi-
cation it suffices to have the key v. The last condition basically only says that no matter
how (polynomially) many signatures an adversary obtains on chosen messages, he is still
not able to forge a signature on a new message.

2.2.3 Hash Functions

Finally, we will use hash functions to have an efficient way of checking whether one has
received a correct piece or not. Hash functions are characterized by having a short output
corresponding to a long input. In addition, if you are asked to find in polynomial time
two different strings which hash to the same value (i.e. you are asked to find a collision),
you will only succeed with negligible probability. Note that there do exist collisions,
because there exist fewer short strings than long strings, but nevertheless finding one
should be infeasible.

Definition 7 (Collision-Free Hashing Function). Let l : N → N. A collection of func-
tions {hr : {0, 1}∗ → {0, 1}l(n)}r∈{0,1}∗ is called collision-free hashing if there exists a
probabilistic polynomial-time algorithm I such that the following holds:

• Admissible indexing (technical): For some polynomial p(·), all n, and every r in
the range of I(1n), it holds that n ≤ p(|r|). Furthermore, n can be computed in
polynomial time from r.

19

2.2. CRYPTOGRAPHY

• Efficient evaluation: There exists a polynomial-time algorithm that computes hr(x)
from r and x.

• Collision-freeness: We require that for every probabilistic polynomial-time algo-
rithm A,

Pr[hr(x) = hr(x′) ∧ x 6= x′ : r ← I(1n), (x, x′)← A(r)] is negligible.

20

3
Idealistic Setting

Before we give a protocol which works in a real life scenario, we first look at a simple
and straightforward case. In this idealistic setting, we use some very strong assumptions
which do not hold in reality. However, we are able to illustrate the basic idea of the
protocol and give some important intuition which also comes in handy when considering
the realistic setting.

3.1 Model
We capture the goals of the users in utility functions. Clearly, seeders and leechers
should have different utility functions. It might even be possible that two leechers pursue
different goals. For example, while some of them want to download the file as fast as
possible, disregarding drawbacks, other leechers may care for the amount uploaded. In
the idealistic setting, we only look at the initial seeding phase, where only one seeder
exists but lots of leechers want to download the file. Additionally, we exclude the case
where other leechers join during the initial seeding phase. Presumably, the bottleneck
in this particular model lies in the upload capacity of the seeder. Nowadays, for the
majority of users, the downstream is much bigger than the upstream. Our protocol will
work for all cases where the downstream is at least as big as the upstream.

For simplicity, in our model the time is represented by rounds. Also, we assume that
all players have the same upload bandwidth and are able to upload 1/N of the file per
round. Finally, let each participant have a key pair (pk, sk) with a publicly known pk,
which is later on used for digital signatures. For now, we do not care how these key pairs
are established. For example, they could be provided by a public key infrastructure.

3.1.1 Variables

Our file f which consists of B ·N bytes is split into N pieces f1, . . . , fN ∈ {0, 1}8B. Also,
N different leechers L1, . . . , LN are from the beginning in the system. All of them try to
download the file from the seeder S. As already pointed out, we measure time in rounds
which are referred to by the integer t. We want that every peer is able to upload exactly
B bytes per round, and every peer is able to download at least B bytes in one round.

To be able to reason about the preferences of peers, we introduce the uploaded ca-
pacity, which is denoted by C li(t) for leechers and Cs(t) for the seeder. Obviously, the

21

3.1. MODEL

overall uploaded capacity depends on the time. Furthermore, we introduce a variable
a(t) which is used to express how much of the file is available in the whole system. The
larger a(t) is, the healthier the system is. The availability is computed as follows:

a(t) = min{a1(t), . . . , aN (t)}+
∑
k∈A

1
N
,

where ai(t) is the number of peers holding piece fi at time t and A is the set of all
pieces that are held by strictly more peers than min{a1(t), . . . , aN (t)}. Note that we are
including the seeder if he is still in the system. A few examples:

• Only the seeder has pieces: a(t) = 1.

• All N leechers finished downloading: a(t) = N + 1.

• One leecher has the first half of the file, everyone else left: a(t) = 0.5.

• One leecher has the first half of the file, another leecher has the second third of
the file, everyone else left: a(t) = 2

3 .

Finally, we want to introduce the completion ηi(t) ∈ {0, 1} of leechers which indicates
whether a leecher completed the download.

3.1.2 Initial Seeder’s Utility

The initial seeder is the person who wants to share a file. His utility therefore differs
strongly from subsequent seeders or from leechers. In any case he will upload the whole
file at least once, because otherwise, he would not share it in the first place. Furthermore,
he wants as many people as possible to get the file. Depending on the preferences of the
seeder, he might also want to minimize one of the following things:

• The time needed to distribute the file to the people.

• The overall upload capacity.

We express these preferences by a general utility function, which still leaves a lot of
possibilities.

22

3.2. OUR PROTOCOL

Definition 8 (Seeder’s Utility). Let Tfin be the number of rounds a system runs. We
say that us is a utility function for a seeder if for two outcomes o, o′ of a file sharing
game it holds that us(o) > us(o′) if and only if

• a(Tfin) for outcome o is bigger than for o′ or

• Cs(Tfin) for outcome o is smaller than for o′ but bigger or equal than N or

• Tfin for outcome o is smaller than for o′.

Note that this definition does not prioritize one of the variables. If for example Tfin
gets smaller but Cs(Tfin) increases, our general utility function does not specify how the
payoff changes.

3.1.3 Leecher’s Utility

The main goal of a leecher is to get the file. We assume no altruism here, such that our
model gets robust against strongly rational clients.

There are different types of users to consider. For example, there might exist people
who want the file as soon as possible, disregarding drawbacks. In this case, their uploaded
capacity only secondarily influences the utility function. To be able to express all possible
preferences, we keep the model as general as possible.

Definition 9 (Leecher’s Utility). Let Ti,fin be the number of rounds leecher Li stays in
the system. We say that uli is a utility function for a leecher Li if for two outcomes o, o′
of a file sharing game it holds that uli(o) > uli(o′) if and only if

• C li(Ti,fin) for outcome o is smaller than for o′ or

• Ti,fin for outcome o is smaller than for o′.

Additionally, we require that uli(o) > uil(o′), if in outcome o′ we have ηi = 0, meaning
that the file was not completely downloaded, whereas in outcome o we have ηi = 1.

We see that a leecher either tries to decrease his uploaded capacity or the time needed
for download.

3.2 Our Protocol
Now, with the utilities being defined, we will construct a protocol. This protocol will
provide real incentives for all users, such that there will exist no reason to deviate from
the protocol.

23

3.2. OUR PROTOCOL

3.2.1 The Seeding Algorithm

As the seeder’s utility depends on the wasted upload capacity, the seeder wants the
leechers to share parts of the file among each other. This increases the upload speed of
the whole system, and thus, its throughput. Therefore, what the seeder should not do,
is to upload the whole file to an arbitrary leecher. Chances are, this leecher will just
quit afterwards and leave all other users unsatisfied. To provide an incentive for the
leechers to interact, the seeder can send to everyone a piece of the file and then wait for
them to exchange all pieces. Note that using this strategy, the seeder will increase the
availability a(t) of the file at least by one.

The seeder also uses a small trick. As he is able to upload 1/N of the file per round,
he will provide 1/N2 of the file to every leecher in each round. This way, already after
the first round every leecher has something to offer to the others. The exact protocol is
described in Figure 3.1.

InitSeed(f,N)

1. Split file f into N2 pieces f1, . . . , fN2 .

2. In every round j ∈ {1, . . . , N} for all i ∈ {1, . . . , N}, send fN ·(j−1)+i to Li.

3. Along with each fN ·(j−1)+i, send a signature on (i,N · (j − 1) + i).

Figure 3.1: Algorithm for the seeder describing whom to upload pieces to.

3.2.2 Piece Exchange between two Leechers

As all leechers want to minimize the upload capacity, they have to protect themselves
from being cheated by another leecher. During the exchange phase, the leechers query
each other and get the pieces they do not have. To ensure that one user gets back the
capacity he offered to someone else, an exchange between two users is done according to
Figure 3.2.

Using the signatures, upon broadcasting a list of all held pieces, other leechers can
verify whether someone indeed sent you the shares you pretend to have. Thus a leecher
cannot pretend to have other shares than those received from exchanges as he is not able
to forge signatures.

If a user notices that the other party does not follow the protocol, he will blacklist
the deviating player. This means, from now on he will neither send nor accept messages
from him.

Note that a player would not want to deviate in the last step of the exchange. He
already wasted his upload to get an encrypted chunk of data and thus decreased his
utility. As his payoff only gets bigger if he is able to decrypt the piece he will follow

24

3.2. OUR PROTOCOL

the key exchange without cheating. A user does not care if someone else gets a piece or
not, so he has no incentive not to give the key, because the key size is sufficiently small,
compared to the piece size.

3.2.3 Piece Selection Algorithm of Leechers

With the seeding algorithm from above, the piece selection algorithm is notably easy.
For better understanding, consider the second round of the protocol. Every leecher Li
got his own piece fi that no other leecher has. Further on, everyone has an upload
capacity of 1/N of the file, which is N pieces of size 1/N2 per round. A leecher is now
able to start an exchange with everyone else on the piece he got for the pieces the others
received in the last round. While they are all exchanging, every leecher Li is also getting
piece LN+i. Figure 3.3 contains an example for this.

