
Technical Report: Relating Symbolic and
Cryptographic Secrecy∗

Michael Backes1, Birgit Pfitzmann2, and Michael Waidner2
1Saarland University and2IBM Zurich Research Lab

November 29, 2007

Abstract

We investigate the relation between symbolic and cryptographic secrecy prop-
erties for cryptographic protocols. Symbolic secrecy of payload messages or ex-
changed keys is arguably the most important notion of secrecy shown with auto-
mated proof tools. It means that an adversary restricted to symbolic operations on
terms can never get the entire considered object into its knowledge set. Crypto-
graphic secrecy essentially means computational indistinguishability between the
real object and a random one, given the view of a much more general adversary.
In spite of recent advances in linking symbolic and computational models of cryp-
tography, no relation for secrecy under active attacks is known yet.

For exchanged keys, we show that a certain strict symbolic secrecy definition
over a specific Dolev-Yao-style cryptographic library implies cryptographic key
secrecy for a real implementation of this cryptographic library. For payload mes-
sages, we present the first general cryptographic secrecy definition for a reactive
scenario. The main challenge is to separate secrecy violations by the protocol un-
der consideration from secrecy violations by the protocol users in a general way.
For this definition we show a general secrecy preservation theorem under reactive
simulatability, the cryptographic notion of secure implementation. This theorem
is of independent cryptographic interest. We then show thatsymbolic secrecy im-
plies cryptographic payload secrecy for the same cryptographic library as used in
key secrecy. Our results thus enable formal proof techniques to establish crypto-
graphically sound proofs of secrecy for payload messages and exchanged keys.

1 Introduction

Proofs of cryptographic protocols are known to be error-prone and, owing to the
distributed-system aspects of multiple interleaved protocol runs, awkward to make for
humans. Hence automation of such proofs has been studied almost since cryptographic
protocols first emerged. From the start, the actual cryptographic operations in such
proofs were idealized into so-called Dolev-Yao models, following [2] with extensions

∗An earlier version of this paper appeared in [1].

1

in [3,4], e.g., see [5–11]. These models replace cryptography by term algebras, e.g., en-
crypting a messagem twice does not yield a different message from the basic message
space but the termE(E(m)). A typical cancellation rule isD(E(m)) = m for all m. It
is assumed that even an adversary can only operate on terms bythe given operators and
by exploiting the given cancellation rules. This assumption, in other words the use of
initial models of the given equational specifications, makes it highly nontrivial to know
whether results obtained over a Dolev-Yao model are also valid over real cryptography.
One therefore calls properties and actions in Dolev-Yao modelssymbolicin contrast to
cryptographic.

Arguably the most important and most common properties proved symbolically
are secrecy properties, as initiated in [2]. Symbolically,the secrecy of a payload or a
cryptographic object like a secret key is typically represented by knowledge sets: The
object is secret if the adversary can never get the corresponding symbolic term into
its knowledge set. Cryptographically, secrecy is typically defined by computational
indistinguishability between the real object and a randomly chosen one, given the view
of the adversary. Hence symbolic secrecy captures the absence of structural attacks
that make the secret as a whole known to the adversary, and because of its simplicity
it is accessible to formal proof tools, while cryptographicsecrecy constitutes a more
fine-grained notion of secrecy that is much harder to establish.

There has been significant progress in relating symbolic verification and real cryp-
tographic properties. Nevertheless, secrecy properties in this sense have not yet been
considered.

1.1 Related Work

Early work on linking Dolev-Yao-style models and real cryptography [12–14] only
considers passive attacks, and can therefore not make general statements about proto-
cols. The same holds for [15].

Our own line of work contains a number of related results. Primarily, we proposed
a specific Dolev-Yao-style cryptographic library with a provably secure real implemen-
tation [16,17], and its extensions from public-key to symmetric systems [18,19].1 The
notion of “as secure as” proved there, also called reactive simulatability, is a powerful
notion that allows for general composition, i.e., the ability to prove protocols with the
ideal library and subsequently to plug in the real library. It essentially states that the
views of honest users are indistinguishable when they use either the ideal or the real
library, and, after composition, when they use a protocol with either the ideal or the
real library. This corresponds to the intuitive idea that a replacement of an ideal by a
real system is good if everything that can happen to users in the real system could also
happen to them in the ideal system.

However, this view of the users does not contain the adversary knowledge set as
typically used in symbolic secrecy proofs, and indeed this is a purely symbolic no-
tion that does not exist in an indistinguishable way in the real system. Nor does the

1In more recent work, drawing upon insides gained from the proof of the cryptographic library, we
showed that widely considered symbolic abstractions of hash functions and of the XOR operation cannot be
proven computationally sound in general, hence indicatingthat their current symbolic representations might
be overly simplistic [20, 21].

2

user view contain the actual key bitstrings, which are cryptographically secret in the
real system, because this is a purely cryptographic notion that does not exist in an in-
distinguishable way in the ideal system. Hence, although wewill essentially prove
below that symbolic secrecy implies cryptographic secrecyfor this Dolev-Yao-style
library and its implementation, this is clearly not a directconsequence of the known
as-secure-as relation.

A second class of related results in this line of work are property preservation
theorems. So far, they have been proven for integrity, fairness, liveness, and non-
interference [22–27]. All these theorems are general for the notion of reactive simu-
latability and build on the indistinguishability of user views. Thus when specialized to
the Dolev-Yao-style cryptographic library, they cannot yield the desired type of results
as we just saw. In fact, only non-interference is a kind of secrecy property, and it is
formulated as the flow of information from one user port to another, irrespective of
adversary views.

A third class of related results are protocol proofs above the cryptographic library.
Based on the specific Dolev-Yao model whose soundness was proven in these papers,
several well-known security protocols were proved in a computationally sound manner
[28–33]. Moreover, tailored tool support for this library was subsequently added [34,
35].

There is furthermore work on equivalence-based notions of secrecy, first for re-
lating symbolic and cryptographic secrecy under passive attacks [12–14] and subse-
quently extended to active attacks in [36]. In contrast to traditional knowledge- set-
based notions of secrecy, the notion of equivalence-based secrecy takes loss of partial
information into account but the respective works do not considered general reactive
frameworks in the sense of arbitrary surrounding protocolsand do not address a con-
nection to the remaining primitives of the Dolev-Yao model.Finally, a much more
narrow result (in terms of possible protocols and preservedproperties) about an ideal
and real cryptographic library, but with a slightly simplerreal implementation, is given
in [37]. The property preserved here is explicitly only integrity. An extension of this
work considering the secrecy of exchanged keys has been proposed concurrently to our
work in [38] yet with a currently incomplete proof. It considers a similarly restrictive
class of protocols; in particular, the considered languageoffers public-key encryption
as the only cryptographic operation. Moreover, once a key has been exchanged the
bitstring of the key becomes known, hence protocols using this key cannot be analyzed
in a symbolic manner but their proofs have to be conducted within the underlying cryp-
tographic framework.

Hence there is still no theorem that symbolic secrecy properties defined via adver-
sary knowledge sets for a Dolev-Yao-style cryptographic library imply cryptographic
secrecy of the corresponding real terms. We will provide such a theorem in this paper.

1.2 Overview of Our Results

The nicest possible theorem in our line of work would be that for the real and ideal
Dolev-Yao-style cryptographic library from [16,18,19], all terms that are symbolically
secret are also cryptographically secret. However, such a strong statement does not
hold (and we believe that this has nothing to do with the specifics of this cryptographic

3

library). First, in many situations, symbolic secrecy doesnot exclude that partial infor-
mation about a cryptographic object has become known. This is quite natural given that
knowledge-set-based symbolic secrecy traditionally onlystates that the adversary does
not have anentireterm in its knowledge set.2 One example is that a public key contains
partial information about a secret key, i.e., given the public key, everyone can distin-
guish the real secret key from a random one, for example by validating that signatures
made with the secret key are valid with respect to the public key, and similarly for en-
cryptions (the distinction for encryption keys is even easier if the generation algorithm
derives the public key from the secret key alone). The secondexample is that sym-
metric authentications and encryptions provide partial information about a symmetric
secret key, at least if one also has partial information about the message encrypted or
authenticated. Nevertheless, symbolic secrecy never classifies a secret key as known
to the adversary just because the corresponding public key or corresponding symmet-
ric encryptions and authentications are known to the adversary. A third and different
example is that a payload, i.e., a bitstring-message input to a protocol by a user, may
become known or partially known to the adversary by direct interaction with users
(e.g., a chosen-message attack) or by a user reusing this message or a statistically re-
lated message in another protocol run. Direct interactionsof protocol users and the
adversary are typically excluded in symbolic models, and sois the reuse of a secret
message in other protocol runs. In a general cryptographic reactive setting, however,
this is not excluded a priori. For all these reasons our theorems have to be more specific
in that we need more stringent symbolic preconditions than only requiring absence of
a term in a knowledge set.

The problems just described are quite different for payloads and for the secrecy of
objects generated within the cryptographic library. Hencewe prove different theorems
for the secrecy of payloads and of cryptographic objects, which in this context means
the secret keys typically exchanged in key-exchange protocols.

For payload secrecy, there is not even a general cryptographic secrecy definition
yet; definitions are specific to the protocols considered andcontain an algorithm called
a message chooser [40] that selects one particular payload independent of all others and
not influenced by the adversary. This overcomes the described problems, but does not
easily generalize to arbitrary protocols and to realistic situations with message reuse
within a protocol run or across protocol runs, or where the adversary has a priori in-
formation about the payload. We introduce an extension: We let honest users generate
payloads as they like, but replace the payloads with random bitstrings of the same
length consistently between the user and the cryptographicsystem under consideration
when they occur in certain secret payload positions, e.g., for a two-party secure chan-
nel with inputs(send,m) and outputs(receive,m), the selection functions for inputs
and outputs would both selectm, i.e., the second list element. The resulting definitions
are independent of the cryptographic library and give rise to a general payload secrecy
preservation theorem under reactive simulatability. In addition, we show that symbolic
secrecy in the sense of absence of a term in the adversary’s knowledge set implies the

2Recent work has also investigated more fine-grained notionsof knowledge-set-based symbolic secrecy,
e.g., Blanchet [39] considers the notion of strong secrecy that reflects that changes of the secret cannot be
detected by the adversary, and the ideal cryptographic library [16] and the corresponding notions of symbolic
secrecy that we present in this paper allow leakage of certain additional information of terms.

