
Technical Report: Symmetric Authentication in a Simulatable

Dolev-Yao-style Cryptographic Library (Extended Version)∗

Michael Backes, Birgit Pfitzmann, and Michael Waidner

IBM Zurich Research Lab

{mbc,bpf,wmi}@zurich.ibm.com

July 29, 2007

Abstract

Tool-supported proofs of security protocols typically rely on abstractions from real cryptog-
raphy by term algebras, so-called Dolev-Yao models. However, until recently it was not known
whether a Dolev-Yao model can be implemented with real cryptography in a provably secure
way under active attacks. For public-key encryption and signatures, this was recently shown, if
one accepts a few additions to a typical Dolev-Yao model such as an operation that returns the
length of a term.

Here we extend this Dolev-Yao-style model, its realization, and the security proof to include
a first symmetric primitive, message authentication. This adds a major complication: we must
deal with the exchange of secret keys. For symmetric authentication, we can allow this at any
time, before or after the keys are first used for authentication, while working only with standard
cryptographic assumptions.

1 Introduction

Proofs of security protocols typically employ simple abstractions of cryptographic operations, so
that large parts of the proofs become independent of cryptographic details such as polynomial-
time restrictions, probabilistic behavior and error probabilities. This is particularly true for tool-
supported proofs, e.g., [48, 44, 39, 53, 54, 1, 42, 49].

The typical abstraction style is the Dolev-Yao model, or better “models”. Cryptographic oper-
ations, e.g., E for encryption and D for decryption, are treated as operators in a term algebra where
only certain cancellation rules hold. (In other words, one considers the initial model of an equa-
tional specification.) For instance, encrypting a message m twice does not yield another message
from the basic message space but the term E(E(m)). A typical cancellation rule is D(E(m)) = m
for all m. This was introduced for unary operations in [32], with first extensions to more general
terms and equations in [33, 45, 34].

However, there was traditionally no cryptographic justification, i.e., no theorem that said what
a proof with a Dolev-Yao abstraction implied for the real implementation, even if provably secure
cryptographic primitives are used. In fact, one can construct at least artificial protocols that are
secure in certain Dolev-Yao models, but become insecure if implemented with provably secure cryp-
tographic primitives [50]. Closing this gap has motivated a considerable amount of research over

∗An earlier version of this paper appeared at [23].

1

the past few years. The first security proof for a Dolev-Yao-style model under active attacks was
presented in [22]. This proven model contains public-key encryption and signatures as the main
cryptographic operations, together with nonces, payload messages, and a list operation. Probabilis-
tic term generation is abstracted by a counting mechanism, one of the usual abstractions in prior
Dolev-Yao models in particular for nonces, probably first in [44]. The main unusual feature is an
operation that returns the length of a term, corresponding to the length in bits of the corresponding
real message; this was necessary because encryption cannot hide the message length completely.
The implementation uses arbitrary encryption and signature schemes secure under the standard
cryptographic definitions for active attacks (adaptive chosen ciphertext and adaptive chosen mes-
sage, respectively, but not adaptive corruptions); those obtain a few non-cryptographic additions
like type tags and additional random message fields. The security holds in the sense of reactive
simulatability. Essentially this means that anything an adversary can achieve in a real system can
also be achieved by an adversary against the corresponding ideal system, here the Dolev-Yao-style
model. The trust model in this simulatability, corresponding to the trust model for the primitives,
is adaptive active attacks but non-adaptive corruptions. This is also the prevelant trust model in
Dolev-Yao models. Reactive simulatability guarantees arbitrary composability, and typical security
properties are preserved from ideal systems to real systems. Composability and property preserva-
tion together mean that properties of cryptographic protocols can be proved symbolically over the
Dolev-Yao-style model and automatically carry over to the real cryptographic implementation.

However, a limitation in [22] is that only asymmetric cryptographic primitives are considered.
For asymmetric primitives it is reasonable to define the Dolev-Yao terms such that secret keys are
only used for decryption and signing, but not included in terms in other ways. This restriction does
not exclude many typical protocols, and has been used in Dolev-Yao models before – some models
even assume completely predistributed public keys. For symmetric primitives, however, such a
restriction would be unreasonable: A secret key in a protocol almost always has to be shared by
at least two parties, and key-exchange protocols are among those most commonly analyzed with
Dolev-Yao models.

The main contribution of this paper is to add the first symmetric primitive to the framework
of [22]: message authentication. In other terminologies, this is called keyed hashing or MACs
(message authentication codes). In many Dolev-Yao models symmetric authentication is not really
distinguished from encryption, or only the instantiations using hash functions are considered, but in
cryptography symmetric authentication is an important primitive with definitions and constructions
of its own.

The inclusion of a symmetric primitive and the sending of secret keys adds a major complication
compared with the proof in [22] because a key may be sent at any time before or after it is first used
to authenticate a message. In particular, this implies that a real adversary can send a message
(bit string) which cannot immediately be represented by a known Dolev-Yao term, because the
key needed to test the validity of an authenticator is not yet known, but may be sent later by the
adversary. When only public keys are exchanged, the problem can be avoided by tagging all real
messages with the public keys used in them, so that messages can immediately be classified into
correct terms or a specific garbage type [22].