This means, in the third round, every leecher Li has pieces f1, . . . , fN , fN+i, and
they can continue exchanging with the newly received pieces. As you can easily observe,
this strategy gives a number of N + 1 rounds for each leecher in the system until he
completes the download. Formally, you can read the algorithm in Figure 3.4.

25

3.2. OUR PROTOCOL

Verify that other party really has pieceLi Lj

ki,j,x ← Un kj,i,y ← Un

cx ← E(ki,j,x, fx) cy ← E(kj,i,y, fy)cx

cy

sigi,j,x ← S(ski, (j, x)) sigj,i,y ← S(skj , (i, y))

sigj,i,y

sigi,j,x

ki,j,x

kj,i,y

fx ← D(ki,j,x, cx)fy ← D(kj,i,y, cy)

Exchangei(fx, j, y)
If any of the following steps fails, the players blacklist each other.

1. Choose a random key kj,x and compute cx ← E(kj,x, fx).

2. Send cx to Lj .

3. Wait for Lj to send cy. This step may take arbitrarily long to complete. (i.e.,
a player could send the corresponding piece much later than the other player)

4. Compute Ssk(j, x), yielding sigj,x, and send sigj,x to Lj .

5. Wait for Lj to send sigi,y, and verify that Vpk′((i, y), sigi,y) = 1, where pk′ is
the public key of Lj .

6. Send to Lj the key kj,x.

7. Broadcast your new list of pieces and all obtained signatures to all players.

Figure 3.2: Algorithm for two leechers Li and Lj who want to exchange pieces fx for fy.
Above you see an illustrating picture whereas below the exact algorithm is given.

26

3.2. OUR PROTOCOL

S

L1

L2

L3

L4

1
N

︸︷︷︸

Figure 3.3: After the second round, the four leechers exchanged already 1
N of the file

and have received an additional 1
N2 from the seeder. They will use this for exchanges in

the next round.

PieceSeli()

1. If you got piece fN ·j+i from the seeder in round j + 1, start an exchange in
round j + 2 with every leecher Lk on the pieces fN ·j+i for fN ·j+k.

Figure 3.4: Piece selection algorithm for a leecher Li.

27

3.3. PROOFS

3.3 Proofs
First of all, we want to show that nobody will deviate during the Exchange protocol.
Then, building upon this, we prove that our given strategies achieve the best results
possible.

Lemma 10 (Exchange Phase). No leecher will deviate during an Exchange iteration.

Proof. Assume that player Li plays a deviating strategy M ′i instead of Mi. We show
that a deviation will not increase his utility. Assume that player i, offering the piece fx,
deviates when he interacts with player j who in turn offers fy. We examine the different
possibilities in a case distinction.

1. Li uploads d 6= E(kj,x, fx). Then again, we distinguish between two cases:

(a) Li did not receive fx so far.
⇒ Li can provide a signature sigi,x from some player h only with negligi-
ble probability. Therefore, this case happens only with the same negligible
probability.

(b) Li did receive fx.
⇒ Li does receive fy. However, Li is blacklisted by Lj at the end of the
Exchange protocol. We therefore obtain uli(M ′i ,M−i) ≤ uli(M).

2. Li delays sending E(kj,x, fx) infinitely.
⇒ Li does receive E(ki,y, fy), but he will not get ki,y. Therefore, player Li is only
able to decrypt fy with negligible probability ε(|k|). Otherwise, he does not gain
any information about fy. Therefore, we obtain uli(M ′i ,M−i) + ε(|k|) ≤ uli(M).

3. Li does not send a correct signature on (j, x).
⇒ Li will not obtain a key on E(ki,y, fy), and we have uli(M ′i ,M−i) + ε(|k|) ≤
uli(M).

4. Li does not send kj,x to Lj .
⇒ Lj will blacklist Li, but Li gets fy. We therefore get uli(M ′i ,M−i) ≤ uli(M).

As one can easily observe, each case either happens only with negligible probability
or yields

uli(M ′i ,M−i) + ε(|k|) ≤ uli(M).

Therefore, no leecher has an incentive to deviate.

Lemma 11 (Correctness of the Piece Selection Algorithm). When all N leechers in
the system follow the piece selection algorithm, every leecher will complete the download
after exactly N + 1 rounds and upload exactly N2 −N pieces.

28

3.3. PROOFS

Proof. By the seeding algorithm, every leecher Li receives in round j + 1 the piece
fN ·j+i. Note that we are counting both the rounds and the pieces from 1. Assume
now that a leecher Li already has pieces f1, . . . , fN ·j , fN ·j+i. Then, by construction,
every other leecher Lk holds a piece that Li does not own yet, namely fN ·j+k. Be-
cause a leecher is able to upload 1/N of the file, he can upload N pieces of the file in
a round. This is sufficient to start an exchange with every other of the N − 1 leech-
ers, thus receiving in the next round the pieces fN ·(j+1)+i (from the seeder) as well
as fN ·j+1, . . . , fN ·j+i−1, fN ·j+i+1, . . . , fN ·(j+1), which are exactly N pieces. He is able to
receive those, because his download capacity is at least 1/N of the file by our assumption.

This means, in round N+1, a leecher holds the pieces f1, . . . , fN2 , which is the whole
file. In addition, he uploaded in every round but the first N − 1 pieces, which in total
makes N(N − 1) = N2 −N uploaded pieces.

To later on show that we have a Nash equilibrium, we need one additional Lemma
that states that our above results are the best possible. Then, neither leechers nor seeder
will have an incentive to deviate.

Lemma 12 (Bound on Time). It is not possible for any protocol to deliver the whole
file to all N > 1 leechers in N rounds.

Proof. Without loss of generality, assume the file was split into M pieces and the pieces
are uploaded in the order of their index. By our definition of rounds, N rounds are
needed to upload the whole file exactly once. Then, the piece fM needs to be uploaded
to a leecher in round N . However, after this round, only this leecher holds piece fM , so
at least one additional round is needed to distribute that piece among everyone else.

Lemma 13 (Leecher’s Protocol). No leecher will deviate in his protocol.

Proof. By Lemma 11, every leecher needs at most N + 1 rounds and needs to upload
N2 −N pieces. Clearly, by Lemma 10, an upload of N2 −N pieces is the best a leecher
can achieve, as the seeder gives away N pieces to him and for the remaining N2 − N
pieces he wishes to download he has to offer the same amount for.

In addition, he can also not get better than N + 1 rounds, because if everyone else
sticks to the protocol there will exist pieces that are only available in the N + 1st round
for him download.

Therefore, as a leecher is not able to decrease neither C li nor Ti,fin, he will not
deviate.

Lemma 14 (Seeder’s Protocol). The seeder will not deviate from his protocol.

Proof. As the seeder initially wants to share the file, he will, no matter what happens,
at least upload the whole file one single time. Our idealized protocol ensures that he
only needs to upload this file once and then the leechers will distribute the pieces among
themselves. This means, the seeder is not able to decrease Cs. By Lemma 12 there is
also no possibility to decrease the time needed Tfin. Of course, if all leechers get the file
after N +1 rounds, you also cannot increase the availability a(Tfin) = N +1. Therefore,
the seeder has no incentive to deviate.

29

3.3. PROOFS

Theorem 15 (The Protocol is a Computational Nash Equilibrium). The protocol, given
by the routines InitSeed, Exchange and PieceSel, is a computational Nash equilibrium.

Proof. This follows directly by Lemma 13 which states that no leecher will deviate and by
Lemma 14 which explains why the seeder will not deviate. Therefore, no computationally
bounded player will deviate.

30

4
Realistic Setting

4.1 Motivation
In the idealistic setting, we had many constraints both on the system and on the clients.
Those assumptions clearly will never hold in reality. However, it was a good way to start
and to establish a Nash equilibrium.

Now, we move to a new model, where the assumptions are close to reality. Again,
we construct the protocol as well as the algorithms for the peers such that in the end
we obtain a Nash equilibrium.

It is a question of preference whether the Nash equilibrium is good enough for “real
world” applications. Clearly, an equilibrium which is robust against coalitions would be
more desirable, however, this would also increase the metadata needed for the system.
The protocol we offer allows some good mitigation techniques against coalitions. In
the end, players in coalitions will be able to increase their utility by not following the
protocol so little that it is not worth the effort to code a deviating client.

4.2 The Model
Following the BitTorrent convention, we call a player in the file sharing game a peer. A
peer wants to download the file f , which is divided into pieces f1, . . . , fN , each of size
B. We require that B � |k|, where |k| is the length of the keys for the encryptions we
are going to use. All participants hold a publicly known hash function h as well as the
values h1 = h(f1), . . . , hN = h(fN), to be able to verify the integrity of received pieces
during the protocol.

A peer is either a seeder Si, i ∈ S from the set of all seeders, if he already holds the
whole file and just stays in the system because he wants to share the file, or a leecher
Li, i ∈ L, if he still wants to download parts of the file. In addition, we require a trusted
party called tracker whose IP is known, and who holds a signing key pair (pk, sk).

For convenience, we split the set of peers into two groups, the seeders and the leechers.
Then, every seeder i has its individual upload speed, denoted by upsi . Note that a seeder
does not download anything except for metadata, which is why we do not relate to its
download speed. Every leecher also has individual upload and download rates upli and
downli. When a leecher Li is done downloading, we say that Ti,fin is the overall time he

31

4.2. THE MODEL

spent.
Every peer has a local neighborhood of H people. To those people he has an open

connection and with those he can exchange. We also assume, that each peer is only is able
to maintain one connection to the system. For simplicity, each connecting or leaving has
to take place in between two rounds which last T seconds. We also assume that nobody
is able to forge messages which seem to come from another peer than himself.