4

payload secrecy in this sense for the ideal cryptographic library and consequently for
the real cryptographic library.

For the secrecy of secret keys, we essentially restrict ourselves to the typical situ-
ation directly after a key-exchange protocol for this key: We require on the symbolic
side that no encryptions or authenticators with the exchanged key have yet been made,
or at least not become known to the adversary. Then we can indeed show that the cryp-
tographic key is completely indistinguishable from a random key, given the view of
the adversary. This is the typical key secrecy definition of cryptography. Although our
additional symbolic precondition excludes some key-exchange protocols that would be
considered secure by knowledge set based symbolic methods,these protocols are in
fact imperfect from a cryptographic point of view: A key-exchange protocol in cryp-
tography should be sequentially composable with an arbitrary protocol using this key,
e.g., a secure channel. The arbitrary protocol will be proved secure under the assump-
tion that it uses a fresh random key. Hence the key exchange protocol must guarantee
that the resulting key can be used wherever a fresh random keycan be used. The only
way to guarantee this is by indistinguishability from a fresh random key. Indeed, a key
that has already been used as an authenticator might potentially end up in a protocol
where precisely this authentication can be used for a cross-protocol attack, thus de-
stroying the security of the protocol. Compared with message secrecy, this key-secrecy
theorem is relatively easy to state—we simply need the condition on keys to be not
only symbolically unknown to the adversary, but also symbolically unused. However,
the proof is complex because we have to augment the entire proof of the given cryp-
tographic library with corresponding statements about symbolic key handles and real
keys, in addition to the current statements aimed at provingonly indistinguishability of
the user views.

We recently conducted a proof of key secrecy for the strengthened Yahalom pro-
tocol as one of the most prominent key exchange protocols analyzed using symbolic
techniques [41]. The proof shows symbolic key secrecy of theprotocol when based on
the ideal cryptographic library and uses the results of thispaper to derive cryptographic
key secrecy of the protocol based on the realization of the library. This furthermore
serves as an exemplification that our results are applicableto protocols commonly an-
alyzed in Dolev-Yao models.

2 Overview of the Underlying Dolev-Yao-Style Crypto-
graphic Library

In this section, we give an overview of the Dolev-Yao-style cryptographic library
from [16, 18, 19], for which we will prove relations between symbolic and crypto-
graphic payload and key secrecy.

2.1 Terms, Handles, and Operations

As described in the introduction, a Dolev-Yao-style model abstracts from cryptographic
objects by terms of a term algebra. A specific aspect of the Dolev-Yao-style model

5

in [16] is that participants operate on terms by local names,not by handling the terms
directly. This is necessary to give the abstract Dolev-Yao-style model and its realiza-
tion the same interface, so that either one or the other can beplugged into a protocol.
An identical interface is also an important precondition for the security notion of reac-
tive simulatability. One can see protocol descriptions over this interface as low-level
symbolic representations as they exist in several other frameworks, and it should be
possible to compile higher-level descriptions into them following the ideas first devel-
oped in [42]. The local names are calledhandles, and chosen as successive natural
numbers for simplicity and symbolic tractability.

Like all Dolev-Yao-style models when actually used for protocol modeling, e.g.,
using a special-purpose calculus or embedded in CSP or pi-calculus, the model in [16]
has state. An important use of state is to model which participants already know which
terms. Here this is given by the handles, i.e., the adversary’s knowledge set is the set
of terms to which the adversary has a handle.

Another use of state is to remember different versions of terms of the same structure
for probabilistic operations such as nonce or key generation. In [16], as probably first
in [6], the probabilism is abstracted from by counting, i.e., by assigning successive
natural numbers to terms, here globally over all types. Thisindexof a term allows us
(not the participants) to refer to terms unambiguously.

The users can operate on terms in the expected ways, e.g., give commands to en-
or decrypt a message, to generate a key, or to in- or output a payload message. Further,
they can input that a term should be sent to another user; in the symbolic representation
this only changes the knowledge sets, i.e., in this specific Dolev-Yao-style library it
means that the intended recipient and/or the adversary (depending on the security of
the chosen channel) obtains a handle to the term.

2.2 Notation

The symbol “:=” denotes deterministic and “←” probabilistic assignment, and “R←”
denotes the uniform random choice from a set. Let an alphabetΣ be given. The
length of a messagem is denoted aslen(m), and↓ is an error element available as an
addition to the domains and ranges of all functions and algorithms. The list operation
is denoted asl := (x1, . . . , xj), and the arguments are unambiguously retrievable as
l[i], with l[i] = ↓ if i > j. A databaseD is a set of functions, called entries, each
over a finite domain called attributes. For an entryx ∈ D, the value at an attributeatt
is writtenx.att . For a predicatepred involving attributes,D[pred] means the subset
of entries whose attributes fulfillpred . If D[pred] contains only one element, the
same notation is used for this element. Finally,NEGL denotes the set of all negligible
functions, i.e.,g : N→ R≥0 ∈ NEGL iff for all positive polynomialsQ, ∃k0∀k ≥ k0 :
g(k) ≤ 1/Q(k).

2.3 Details about the State Representation

The overall representation of a state of the Dolev-Yao-style model of [16] is a database
D of the existing terms with their type (top-level operator),argument list, handles,
index, and lengths as database attributes. The length is needed because encryption

6

cannot completely hide the length of messages. The non-atomic arguments of a term
are given by the indices of the respective subterm.

In detail, the database attributes ofD are defined as follows, whereH denotes the
set of user indices.

• ind ∈ INDS, called index, consecutively numbers all entries inD. The set
INDS is isomorphic toN; it is used to distinguish index arguments from others.
The index serves as a primary key attribute of the database, i.e., one can write
D[i] for the selectionD[ind = i].

• type ∈ typeset defines the type of the entry. In particular, the typedata de-
notes payloads,skse andska denote secret encryption and authentication keys,
pkse andpka corresponding public tags, andsymenc andaut denote symmetric
encryptions and authenticators. Other types will be introduced when first used.

• arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many valuesai
are indices of other entries inD and thus inINDS. They are sometimes distin-
guished by a superscript “ind”.

• hndu ∈ HNDS∪{↓} for u ∈ H∪{a} are handles by which a user or adversary
u knows this entry. The value↓ means thatu does not know this entry. The set
HNDS is yet another set isomorphic toN. Handles always get a superscript
“hnd”.

• len ∈ N0 denotes the “length” of the entry.

An example is shown in Figure 1. The left side indicates the main action that has
happened so far, the sending of an authenticated list with one element, a payloadm.
The database first contains the symmetric authentication key of typeska together with
a public key tag of typepka. (These tags are needed to deal with situations where
the adversary can distinguish whether several symmetric authenticators or encryptions
have been made with the same key. Their abstract length is defined to be0 for technical
reasons which will not matter in the following.) In the example, both participants know
the secret key, i.e., have a handle to it, while honest participants never have handles to
the public key tags. Then the database contains the payload data, the list, and the
authenticated message. The example assumes that this message has arrived safely so
thatPn has a handle to it, but has not yet been parsed by the recipient. After parsing,
the list andm get handles3 and4 for Pn, respectively. Note that the handles are indeed
local names, i.e., different for the two participants.

2.4 The Real Cryptographic Library

In the real implementation of the cryptographic library in [16, 18, 19], the central
database of all terms with handles (local names) for each user is replaced by a dif-
ferent machine for each useru. This machine contains a databaseDu with only three
main attributes: the handlehndu for this useru, the real cryptographic bitstringword ,
and the typetype. The users can use exactly the same commands as to the ideal library,

7

aut

list pka

data

m

P
1 P

n
: ind type arg hnd

1
len

1 pka () 0
2 ska (1) 128
3 data m 1000
4 list (3) 1032
5 aut (4,1) 1200

hnd
n

...

...

1 ...

...

...

...

2

3

4 2

1

Figure 1: Example of the database representation of terms

e.g., en- or decrypt a message etc. These commands now trigger real cryptographic op-
erations. The operations essentially use standard cryptographically secure primitives,
but with certain additional tagging, randomization etc. Send commands now trigger
the actual sending of bitstrings between machines and/or tothe adversary.

2.5 Overall Framework and Adversary Model

So far we described the ideal and real cryptographic libraryinformally. We now give an
overview of the underlying system model and introduce some more notation for later
use. The underlying machine model is an asynchronous IO-automata model. Hence the
overall ideal Dolev-Yao-style library, with its databaseD, is represented as a machine.
It is called trusted host. Actually there is one possible trusted hostTHcry

H for every
subsetH of a set{1, . . . , n} of users, denoting the possible honest users. It has ports
inu? for inputs from andoutu ! for outputs to each useru ∈ H and foru = a, denoting
the adversary. The use of ports for attaching different channels to a machine and their
naming follows the CSP convention, e.g., the cryptographiclibrary obtains messages
at inu? that have been output by a user machine atinu !.