Defining a reactively secure Dolev-Yao-style abstraction of symmetric authentication as an
addition to the model from [22], instead of on its own, has the advantage that we can then consider
terms that use both public-key and secret-key operations, e.g., a public-key-encrypted key for
symmetric authentication. Further, we thus obtain that all inequalities and non-derivability results
that the Dolev-Yao model postulates between such mixed terms carry over to a realization and
can therefore be used in symblic protocol proofs. However, this comes at a price: We must define

2

and prove the new operations within the existing framework. This framework has relatively clear
extension points for such additions, but nevertheless the overall complexity increases somewhat
with every new system.

Related Work. Abadi and Rogaway started to bridge the abstraction gap for Dolev-Yao mod-
els [3]. However, they only handled passive adversaries and symmetric encryption. The protocol
language and security properties were extended in [2, 40], but still only for passive adversaries.
This excludes most of the typical ways of attacking protocols, e.g., man-in-the-middle attacks and
attacks by reusing a message part in a different place or concurrent protocol run. A justification
for arbitrary active attacks and within the context of arbitrary surrounding interactive protocols
was first given in [22]. This holds independently of the goals that one wants to prove about the sur-
rounding protocols; in particular, property preservation theorems for the simulatability definition
we use have been proved for integrity, fairness, liveness, and non-interference [8, 21, 14, 13, 18, 4].
Based on the specific Dolev-Yao model proved there, the well-known Needham-Schroeder-Lowe
protocol was symbolically proved in [12, 15], as well as several well-known protocols that come
with a symbolic representation [5, 7, 19, 11, 6]. This shows that in spite of adding certain op-
erators and rules compared with simpler Dolev-Yao models, such a proof is possible in the style
already used in automated tools, only now with a sound cryptographic basis. Moreover, tailored
proof support for computational sound Dolev-Yao style proofs has recently been proposed [55, 10].
Subsequently, several papers presented cryptographic underpinnings of Dolev-Yao models under
active attacks for specific primitives, e.g., [41] for symmetric encryption and [38, 47] for public-key
encryption. Recently, even first impossibility results have been established, showing that the widely
considered symbolic abstractions of hash functions and of the XOR operation cannot be proven
computationally sound in general [17, 26].

The security notion of reactive simulatability, a notion of secure implementation that allows
arbitrary composition, was first defined generally in [51], based on simulatability definitions for
(one-step) function evaluation [35, 36, 28, 46, 30]. It was extended in [52, 31, 9, 24, 25, 27] and has
since been used in many ways for proving individual cryptographic systems and general theorems.

Overview of this Paper. In Section 2, we give an informal overview of the Dolev-Yao-style
model of symmetric authentication and show how major concepts, both new ones from this paper
and underlying ones from [22], relate to other Dolev-Yao models. Note that while all term algebras
are similar, other aspects like interaction, protocol definition, and adversary capabilities are treated
in syntactically very diverse ways in the literature. After briefly introducing general notation in
Section 3, we rigorously define our Dolev-Yao-style abstraction in Section 4. The realization of
this specific abstraction is defined in Section 5. Section 6 describes the security notion of reactive
simulatability in more detail than the introduction. Sections 7 and 8 contain the proof. Readers
most interested in the proof technique can read the start of these sections before the ideal and real
system; however, as the overall technique is the same as in [22], we abbreviate the general parts
where possible.

2 Overview of the Dolev-Yao-Style Model of Symmetric Authen-

tication

For modeling and proving cryptographic protocols, it is sufficient to know the ideal, Dolev-Yao-
style model of symmetric authentication. The subsequent sections only justify that – and how –

3

ska

pka

aut

list pka

aut

list pka ... pka

... ...

list

... ska ...

list

... aut ...

Figure 1: Term structures with symmetric authentication.

the ideal version can be faithfully implemented by real cryptographic primitives fulfilling normal
cryptographic definitions. In this section, we give an overview of the Dolev-Yao-style model of
symmetric authentication that we will later prove to be securely implementable, and describe the
reasons for some major design decisions. This section also motivates some underlying concepts
from [22] in the hope that at least readers who know other Dolev-Yao models can later easily map
our representation into their favorite one and concentrate on the main issues.

2.1 Terms and Operations

A summary of the types of terms arising by adding symmetric authentication to our Dolev-Yao-style
model is shown in Figure 1. At first glance, one might expect just leaves for secret authentication
keys, denoted by the type ska, and authenticators of type aut with a message (here represented
as list) and a secret key as arguments. A major deviation from this expectation is the type pka,
which denotes public tags for authentication keys. This models that the adversary might be able
to determine the key that was used to authenticate a message. A secret-key term has such a public
tag as an argument, and an authenticator has the public tag of the respective secret key as an
argument instead of that secret key. This explains the first and second term template in Figure 1.
The next deviation from what one might expect is that there are authenticators with any number
j ∈ N0 of keys (i.e., their public tags) as arguments instead of one. Such terms can be produced
by the adversary either by sending an authenticator first, so that the key is not yet known (j = 0)
or by finding keys such that authenticators are valid with respect to several keys. This is not
excluded by typical cryptographic security definitions and indeed does no harm in typical uses of
authentication. Finally, one might expect a test operator, but Dolev-Yao models exist with and
without destructors, i.e., operations like decryption and signature testing may be explicit elements
in terms (as in the introduction) or implicit. The version in [22] belongs to the second class. Thus
an application of a test to a term is always immediately evaluated. The last two term templates in
Figure 1 show that secret keys and authenticators may be included in lists and thus in many larger
terms.