Further on, we assume that the overall seeding capacity does not exceed the overall
upload capacity of the leechers too much. As long as we have∑

k up
l
k∑

k up
s
k

≥ 1
2 , (4.2.1)

we can guarantee that no leecher has an incentive to deviate. We believe that this is
realistic, because usually only a few people are altruistic while a lot of them leave after
having downloaded the file.

Finally, we want to exclude some pathological cases where it is in general difficult
to give assertions. First, we require that there is always at least one seeder in the
system. Second, we want that for all leechers, every piece is immediately accessible.
This basically means, that the availability of the file is big enough and that even the
rarest pieces are distributed fast, be it through other leechers or through seeders. Also,
we want that the system gives every leecher who follows the protocol a download speed
of at least 5BT . The last two assumptions may seem strong, but they are later on just
used to exclude the case where a leecher is stuck, i.e. that he has no pieces to offer to
other users. These two assumptions are more backed up by practice than by theory.

4.2.1 Utility Functions

Leecher’s Payoff

In contrast to the small model, we need to strengthen the assumptions on the utility
functions. As our system provides a few pieces to newcomers, we have to ensure that
this mechanism is not misused. I.e., a leecher should not always reconnect (whitewash)
and gain advantage by claiming that he is new to the system. However, BitTorrent is
used because it offers fast download rates. This means, if your download stops, we can
safely assume that the payoff for a leecher will decrease rapidly, disregarding how much
he uploads. We therefore require that a download speed of 0 is considered to be too low
by the leechers. This means, that the utility of a leecher increases if the download speed
increases above 0, even if the leecher needs to upload (more).

Other than that, we continue to stick to the utility of the small model, which means
that a leecher tries to minimize the amount of uploaded data and the time needed for
downloading the file.

Definition 16 (Leecher’s Utility). We say that uli is a utility function for leecher Li if
the following two conditions hold. For two outcomes o, o′ it holds that ui(o) ≥ ui(o′) if
and only if one of the following cases holds:

32

4.3. THE PROTOCOL

• Li holds the file in o but not in o′ or

•
∫ Ti,fin

0 upli(t) dt in o is smaller than in o′ (which means that Li uploaded less). or

• Ti,fin in o is smaller than in o′.

Second, let o, o′ be two outcomes which have the same transcript up to some point Tdiff .
We want that uli(o) ≥ uli(o′) if in o′ we have downli(Tdiff) = 0 and Ti,fin in o is smaller
than in o′.

The second point basically just means, if a player is able to avoid having a download
speed of 0, he will do so. Note that the first condition does not contain the second one:
In the latter, we say that the utility decreases in any case if your download speed drops
to 0, whereas the first condition only talks about one variable while the others are fixed.

Seeder’s Payoff

The seeder still wants to maximize the efficiency of his upstream. Here, we reformulate
the seeder’s utility in contrast to the small model.

Definition 17 (Seeder’s Utility). We say that usi is a utility function for a seeder Si if
for two outcomes o, o′ it holds that ui(o) ≥ ui(o′) if and only if

• 1
|L|
∑
i∈L Ti,fin, which is the average time to complete a download, in o is smaller

than in o′ or

•
∫ Ti,fin

0 upsi (t) dt in o is smaller than in o′.

4.3 The Protocol
In this section, we will present the protocol that will lead to a Nash equilibrium.

4.3.1 Tracker’s Protocol

The job of the tracker is to keep track of everyone in the system, i.e. to know all valid
IPs and to know who has what parts of the file. When a new peer i joins, he asks the
tracker to assign him a set of connections, and the tracker replies giving him a random
subset of size H of all peers which are currently in the system. This random subset will
become the local neighborhood of Li. We assume the ID i to be given. In reality, this
will be the IP of the newcomer. In the next subsections we will look in detail at the
responsibilities of the tracker.

33

4.3. THE PROTOCOL

Connect Protocol

Firstly, the tracker is responsible for the forced wait of newcomers. Intuitively, a forced
wait is a simple defense mechanism against whitewashing. If you join the system once,
then a small wait will not hurt you. However, if you try to whitewash and therefore
rejoin all the time, then the waits will accumulate and your payoff gets smaller. We
also implement a mechanism such that people can later on prove that they already
downloaded some pieces.

The tracker holds the variables Ami ,m ∈ {1, . . . , N}, where Ami = 1 if leecher Li has
piece fm, and Ami = 0 otherwise. This is basically just an array describing what pieces
every leecher has.

TrackerConnect(i)

1. Compute Ssk(i, Tc), where Tc is the current time, yielding sigt, and send to Li
the message “TIME (Tc, sigt)”.

2. If the leecher claims to have pieces by sending the message (a1, . . . , aN , id, sigp),
verify that Vpk((a1, . . . , aN , id), sigp) = 1 and that you have p :=
(a1, . . . , aN , id) stored. Remove p from your local storage and then set
∀m ∈ {1, . . . , N} : Ami := am.

3. Send to Li a random subset of size H of all known IPs.

4. Notify a seeder by sending him “NEWPEER (i, Tc)”.

Figure 4.1: Algorithm executed by the tracker when a new peer joins

The tracker’s protocol for a joining leecher is described in Figure 4.1. A more detailed
protocol is located in the appendix, in Figure A.1. The waiting time is not enforced by
the tracker, but by the seeder who is supposed to wait a fixed amount of seconds before
he starts uploading to the newcomer. He uses Tc to determine when he can start up-
loading. The tracker also signs the timestamp Tc such that a leecher cannot fake it when
connecting to other parties. Similarly, we implement a method PeerLeave(i) in Figure
4.2 which is invoked when a leecher leaves before he downloaded the full file, such that
he can later rejoin and is still able to use the pieces he already downloaded. Note that
the tracker allows to reconnect, but each reconnect is bound to an id. More specifically,
a leecher cannot “fork” his state by reconnecting twice using the same reconnect id. This
especially is important against coalitions which we will discuss in Chapter 5.

Reward Protocol

The system is designed to work in rounds of T seconds. During each such round, the
tracker, seeders and leechers follow the protocols shown below. After T seconds, the

34

4.3. THE PROTOCOL

PeerLeave(i)

1. Select a random number id and let p := (A1
i , . . . , A

N
i , id). Store p locally.

2. Compute Ssk(p), yielding sigp.

3. Send to Li the message “LEAVE (id, sigp)” and disconnect from him.

Figure 4.2: Tracker’s algorithm invoked when a leecher wants to leave and rejoin later

tracker will be responsible for giving out the rewards for people following the protocol.
The idea behind the system is to reward leechers who are exchanging. This way, we can
provide strong incentives to exchange, because if one does not exchange, one is not able
to download both from seeders and from other leechers.

For illustration, assume the following setting. Leecher L4 had 5 exchanges in the last
T seconds. Similarly, L25 had 10 exchanges, L10 achieved 11 of them and L13 just made
4. Then, the seeding time of all seeders is split according to how much percent of all
exchanges a leecher had. In our example, it looks like this:

Seeding Time 13%37%33%17%

For example, because L10 had more than one third of all exchanges, he also deserves
37% of the overall seeding capacity.

The protocol in Figure 4.3 is used to determine whether an exchange between two
leechers actually happened. Here, the tracker internally holds a variable Xi for every
leecher Li indicating how many exchanges he made during the last round of T seconds.
As you can see, the tracker uses the CheckExchange call also to update the completion of
the leechers. But as leechers can also get pieces from seeders, every time a seeder sends
the tracker the message “SENT (i, x)”, the tracker updates Axi := 1, too.

In Figure 4.4, the algorithm is shown which the tracker uses to reward the leechers
according to the number of their exchanges. Note that a leecher cannot have more than
half of the overall exchanges, because this would mean that for some exchanges he did
not have a partner.

4.3.2 Seeder’s Protocol

The seeder’s protocol becomes very simple in this case, as the tracker does all the com-
putation which is needed for establishing the rewards. Therefore, the seeder simply does
what he is told by the tracker. There are just a few things he needs to take care of:

35

4.3. THE PROTOCOL

CheckExchange()
If any of these steps fails, do nothing.

1. Upon receiving a message “EXCHANGED (j, x, y)” from Li, check if both Axi =
1 and Ayj = 1. If the check passes, ask Lj whether the exchange really happened
by sending to him “ACKNOWLEDGE (i, x, y)”. Otherwise, send to Li the error
and cancel.

2. If Lj replies with “OK (i, x, y)”, meaning that he acknowledged the exchange,
increase Xi by one and set Ayi := 1.

3. Send to Li the message “OK (j, x, y)”.

Figure 4.3: The check exchange algorithm implemented by the tracker

• As soon as the seeder joins the system, (i.e., he just became a seeder or he connected
to the system), he notifies the tracker of his upload speed.

• When he is told by the tracker to upload to a leecher, the seeder follows the order,
because the tracker is trusted. The leecher requests pieces to be uploaded.

• When a new leecher joins the system and the seeder is notified by the tracker, the
seeder lets the newcomer request 5 pieces which he then uploads after waiting T
seconds.

• Every time a seeder uploaded piece fx to Li, he sends the message “SENT (i, x)”
to the tracker such that he is able to track the owned pieces of the leechers.