Using the notation of [16], the ideal cryptographic libraryis asystemSyscry,idn,L that
consists of severalstructures({THcry

H }, S
cry
H), one for each value ofH. Each structure

consists of a set of machines, here only containing the machineTHcry
H , and a setS cry

H :=
{inu?, outu ! | u ∈ H} denoting those ports ofTHcry

H that the honest users connect
to. The setS cry

H is calledservice portsor informally the user interface. Formally,
the system isSyscry,idn,L := {({THcry

H }, S
cry
H) | H ⊆ {1, . . . , n}}, whereL denotes a

tuple of length functions needed to compute the “length” of the abstract terms in the
database. The parametersn andL will not matter any further and are hence omitted in
the following.

In the real implementation of the cryptographic library, the same interface is served
by a setM̂ cry

H := {Mcry
u | u ∈ H} of real cryptographic machines. The corresponding

system is calledSyscry,realE,S,A,SE := {(M̂ cry
H , S cry

H) | H ⊆ {1, . . . , n}}, whereE , S, A,
andSE denote the cryptographic schemes used for asymmetric encryption, signatures,
symmetric authentication, and symmetric encryption, respectively.

8

2.6 Configurations, Runs, and Views

When considering the security of a structure(M̂ , S), an arbitrary probabilistic machine
H is connected to the user interface to represent all users, and an arbitrary machineA
is connected to the remaining free ports (typically the network) and toH to represent
the adversary. In polynomial-time security proofs,H andA are polynomial-time. The
resulting tuple(M̂ , S ,H,A) is called aconfiguration, and the set of all configurations
of a systemSys is calledConf(Sys). A configuration is runnable, i.e., for each value
k of a security parameter one gets a well-defined probability space ofruns. Theview
of a machine in a run is the restriction to all in- and outputs this machine sees and its
internal states. Formally, the possible runsrunconf in a configurationconf and the
view view conf (M) of a machineM in conf are afamily of random variableswith one
element for each security parameter valuek. The notationr ∈ runconf abbreviates
thatr is a possible run ofconf , i.e., it belongs to the carrier set of an a random variable
in runconf .

2.7 Reactive Simulatability

The security proof of [16] states that the real library isat least as secure asthe ideal
library. This is captured using the notion ofreactive simulatability, which is the crypto-
graphic notion of secure implementation. For reactive systems, it means that whatever
might happen to an honest user in a (typically real) systemSys1 can also happen in
a (typically more ideal) systemSys2 given as a specification: For every userH and
every real structure and real adversary this user may interact with, there exists a corre-
sponding ideal structure and ideal adversary such that the view ofH is computationally
indistinguishable in the two configurations. This is illustrated in Figure 2. Indistin-
guishability is a well-known cryptographic notion from [43].

Definition 2.1 (Computational Indistinguishability)Two families (vark)k∈N and
(var′k)k∈N of random variables on common domainsDomk arecomputationally in-
distinguishable(“≈”) iff for every algorithmD (the distinguisher) that is probabilistic
polynomial-time in its first input,

|P (D(1k, vark) = 1)− P (D(1k, var′k) = 1)| ∈ NEGL,

(as a function ofk). ✸

Intuitively, given the security parameter and an element chosen according to eithervark
or var′k, the distinguisherD tries to guess which distribution the element came from.

Definition 2.2 (Reactive Simulatability)For two systemsSys1 andSys2, one says
Sys1 ≥sec Sys2 (at least as secure as) iff for every polynomial-time configuration
conf 1 = (M̂1, S ,H,A1) ∈ Conf(Sys1), there exists a polynomial-time configuration
conf 2 = (M̂2, S ,H,A2) ∈ Conf(Sys2) (with the sameH) such thatview conf 1

(H) ≈
view conf 2

(H). The relation≥sec is also calledsimulatability. Universalsimulatability,
written≥univ

sec , means thatA2 does not depend onH (only onM̂1, S , andA1), andblack-
boxsimulatability thatA2 consists of a simulatorSim that depends only on(M̂1, S) and
usesA1 as a blackbox submachine. ✸

9

H

A
1

S

M
1

H

A
2

M
2

S

Figure 2: Simulatability example: The two views ofH must be indistinguishable

Clearly, black-box simulatability implies universal simulatability; the cryptographic
library has been proven with blackbox simulatability. An essential feature of this defi-
nition of simulatability is a composition theorem [44,45],which roughly says that one
can design and prove a larger system based on the ideal systemSys2, and then securely
replaceSys2 by the real systemSys1.

3 Secrecy of Payload Messages

Since we work in a reactive environment and since we quantifyover all users, we
cannot simply define the secrecy of payloads by demanding that the adversary does not
learn them at all since the users themselves might send him the payloads. Thus we
have to capture that the adversary does not learn any information about the payloads
from the system. E.g., even a secure channel would clearly not offer secrecyin the strict
sense that the adversary does not learn the transmitted payloads at all, since the honest
sender or recipient might send the same payloads to the adversary. We therefore have
to separate information that leaks by user behavior from information that leaks in the
system. We first present a general cryptographic definition that captures this separation.
We then prove that this type of payload secrecy is preserved by “as secure as”. Finally,
we define a symbolic payload secrecy notion for protocols over the ideal Dolev-Yao-
style cryptographic library that also comprises this separation, and we prove that this
symbolic payload secrecy implies cryptographic payload secrecy for the protocol using
the real cryptographic library.

3.1 General Cryptographic Message Secrecy

To capture the separation between information leakage by a protocol and information
leakage by the users in a reactive framework, we define a replacement machineR that
replaces message parts that are supposed to be secret by random ones at the system
interface. If the system leaks no information about these message parts, then this re-
placement will not be distinguishable, no matter what information the honest users leak
about the real messages. The replacement must be done consistently for different in-
and outputs that should represent the same message; hence wehave selection functions
for these message parts both in inputs and in outputs. For instance, for a two-party
secure channel with inputs(send,m) and outputs(receive,m), the selection functions

10

for inputs and outputs would both selectm, i.e., the second list element. On input a
command containing a selected payloadm, the replacement machine replacesm by
a random payloadn of the same length, stores the tuple(m,n) in a setT called a
replacement table, and outputs the command with the replaced parameters. To ensure
indistinguishable behavior to the users, the replacement machine further uses table-
lookup inT to transform messages received from the network back into their original
form.

We start the formal definitions by defining suitable selection functions.

Definition 3.1 (Payload Selection Function)A payload selection functionis a function
that assigns every stringl a potentially empty set of non-overlapping substrings ofl. ✸

We now formally introduce the replacement machine. The selection functions of secret
input and output parts are calledf andg. In order to wrap a structure with service
portsS by a replacement machine, we give the replacement machine these ports so
that the overall user interface remains unchanged, see Figure 3, and we use a consis-
tently renamed version of the port set to link the replacement machine and the original
machines. The complement of a port set, i.e., the ports the connecting machines need,
is denoted bySC .

Definition 3.2 (Replacement Machine)Let a port setS and payload selection func-
tions f , g be given. LetL : N → N ∪ {∞} be arbitrary. Thereplacement machine
RS ,f,g,L for S , f , g, andL is defined as follows: It has the port setS and a renamed
versionS ′ of SC . It has an initially empty setT called replacement table and the
following transition rules:

• On input a messagel at a port inS , let {m1, . . . ,mn} := f(l). Replace every
payloadmi for which there exists exactly oneni with (mi, ni) ∈ T by ni in l.
For the remaining payloadsmi setni

R← {0, 1}len(mi) \ {n | ∃m : (m,n) ∈ T},
T := T ∪ {(mi, ni)}, and replacemi by ni in l. Output the resulting stringl′

to the underlying system at the corresponding port.

• On input a messagel at a port inS ′, let {n1, . . . , nj} := g(l). Replace every
payloadni for which there exists exactly onemi with (mi, ni) ∈ T by mi in l.
Output the resulting stringl′ to the honest user at the corresponding port.

We further define thatRS ,f,g,L acceptsL(k) inputs at each port inS ∪ S ′ with k being
the security parameter and that it reads the firstL(k) bits of each input. ✸

It is easily provable thatRS ,f,g,L is polynomial-time ifL is polynomially bounded
since only a polynomial number of inputs of polynomial length are processed, hence
only a polynomial number of entries is created inT and the selection of payloadsni

is therefore easy to achieve in polynomial time. Moreover, it is clear by definition that
for everyn there exists at most onem such that(m,n) ∈ T , and vice versa.

Reactive payload secrecy for an arbitrary system is now captured by requiring that
no user can distinguish whether it is interacting with an arbitrary adversary, the sys-
tem and a replacement machine, or with the same adversary, the system and a machine
F that simply forwards messages between the user and the system without modifying

11

M’

H

R
S,f,g,L

A

M’

H

F
S,L

A

conf conf ’

S S

S’ S’

^ ^

Figure 3: Sketch of the definition of reactive payload secrecy. The view ofH should be
indistinguishable in both configurations.

them. This is illustrated in Figure 3. The forwarding machine is solely included to
achieve identical runtimes in both configurations, i.e., a user should not be able to dis-
tinguish both configurations since the replacement machines reaches its runtime bound
while the can continue interacting with the system in the other configuration. We first
formally introduce the forwarding machine and then give thedefinition of payload se-
crecy formally.

Definition 3.3 (Forwarding Machine)Let a port setS and a functionL : N→ N∪{∞}
be given. Theforwarding machineFS ,L for S andL is defined as follows: It has the
port setS and a renamed versionS ′ of SC . On input a messagel at a port inS or S ′, it
forwardsl to the corresponding port inS ′ or S , respectively.FS ,L acceptsL(k) inputs
at each port inS ∪ S ′ with k being the security parameter and reads the firstL(k) bits
of each input. ✸

Definition 3.4 (Reactive Payload Secrecy)Let a systemSys , be given. Letf and
g be mappings from the set{S | ∃(M̂ , S) ∈ Sys} to the set of payload selection
functions. We writefS andgS instead off(S) andg(S) in the following. Let(M̂ , S) ∈
Sys be arbitrary and let(M̂ ′, S ′) be the structure where the port names of ports inS

are consistently replaced on the machinesM̂ as for the port setS ′ in RS,fS ,gS ,L, see
Figure 3. Then we say thatthe payload messages selected byfS andgS are

• perfectly secret in(M̂ , S), written(M̂ , S) = [fS , gS](M̂ , S), iff for all functions
L : N → N ∪ {∞} and for all configurationsconf = (M̂ ′ ∪ {RS ,fS ,gS ,L}, S ,

H,A) andconf ′ = (M̂ ′ ∪ {FS ,L}, S ,H,A) (i.e., with the same userH and ad-
versaryA), we haveview conf (H) = view conf ′(H).