The honest participants operate on these terms in the expected ways: They can generate keys,
authenticate messages (yielding normal terms with one key argument), test authenticators, and we
allow them to extract messages from authenticators (i.e., the second and third term in Figure 1
allow retrieval of the list). This last operation implies that real authenticators must contain the
message. The simulator in the proof needs this to translate authenticators from the adversary into
abstract ones. Thus we also offer message retrieval to honest users so that they need not send the
message both explicitly and implicitly.

The adversary has a few additional possibilities: As already mentioned, he may construct
authenticator terms with j 6= 1 public key tags, also by adding key tags to authenticators originally
constructed by an honest user, and he can extract key tags from authenticators.

4

2.2 Abstraction from Probabilism and Participant Knowledge

Like all Dolev-Yao-style models when actually used for protocol modeling, e.g., using a special-
purpose calculus or embedded in CSP or pi-calculus, the model in [22] has state. An important
use of state is to model which participants already know which terms. Another use of state is to
remember different versions of terms of the same structure for probabilistic operations such as nonce
or key generation. We allow probabilistic authentication; hence also the authentication operation
generates a new version of an authenticator term at each call. In [22], as in some prior models –
probably first in [44] – the probabilism is abstracted from by counting, i.e., by assigning successive
natural numbers to terms, here globally over all types.

A specific aspect in [22] is that participants operate on terms by local names, not by handling
the terms directly. This is necessary to give the abstract Dolev-Yao-style model and its realization
the same interface, so that either one or the other can be plugged into a protocol. An identical
interface is also an important precondition for reactive simulatability, i.e., the security notion. One
can see protocol descriptions over this interface as a low-level symbolic representation as they exist
in several other frameworks, and it should be possible to compile higher-level descriptions into
it following the ideas first developed in [43]. The local names are called handles, and chosen as
successive natural numbers for simplicity.

The handles also implicitly define the knowledge sets of other models: The knowledge set of a
participant, including the adversary, is the set of terms for which this participant has handles.

3 Notation

We write “:=” for deterministic and “←” for probabilistic assignment, and “ R←” for uniform random
choice from a set. By x := y++ for integer variables x, y we mean y := y + 1;x := y. The length of
a message m is denoted as |m|, and ↓ is an error element available as an addition to the domains
and ranges of all functions and algorithms. The list operation is denoted as l := (x1, . . . , xj), and
the arguments are unambiguously retrievable as l[i], with l[i] = ↓ if i > j. A database D is a set
of functions, called entries, each over a finite domain called attributes. For an entry x ∈ D, the
value at an attribute att is written x.att . For a predicate pred involving attributes, D[pred] means
the subset of entries whose attributes fulfill pred . If D[pred] contains only one element, we use the
same notation for this element. Adding an entry x to D is abbreviated D :⇐ x.

4 The Dolev-Yao-Style Model

We now present our abstraction from symmetric authentication in detail. Before we can rigorously
define the new terms and the operations on terms and the overall state, e.g., on the handles
representing knowledge sets, we have to introduce notation from the overall model from [22] to
which we add these terms and operations.

4.1 Trusted-Host Machines and Overall Parameters

The underlying system model is an IO-automata model. Hence the overall Dolev-Yao-style model,
with its state, is represented as a machine. It is called trusted host. Actually there is one possible
trusted host THH for every subset H of a set {1, . . . , n} of users, denoting the possible honest users.
It has a port inu? for inputs from and a port outu ! for outputs to each user u ∈ H and for u = a,
denoting the adversary.

5

ind type arg hnd
1

len

1 pka () 0
2 ska (1) 128
3 data m 1000
4 list (3) 1032
5 aut (4,1) 1200

hnd
n

...

...

1 ...

...

...

...

2

3

4 2

aut

list pka

data

m

P
1 P

n
:

1

Figure 2: Example of the database representation of terms.

The trusted host keeps track of the length of messages (recall that this is needed because the
length leaks to the adversary) using a tuple L of abstract length functions. We add functions
ska len∗(k) and aut len∗(k, l) to L for the length of authentication keys and authenticators, depend-
ing on a security parameter k and the length l of the message. They follow the same conventions as
the other functions in [22], in particular they range over N, are polynomially bounded, and efficiently
computable. Another two functions from L that we need below are max in(k) and max ina(k). They
can be arbitrary polynomials and denote the maximum number of inputs at each user port and at
the adversary port, respectively.

4.2 States: Term Database

The overall representation of a state of the Dolev-Yao-style model, i.e., of the machine THH, is
a database D of the existing terms with their type (top-level operator), argument list, handles,
and lengths as database attributes. In addition, it contains a global index that allows us (not the
participants) to refer to terms unambiguously. The non-atomic arguments of a term are given by
the indices of the respective subterm.

An example is shown in Figure 2. The left side indicates the main action that has happened so
far, the sending of an authenticated list with one element, a payload message m. The database first
contains the key pair, where the secret key is supposed to be known to both participants, while
honest participants never have special handles to the public key tags. Then it contains the payload
data, the list, and the authenticated message. We assume that this message has arrived safely so
that Pn has a handle to it, but has not yet been parsed by the recipient. After that, the list and
m get handles 3 and 4 for Pn, respectively.