We give the detailed connect protocol in the appendix in Figure A.2.

4.3.3 Leecher’s Protocol

The Leecher’s protocol is the most important protocol, because whereas seeders and the
tracker can be regarded as at least partially honest, a leecher would try to do anything
to decrease his download time or his overall upload.

Connecting to Other Parties

When a leecher connects to a new party, they need to exchange some information first.
For the sake of readability, we just briefly mention what needs to be sent.

• Connecting to the tracker. If you are new, just wait for the tracker to give you a
neighborhood and a signature on the time (Tp, sigt). If you are rejoining, addi-
tionally provide the tracker a signature on the held pieces.

36

4.3. THE PROTOCOL

RewardLeechers() (called every T seconds)

1. Calculate for every leecher the percentage of the upload speed he deserves.
ri := min

{
Xi∑
k
Xk
, 1

2

}
2. Distribute the upload speed of every seeder such that for the overall average

download speed of every leecher Li holds downli = ri(
∑
k up

s
k) + θi, where θi is

the download speed the leecher Li acquires from exchanges with other leechers.

3. For all i, set Xi := 0.

Figure 4.4: The tracker’s algorithm to reward leechers according to the number of their
exchanges

• Connecting to a seeder. Request 5 pieces from the seeder and wait until he uploads
them to you.

• Connecting to a leecher. Do not connect until you have Tp + T < Tc, where Tc
is the current time and Tp is the timestamp you received from the tracker. Send
(a1, . . . , aN) to the other leecher, where am = 1 if you hold piece fm. Wait for
the other party also to send their availability as well. Also, exchange your signed
timestamps, receiving (T ′p, sig′t). Verify the signature. If it holds Tc < T ′p+ T , this
means that the leecher just joined. In this case, ignore him until Tc > Tp + T .

Note that a leecher always needs to keep track of the availability in his neighborhood.
He does this, as in the original BitTorrent, by observing the “HAVE x” messages which
leechers send when they acquire a new piece. Again, for better readability, we specify
the exact connect protocols in the appendix in Figure A.3.

Uploading

To fix the problems with the strategic client that was proposed by [PIA+07], we change
the uploading strategy of the leechers. As no leecher wants to upload more than he
receives, we propose a simple rule. Upload to everyone exactly as fast as he uploads
to you. Theoretically, this obviously gives you an equilibrium, because no matter how
one changes his uploading strategy, one will always download as fast as upload, possibly
even slower. The equilibrium here is therefore intuitive.

In practice, this is enforced anyway, because in the piece exchange (which we will dis-
cuss in the next paragraph) both parties wait until they have received their encryptions.
Practically, this means that both parties upload with the same speed.

37

4.3. THE PROTOCOL

Piece Exchange

The piece exchange in the realistic setting works now somewhat different than in the
small model. The basic idea remains the same, namely that encryptions are used to
ensure that nobody cheats, and that |k| � B, where |k| is the key length and B is the
piece size.

The difference is that now, leechers want their exchanges to be counted and rewarded.
The simple idea behind this is to prevent people from free riding. Again, as one can
easily observe in Figure 4.5, if one does not upload, one also does not get any reward. We
therefore used the altruism given by the seeders cleverly to provide additional incentives
for exchanging and thus for participation in the protocol. The exchange protocol can be
found schematically in Figure 4.5 and in detail in the appendix in Figure A.4.

Please note that this protocol is presented just from the viewpoint of one leecher.
Of course, the other leecher has to do the same steps, but this would make the diagram
too crowded.

cx

cy

k
fy ← D(k, cy)

Leecher Li Leecher Lj

Is this true?

Yes

OK

Exchanged fy for fx

with Lj
Tracker

Ay
i := 1

kj,x ← U|k|
cx ← E(kj,x, fx)

kj,x

Figure 4.5: Piece exchange protocol for leecher Li

38

4.4. PROOFS

4.4 Proofs
To show that our protocol constitutes a computational Nash equilibrium, we prove that
no party has an incentive to deviate. This is only necessary for seeders and leechers,
because the tracker is trusted.

4.4.1 Leecher’s Protocol

A leecher has several possibilities of deviating, because he has a rather complex strat-
egy. We will now prove step by step that no deviation increases his payoff if all other
participants follow the protocol. First, we handle all simple deviations that are possible
and where you immediately can tell that this will not increase the payoff. Afterwards,
we discuss the single more involved case, namely when a leecher does not acknowledge
another leecher’s reward. From this, it follows that no leecher has an incentive to deviate.

Lemma 18 (Simple Deviations). Let |k| be the key size of all keys chosen in the proto-
col. Let M ′i be the strategy for leecher Li who plays at some point one of the following
deviations:

1. It does not announce the correct timestamp he got from the tracker.

2. It connects to leechers before the penalty wait of T seconds is over.

3. It accepts connections from leechers whose penalty wait is not over.

4. It announces to hold more pieces than it actually does.

5. It announces to hold fewer pieces than it actually does.

6. In the exchange phase, it does send d 6= E(k, fx) upon being requested to exchange
piece fx.

7. It requests an invalid reward from the tracker.

8. In the exchange phase, it doesn’t send the key in the end.

9. It reconnects at time TD on purpose while it is participating in the protocol.

Then, we can construct a strategy M ′′i which does not deviate precisely in that particular
point, and it holds

ui(|k|,M ′i ,M−i)− ui(|k|,M ′′i ,M−i) ≤ ε(|k|).

This means, a leecher cannot increase his payoff more than negligibly by deviating in a
way listed above.

Proof. Assume that the deviating leecher Li plays a deviating strategy M ′i as described
above. Using a big case distinction, we show that neither of the cases does increase his
utility.

39

4.4. PROOFS

1. M ′i does not announce the correct timestamp he got from the tracker.
Because Li always has to provide a valid signature from the tracker on the times-
tamp, this deviation will be undetected only with a negligible probability ε(|k|).
If it is detected, he is blacklisted by the other party, which does not increase his
utility. Therefore, we obtain that

ui(|k|,M ′i ,M−i)− ui(|k|,M ′′i ,M−i) ≤ ε(|k|).

2. M ′i connects to leechers before the penalty wait of T seconds is over.
Because other leechers will not reply to Li unless he provides a timestamp Tp <
Tc − T , and this is not possible to fake as we have shown above, this again will
only help him with negligible probability. Thus, we have

ui(|k|,M ′i ,M−i)− ui(|k|,M ′′i ,M−i) ≤ ε(|k|).

3. M ′i accepts connections from leechers whose penalty wait is not over.
Because those leechers will not connect to him, this does not change the outcome
of the game. Therefore, we obtain that

ui(|k|,M ′i ,M−i) = ui(|k|,M ′′i ,M−i).

4. M ′i announces to hold more pieces than it actually does.
There are two possible cases. Either Li tries to convince the tracker upon con-
necting that he holds more pieces, or he has sent wrong “HAVE x” messages. In
the first case, he would have to provide a valid signature from the tracker, which
is only possible with negligible probability ε(|k|). In the second case, this will not
affect anything until some other leecher requests a piece fx from him that he does
not have yet. Then, in the exchange step, the tracker will send the other leecher
the message that he does not have fx. The exchange will be canceled and Li will
be blacklisted by the other leecher. This does not increase his utility, so we have

ui(|k|,M ′i ,M−i)− ui(|k|,M ′′i ,M−i) ≤ ε(|k|).

5. M ′i announces to hold fewer pieces than it actually does.
This does not increase his utility, because the amount of pieces is used by other
leechers to determine whether they can exchange with Li. Fewer parties are willing
to exchange with him if he claims to have fewer pieces. So we obtain

ui(|k|,M ′i ,M−i) ≤ ui(|k|,M ′′i ,M−i).

6. In the exchange phase, M ′i sends d 6= E(k, fx) upon being requested to exchange
piece fx.

40

4.4. PROOFS

Assume Li does not hold piece fx. Because other leechers only request what he
announced with “HAVE x”, this means he wrongly announced that he has too
many pieces. This case is already discussed above. Therefore, Li has the piece the
other party requested and the other party expects a message of the length |Ek(fx)|.
But then, Li can also send the encryption of the requested piece, because sending
a wrong encryption still requires him to upload exactly as much as uploading the
right encryption. Thus, this deviation leaves him with

ui(|k|,M ′i ,M−i)− ui(|k|,M ′′i ,M−i) ≤ ε(|k|).

7. M ′i requests an invalid reward from the tracker.
By assumption, M ′i cannot forge a message from a different player than himself.
However, his request will not be acknowledged by any other party, as they are
sticking to the protocol. Therefore, this does not increase his utility:

ui(|k|,M ′i ,M−i) = ui(|k|,M ′′i ,M−i).

8. In the exchange phase, M ′i doesn’t send the key in the end.
Again, by assumption we said that the key size does not increase the uploaded
amount. However, Li is blacklisted by the other party afterwards. Therefore, we
have

ui(|k|,M ′i ,M−i) ≤ ui(|k|,M ′′i ,M−i).

9. M ′i reconnects at time TD on purpose.
We are looking at two different outcomes. In o, the leecher did not rejoin at
TD while in o′, he reconnected at time TD. Then, in o′, Li has downli(TD) = 0.
Additionally, he starts receiving new pieces after a penalty wait of T seconds. We
split the leecher’s download speed downli in two components. Let downli,E be the
5 pieces extra received from seeders upon joining the system and downli,0 be the
speed received through normal exchanges and rewards. Assume that the leecher
already holds Yi pieces of the file.