• computationally secret in(M̂ , S), written (M̂ , S) ≈ [fS , gS](M̂ , S), iff the
above holds for all polynomially bounded functionsL, polynomial-time users
H, polynomial-time adversariesA, and with equality of views replaced by indis-
tinguishability of views.

12

We say thatthe payload messages selected byf andg are perfectly respectively com-
putationally secret inSys , written Sys = [f, g]Sys respectivelySys ≈ [f, g]Sys,
iff (M̂ , S) = [fS , gS](M̂ , S) respectively(M̂ , S) ≈ [fS , gS](M̂ , S) holds for all
(M̂ , S) ∈ Sys .

✸

Clearly, perfect secrecy of payloads implies computational secrecy. The most natural
system that one expects to satisfy this definition is a securechannel. Indeed it can
easily be shown that the secure channel presented within ourunderlying framework
in [44] satisfies this notion with respect to the following selection functionsfS andgS
for a considered structure(M̂ , S): Upon receiving an incoming message(send,m, v)
from an honest user, the functionfS selects the messagem if v is honest (which is
uniquely determined byS is fixed since the secure channel is based on a static cor-
ruption model), and it selects nothing ifv is dishonest. Similarly, upon receiving a
message(received,m, u) from the channel, the functiongS selectsm if u is honest,
and it selects nothing otherwise. A formal proof would be conducted best by proving
this for the ideal abstraction of secure channels presentedin [44] and by then applying
the payload secrecy preservation theorem that we present inSection 3.2 to carry the
result over to the cryptographic realization of the secure channel.

3.2 Payload Secrecy Preservation under Simulatability

We now show that if a systemSys1 is as secure as a systemSys2 in the sense of
universal simulatability, then secrecy of payloads selected byf andg in Sys2 implies
the secrecy of the same payloads inSys1. This is a basis for proving payload secrecy
for ideal systems and deriving it automatically for corresponding real systems. It will
be further refined specifically for symbolic techniques to prove secrecy of payloads.

Theorem 3.1 (General Preservation Theorem for Payload Secrecy)Let systemsSys1,
Sys2 and mappingsf2 and g2 from {S | ∃(M̂2, S) ∈ Sys2} to the set of payload
selection functions be given. We writefS andgS instead off2(S) andg2(S). Let
Sys1 ≥

univ
sec Sys2. Let f1 andg1 denote the restriction of the domain off2 andg2 to

the set{S | ∃(M̂1, S) ∈ Sys1 ∧∃(M̂2, S) ∈ Sys2}. ThenSys2 ≈ [f2, g2]Sys2 implies
Sys1 ≈ [f1, g1]Sys1. ✷

proof 1 Let (M̂1, S) ∈ Sys1 denote a structure. Because ofSys1 ≥
univ
sec Sys2, there

exists a structure(M̂2, S) ∈ Sys2 with the same set of service ports, hencefS ∈ f1
andgS ∈ g1. LetL be a polynomially bounded function. Let further(M̂ ′

1, S
′) be the

structure where the port names of ports inS are consistently replaced on the machines
as for the port setS ′ in RS ,fS ,gS ,L.

Let conf 1 = (M̂ ′
1 ∪ {RS ,fS ,gS ,L}, S ,H,A1) for an arbitrary polynomial-time user

H and an arbitrary polynomial-time adversaryA1, and letconf ′1 = (M̂ ′
1 ∪ {FS ,L}, S ,

H,A1) for the sameH andA1. We have to show thatview conf 1
(H) ≈ view conf ′

1
(H).

The proof is conducted in three steps, which are illustratedin Figure 4.

1. First, we combine the userH and the replacement machineRS ,fS ,gS ,L yielding a
new machineH#. Combination ofH with the forwarding machineFS ,L similarly

13

yields a machineH∗. SinceH is polynomial-time by assumption and sinceFS ,L

and RS ,fS ,gS ,L are polynomial-time becauseL is polynomially bounded,H#

andH∗ constitute valid polynomial-time users for interacting with the structure
(M̂ ′

1, S
′). Moreover, there exists a combination lemma in the underlying model

stating that the view of a machine before the combination is identical to the view
of the same machine considered as a submachine of the combined machine. This
yields

view conf 1
(H) = view

conf
#

1

(H)

and
view conf ′

1
(H) = view conf ∗

1
(H),

whereconf #1 = (M̂ ′
1, S

′,H#,A1), conf
∗
1 = (M̂ ′

1, S
′,H∗,A1), and the views of

H in conf
#
1 andconf ∗1 are defined in the aforementioned sense as a well-defined

function on the view ofH# andH∗, respectively.

Now Sys1 ≥
univ
sec Sys2 implies that there exist configurationsconf #2 =

(M̂ ′
2, S

′,H#,A2) and conf ∗2 = (M̂ ′
2, S

′,H∗,A′
2) such thatview

conf
#

1

(H#) ≈

view
conf

#
2
(H#) andview conf ∗

1
(H∗) ≈ view conf ∗

2
(H∗). Universal simulatabil-

ity further implies that bothA2 and A′
2 may only depend on the machines of

the structure and on the adversary inconf 1 andconf ′1, respectively. Since the
machinesM̂ ′

1 of the structure and the adversaryA1 are identical in both config-
urations, we obtainA2 = A′

2. Projecting the view ofH# andH∗ to the view of
its submachineH in the considered four configurations then yields

view
conf

#

1

(H) ≈ view
conf

#

2

(H)

and
view conf ∗

1
(H) ≈ view conf ∗

2
(H),

where we have exploited that applying a function (here the projection) to fam-
ilies of indistinguishable random variables yields families of indistinguishable
random variables again. Finally, the combination lemma yields

view
conf

#
2
(H) = view conf 2

(H)

and
view conf ∗

2
(H) = view conf ′

2
(H),

whereconf 2 = (M̂ ′
2 ∪ {RS ,fS ,gS ,L}, S ,H,A2) andconf ′2 = (M̂ ′

2 ∪ {FS ,L}, S ,
H,A2).

2. Now by assumption, we haveSys2 ≈ [f2, g2]Sys2, hence in particular
(M̂2, S) ≈ [fS , gS](M̂2, S) for the structure(M̂2, S) ∈ Sys2 that satisfies that
replacing the port names of ports inS as for the port setS ′ in RS ,fS ,gS ,L yields
the machineŝM ′

2. Then the definition of payload secrecy applied to the configu-
rationsconf 2 andconf ′2 in particular implies

view conf 2
(H) ≈ view conf ′

2
(H).

14

Note thatconf 2 and conf ′2 are valid choices with respect to the definition of
messages secrecy, since universal simulatability impliedthat the adversaries in
both configurations are identical.

3. Finally, we exploit the transitivity of≈ applied to the view ofH in all eight
configurations, which yieldsview conf 1

(H) ≈ view conf ′1
(H). This finishes the

proof.

The preservation theorem constitutes a powerful tool for rigorously showing the se-
crecy of specific payloads in arbitrary reactive systems based on simple, usually even
deterministic abstractions. Specifically for protocols over the ideal Dolev-Yao-style
cryptographic library we can go even further and link the cryptographic secrecy notion
to the original idea of using symbolic techniques to establish the secrecy of payloads.

3.3 Symbolic Payload Secrecy and its Cryptographic Implications

For Dolev-Yao models, the original notion of the symbolic secrecy of a payload mes-
sage is that the adversary does not get this payload into its knowledge set, i.e., in the
current setting, that it does not get a handle to this payload. This is captured by the
following definition, which considers a protocol that runs on top of the cryptographic
library, corresponding to the usual scenario for symbolic secrecy analysis. The proto-
col is represented by a systemSys; typically such a system allows many interleaved
executions of one or more protocols in the narrow sense. The situation is illustrated in
Figure 5 with an arbitrary protocol userH and an arbitrary adversaryA.

Definition 3.5 (Symbolic Payload Secrecy in Protocols)Let a systemSys =

{(M̂H, SH ∪ S
cry
H

C
) | H ⊆ {1, . . . , n}} be given, i.e., a system that can use the cryp-

tographic librarySyscry,id, and where the free ports of̂MH, i.e., the ports that are
connected to other machines, areSH ∪ S

cry
H

C for all H. We assume further that the
states of the machines inSys are given by individual variables and their state transi-
tions by programs over these variables, so that we can speak of a static information-
flow analysis. Moreover, let mappingsf andg be given as in Definition 3.4 forSys .
LetSyscomb,id := {(M̂H∪{TH

cry
H }, SH) | H ⊆ {1, . . . , n}} denote the composition of

Sys andSyscry,id. Assume that the following holds, whereD denotes the cryptographic
term database:

• Within M̂H, static information flow from any inputm at SH selected byfSH

only takes place by propagation ofm itself.

• If M̂H passes such a valuem (i.e., one that arose from information flow as in the
previous item) toTHcry

H , then only as the argument of a commandstore.

• If M̂H passes such a valuem toSH, then only as a message part selected bygSH
,

and vice versa, i.e.,gSH
only selects such valuesm for replacement.

• A termD[i] resulting from such a commandstore(m) never gets an adversary
handle, i.e.,D[i].hnda = ↓.