In detail, the database attributes of D are defined as follows; the only difference to [22] due to
adding symmetric authentication is an augmented type set.

• ind ∈ INDS, called index, consecutively numbers all entries in D. The set INDS is iso-
morphic to N; we use it to distinguish index arguments from others. We use the index as a
primary key attribute of the database, i.e., we write D[i] for the selection D[ind = i].

• type ∈ typeset defines the type of the entry. We add types ska, pka, and aut to typeset
from [22], denoting secret authentication keys, “empty” public keys that are needed as key
identifier for the corresponding secret keys, and authenticators. The type pka is added to the
subset secrettypes ⊆ typeset , which consists of those types that must not be put into lists
(formerly only consisting of the secret keys of asymmetric schemes).

• x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many values ai are indices of
other entries in D and thus in INDS. We sometimes distinguish them by a superscript “ind”.

6

• x.hndu ∈ HNDS∪{↓} for u ∈ H∪{a} are handles by which a user or adversary u knows this
entry. The value ↓ means that u does not know this entry. The set HNDS is yet another set
isomorphic to N. We always use a superscript “hnd” for handles.

• x.len ∈ N0 denotes the “length” of the entry, computed using the functions from L.

Initially, D is empty. As additional state parts, THH has a counter size ∈ INDS for the current
size of D, and counters curhndu (current handle) for u ∈ H∪{a}, denoting the most recent handle
number assigned for u. They are all initialized with 0.

The algorithm ihnd ← ind2hndu(i) (with side effect) denotes that THH determines a handle
ihnd for user u to an entry D[i]: If ihnd := D[i].hndu 6= ↓, it returns that, else it sets and returns
ihnd := D[i].hnd u := curhndu++. On non-handles, it is the identity function. ind2hnd∗u applies
ind2hndu to each element of a list.

For each input port p?, THH maintains a counter stepsp? ∈ N0 initialized with 0 for the number
of inputs at that port, each with a bound boundp?. If that bound is reached, no further inputs are
accepted at that port. This is done by a length function becoming 0; these length functions can
generally be used to ensure that only polynomial-size inputs are considered at certain ports. They
are not written out explicitly, but can be derived easily from the domain expectations given for the
individual inputs. We have boundp? = max in(k) for all ports except for ina?, where it is max ina(k).

4.3 New Inputs and their Evaluation

According to the underlying IO-automata model, operations are represented by input commands
from users or the adversary into THH. Thus the use of this Dolev-Yao-style model is very much
like the use of a real cryptographic library by an application or protocol implementation, referring
to cryptographic objects by object handles. The normal cryptographic operations are called basic
commands. They are accepted at input ports inu?; they correspond to cryptographic operations
and have only local effects, i.e., only an output at outu? occurs and only handles for u are involved.
The additional term-handling capabilities of the adversary are called local adversary commands.
They are only accepted at ina?. The last group, called send commands, output values to other
users. The normal insecure channels actually lead to the adversary, i.e., the adversary instead of
the intended recipient gets a handle on a sent message, and the adversary can send under anyone’s
identity.

In the following, the notation j ← op(i) means that THH is scheduled with an input op(i) at
some port inu? (where we always use u as the index of that port) and returns j at outu !. The
definitions in [22] only allow lists to be authenticated and transferred, because the list-operation
is a convenient place to concentrate all verifications that no secret keys of the public-key systems
are put into messages. Handle arguments are tacitly required to be in HNDS and existing, i.e.,
≤ curhndu , at the time of execution.

4.3.1 Basic Commands: Normal Cryptographic Operations

As introduced in Section 2.1 there are four local cryptographic operations for all participants.

Definition 4.1 (Basic commands for symmetric authentication) The trusted host THH extended
by symmetric authentication accepts the following additional commands at every ports inu?.

7

• Key generation: skahnd ← gen auth key(). Set skahnd := curhndu++ and

D :⇐ (ind := size++, type := pka, arg := (), len := 0);

D :⇐ (ind := size++, type := ska, arg := (ind − 1), hnd u := skahnd,

len := ska len∗(k)).

• Authenticator generation: authnd ← auth(skahnd, lhnd).

Let ska := D[hndu = skahnd ∧ type = ska].ind and l := D[hndu = lhnd ∧ type = list].ind.
Return ↓ if either of these is ↓, or if length := aut len∗(k,D[l].len) > max len(k). Otherwise,
set authnd := curhndu++, pka := ska+ 1 and

D :⇐ (ind := size++, type := aut, arg := (l, pka), hndu := authnd,

len := length).

• Authenticator verification: v ← auth test(authnd, skahnd, lhnd).

If aut := D[hndu = authnd ∧ type = aut].ind = ↓ or ska := D[hndu = skahnd ∧ type =
ska].ind = ↓, return ↓. Otherwise, let (l, pka1, . . . , pkaj) := D[aut].arg. If ska − 1 6∈
{pka1, . . . , pkaj} or D[l].hndu 6= lhnd, then v := false, else v := true.

• Message retrieval: lhnd ← msg of aut(authnd).

Let l := D[hndu = authnd ∧ type = aut].arg [1] and return lhnd := ind2hndu(l).