B · (N − Yi) =
∫ Ti,fin
TD

downli(t) dt

=
∫ TD+T

TD

downli(t) dt︸ ︷︷ ︸
=0

+
∫ Ti,fin
TD+T

downli(t) dt

=
∫ Ti,fin
TD+T

downli,E(t) dt︸ ︷︷ ︸
≤5B

+
∫ Ti,fin
TD+T

downli,0(t) dt

41

4.4. PROOFS

Because we assumed that every piece is accessible to the user, it makes no difference
whether a user is downloading from a seeder or from a leecher. Therefore, he will
only benefit from this deviation if he is able to decrease Ti,fin in o′. However, in
o, the leecher always maintains a download speed above 5BT by assumption. More
precisely, in o the following holds:

∫ TD+T

TD

downli(t) dt ≥
∫ TD+T

TD

5B
T
dt

≥ 5B.

It follows that in o, Ti,fin is smaller than in o′. Further on, the transcripts of o and
o′ are the same up to time TD, where in o′, the leecher has a download speed of
downli(TD) = 0. This exactly matches the second condition in the utility function
of a leecher, resulting that u(o) ≥ u(o′). Therefore, the deviation did not increase
the utility:

ui(|k|,M ′i ,M−i) ≤ ui(|k|,M ′′i ,M−i).

This concludes our proof.

Now we only mentioned some cases. Apart from the most interesting deviation,
intuitively it is now clear that by cheating you cannot increase your utility. However,
one would need to examine all other cases which are not discussed so far, e.g. that a
leecher does not ask the tracker whether another party has a piece before exchanging.
Or, a leecher simply sends random data. However, these deviations really are pathologic.
To save time and space, we therefore will omit them.

Lemma 19 (Deviations). Let |k| be the key size of all keys chosen in the protocol. Let
M ′i be the strategy for leecher Li that plays at some point any deviation besides not
acknowledging another’s exchange in the Exchange protocol. Then, we have

ui(|k|,M ′i ,M−i)− ui(|k|,M ′′i ,M−i) ≤ ε(|k|).

Proof. Omitted.

Theorem 20 (Leecher’s Protocol). Let |k| be the key size of all keys chosen in the
protocol, and let Mi be the strategy for leecher Li given by the protocol. Then, we have
that for every strategy M ′i it holds that

ui(|k|,M ′i ,M−i)− ui(|k|,M) ≤ ε(|k|).

In other words, a leecher cannot get any better payoff than using the strategy our protocol
describes.

42

4.4. PROOFS

Proof. So far, for every deviation we discussed, we immediately have shown in Lemma
18 and Lemma 19 that this does not increase the deviating leecher’s utility. It is left to
show thatMi cannot increase its utility by not acknowledging the other party’s exchange
during an Exchange iteration.

Here, we cannot show that this deviation immediately does not increase the utility
of Li. But we can prove this by looking at one round, which is T seconds long. As-
sume therefore, Li plays a deviating strategy M ′i for the whole game. Then, he deviated
Z ′ > 0 times. Assume that Z ≤ Z ′ deviations were not to acknowledge the other party’s
exchange, and in Z ′−Z cases he deviated in one of the ways discussed above. Then, we
construct a strategy M ′′i , which only deviates in Z exchanges by not acknowledging the
other’s exchanges. It holds that ui(|k|,M ′′i ,M−i) ≥ ui(|k|,M ′i ,M−i) because of Lemma
19, which says that those deviations do not increase the utility.

Therefore, if Z = 0, we are done, as the constructed strategy M ′′i is the strategy Mi
given by the protocol.

For the case where Z > 0, we show that ui(|k|,M) ≥ ui(|k|,M ′′i ,M−i) holds. To
reach the phase of acknowledging the other’s exchange, Li first needs to upload the
encrypted data. Therefore, the amount of uploaded data stays the same both in the
deviated strategy and the protocol’s strategy. The only possibility to increase the utility
is then to decrease the overall time needed, which is equivalent to increasing the amount
of data downloaded in the same time span. We will show that this is not possible.

With Mi, the leecher’s download amount corresponding to one round of T seconds
equals

BXi + T (
∑
k

upsk) ·min
{

Xi∑
kXk

,
1
2

}
.

Note that in the second summand, we are relating to the download of the next round,
because the tracker rewards exchanges always one round later. Using M ′i , he gains ZB
bytes less from leechers, because those exchanges are cancelled, but he obtains a higher
reward from the seeders. Together, this sums up to

B(Xi − Z) + T (
∑
k

upsk) ·min
{

Xi
(
∑
kXk)− Z

,
1
2

}
.

Therefore, his utility will not increase if

ZB + T (
∑
k

upsk)
Xi∑
kXk

≥ T (
∑
k

upsk) ·min
{

Xi
(
∑
kXk)− Z

,
1
2

}
.

Note that the tracker does not allow someone to have more than half of all exchanges
and therefore caps according to the protocol specified in RewardLeechers the reward at
one half of the seeder’s upload.

Now, we can simplify the inequality, using how the number of exchanges in T seconds
is computed. Namely, we can express the number of our own exchanges Xi by

Xi = T

B
upli.

43

4.4. PROOFS

Similarly, we can say that the number of all exchanges
∑
kXk equals the overall download

speed obtained from exchanges divided by the block size.

∑
k

Xk = T

B

∑
k

uplk

Now, we distinguish two cases. In the first case, the leecher increases the benefit from
the seeders, but still stays below 1

2 of the overall capacity of the seeders. In the second
case, we examine what happens when he would exceed 1

2 but is capped by the tracker.
Note that those computations strongly rely on the fact that seeding power is at most
twice as fast as leeching power.

1. Xi
(
∑
k
Xk)−Z <

1
2 . Then we obtain min{ Xi

(
∑
k
Xk)−Z ,

1
2} = Xi

(
∑
k
Xk)−Z . Therefore, the

utility of a deviating leecher does not increase if the following holds:

ZB + T (
∑
k

upsk)
Xi∑
kXk

≥ T (
∑
k

upsk)
Xi

(
∑
kXk)− Z

⇔ ZB(
∑
kXk)((

∑
kXk)− Z)

T (
∑
k up

s
k)

≥ Xi(
∑
k

Xk)−Xi((
∑
k

Xk)− Z)︸ ︷︷ ︸
=ZXi

⇔ B(
∑
kXk)((

∑
kXk)− Z)

T (
∑
k up

s
k)

≥ Xi

⇔ (
∑
k up

l
k)

(
∑
k up

s
k)︸ ︷︷ ︸

≥ 1
2

((
∑
k

Xk)− Z) ≥ Xi

But because we have
Xi

(
∑
kXk)− Z

≤ 1
2 ,

the last inequality holds.

2. Xi
(
∑
k
Xk)−Z ≥

1
2 . Here, we have min{ Xi

(
∑
k
Xk)−Z ,

1
2} = 1

2 . The deviating leecher’s
utility will not increase if

ZB + T (
∑
k

upsk)
Xi∑
kXk

≥ T

2 (
∑
k

upsk)

⇔
B
T

∑
kXk∑
k up

s
k

Z ≥ 1
2(
∑
k

Xk)−Xi

⇔
∑
k up

l
k∑

k up
s
k︸ ︷︷ ︸

≥ 1
2

Z ≥ 1
2(
∑
k

Xk)−Xi

44

4.4. PROOFS

Again, because we are in the case

Xi
(
∑
kXk)− Z

≥ 1
2 ,

the last inequality holds.

Therefore, the utility can not increase by deviation, which concludes our proof.

Overall Upload Speed of a Leecher

One might wonder why we did not discuss that a leecher could fake his total upload
speed to be lower than it really is. This is indeed possible, but this is not considered
to be a deviation. Rather than that, we regard this as a feature of our protocol. Every
leecher is then free to choose his desired total upload speed. Depending on that, he will
get an appropriate download speed. Of course we could e.g. assume that every leecher
wants to download as fast as possible in the first place, but leaving this open, every
leecher is able to find his own desired balance between uploading not too much but still
getting good rates. In any case, our proofs hold if we fix the total upload speed of a
leecher to a certain value.

4.4.2 Seeder’s Protocol

Now we want to prove that a seeder will not deviate from his given strategy.

Theorem 21 (Seeder’s Protocol). No deviation of the seeder from his protocol will
increase his payoff if the other parties play their designated strategy.

Proof. If we leave open how long and how much of his upload speed a seeder wants to
offer, we have only one thing left to show. We need to prove that no matter how the
seeder would distribute his upload speed over the leechers, the average time to completion
does not decrease.

This follows directly from the fact that we consider all other participants in the game
to stick to their strategy. Therefore, if a seeder seeds to someone more and to someone
else less, the average completion time is still the same.

Let upsi be the total upload speed of the leecher, ω1, . . . , ωn be the weights on the
upload speed to all leechers given by the tracker and φ1, . . . , φn arbitrary other weights.
We require, as usual for weights, that

∑n
k=1 ωk =

∑n
k=1 φk = 1 and that ∀k : ωk, φk ≥ 0.

45

4.4. PROOFS

Then, we obtain for the average download speed of all leechers in one round

1
|L|

∑
k∈L

(downlk + ωk · upsi) = 1
|L|

∑
k∈L

(downlk) + upsi
∑
k∈L

ωk


= 1
|L|

∑
k∈L

(downlk) + upsi


= 1
|L|

∑
k∈L

(downlk) + upsi
∑
k∈L

φk


= 1
|L|

∑
k∈L

(downlk + φk · upsi).