15

Then we say thatthe payloads selected byf andg are symbolically secret inSyscomb,id.
✸

The condition thatM̂H has no free ports except those connected to its user or the
cryptographic library means that the protocol does not communicate with the adversary
except via the send commands of the cryptographic library, i.e., by the Dolev-Yao-style
model.

Note that the notion of symbolic payload secrecy does not maintain any relationship
to complexity theory and should hence be in the scope of existing formal proof tools.
We now show that symbolic payload secrecy is sufficient for perfect payload secrecy.
By exploiting Theorem 3.1, we subsequently derive a corollary that links symbolic
secrecy to the cryptographic secrecy of the same protocol with a real cryptographic
implementation.

Theorem 3.2 (Symbolic and Perfect Payload Secrecy in Protocols)Let systemsSys
andSyscomb,id and mappingsf andg be given as in Definition 3.5. If the payloads
selected byf andg are symbolically secret inSyscomb,id, they are perfectly secret in
Syscomb,id. ✷

proof 2 (Theorem 3.2.) With the notation of Definition 3.4, let(M̂ ′
H ∪ {TH

cry
H }, S

′
H)

for everyH denote the structure where the port names of ports inSH are consis-
tently replaced on the machines in̂MH as for the port setS ′

H in RSH,fSH ,gSH ,L. Let

conf = (M̂ ′
H ∪ {TH

cry
H ,RSH,fSH ,gSH ,L}, SH,H,A) for a setH and an arbitrary user

H and adversaryA, and letconf ′ = (M̂ ′
H ∪ {TH

cry
H ,FSH,L}, SH,H,A), i.e., we have

a configuration of the protocol over the ideal cryptographiclibrary with and without
payload replacement. We have to show that the views ofH are equal in the two config-
urations. The proof is by induction over the steps of the runs. We show the following
stronger invariants, whereD denotes the state of the database ofTH

cry
H in conf and

D′ that inconf ′:

1. The joint view ofH andA is identical inconf andconf ′.

2. If D[i].type 6= data or D[i].arg [1] 6= n for all n ∈ {n | ∃m : (m,n) ∈ T}, then
D[i] = D′[i].

3. If D[i].type = data and there exists(m,n) ∈ T such thatD[i].arg [1] = n, then
D[i] = D′[i] except thatD′[i].arg[1] = m.

4. If the valuesv andv′ of a variable ofM̂ ′
H are different inconf andconf ′, then

v = n andv′ = m for a pair (m,n) ∈ T .

To prove this, we consider an arbitrary prefix of a run in each configuration where the
invariants are fulfilled, and an arbitrary next step in both configurations. By a step
we typically mean a machine transition, except that we consider individual program
execution steps within̂M ′

H. For simplicity, we assume that an input tôM ′
H is first

stored in a variable and outputs of̂M ′
H come directly from a variable.

• A message betweenH andA clearly retains the invariants.

16

• So does an input fromH to RSH,fSH ,gSH ,L or FSH,L, but it may lead to differ-
ent outputsn from RSH,fSH ,gSH ,L andm from FSH,L for the next step, where
(m,n) ∈ T .

• Such different inputs fromRSH,fSH ,gSH ,L or FSH,L to M̂ ′
H may lead to different

variable values inM̂ ′
H, but this difference does not invalidate Invariant 4. Equal

inputs clearly retain the invariants.

• Steps withinM̂ ′
H retain Invariant 4; in particular the program execution remains

synchronized betweenconf and conf ′ because no information flow except by
assignments is allowed from the unequal variables.

• Inputs fromM̂ ′
H to the cryptographic library can only differ in arguments ofthe

commandstore by a precondition; then a payloadn is stored inconf andm in
conf

′ with (m,n) ∈ T . Hence Invariant 3 is maintained.

• Outputs from the cryptographic library to the adversaryA can only differ if a
corresponding input command operates on an entry of typedata and makes an
output toA. This is only the case for a commandretrieve input byA. However, a
differing entry has a valuen in conf andm in conf ′ with (m,n) ∈ T by Invari-
ants 2 and 3. Such an entry inconf has no adversary handle by a precondition,
and by Invariant 3 also not inconf ′. Hence no such output can happen, and
Invariant 1 is retained.

• An output from the cryptographic library tôM ′
H can only differ if it is the result

of a commandretrieve on differing data. By similar arguments as in the previous
cases, Invariant 4 is retained.

• If an output value fromM̂ ′
H is o to RSH,fSH ,gSH ,L in conf and o′ to FSH,L in

conf ′, thenFSH,L forwardso′. We want to show that so doesRSH,fSH ,gSH ,L. By
a preconditiono ando′ differ at most in fields selected by the functiongSH

, and
the field value is thenn in o andm in o′ with (m,n) ∈ T . HenceRSH,fSH ,gSH ,L

replaces these fields bym, making them equal to the corresponding fields ino′.
Conversely, every field ofo that is selected bygSH

is such a valuen that arose
by direct assignment of a valuen from the replacement tableT , and thus the
corresponding value inconf ′ ism, so that the replacement is correct.

• Outputs fromRSH,fSH ,gSH ,L or FSH,L to H are always equal, as we just saw,
and thus retain Invariant 1.

Putting everything together, we have shown thatview conf (H) = view conf ′(H). Hence
the payload messages selected byfSH

andgSH
are perfectly secret.

The complexity of the symbolic information-flow analysis underlying symbolic pay-
load secrecy depends on the protocol language. Some simple high-level protocol ex-
pressions do not allow any information flow on payload messages except by direct
assignmentsx := y, in particular the classical arrow notation without branching. Then
the first condition is fulfilled for all protocols expressed in this language, and typically
so is the second condition because of typing. Other languages may allow branches and

17

thus indirect information flow, but still no direct operators on payload messages. Com-
bining such an information-flow analysis with an analysis ofthe knowledge sets of a
Dolev-Yao model (here represented by the possible adversary handles) that can arise
by executing the protocol, is a standard problem addressed by symbolic proof tools for
cryptographic protocols.

Combining the results of Theorem 3.2, Theorem 3.1, and the fact that the real cryp-
tographic library is as secure as the ideal one [16,18,19] yields the following corollary,
which links symbolic secrecy to the cryptographic secrecy of the same protocol with a
real cryptographic implementation. This shows that symbolic payload secrecy is suf-
ficient for cryptographic payload secrecy provided that thesystemSys is polynomial-
time. The polynomial runtime of the system can either be shown by hand or within a
specific calculus that allows for reasoning about probabilistic polynomial time, e.g., the
one of [46]. In contrast to Theorem 3.2 we furthermore do not need separate mappings
f1 andf2 respectivelyg1 andg2 since there is a one-to-one correspondence between
structures of the ideal and the real cryptographic library.

Corollary 3.1 With the notation of Definition 3.5, let the payload messagesselected by
f andg be symbolically secret inSyscomb,id and letSys be polynomial-time. Then the
payloads selected byf andg are computationally secret in the systemSyscomb,real :=
{(M̂H ∪ M̂

cry
H , SH) | H ⊆ {1, . . . , n}} whereM̂ cry

H denotes the set of machines of the
real cryptographic library for a setH. ✷

4 Key Secrecy

In this section, we investigate the relationship of the secrecy of symmetric keys in the
symbolic and the cryptographic approach. We define symbolickey secrecy for the
ideal Dolev-Yao-style cryptographic library and cryptographic key secrecy for the real
library, and we show that symbolic key secrecy implies cryptographic secrecy of the
corresponding keys.

The symbolic secrecy definition is based on the typical notion that a term is not
an element of the adversary’s knowledge set. Recall that in the given Dolev-Yao-style
library, the adversary’s knowledge set is the set of all database entries (representing
terms) to which the adversary has a handle. However, as explained in the introduction,
we cannot hope to show the strong notion of cryptographic keysecrecy, i.e., that the
real cryptographic adversary cannot distinguish a real keyfrom a fresh random key, for
all keys without an adversary handle, but only for keys that are also unused, i.e., no
corresponding encryption or authenticator has an adversary handle.

Furthermore, we have to be careful with the notion of correspondence between
ideal and real keys for the secrecy preservation theorem. Originally, runs of either the
ideal system or the real system are defined separately, and a per-key correspondence
exists only in the simulatability proof. We start by using this correspondence. Then
we define a more abstract correspondence notion without reference to the proof by
characterizing the keys to be secret as a function of the userview, which exists in each
system and should be indistinguishable between them.

18

4.1 Symbolic and Cryptographic Key Secrecy

As a first step towards defining symbolic key secrecy, we consider one state of the
ideal Dolev-Yao-style library and define that a handle points to a symmetric key, that
the key is symbolically unknown to the adversary, and that ithas not been used for
encryption or authentication. These are the symbolic conditions under which we can
hope to prove that the corresponding real key is indistinguishable from a fresh random
key for the adversary. Note that such a key may have been treated in the ways usual in
key exchange protocols, e.g., an honest user may have put it into a list, encrypted the
list, and sent it to another honest user.

For the third condition in the following definition, note that the arguments of a
symmetric authenticator and a symmetric encryption with a key of an honest user are
of the form(l, pk) wherel is the plaintext index andpk the index of the public tag of
the secret key, withpk = sk − 1 for the secret key index.

Definition 4.1 (Symbolically Secret Keys)Let H ⊆ {1, . . . , n}, a database stateD
of THcry

H , and a pair(u, lhnd) ∈ H × HNDS of a user and a handle be given. Let
i := D[hndu = lhnd].ind be the corresponding database index. We say that theterm
under(u, lhnd)

• is a symmetric keyiff D[i].type ∈ {ska, skse}.

• is symbolically unknown to the adversary, or shortsymbolically unknown, iff
D[i].hnda = ↓.