✸

The tests in authenticator generation are input type checks and a test that the resulting message
will not exceed the given polynomial bound. (The latter is just a provability issue; the bound should
be so large as to be never reached in practice.)

In verification, the test ska − 1 6∈ {pka1, . . . , pkaj} is the lookup that the secret key is one of
those for which this authenticator is valid, i.e., that the cryptographic test would be successful in
the real system.

4.3.2 Local Adversary Commands

We already discussed in Section 2.1 that we allow the adversary to send terms with authenticators
for which it has not sent a suitable key yet. We call such authenticators (temporarily) unknown.
Such an authenticator can become valid if a suitable secret key is received; a command for fixing
authenticators takes care of this. In addition, we allow the adversary to transform an authenticator,
i.e., create a new authenticator for a message if he already knows another authenticator for the
same message. This capability is not excluded by typical security definitions. Finally, we allow the
adversary to retrieve all information that we do not explicitly require to be hidden, e.g., type and
arguments of a term with a given handle.

Definition 4.2 (Local adversary commands for symmetric authentication) The trusted host THH

extended by symmetric authentication accepts the following additional commands at the port ina?.

8

• Authentication transformation: trans authnd ← adv transform aut(authnd).

Return ↓ if aut := D[hnda = authnd∧type = aut].ind = ↓. Otherwise let (l, pka1, . . . , pkaj) :=
D[aut].arg, set trans authnd := curhnda++ and

D :⇐ (ind := size++, type := aut, arg := (l, pka1),

hnd a := trans authnd, len := D[aut].len).

• Unknown authenticator: authnd ← adv unknown aut(lhnd).

Return ↓ if l := D[hnda = lhnd ∧ type = list].ind = ↓ or length := aut len∗(k,D[l].len) >
max len(k). Otherwise, set authnd := curhnda++ and

D :⇐ (ind := size++, type := aut, arg := (l), hnd a := authnd,

len := length).

• Fixing authenticator: v ← adv fix aut validity(skahnd, authnd).

Return ↓ if aut := D[hnda = authnd ∧ type = aut].ind = ↓ or if ska := D[hndu = skahnd ∧
type = ska].ind = ↓. Let (l, pka1, . . . , pkaj) := D[aut].arg and pka := ska − 1. If pka 6∈
{pka1, . . . , pkaj} set D[aut].arg := (l, pka1, . . . , pkaj , pka) and output v := true. Otherwise,
output v := false.

• Parameter retrieval: (type , arg)← adv parse(mhnd).

This existing command always sets type := D[hnd a = mhnd].type, and for most types arg :=
ind2hnd∗a(D[hnd a = mhnd].arg). This applies to the new types pka, ska, and aut.

✸

The fact that adv parse applied to an authenticator outputs a handle to the public key models
that the adversary might be able to see which authenticators were made with the same key. By
itself, such a public key is meaningless, but the adversary can compare the public keys from different
authenticators.

4.3.3 Send Commands, Unchanged

The send commands are unchanged by adding symmetric authentication. However, they are needed
in the proof because simulation only happens when terms are sent or received. Hence as an example
we present sending over an insecure channels (denoted by a parameter i). This is the most commonly
used type, but there are also secure channels and authentic channels. Essentially, sending increases
knowledge sets and thus assigns and outputs handles. Intuitively, in the first command an honest
user wants to send list l to user v. In the second command, the adversary wants to send list l to v,
pretending to be u.

• send i(v, lhnd), for v ∈ {1, . . . , n}. Let l ind := D[hndu = lhnd ∧ type = list].ind . If l ind 6= ↓, then
output (u, v, ind2hnda(l

ind)) at outa!.

• adv send i(u, v, lhnd), for u ∈ {1, . . . , n} and v ∈ H at port ina?. Let l ind := D[hnda =
lhnd ∧ type = list].ind . If l ind 6= ↓, output (u, v, ind2hndv(l

ind)) at outv !.

9

M
1

M
n

hnd
1 type word add_arg

1

2
ska x4lg49m...

3
data m

4
list (m)

aut (m, pb33qy...)

()

()

()
()

hnd
n

type word add_arg

1

2
ska x4lg49m...

null
()

()(m, pb33qy...)

Figure 3: Real situation for the same example as above.

5 Real System

The realization of the Dolev-Yao-style model offers its users the same interface as the ideal model,
i.e., honest users operate on cryptographic objects via handles. Clearly, in the real system every
user has its own machine (in other terms protocol engine or automaton), containing only the
cryptographic objects that this user knows. Figure 3 shows the real situation corresponding to the
example from Figure 2. Essentially, the machines of user P1 and Pn contain the projections of the
Dolev-Yao-style database to the objects for which this user has handles, with terms replaced by
bitstrings. In the example bitstrings, we represent a list with brackets, and an authenticator (which
allows message retrieval) as a pair of the message and a basic authenticator. As user Pn has not
yet parsed the authenticator, it still has the type null in machine Mn, see below.

The commands like key generation and authentication essentially call the underlying crypto-
graphic algorithms; however, we need some additional tagging and randomization. Upon send
commands, these machines exchange the real bitstrings over real channels. The adversary can
arbitrarily manipulate the messages on insecure channels and in his local knowledge, i.e., perform
any polynomial-time algorithms on the bitstrings.