Because the average download speed in every round stays the same, the average com-
pletion time for every leecher does not differ if the seeder deviates from his protocol.
Therefore, the seeder’s utility does not increase.

4.4.3 Computational Nash Equilibrium

Now, when we have the Lemmas stating that neither the leechers nor the seeders will
deviate, we can finally conclude with showing that we have a computational Nash equi-
librium.

Theorem 22 (The Protocol is a Computational Nash Equilibrium). The protocols we
present for tracker, leechers and seeders form a computational Nash equilibrium.

Proof. The tracker is trusted and will therefore not deviate. According to Theorem 20,
a leecher’s utility will only increase by a negligible factor by a deviation. In Theorem
21 we have shown that a deviation of the seeder will not increase his utility. Therefore,
no computationally bounded player has an incentive to deviate as long as all the other
parties play their designated strategies.

46

5
Further Mitigation Techniques

The protocol we present is proven to work in our model. As long as this model holds,
nothing can harm it. It immediately follows, that attacks on the protocol will try to
violate this very model. In this chapter, we want to discuss possible flip sides of our
protocol and say how to protect from them. Because those cases are outside our model,
we will give neither definitions nor proofs, but only reason why a certain defending
mechanism could make sense. Our biggest concern is the forming of coalitions, but we
have also to discuss minor violations of the model, like too many seeders or heavily
rejoining peers.

It is interesting to note that most of the mitigation techniques we mention do not
need to be deployed in the first place. The reason lies within the rationality of humans
itself. If we are able to convince people that even attacks outside our model do not
work because we can implement mitigation techniques, most likely nobody will even
try. Because if someone writes a client that exploits such a fact and we notice that, we
can afterwards e.g. release new tracker software which defends against the new attack.
Therefore, the people who implemented the cheating client wasted their time. This is
important as every mitigation takes away resources and therefore costs money.

5.1 Coalitions
Coalitions are not unusual, neither in reality, nor in game theory, nor in rational cryptog-
raphy. On the contrary, most protocols in rational cryptography try to achieve at least
immunity against coalitions before looking for stronger equilibria than Nash. Hence, the
question arises why we did not formally discuss this point.

The answer lies within the mechanism of BitTorrent itself and can be understood
best in [HP06], by Hales and Patarin. They give reasoning why nobody uses cheating
clients although they are freely available. According to them, BitTorrent has this –
on the first glance negative – side effect that there is no metadata search included
in the protocol. Therefore, each torrent creates its own small network, called swarm.
Interestingly, exactly this already forms coalitions, namely between you and all other
people who want to share the same file, and this coalition is usually not too big. Now you
already have some incentives to be altruistic to other users, because you share common
interests. And although you cannot talk to them, this creates some kind of bond between

47

5.1. COALITIONS

all users.
The same holds of course for RatFish. To now successfully cheat, you would need

to find a coalition in the coalition who is willing to betray other users. But as you
cannot talk to anyone, the client should look for other instances of itself, running on
other machines, and he might be scolded by other parties already during the search
for coalition partners. For example, as soon as a client is released who looks for other
instances of himself by whatsoever means, one can patch “honest” clients to watch if
they are contacted that way. Then, they can safely blacklist the client who is looking
for possibilities to cheat.

There is however a second way to create a coalition, namely to concurrently connect
twice to a swarm. For a normal user, this might already be infeasible as a tracker notices
two connections coming from the same IP. Therefore, this has to be done using a proxy,
but especially free proxies usually have low throughput. Nevertheless, we will assume
for the forthcoming subsections that somehow a coalition was established.

5.1.1 Coalition With Fake Identities

Assume, a cheating client managed to connect twice to the system, with distinct iden-
tities. However, his overall upload and download speed is subdivided into two parts for
the connections, and both of the identities he created only have access to a common
pool of pieces. Therefore, as long as he is exchanging with other parties, everything
still works the same. The only possibility which opens to the cheating client is to fake
exchanges between his two identities and therefore get an unproportional reward from
the seeders.

However, what options does he have in detail? The tracker knows what pieces both
identities have, so he somehow needs to convince the tracker that they really have pieces
to exchange. This cannot work by claiming to have more pieces, because for this he
would need to forge at least at some point the signature of the tracker. Therefore, he
needs to say that he has less pieces than in reality. This is only achievable by starting
collecting distinct pieces with both identities, and at some point “exchanging” the pieces
gotten so far and then move along. Note that the two identities do not really exchange
because they use the same pool of pieces anyway.

As already pointed out, this is unlikely to happen, because you would need a rather
good proxy server. If this happens you can get at most the following bonus.

An honest peer Li on average receives a reward of up
l
i

U l
U s, where U l =

∑
k up

l
k and

U s =
∑
k up

s
k. A cheating peer who is able to use every 2 pieces he gets to fake an

exchange obtains a reward of (
2upli

U l + upli

)
U s.

For large seeding capacities, this is a reasonable increase. However, we think that such
behavior can be detected by the tracker.

An ad hoc solution to this problem is the following: The tracker observes whether
two parties are downloading distinct pieces and then exchanging them. Normally, this

48

5.2. FREQUENT REJOINING

should not happen to leechers who just download from whoever got something for them.
This puts more workload on the tracker, but maybe better solutions can be found by
experimenting.

5.1.2 Coalitions With Other Clients

Again, there is only one interesting attack point, namely the number of exchanges. How-
ever, for two different users, cheating becomes even more difficult when we implement
a simple mechanism: The tracker only counts exchanges when a user downloads a new
piece. Or, if a leecher downloads from a seeder a piece he should already have, the
tracker subtracts one exchange for that. This means for our cheating users:

• Either you claim to receive a piece you already have. Then, this will not be counted.

• Or, you can pretend to receive a piece which you do not have yet. Then, this
will be counted. However, you do not really have the piece and therefore need
to download this later. Then, you either need to reconnect and claim that you
are completely new which gives you more restrictions again. Or you download the
piece in the same session later but do not get a reward for this particular exchange.

Practically, this means that two different leechers cannot help themselves by claiming
they have fake exchanges.

5.2 Frequent Rejoining
In our protocol, we did prove that rejoining does not increase your utility, given strong
assumptions. However, if those do not hold, it can help you.

For example, if you really got stuck during the protocol and have nothing to offer
anymore to other parties, a simple rejoin can help, as you are getting 5 new pieces
again. However, this comes at the expense of being forced to wait for a whole round, T
seconds. Now getting 5 pieces of size 256 kB during more than 256 seconds means that
you effectively have a download speed of below 5 kB/s.

BitTorrent was built to give people a high download speed. If a user is willing to
endure 5 kB/s just to not upload data, he could have used a different method for file
sharing in the first place.

Of course you could also try to dynamically rejoin, if you e.g. are getting such a
low upload speed that even 5 kB/s would help. However, for this to work you first need
a seeder in the system. Second, if you have a seeder it is already improbable that you
suffer from such download rates. To be more precise, this can only happen if the seeder
is forced to serve such a lot of other users, that even upon rejoining, you would get your
new 5 pieces very slowly. In most cases possibly even slower than the download speed
you had before.

49

5.3. BORDER CASES

5.3 Border Cases
At last, we want to look at what happens if our quantity assumptions, e.g. having a
seeder, do not hold.

5.3.1 Missing Seeders

This case is almost pathologic. If a system has no seeder, it is close to having an
availability which is smaller than 1. This means, the file which was shared at some point
is not completely available in the system anymore. However, under some circumstances
maybe a system is able to recover. In such cases we have a problem with our protocol:
It only allows people to join when seeders are available, as seeders are responsible for
giving out the initial pieces.

There is not much we can do about this problem besides somehow involving leechers
to help. Several techniques are possible.

1. We simply rely on altruism again. If a newcomer joins a system with no seeder,
some leecher helps him out for free.

2. We can give additional incentives to help newcomers. E.g., a tracker could assure
a leecher some “free exchanges”, should he help and should there ever be a seeder
again.

3. The tracker allows the newcomer to cheat by assuring that he has certain pieces
although he just joined. Then, the newcomer can cheat some leechers and get some
real pieces.

Clearly, every method has its drawbacks. The first approach needs altruism and can
of course be exploited. However, if one keeps the forced wait, the damage should be
minimal.

The second approach maybe produces more altruism. Again, this is exploitable,
especially by faking distinct identities and rejoining all the time. Then, the tracker gives
out a lot of free exchanges to leechers who want to help the newcomer, but this newcomer
again immediately rejoins. And of course you never know whether a seeder will come
back.

The third method is the least applicable one, as the cheating newcomer gets black-
listed already at the beginning by some parties. Considering that the system was almost
dead anyway, this might be fatal for him.

5.3.2 Too Many Seeders

At some point in our proof, we required that we have at most twice as much seeding
than leeching power. In the exchange protocol, one has to acknowledge the other party’s
exchange in return for the key for the encrypted piece. However, having too much seeding
power, it might be better for a user to decline the exchange, because he then gets a lot
more reward from the seeders.