• has not been used for encryption/authentication, or shortis unused, iff for all
indicesj ∈ N we have

D[j].type ∈ {aut, symenc} ⇒ D[j].arg [2] 6= i− 1.

• is a symbolically secret keyiff it has the three previous properties.

✸

Essentially we want to show that symbolically secret keys are also cryptographically
secret. However, the only direct correspondence between one particular symbolic key
and one particular real key exists in a so-called combined system within the proof of
the cryptographic library. Hence we will establish both a close per-key relation for
the combined system (Lemma 4.1) and a more abstract theorem that considers each
of the real and ideal systems as a whole (Theorem 4.1). For thelatter, we introduce a
functionseckeys based on the user view that indicates the keys that the users consider
secret. We show that if this consideration is always correctin the ideal system in the
symbolic sense, then it is also always correct in the real system in the cryptographic
sense. In practical situations, such a functionseckeys might denote “the second key
that was exchanged between usersu andv”, or “all keys that were the results of a
successful key-exchange protocolKX”. In particular, the latter type of functionseckeys
is the symbolical formulation of secrecy goals on key exchange protocols. Formally,
the functionseckeys maps the user view to a set of triples(u, lhnd, t) of a user, a handle,
and a type, pointing to the supposedly secret keys.

19

Definition 4.2 (Secret-key Belief Function)A secret-key belief functionfor a setH
(intuitively the indices of honest participants) is a function seckeys with domainΣ∗

and range(H×HNDS × {ska, skse})∗. ✸

We first define symbolic key secrecy for such a function. In addition to the conditions
for individual keys, we require that all elements point to different terms, so that we can
expect the corresponding list of cryptographic keys to be entirely random.

Definition 4.3 (Symbolic Key Secrecy for the Ideal Cryptographic Library)Let a user
H, a structure({THcry

H }, S
cry
H) of the cryptographic librarySyscry,id and a secret-key

belief functionseckeys for H be given. We say that the cryptographic library with
this userkeeps the keys inseckeys strictly symbolically secretiff for all configurations
conf = ({THcry

H }, S
cry
H ,H,A) of this structure, everyv ∈ view conf (H), and every

element(ui, l
hnd
i , ti) of the list seckeys(v), the term under(ui, l

hnd
i) is a symbolically

secret key of typeti, andD[hndui
= lhndi].ind 6= D[hnduj

= lhndj].ind for all i 6= j.
✸

This definition lends itself to automated proof tools because it is entirely symbolic
and belongs to the typical class of secrecy properties proven with such tools. The
typical formulation is that no ideal adversary can obtain certain designated terms into
its symbolic knowledge set. In the given model, the knowledge sets are defined by the
possession of handles to terms.

We define cryptographic key secrecy similar to cryptographic definitions for key-
exchange protocols: We demand that no polynomial-time adversary can distinguish the
keys designated by the functionseckeys from fresh keys. This is illustrated in Figure 6.

Definition 4.4 (Cryptographic Key Secrecy for the Real Cryptographic Library) Let
a polynomial-time configurationconf = (M̂ cry

H , S cry
H ,H,A) of the real cryptographic

library Syscry,realE,S,A,SE and a secret-key belief functionseckeys for H be given. LetgenA
andgenSE denote the key generation algorithms ofA andSE , respectively. We say
that this configurationkeeps the keys inseckeys cryptographically secretiff for all
probabilistic-polynomial time algorithmsDis (the distinguisher), we have

|Pr[Dis(1k, va, keysreal) = 1]

− Pr[Dis(1k, va, keysfresh) = 1] ∈ NEGL

(as a function of the security parameterk), where the used random variables are defined
as follows: Forr ∈ runconf , let va := view conf (A)(r) be the view of the adversary,
let (ui, l

hnd
i , ti)i=1,...,n := seckeys(view conf (H)(r)) be the user-handle-type triples

of presumably secret keys, and let the keys bekeysreal := (ski)i=1,...,n with ski :=
Dui

[hndui
= lhndi].word if Dui

[hndui
= lhndi].type = ti andski := ǫ otherwise, and

keysfresh := (sk ′
i)i=1,...,n with

sk ′
i ← genA(1

k) if ti = ska,

sk ′
i ← genSE(1

k) if ti = skse,

andsk ′
i ← ǫ otherwise. ✸

20

4.2 Preservation of Key Secrecy

We can now state our main key-secrecy theorem: If for certainhonest usersH and
a secret-key belief functionseckeys, the ideal cryptographic library keeps the keys in
seckeys symbolically secret, then every configuration ofH with the real cryptographic
library keeps the keys inseckeys cryptographically secret.

Theorem 4.1 (Symbolic Key Secrecy Implies Cryptographic Key Secrecy)Let a
polynomial-time honest userH of a structure({THcry

H }, S
cry
H) of the ideal cryptographic

library Syscry,id and a secret-key belief functionseckeys for H be given such that the
cryptographic library with this user keeps the keys inseckeys strictly symbolically
secret. Then every polynomial-time configuration(M̂ cry

H , S cry
H ,H,A) of the real cryp-

tographic librarySyscry,realE,S,A,SE (with the same userH) keeps the keys inseckeys cryp-
tographically secret. ✷

This theorem makes statements about adversary handles and real keys, which only exist
in either the ideal or the real cryptographic library, respectively. Hence the theorem
cannot be proved solely as a consequence of the as-secure-asrelation, in other words
reactive simulatability, between these two systems, because reactive simulatability only
concerns the indistinguishability of the views of the honest usersH. We therefore
extend the simulatability proof from [16,18,19] to the desired property. The basic proof
structure is that a combined systemC∗

H is defined that essentially contains all elements
of both the real and the ideal system. In particular, it contains a database structured like
D but with an additional attributeword for real bitstrings corresponding to the terms,
as they are generated by the simulator. A second combined systemCH contains the
real bitstrings as generated by the real machines. An important invariant ofC∗

H is word
secrecy, which states that no information flows from certainvariables into others that
are or may later become known to the adversary. We use the following word-secrecy
lemma as a basis for our key secrecy proof.

Lemma 4.1 (Word Secrecy with Symmetric Keys)Let H and A be machines such
that (M̂ cry

H , S cry
H ,H,A) is a polynomial-time configuration of the real cryptographic

library Sys
cry,real
E,S,A,SE . Then the following invariant holds in runs of the configura-

tion ({C∗
H}, S

cry
H ,H,A) except with negligible probability: Given a stateDC∗

H
of the

database of the combined system, let the setPub Var of “public” variables contain

• all wordsDC∗

H
[i].word with DC∗

H
[i].hnda 6= ↓, i.e., the real messages where the

adversary has learned the corresponding term symbolically,

• the state ofA andH, and theTHcry
H -part of the state ofC∗

H,

• the secret keys of public-key schemes where the public keys are known to the
adversary, i.e., the wordsDC∗

H
[i].word with DC∗

H
[i − 1].type ∈ {pke, pks} and

DC∗

H
[i− 1].hnda 6= ↓, and3

3These secret keys are included because information from them flows into the public keys, but they do
not get adversary handles when the public keys are published.

21

• the symmetric secret keys for which an encryption or authenticator is public,
i.e., the wordsDC∗

H
[i].word where an indexj exists withDC∗

H
[j].hnda 6= ↓ and

DC∗

H
[j].type ∈ {aut, symenc} andDC∗

H
[j].arg [2] = i− 1.

Then no information from other variables has flown intoPub Var in the sense of
information flow in programming languages, i.e., static program analysis. ✷

The full versions of [16, 18, 19] prove a slightly weaker version of the word secrecy
lemma as part of the overall proof of soundness. The version is weaker in that the
surrounding proof of soundness only required that no information might flow from a
certain subset of other variables into the setPub Var instead of requiring the absence
of information flow from all such variables. However an inspection of this proof shows
that the stronger variant as presented in Lemma 4.1 holds without changes in the exist-
ing proof.

Lemma 4.1 gives the tight correspondence of symbolic secrecy and cryptographic
secrecy for individual keys that was mentioned in the introductory sections. However,
such per-key considerations only work for information-theoretic security; this is why
the lemma is formulated for the combined systemC∗

H which contains some simulated
aspects instead of the combined systemCH with the completely real bitstrings; forCH

we only show more abstract key secrecy similar to Definition 4.4, i.e., a nonce-secrecy
theorem.

Before actually proving Theorem 4.1, we give an overview of the underlying simu-
latability proof from [16,18,19] that we extend. Figure 7 gives an overview of the orig-
inal proof. The top row shows the real configuration and the ideal configuration with
the simulator. The basic proof structure is that a combined systemCH (lower right in
Figure 7) is defined that essentially contains all elements of both the real and the ideal
system. In particular, it contains a database structured like D but with an additional
attributeword for the real bitstrings corresponding to the terms. Then bisimulations
are proved betweenCH and the real machines, and betweenCH and the trusted host
with the simulator (Steps 5a and 5b of Figure 7). A bisimulation, however, cannot deal
with computational indistinguishability. Hence at the beginning of the proof, the real
asymmetric encryptions are replaced by simulated ones as made in the simulator (there,
all ciphertexts where the plaintext is symbolically secretcontain a fixed plaintext string
instead), using a low-level idealization of asymmetric encryption and the composition
theorem (Steps 1 and 2 of Figure 7). Symmetric encryption cannot be treated with such
a simple one-step replacement. The successive exchange of real encryptions for simu-
lated encryptions is therefore done by a so-called hybrid argument (Step 4 in Figure 7)
that considers multiple indexed combined systemsC

(i)
H , each replacing the encryptions

with one key. The bisimulation mappings from the initial andfinal combined systems
to the real and ideal system, respectively, are called derivations because they essentially
extract the relevant elements from the combined systems unchanged.