We start the rigorous treatment with the underlying definitions of a cryptographically secure
symmetric authentication system.

5.1 Cryptographic Definition of Symmetric Authentication

The following is a standard definition of authentication codes except that we require that all
algorithms have fixed effects on the parameter lengths. This can easily be achieved by padding,
given any other authentication code.

Definition 5.1 (Memoryless symmetric authentication) A memoryless symmetric authentication
scheme is a tuple A = (genA, auth, atest, ska len, aut len) of polynomial-time algorithms. For key
generation with a security parameter k ∈ N, we write sk ← genA(1

k). By aut ← authsk (m) we
denote the (probabilistic) authentication of a message m ∈ {0, 1}+. Verification b := atestsk (aut ,m)
is deterministic and returns true (then we say that the authenticator is valid) or false.

With these parameter notation, the length of sk must always be ska len(k) > 0. Correctly
generated authenticators for keys of the correct length must always be valid. The length of aut
must be aut len(k, |m|) > 0, and this is also the length of every aut ′ with atestsk (aut

′,m) = true

for a value sk ∈ {0, 1}ska len(k). The functions ska len and aut len must be bounded by multivariate
polynomials. ✸

As the security definition we use security against existential forgery under adaptive chosen-
message attacks similar to [37]. We only use our notation for interacting machines, and we allow
that also the test function is adaptively attacked.

10

Definition 5.2 (Authentication Security) Given an authentication scheme, an authentication ma-
chine Aut has one input and one output port, a variable sk initialized as sk ← genA(1

k), and the
following transition rules:

• On input (auth,m), return aut ← authsk (m).

• On input (test, aut ′,m′), return v := atestsk (aut
′,m′).

The authentication scheme is called existentially unforgeable under adaptive chosen-message attack
if for every probabilistic polynomial-time machine Aaut that interacts with Aut, the probability is neg-
ligible (in k) that Aut outputs v = true on any input (test, aut ′,m′) where m′ was not authenticated
until that time, i.e., not among the inputs called m. ✸

The definition does not exclude that the adversary constructs another authenticator aut ′ 6= aut
for a message m that was authenticated. This is why we introduced the command adv transform aut

in Section 4.3.2. A well-known example of an authentication scheme that is provably secure under
this definition is HMAC [29].

5.2 Machines and Parameters

The intended structure of the realization consists of n machines {M1, . . . ,Mn}, one for each par-
ticipant. Each Mu has ports inu? and outu !, so that the same honest-user machines (representing
applications or protocols) can connect to the ideal and the real system. Each Mu has connections
to each Mv as in [22], in particular an insecure connection called netu,v ,i for normal use. They are
called network connections and the corresponding ports network ports. Any subset H of {1, . . . , n}
can denote the indices of correct machines. The resulting actual structure consists of the correct
machines with modified channels according to a channel model. In particular, each insecure channel
is split so that both machines actually interact with the adversary.

Similarly to the length functions ska len and aut len from the cryptographic definition, there
are underlying functions list len and nonce len defining the length of lists (based on the element
lengths) and nonces. These functions are grouped in a tuple L′ and can be arbitrary polynomials.
For given functions list len, nonce len, ska len, and aut len, the corresponding ideal length functions
are computed as follows.

• ska len∗(k) := list len(|ska|, ska len(k), nonce len(k)); this must be bounded by max len(k);

• aut len′(k, l) := aut len(k, list len(nonce len(k), l));

• aut len∗(k, l) := list len(|aut|, nonce len(k), nonce len(k), l, aut len′(k, l)).

This is mainly needed to relate this real system to an ideal system with suitable parameters, but
we use one of these definitions already in defining the real system.

5.3 States of a Machine

Each machine Mu contains the cryptographic objects the user already knows under this user’s
handles. We again represent this as a database; the structure is simple here because there are
only the handles, the corresponding bitstrings, and for our convenience the message types (which
could be retrieved by parsing the bitstring) and a “reserve” parameter. More precisely, each such
database Du has the following attributes:

11

• hndu ∈ HNDS consecutively numbers all entries in Du. We use it as a primary key attribute,
i.e., we write Du[i

hnd] for the selection Du[hndu = ihnd].

• word ∈ {0, 1}+ is the real bitstring.

• type ∈ typeset ∪ {null} identifies the type of the entry. The value null denotes that the entry
has not yet been parsed.

• add arg is a list of (“additional”) arguments. For entries of our new types it is always empty,
i.e., ().

Initially, Du is empty. Mu has a counter curhndu ∈ HNDS for the current size of Du. The
subroutine

(ihnd,Du) :← (i, type , add arg)

determines a handle for certain given parameters in Du: If an entry with the word i already
exists, i.e., ihnd := Du[word = i ∧ type 6∈ {sks, ske}].hndu 6= ↓,

1 it returns ihnd, assigning the input
values type and add arg to the corresponding attributes of Du[i

hnd] only if Du[i
hnd].type was null.

Else if |i| > max len(k), it returns ihnd = ↓. Otherwise, it sets and returns ihnd := curhndu++,
Du :⇐ (ihnd, i, type , add arg).

Similar to Section 4.2, Mu maintains a counter stepsp? ∈ N0 for each input port p?, initialized
with 0. All corresponding bounds boundp? are max in(k). Length functions for inputs are tacitly
defined by the domains of each input.