50

5.3. BORDER CASES

Although we did not prove it, this is still not an option, even when the seeding
power vastly exceeds the leeching power. First of all, you get blacklisted by your cheated
partner, and this decreases your local neighborhood. Therefore, if you do this too often,
you eventually do not have other parties to exchange with. Second, if you already have
a lot of seeding power it might be that you do not even want to cheat, because your
downspeed is fully utilized. And third, for knowing whether this deviation helps you,
you need a good picture of the overall leeching and seeding power. Otherwise, you do not
know when exactly the point is reached where not giving an acknowledgement improves
your download speed.

51

6
Feasibility Study

Now that we have introduced the new protocol in theory, we want to check whether
the workload on the participants is not too high. In theory, everything is acceptable as
long as we only have polynomial complexity, but in reality we have to take a good look
even at the constant factors. We want to look at all different parties participating in
the system and discuss whether their new protocol is acceptable. Often, we will refer to
BitTorrent by saying that something uses as much resources as BitTorrent. We do this
for convenience, as BitTorrent is widely deployed and therefore gives good insight into
what is feasible.

To really be able to argue about the feasibility, we would have to implement the new
protocol and test it exhaustively, using a system like planet-lab [KHMP06]. We leave
this however open for future work as this thesis’ main aspect lies on the theoretical part
and just give brief reasoning on why it should work in practice.

6.1 Seeder’s Overhead
We start with the most simple party to discuss, the seeders. Concerning network or
computational complexity, almost everything stays the same. To summarize briefly, we
added to the BitTorrent protocol that

• every seeder tells the tracker its upload speed,

• a seeder is told by the tracker to whom he should upload and

• a seeder notifies the tracker upon having sent a piece to a leecher.

Everything else is basically the same as in BitTorrent. It is easy to see that not much
overhead was added. The only addition we need is an open TCP connection to the
tracker, where a seeder can send down its updates. For example, an update for a sent
piece to a leecher should contain

• the IP of the seeder himself (4 bytes),

• the IP of the receiving leecher (4 bytes) and

• the ID of the piece sent (4 bytes),

52

6.2. LEECHER’S OVERHEAD

which overall give 12 byte of upload overhead compared to a 256 kB piece which has to
be sent first. This is clearly no problem.

Also, the coordination with the tracker should be easy. Upon joining the network,
the seeder notifies the tracker of its current upspeed. As soon as a user changes the
upload speed, another update should be sent. What is more important is that a seeder
should, upon leaving the network, at any rate notify this to the tracker. Otherwise, the
tracker’s calculation for the rewards gets faulty as he expects more upload speed from
the seeders than there exists. We can however not change the fact that some users kill
their client or their connection, and that the tracker might therefore occasionally miss
such a quit message.

A possible countermeasure to this would be if e.g. the tracker requests a specific
keep-alive message from a seeder as soon as he is missing some uploaded pieces. For
example, a seeder with an upload speed of 256 kB/s, which is known to the tracker,
should upload one piece in a second. If the tracker does not get any message for several
seconds from the seeder, it is probable that he has quitted.

A more serious problem are large-scale networks with few seeders, e.g. the initial
seeding phase of a popular file. Assume that we have 10,000 leechers trying to download
from a seeder who has 100 kB/s upstream. Because in the initial seeding phase, this
upstream is the bottleneck of the system, we can assume that all leechers exchange
approximately the same amount. Hence, the seeder has to split his upload capacity
among 10,000 leechers, resulting in 10 B/s for everyone. Obviously, this makes no sense.
In such a case we have to accept that we can give no perfect fairness to the leechers if we
want the system to stay reasonable, at least not in such a small time frame. Probably, one
should switch to a more simple initial seeding protocol in such a case, e.g. as described
in the idealistic setting. A seeder then simply cycles through all leechers and uploads to
everyone a piece.

6.2 Leecher’s Overhead
Compared to the seeder’s new protocol, a leecher faces more differences in his protocol:

• He encrypts pieces to exchange and

• he interacts with the tracker to

– get a signature on the current time,
– get a random subset of other leechers,
– check during an exchange whether the other party has a piece,
– request rewards and
– acknowledge the other’s rewards.

53

6.3. TRACKER’S OVERHEAD

Encrypting Pieces

In practice, we do not need a proven CCA-2 secure encryption algorithm for our protocol
to work. Rather than that, we need an encryption scheme just strong enough that a
participant would rather upload data instead of brute forcing it. For this, a simple
block cipher like AES suffices. Using short keys, one can encrypt several hundreds of
Megabytes per second, which is computationally fast enough for our purposes. More
importantly, the cipher text is as long as the message, which means that we do not have
any network related overhead by encrypting pieces (except of course the transmission of
the key, which is however only a few bytes).

Interaction with the Tracker

On the leecher’s side, basically everything stays the same. The signature on the current
time and the subset of leechers he receives in the same message as in the handshake
of the original protocol. Also, a request whether a party really has a piece is just a
few bytes, as well as the request for rewards. Compared to the 256 kB per piece, the
overhead is still small.

Even for large-scale networks, from the viewpoint of a leecher, he still interacts just
with his local neighborhood and the tracker. Therefore, a large-scale network does not
affect the leecher and the performance is comparable to BitTorrent.

6.3 Tracker’s Overhead
This is the most interesting part. The tracker has a lot of new tasks to perform, and
the question is whether modern server architectures are fast enough to cope with this.
Once again, we first want to skim briefly over the additions to the protocol. The tracker
is required to

• compute signatures on timestamps for arriving leechers,

• compute and verify signatures on the completion of leechers,

• select a random subset of stored IPs,

• store all seeders’ IPs as well as their upload speed,

• store all leechers’ IPs as well as their completion and their number of exchanges,

• look up whether a leecher has a certain piece,

• compute the rewards for the leechers and

• notify the seeders whom to upload to.

54

6.3. TRACKER’S OVERHEAD

Clearly, this is a lot more work than before. Additionally, we face the problem that a
single tracker does not only serve one torrent but usually many thousands of torrents.
However, only a few of those are exceptionally popular. For our calculation, we assume
having 1.000.000 leechers on the tracker. Further on, we say that they download files of
an average size of 1 GB with an average speed of 100 kB/s. This gives us approximately
100 leaving/joining peers per second. Assuming that a signature needs 1 millisecond to
be computed, we obtain that 100 ms are used to compute signatures for joining peers.
For leaving peers, we only need to compute signatures if they are not done downloading.
Therefore, we need at most 200 ms for computing signatures. This is feasible.

The rest are basically hash table lookups, but quite a lot of them happen at one
time. With 100 kB/s for 1,000,000 leechers, we have 390,625 exchanges happening per
second. For every exchange, we have to look up two times the completion, and increment
an exchange count. We assume that fetching a hash value consumes 10 nanoseconds,
whereas a replace costs 20 nanoseconds. This means, for every exchange we utilize 40
nanoseconds. This results in 15 milliseconds of overall hash table lookups during one
second. This is feasible. Also, we claim that the reward computation is feasible, as you
only perform basic operations on the values.

Also, what needs to be discussed is the network overhead. Every such request is just
a few bytes, but as the tracker gets millions of those requests, we need to look whether it
still scales. A request whether another party has a piece usually just consists of the ID
of the piece (4 bytes) and the IP of the other party. Possibly, you have to include your
own IP as well, but this the tracker can also deduce from the IP header. Nevertheless,
we count it in, resulting in 12 bytes per request. Such a request is sent in an IP/TCP
packet, which additionally give us 40 bytes of overhead. A reward request basically has
the same size, we only need to count additional 4 bytes in for the second piece.

Again, for one exchange we therefore have to receive a check request of 52 bytes
(the response is considerably smaller), and a reward request of 56 bytes, making it
108 bytes in total. Thus, we get in one second 40 Megabytes of metadata just for the
exchanges. Additionally, we are sending to newcomers their required information which
we approximate with 10 kB per newcomer, giving us additional 1 Megabyte. However,
as we are speaking about server architecture, this should be feasible for good servers.

Similarly, the tracker has to notify all seeders after the rewards are computed. Having
500,000 seeder means that every seeder serves approximately two leechers. Therefore,
the tracker has to send to each seeder the IPs of these leechers (2 times 4 bytes) as well
as the capacity every leecher should obtain (4 bytes per leecher). Again, this is sent
using TCP/IP, so we have to add 40 bytes of overhead. This gives us a packet size of 56
bytes which has to be sent to every of the 500,000 seeders. This results in 27 MB every
T seconds, which is no problem.

55

7
Conclusion

7.1 Summary
In the beginning, we have presented the drawbacks of BitTorrent which could someday
make it unusable. This popular file sharing protocol is still used by most people, but
it also is easily cheated. Should this happen, there will be the need for a protocol for
rational players, which is not cheatable at all.

We presented this protocol, RatFish. First of all, we have shown in Chapter 3 how
a simple approach would look like and gave a strong proof that in an idealistic setting,
a rational player is not able to increase his utility by deviating. This was mainly to give
the reader intuition on how the protocol will look in the forthcoming chapter.

Then, in Chapter 4, we presented a model which is close to reality along with a more
involved protocol which, as long as our assumptions on the utility functions hold, cannot
be cheated. Our protocol defends effectively against the main weaknesses of BitTorrent:

• Free riding. As we do not have optimistic unchoking, free riding becomes increas-
ingly difficult. Even white washing does only help up to a very small degree, as
one always is forced to wait upon rejoining the network.

• Strategic clients. Whereas in BitTorrent you could by strategically selecting the
peers you upload to achieve a medium performance gain of 70%, this is not possible
in our client. The strategic choice is already inherent: Every client uploads exactly
as fast to his exchange partners as they upload to him.