An important invariant of the combined systemC∗
H is word secrecy, which states

that no information flows from certain variables into othersthat are or may later become
known to the adversary. It was stated in Lemma 4.1. We are now ready to present the
proof of the key secrecy theorem.

proof 3 (Theorem 4.1.) We fix a polynomial-time userH and a polynomial-time ad-

22

versaryA suitable for the real cryptographic library and thus for allthe configurations
shown in Figures 7 and 8. We assume that the ideal cryptographic library keeps the
keys inseckeys strictly symbolically secret.

Symbolic secrecy in C∗
H. The derivation of the ideal system from the combined one, i.e.,

the bisimulationφ in Figure 8, maps all state elements of the ideal system identically.
By the bisimulation property this derivation is invariant and the view ofH equal in runs
of the ideal or combined system except on a negligible error set. As strict symbolic key
secrecy is defined in terms of state elements of the ideal system and the view ofH, it is
also fulfilled in the combined systemC∗

H except with negligible probabilityǫ (a function
of k), i.e., the terms designated byseckeys are different secret keys of the correct types,
do not have adversary handles, and are unused.

Cryptographic secrecy in C∗
H via word secrecy. It follows immediately that, still inC∗

H,
the word attributes of terms designated byseckeys are not in the setPub Var , except
with probabilityǫ. These words are exactly the random variablekeysreal , if we define
this random variable for each combined system byski := D[hndui

= lhndi].word if
D[hndui

= lhndi].type = ti, elseǫ. By word secrecy forC∗
H, no static information flow

therefore takes place fromkeysreal into variables inPub Var , and thus in particular
into the viewva of A, except with probabilityǫ.

We now fix a distinguisherDis as in the definition of cryptographic key secrecy, i.e.,
it gets inputs(1k, va, keysreal) or (1k, va, keysfresh), where the keys inkeysfresh are
by definition generated by the same algorithms as those inkeysreal , but independently
of the system run. Total absence of information flow would imply that va contains no
Shannon information aboutkeysreal , and thus the two distributions would be perfectly
indistinguishability. In reality, the distinguisherDis may only have an advantage over
this situation in the runs in the error set, and thus its advantage is negligible.

Cryptographic secrecy in CH via hybrid argument. Next we show that the advantage
of Dis is still negligible for the combined systemCH, which contains real instead of
simulated symmetric encryptions. Assume for contradiction that it were not. We then
construct a machineDis′, called extended system distinguisher, that can distinguish
the viewsvh ofH andva ofA and additionallykeysreal . From its inputsDis′ computes
l := seckeys(vh). Given the key types inl, it can generate a suitable listkeysfresh . It
then runsDis on the adversary viewva and eitherkeysreal or keysfresh . The result for
the two types of keys is, by the assumption, significantly different forCH but not for
C∗
H. This allowsDis′ to distinguishCH andC∗

H with not negligible advantage.
Our result does not yet contradict the indistinguishability ofCH andC∗

H from the
original proof because our extended distinguisher also getskeysreal as input. We there-
fore have to extend the hybrid argument to extended distinguishers. The framework of
the hybrid argument can remain identical; we only need to show thatDis′ cannot dis-
tinguish any two neighboring hybrid systems. Two such hybrids differ only in making
either real or simulated encryptions with one particular symmetric keysk (i), which is
defined as thei-th key used for encryption. The proof uses a machineSymComb that
contains one symmetric encryption keysk∗ and a bitb and, depending onb, makes ei-
ther real or simulated encryptions withsk∗, and in the latter case answers decryption
requests by table look-up. A lemma in [19] states that the twocases ofb are indistin-
guishable. We want to show for contradiction that ifDis′ can distinguish two hybrids,

23

one can also distinguish the two cases ofb in SymComb. This would be trivial if the
keysk (i) in the hybrids were only used for en- and decryption; one could simply re-
alize the two hybrids by a fixed partC′(i)

H in combination withSymComb with either
b = 0 or b = 1. The proof still essentially works like this, but the keysk (i) might
also be put into lists, sent around, etc. This cannot be done with the internal keysk∗

from SymComb. HenceC′(i)
H keeps its own keysk (i) for these purposes. In [19] it is

shown that this use of two different keys instead of one is perfectly indistinguishable for
normal (non-extended) distinguishers. (This only holds because of the precise order in
which the different keys are treated in the successive hybrids.) The proof of perfect
indistinguishability shows that no information about the “outer” sk (i) used byC′(i)

H

flows into the view ofH andA. These proof parts are still true, but we have to add
a third part showing that no information aboutsk (i) flows into the additional input
keysreal for the extended distinguisherDis′.

As keysreal consists of keys generated by the honest users, and thus withthe cor-
rect key generation algorithms, no information aboutsk (i) flows into the listkeysreal
unlesssk (i) is one of the keys inkeysreal . However, by the definition of the hybrids,
sk (i) is a used key, and by the correctness ofseckeys, the listkeysreal only consists of
unused keys. Hence this can indeed be excluded. This finishesthe proof that the hybrid
argument is still correct for the more powerful distinguishersDis′, and thus the proof
that cryptographic key secrecy holds for the most real combined systemCH.

Cryptographic secrecy in the real system. Finally, the derivation of the real system
from the combined one, i.e., the bisimulationφ′ in Figure 7, maps all the user handles
and all the word attributes corresponding to them identically, and thus in particular the
list keysreal . By the bisimulation property this derivation is invariantand the view ofA
equal in runs of the combined or real system except on a negligible error set. Hence the
advantage ofDis can only differ by a negligible function, as its inputs only depend on
these invariant values. Thus the advantage ofDis is also negligible on the real system.

As a by-product of this proof, we furthermore obtain that also nonces without adversary
handle, i.e., nonces that are symbolically secret, are indistinguishable from randomly
chosen bitstrings of the same length in the real cryptographic library.

5 Conclusion

For the first time, we have linked symbolic secrecy with real cryptographic secrecy
notions under arbitrary active attacks and for arbitrary surrounding protocols. Sym-
bolic secrecy of certain terms is essentially defined by the absence of these terms from
an adversary’s knowledge set, cryptographic secrecy by theindistinguishability of the
real secret bitstrings from fresh random bitstrings of the same type, given the view
of a real, cryptographic adversary. We based our results on the Dolev-Yao-style ideal
cryptographic library from [16, 18, 19] and its provably secure implementation. We
pointed out why symbolic secrecy does not imply cryptographic secrecy for all terms
and in all situations and therefore investigated two particularly important cases sepa-
rately, payload (application data) secrecy and key secrecy. For the former, we came
up with a general cryptographic secrecy definition that separates information leakage

24

about a payload by the users themselves from information leakage in the system, and
we showed that symbolic key secrecy of the protocol implies that no information leaks
in the protocol. For key secrecy, we defined realistic, symbolically verifiable condi-
tions beyond the absence of a key from the adversary’s knowledge set and showed
that these conditions imply full cryptographic secrecy of the corresponding real key.
In order to exemplify the applicability of our results to protocols commonly analyzed
in Dolev-Yao models, we recently conducted a proof of symbolic key secrecy for the
strengthened Yahalom protocol based on the ideal cryptographic library, and we used
the results of this paper to derive cryptographic key secrecy of the protocol based on
the realization of the cryptographic library.

References

[1] Michael Backes and Birgit Pfitzmann. Relating symbolic and cryptographic se-
crecy. In2005 IEEE Symposium on Security and Privacy (S&P 2005), 8-11May
2005, Oakland, CA, USA, pages 171–182, 2005.

[2] Danny Dolev and Andrew C. Yao. On the security of public key protocols.IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[3] Shimon Even and Oded Goldreich. On the security of multi-party ping-pong
protocols. InProc. 24th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 34–39, 1983.

[4] Michael Merritt.Cryptographic Protocols. PhD thesis, Georgia Institute of Tech-
nology, 1983.

[5] Jonathan K. Millen. The interrogator: A tool for cryptographic protocol security.
In Proc. 5th IEEE Symposium on Security & Privacy, pages 134–141, 1984.

[6] Catherine Meadows. Using narrowing in the analysis of key management pro-
tocols. InProc. 10th IEEE Symposium on Security & Privacy, pages 138–147,
1989.

[7] Richard Kemmerer, Catherine Meadows, and Jon Millen. Three systems for cryp-
tographic protocol analysis.Journal of Cryptology, 7(2):79–130, 1994.

[8] Steve Schneider. Security properties and CSP. InProc. 17th IEEE Symposium on
Security & Privacy, pages 174–187, 1996.

[9] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi cal-
culus. InProc. 4th ACM Conference on Computer and Communications Security,
pages 36–47, 1997.

[10] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. InProc. 2nd International Conference on Tools and Algorithmsfor
the Construction and Analysis of Systems (TACAS), volume 1055 ofLecture Notes
in Computer Science, pages 147–166. Springer, 1996.

25

[11] Lawrence Paulson. The inductive approach to verifyingcryptographic protocols.
Journal of Cryptology, 6(1):85–128, 1998.

[12] Martin Abadi and Phillip Rogaway. Reconciling two views of cryptography: The
computational soundness of formal encryption. InProc. 1st IFIP International
Conference on Theoretical Computer Science, volume 1872 ofLecture Notes in
Computer Science, pages 3–22. Springer, 2000.

[13] Martı́n Abadi and Jan Jürjens. Formal eavesdropping and its computational in-
terpretation. InProc. 4th International Symposium on Theoretical Aspects of
Computer Software (TACS), pages 82–94, 2001.

[14] Peeter Laud. Semantics and program analysis of computationally secure informa-
tion flow. In Proc. 10th European Symposium on Programming (ESOP), pages
77–91, 2001.

[15] Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness via key
registration. InAdvances in Cryptology: CRYPTO 2003, volume 2729 ofLecture
Notes in Computer Science, pages 548–564. Springer, 2003.