5.4 Inputs and their Evaluation

Now we describe how Mu evaluates the individual inputs related to symmetric authentication.
Clearly, there are the same four basic commands corresponding to cryptographic operations. There
are no adversary local commands because a real adversary is not restricted to specific, algebraic
operations, but performs arbitrary bitstring manipulations. The send commands now correspond to
real sending, and receiving a message from a channel into a real machine must newly be considered.

5.4.1 Constructors and One-level Parsing

The stateful commands are defined via functional constructors and parsing algorithms for each
cryptographic type. (These stateless algorithms can be reused in the simulator and the proof,
while the stateful parts are different in the simulator.) We start with the constructors; they define
the exact structure of the bitstrings in the database.

Definition 5.3 (Constructors for symmetric authentication)

• Key constructor: sk∗ ← make auth key().

Let sk ← genA(1
k), sr R← {0, 1}nonce len(k), and return sk∗ := (ska, sk , sr).

• Authenticator constructor: aut∗ ← make auth(sk∗, l), for sk∗, l ∈ {0, 1}+.

Set r R← {0, 1}nonce len(k), sk := sk∗[2] and sr := sk∗[3]. Authenticate as aut ← authsk ((r, l)),
and return aut∗ := (aut, sr , r, l, aut).

1The restriction type 6∈ {sks, ske} (abbreviating secret keys of signature and public-key encryption schemes) is
included for compatibility to the original model from [22]. Similar statements will occur some more times, e.g., for
entries of type pks and pke denoting public signature and encryption keys. No further knowledge of such types is
needed for understanding the new work.

12

✸

Now we define the destructors. Authenticator parsing does not include the verification test;
that must be defined in the stateful part. The term “tagged list” means a valid list of the real
system. We assume that tagged lists are efficiently encoded into {0, 1}+. From the underlying
Dolev-Yao-style model, we need to know the general parsing algorithm.

• General parsing: (type , arg)← parse(m).

If m is not of the form (type ,m1, . . . ,mj) with type ∈ typeset \ {pka, sks, ske, garbage} and
j ≥ 0, returns (garbage, ()). Else call the type-specific parsing algorithm arg ′ ← parse type(m).
If arg = ↓, then parse again outputs (garbage, ()), else (type , arg).

The destructors for the symmetric authentication types contain the appropriate type-specific pars-
ing subroutines.

Definition 5.4 (Destructors for symmetric authentication)

• Key parsing: arg ← parse ska(sk∗).

If sk∗ is of the form (ska, sk , sr) with sk ∈ {0, 1}ska len(k) and sr ∈ {0, 1}nonce len(k), return (),
else ↓.

• Authenticator parsing: arg ← parse aut(aut∗).

If aut∗ is not of the form (aut, sr , r, l, aut) with sr , r ∈ {0, 1}nonce len(k), l ∈ {0, 1}+, and
aut ∈ {0, 1}aut len′(k,|l|), return ↓. Also return ↓ if l is not a tagged list. Otherwise set
arg := (l).

✸

5.4.2 Realization of Basic Commands

We now define how a real machine reacts on the same basic commands as the ideal Dolev-Yao-style
system. They are again local. In the real system this means that they produce no outputs at
the network ports. We use the functional subroutines defined above, and subroutines for the state
changes resulting from parsing, defined in [22]:

• “parse mhnd” means that Mu calls (type , arg) ← parse(Du[m
hnd].word), assigns

Du[m
hnd].type := type if it was still null, and may then use arg .

• “parsemhnd if necessary” means the same except thatMu does nothing ifDu[m
hnd].type 6= null.

Definition 5.5 (Basic commands for symmetric authentication)

• Key generation: skahnd ← gen auth key().

Let sk∗ ← make auth key(), skahnd := curhndu++, and Du :⇐ (skahnd, sk∗, ska, ()).

• Authenticator generation: authnd ← auth(skahnd, lhnd).

Parse lhnd if necessary. If Du[ska
hnd].type 6= ska or Du[l

hnd].type 6= list, then return ↓.
Otherwise set sk∗ := Du[ska

hnd].word , l := Du[l
hnd].word , and aut∗ ← make auth(sk∗, l). If

|aut∗| > max len(k), return ↓, else set authnd := curhndu++ and Du :⇐ (authnd, aut∗, aut, ()).

13

• Authenticator verification: v ← auth test(authnd, skahnd, lhnd).

Parse authnd yielding arg =: (l), and parse skahnd. If Du[aut
hnd].type 6= aut or Du[ska

hnd].type
6= ska, return ↓. Else let (aut, sr , r, l, aut) := Du[aut

hnd].word and sk := Du[ska
hnd].word [2].

If sr 6= Du[ska
hnd].word [3] or l 6= Du[l

hnd].word , or atestsk (aut , (r, l)) = false, output v :=
false, else v := true.

• Message retrieval: lhnd ← msg of aut(authnd).

Parse authnd yielding arg =: (l). If Du[aut
hnd].type 6= aut, return ↓, else let (lhnd,Du) :←

(l, list, ()).

✸

5.4.3 Send Commands and Network Inputs

The send commands are again not specific to symmetric authentication, but as an example we show
what happens for an insecure channel.

• send i(v, lhnd), for v ∈ {1, . . . , n}.