• Garbage upload. In BitTorrent, although garbage is detected and discarded, it still
counts as valid incoming traffic. In our protocol, you can only upload what you
really hold. This is always verified by the tracker, who plays a major role in our
new protocol.

Afterwards, we examined what happens if our model is violated in Chapter 5 and rea-
soned that our protocol should also defend against those attacks. Along with the feasi-
bility study in Chapter 6 whether the protocol can be used in practice, this gives us a
pretty clear picture that we could replace BitTorrent.

Although nobody will use new file sharing programs when the old ones work perfectly
well, there do exist possibilities to cheat BitTorrent heavily. We also would like to point

56

7.2. FUTURE WORK

out that this might happen on behalf of certain companies, for which popular file sharing
methods are always a thorn in their flesh.

Figure 7.1: The RatFish logo

On a side note, we want to explain how the
name “RatFish” is formed. It is an abbreviation of
the thesis and we think that sounds pretty catchy.
The name derives from Rational Filesharing. Inter-
estingly, there really exists a fish who is called like
that. Should RatFish therefore ever be deployed,
there is a lot of potential for artistic design choices.
A possible logo which is an ambigram you can see
on the right.

7.2 Future Work
Of course, before we are ready to deploy our protocol, there is still a lot of work to do.
This thesis only examined the theoretical aspects of a new protocol. Before we therefore
are able to release a working client, the following steps should be taken.

1. Complete the proof. Our proof in Chapter 4 is missing one piece, namely that
during the case distinction in Theorem 20, we really covered all existing cases. This
is not obviously clear, and to fix this, the whole proof needs to be restructured.
For example, this can be done by an induction proof over the steps of the protocol.
However, this would make the proof complicated and less intuitive, which is the
reason why we omitted this step and just listed the most important cases.

2. Implement the protocol. There needs to be software written for clients and for
trackers alike. We can build upon existing implementations for BitTorrent, but
there are still a lot of changes to be done. Especially, one needs to care for the
implementation for the tracker, where every little speedup can help reducing the
workload significantly.

3. Test the implementation. We discussed in Chapter 6 that the protocol should work
in practice. However, this is just common sense we used and it could very well be
that we missed some important fact. Therefore, our protocol needs to be tested
exhaustively using networks like planet-lab [KHMP06], and the statistics have to
be checked carefully whether the metadata overhead is really acceptable.

4. Make the protocol immune against coalitions. We reasoned why coalitions should
not pose any threat to RatFish. Nevertheless, for a real proof, a lot is missing
and most likely the protocol needs to be rewritten partially. Whether this is
necessary or not we only will see in the future. Should there appear clients that
can effectively and heavily abuse RatFish using coalitions, this case needs to be
investigated. Otherwise, we can focus on the first three points.

Having said this, the roadmap for the future is clear, and we really hope that someday
RatFish describes a serious alternative to BitTorrent.

57

A
Detailed Protocols

Here, we want to give a more precise specification of the protocols that we mentioned in
Chapter 4.

TrackerConnect(i)
If i is a leecher:

1. Compute Ssk(i, Tc), where Tc is the current time, yielding sigt, and send to Li
the message “TIME (Tc, sigt)”.

2. If the leecher claims to have pieces by sending the message “PIECES
(a1, . . . , aN , id, sigp)”, verify that Vpk((a1, . . . , aN , id), sigp) = 1 and that you
have p := (a1, . . . , aN , id) stored. Remove p from your local storage and then
set ∀m ∈ {1, . . . , N} : Ami := am.

3. Send to Li a random subset of size H of all known IPs.

4. Notify a seeder by sending him “NEWPEER (i, Tc)”.

If i is a seeder:

1. Wait for the message “SPEED upsi” from the seeder and store this value.

Figure A.1: Algorithm executed by the tracker when a new peer joins.

58

SeederConnectj(i)
If i is the tracker, then seeder Sj does the following:

1. Send to the tracker the message “SPEED upsj”.

If i is a leecher, then seeder Sj does the following:

1. If the tracker sends you the message “NEWPEER (i, Tp)”, wait until the current
time Tc > Tp + T and then repeat the following steps 5 times.

2. Wait for the message “WANT x” from the leecher Li.

3. Send fx to Li.

4. Send the tracker the message “SENT (i, x)”.

Figure A.2: Connect protocol for a seeder.

59

LeecherConnectj(i)
If i is the tracker:

1. If you are rejoining, send the message “PIECES (a1, . . . , aN , sigp)”, where am =
1 if you hold piece fm, and sigp is the signature you received when quitting
last time.

2. Receive from the tracker the message “TIME (Tp, sigt)”, and a set of size H
containing IPs.

3. Wait until Tc > Tp + T , then connect to the IPs got from the tracker.

If i is a seeder: (Repeat 5 times)

1. Send Si the message “WANT x”, if fx is the rarest piece in your local neigh-
borhood which you do not have yet.

2. Receive piece fx from the seeder.

If i is a leecher:

1. Send Li the message “MYTIME (Tp, sigt)”.

2. Receive from Li the message “MYTIME (T ′p, sig′t)”. Verify that
Vpk((i, T ′p), sig′t) = 1. Verify that Tc > T ′p + T . If any of these checks fails,
abort.

3. Send to Li the message “AVAILABILITY (a1, . . . , aN)”, where am = 1 if you
hold piece fm.

4. Receive from Li the message “AVAILABILITY (a′1, . . . , a′N)”. Store these values.

Figure A.3: Connect protocol for a leecher.

60

Exchangei(fx, j, y)
If any of the following steps fails, blacklist Lj , meaning that you neither will send
nor read any messages from Lj from now on.

1. Ask the tracker whether the other party really holds the piece by sending him
“HAS (j, y)” and wait for him to answer positively.

2. Choose a random key kj,x and compute cj,x ← E(kj,x, fx).

3. Send cj,x to Lj and wait for cy from Lj . This step may take arbitrary long
to complete (i.e., the other player could respond with the corresponding piece
much later).

4. Send the message “EXCHANGED (j, x, y)” to the tracker and wait for him to
reply “OK (j, x, y)”.

5. Upon receiving the message “ACKNOWLEDGE (j, y, x)” from the tracker, reply
“OK (j, y, x)”.

6. Send Lj the key kj,x.

7. Upon receiving ky from Lj , retrieve f ′y ← D(ky, cy) and verify that hy = h(f ′y).

8. Broadcast to the local neighborhood “HAVE y”.

Figure A.4: Piece exchange protocol for leecher Li

61

Bibliography

[Bac09] Michael Backes. Lecture notes for advanced cryptography. Online under
http://infsec.cs.uni-sb.de/teaching/WS08/AdvancedCrypto/index.
html, 2009.

[Coh03] Bram Cohen. Incentives build robustness in bittorrent, 2003.

[Dou02] John R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from
the First International Workshop on Peer-to-Peer Systems, pages 251–260,
London, UK, 2002. Springer-Verlag.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume I: Basic Tools. Cam-
bridge University Press, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography, volume II: Basic Applica-
tions. Cambridge University Press, 2004.

[HP06] D. Hales and S. Patarin. How to cheat bittorrent and why nobody does. In
European Conference on Complex Systems, 2006.

[Kat08] Jonathan Katz. Bridging game theory and cryptography: Recent results and
future directions. In TCC, 2008.

[KHMP06] Aaron Klingaman, Mark Huang, Steve Muir, and Larry Peterson. Plan-
etLab Core Specification 4.0. Technical Report PDN–06–032, PlanetLab
Consortium, June 2006.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free
riding in bittorrent is cheap. In Fifth Workshop on Hot Topics in Networks
(HotNets-V), Irvine, California, November 2006.

[PIA+07] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy,
and Arun Venkataramani. Do incentives build robustness in bittorrent? In
Proceedings of 4th USENIX Symposium on Networked Systems Design &
Implementation (NSDI 2007), Cambridge, MA, April 2007. USENIX.

[QS04] D. Qiu and R. Srikant. Modeling and performance analysis of bittorrent-like
peer-to-peer networks, 2004.

[SPM04] J. Shneidman, D. Parkes, and L. Massoulie. Faithfulness in internet algo-
rithms. In Proc. SIGCOMM Workshop on Practice and Theory of Incentives
and Game Theory in Networked Systems (PINS’04), Portland, OR, USA,
September 2004. ACM SIGCOMM.

[TC05] R.W. Thommes and M.J. Coates. Bittorrent fairness: Analysis and improve-
ments. In Workshop Internet, Telecommunication and Signal Processing,
Noosa, Australia, December 2005.

62

http://infsec.cs.uni-sb.de/teaching/WS08/AdvancedCrypto/index.html
http://infsec.cs.uni-sb.de/teaching/WS08/AdvancedCrypto/index.html

	Introduction
	BitTorrent
	Exploiting BitTorrent
	Related Work
	Our Contribution
	Overview

	Related Definitions
	Game Theory
	Cryptography

	Idealistic Setting
	Model
	Our Protocol
	Proofs

	Realistic Setting
	Motivation
	The Model
	The Protocol
	Proofs

	Further Mitigation Techniques
	Coalitions
	Frequent Rejoining
	Border Cases

	Feasibility Study
	Seeder's Overhead
	Leecher's Overhead
	Tracker's Overhead

	Conclusion
	Summary
	Future Work

	Detailed Protocols