[16] Michael Backes, Birgit Pfitzmann, and Michael Waidner.A composable cryp-
tographic library with nested operations (extended abstract). In Proc. 10th
ACM Conference on Computer and Communications Security, pages 220–230,
2003. Full version in IACR Cryptology ePrint Archive 2003/015, Jan. 2003,
http://eprint.iacr.org/.

[17] Michael Backes, Birgit Pfitzmann, and Michael Waidner.A universally compos-
able cryptographic library.IACR Cryptology ePrint Archive, 2003:15, 2003.

[18] Michael Backes, Birgit Pfitzmann, and Michael Waidner.Symmetric authentica-
tion within a simulatable cryptographic library. InProceedings of 8th European
Symposium on Research in Computer Security (ESORICS), volume 2808 ofLec-
ture Notes in Computer Science, pages 271–290. Springer, 2003. Preprint on
IACR ePrint 2003/145.

[19] Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulatable
Dolev-Yao style cryptographic library. InProceedings of 17th IEEE Computer
Security Foundations Workshop (CSFW), pages 204–218, 2004.

[20] Michael Backes and Birgit Pfitzmann. Limits of the cryptographic realization of
Dolev-Yao-style XOR. InProceedings of 10th European Symposium on Research
in Computer Security (ESORICS), volume 3679 ofLecture Notes in Computer
Science, pages 178–196. Springer, 2005.

[21] Michael Backes, Birgit Pfitzmann, and Michael Waidner.Limits of the reactive
simulatability/UC of Dolev-Yao models with hashes. InProceedings of 11th Eu-
ropean Symposium on Research in Computer Security(ESORICS), volume 4189
of Lecture Notes in Computer Science, pages 404–423. Springer, 2006.

26

[22] Michael Backes and Christian Jacobi. Cryptographically sound and machine-
assisted verification of security protocols. InProc. 20th Annual Symposium on
Theoretical Aspects of Computer Science (STACS), volume 2607 ofLecture Notes
in Computer Science, pages 675–686. Springer, 2003.

[23] Michael Backes, Birgit Pfitzmann, Michael Steiner, andMichael Waidner. Poly-
nomial fairness and liveness. InProceedings of 15th IEEE Computer Security
Foundations Workshop (CSFW), pages 160–174, 2002.

[24] Michael Backes and Birgit Pfitzmann. Computational probabilistic non-
interference. InProceedings of 7th European Symposium on Research in Com-
puter Security (ESORICS), volume 2502 ofLecture Notes in Computer Science,
pages 1–23. Springer, 2002.

[25] Michael Backes and Birgit Pfitzmann. Intransitive non-interference for crypto-
graphic purposes. InProc. 24th IEEE Symposium on Security & Privacy, pages
140–152, 2003.

[26] Michael Backes and Birgit Pfitzmann. Relating symbolicand cryptographic
secrecy. IEEE Transactions on Dependable and Secure Computing (TDSC),
2(2):109–123, 2005.

[27] Michael Backes. Quantifying probabilistic information flow in computational
reactive systems. InProceedings of 10th European Symposium on Research in
Computer Security (ESORICS), volume 3679 ofLecture Notes in Computer Sci-
ence, pages 336–354. Springer, 2005.

[28] Michael Backes and Birgit Pfitzmann. A cryptographically sound security proof
of the Needham-Schroeder-Lowe public-key protocol. InProc. 23rd Confer-
ence on Foundations of Software Technology and TheoreticalComputer Science
(FSTTCS), pages 1–12, 2003. Full version in IACR Cryptology ePrint Archive
2003/121, Jun. 2003,http://eprint.iacr.org/.

[29] Michael Backes. A cryptographically sound dolev-yao style security proof of the
Otway-Rees protocol. InProceedings of 9th European Symposium on Research
in Computer Security (ESORICS), volume 3193 ofLecture Notes in Computer
Science, pages 89–108. Springer, 2004.

[30] Michael Backes and Markus Duermuth. A cryptographically sound Dolev-Yao
style security proof of an electronic payment system. InProceedings of 18th
IEEE Computer Security Foundations Workshop (CSFW), pages 78–93, 2005.

[31] Michael Backes and Birgit Pfitzmann. On the cryptographic key secrecy of the
strengthened Yahalom protocol. InProceedings of 21st IFIP International Infor-
mation Security Conference (SEC), pages 233–245, 2006.

[32] Michael Backes, Sebastian Moedersheim, Birgit Pfitzmann, and Luca Vigano.
Symbolic and cryptographic analysis of the secure WS-ReliableMessaging Sce-
nario. In Proceedings of Foundations of Software Science and Computational

27

Structures (FOSSACS), volume 3921 ofLecture Notes in Computer Science,
pages 428–445. Springer, 2006.

[33] Michael Backes, Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and Joe-
Kai Tsay. Cryptographically sound security proofs for basic and public-key ker-
beros. InProceedings of 11th European Symposium on Research in Computer
Security(ESORICS), volume 4189 ofLecture Notes in Computer Science, pages
362–383. Springer, 2006. Preprint on IACR ePrint 2006/219.

[34] Christoph Sprenger, Michael Backes, David Basin, Birgit Pfitzmann, and Michael
Waidner. Cryptographically sound theorem proving. InProceedings of 19th IEEE
Computer Security Foundations Workshop (CSFW), pages 153–166, 2006.

[35] Michael Backes and Peeter Laud. Computationally soundsecrecy proofs by
mechanized flow analysis. InProceedings of 13th ACM Conference on Computer
and Communications Security (CCS), pages 370–379, 2006.

[36] Peeter Laud. Symmetric encryption in automatic analyses for confidentiality
against active adversaries. InProc. 25th IEEE Symposium on Security & Pri-
vacy, pages 71–85, 2004.

[37] Daniele Micciancio and Bogdan Warinschi. Soundness offormal encryption in
the presence of active adversaries. InProc. 1st Theory of Cryptography Confer-
ence (TCC), volume 2951 ofLecture Notes in Computer Science, pages 133–151.
Springer, 2004.

[38] Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis
of cryptographic protocols (the case of encryption-based mutual authentication
and key exchange). Cryptology ePrint Archive, Report 2004/334, 2004.http:
//eprint.iacr.org/.

[39] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In
Proc. 25th IEEE Symposium on Security & Privacy, pages 86–100, 2004.

[40] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28:270–299, 1984.

[41] Michael Backes and Birgit Pfitzmann. Cryptographic keysecrecy of the strength-
ened Yahalom protocol via a symbolic security proof. Research Report 3601,
IBM Research, 2005.

[42] Gavin Lowe. Casper: A compiler for the analysis of security protocols. In
Proc. 10th IEEE Computer Security Foundations Workshop (CSFW), pages 18–
30, 1997.

[43] Andrew C. Yao. Theory and applications of trapdoor functions. InProc. 23rd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 80–91,
1982.

28

[44] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive sys-
tems and its application to secure message transmission. InProc. 22nd IEEE
Symposium on Security & Privacy, pages 184–200, 2001. Extended version of
the model (with Michael Backes) IACR Cryptology ePrint Archive 2004/082,
http://eprint.iacr.org/.

[45] Michael Backes, Birgit Pfitzmann, and Michael Waidner.A general composition
theorem for secure reactive systems. InProc. 1st Theory of Cryptography Confer-
ence (TCC), volume 2951 ofLecture Notes in Computer Science, pages 336–354.
Springer, 2004.

[46] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time
framework for protocol analysis. InProc. 5th ACM Conference on Computer and
Communications Security, pages 112–121, 1998.

29

M’

H

F
S,L

A
1

H

M’

A
1

H

M’

A
2

M’

H

F
S,L

A
2

1a.

2.

1b.

3.

conf
1

conf
2

conf
1
’ conf

2
’

conf
2
*conf

1
*

R
S,f,g,L

R
S,f,g,L

conf
2

#conf
1

#

H
* H

*

H
#

H
#

^ ^

^^

1 2

1 2

Figure 4: Overview of the proof of the general preservation theorem for payload se-
crecy

30

TH
H

M
H

A

cry

Information flow

analysis for n

Knowledge (handle)

analysis for n

H

m

Sys

Syscry,id

Syscomb,id

Figure 5: Symbolic payload secrecy in a protocolSys . The solid part constitutes the
relevant part of the symbolic definition.

M
v

M
u

H

A

Dis

seckeys

keys
fresh

vakeys
real

Syscry, real cry cry

Figure 6: Cryptographic key secrecy

31

• • •

H

M
u

M
v

• • •

H

M'
u

M'
v

Enc
H

A

A
0 A

Sim
H

• • •

H

TH
H

THSim
H

1. Rewrite

asymmetric

encryption

2. Idealize,

composition

theorem

3. Combine

4. Indistinguishable

by hybrid argument

(for symmetric

encryption)

5b. Bisimulation

6.

7.

• • •

A

H

M'
u

M'
v

Enc
sim,H

M
H

A

• • •

H

C* = C(s(k))

A

• • •

H

C
H
 = C(0)

5a. Bisimulation

• • •

S
H

cry

S
H

cry
S
H

cry

S
H

cry

S
H

cryS
H

cry

cry

H H

H

cry cry

cry

Figure 7: Overview of the proof of correct simulation for thecryptographic library

32

M
v

M
u

H

A

Dis

seckeys

TH
H

H

A

seckeys

No hnd
a

Sim
H

'

C*

H

A

seckeys No hnd
a

Word

secrecy

4. Extended

hybrid

argument

keys
fresh

vakeys
real

C
H

H

A

Dis

seckeys

keys
fresh

vakeys
real

C*

H

A

Dis

seckeys

keys
fresh

vakeys
real

Dis’
va, vh, keys

real
va, vh, keys

real

1.

2.

3.

5.

cry

H

H

cry cry

Figure 8: Key secrecy in ideal, combined, and real cryptographic library

33