Parse lhnd if necessary. If Du[l
hnd].type = list, output Du[l

hnd].word at port netu,v ,i!.

An input at a network port should be tagged list. If it is, it is stored under a handle, and the
arrival of the message is indicated to the user.

• Network input: On input l at netw ,u,i?, for l ∈ {0, 1}
+ and |l| ≤ max len(k).

Test if l = (list, x1, . . . , xj) for some j ∈ N0 and values xi ∈ {0, 1}
+. If yes, let (lhnd,Du) :←

(l, list, ()) and output (w, x, lhnd) at outu !.

6 Definition of Simulatability

We give the definition of the underlying security notion of reactive simulatability. It is intended for
comparing an ideal and a real system with respect to security. Generally, an ideal or real system
may consist of several possible structures, typically derived from an intended structure with a trust
model, where each such structure consists of a set of machines and a set of so-called service ports.
For example, the Dolev-Yao-style model from Section 4 consists of structures ({THH},SH), one for
each H, where SH := {inu?, outu ! | u ∈ H}. A structure is complemented to a configuration by
honest users summarized as a single machine H and an adversary A. H connects only to the service
ports of the structure and A to the rest, and they may interact. The set of configurations of a
system Sys is called Conf(Sys). A configuration is a runnable scenario, i.e., for each value of the
security parameter k one gets a well-defined probability space of runs. The view of a machine in a
run is the restriction to all in- and outputs this machine sees and its internal states. Formally, the
view viewconf (M) of a machine M in a configuration conf is a family of random variables with one
element for each value k of the security parameter.

The security definition for comparing an ideal system Sys id and a real system Sys real is that for
every structure (M̂1,S) ∈ Sysreal, every polynomial-time honest user H, and every polynomial-time
adversary A1, there exists a polynomial-time adversary A2 on an ideal structure (M̂2,S) ∈ Sys id
with the same service ports such that the view of H is computationally indistinguishable in the two
configurations, i.e., such that the honest users H cannot notice the difference. This is illustrated in
Figure 4. Indistinguishability is a well-known cryptographic notion from [56].

14

H

M
1

M
2

A
1

S

H

TH

A
2

S

Figure 4: Overview of the simulatability definition. A real system is shown on the left-hand side,
and an ideal system on the right-hand side. The view of H must be indistinguishable.

Definition 6.1 (Computational Indistinguishability) Two families (vark)k∈N and (var′k)k∈N of ran-
dom variables on common domains Dk are computationally indistinguishable (“≈”) iff for every
algorithm D (the distinguisher) that is probabilistic polynomial-time in its first input,

|P (D(1k, vark) = 1)− P (D(1k, var′k) = 1)| ∈ NEGL,

where NEGL denotes the set of all negligible functions, i.e., g : N→ R≥0 ∈ NEGL iff for all positive
polynomials Q, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k). ✸

Intuitively, given the security parameter and an element chosen according to either vark or var′k, D
tries to guess which distribution the element came from.

Definition 6.2 (Reactive Simulatability) For two systems Sys real and Sys id, one says Sys real ≥
Sys id (at least as secure as) iff for every polynomial-time configuration conf 1 = (M̂1,S ,H,A1) ∈
Conf(Sys real), there exists a polynomial-time configuration conf 2 = (M̂2,S ,H,A2) ∈ Conf(Sys id)
(with the same H) such that viewconf 1

(H) ≈ viewconf 2
(H). ✸

For the proof in [22], this is even shown with blackbox simulatability, i.e., A2 is defined as the
combination of A1 and a simulator Sim that depends only on (M̂1,S).

7 Simulator

We now start with the proof that the real system is as secure as the ideal one.
The main step is to construct a simulator SimH for each set H of possible honest users such

that for every real adversary A, the combination SimH(A) of SimH and A achieves the same effects
in the ideal system as the adversary A in the real system, cf. Section 6. This is shown in Figure 5,
together with the detailed ports of SimH and a sketch of the messages to be handled. Roughly, the
goal of SimH is to translate real bitstrings coming from the adversary into abstract handles that
represent corresponding terms in THH, and vice versa.

7.1 States of the Simulator

The simulator essentially contains the cryptographic objects that the adversary has seen or sent,
together with the handles used for the corresponding terms in the Dolev-Yao-style model. This is
represented by database Da with the following attributes:

• hnd a ∈ HNDS is used as the primary key attribute in Da. However, its use is not as
straightforward as in the ideal and real system, since entries are created by completely parsing
an incoming message recursively.

15

net
u,v,x

(a)

• • •

out
a

in
u

out
u

S
H

in
a

net_id
u,v,x

A

Sim
H

D
a

with sk's for u H

clk !

H

TH
H

D

Msg. here:

word l

Msg. here:

(u, v, x, lhnd)Msg. here: index lind

• Results of cmds

• Received msgs

• Basic cmds

• Adv cmds

• Send cmds

net
u,v,x

(a)

Sim
H
(A)

Figure 5: Environment of the simulator.

• word ∈ {0, 1}∗ is the real bitstring.

• add arg is a list of additional arguments. Typically it is (). However, for our key identifiers
it is (adv) if the corresponding secret key was received from the adversary, while for keys
from honest users, where the simulator generated an authentication key, it is of the form
(honest, sk∗).

A variable curhnda denotes the current size of Da, except temporarily within an algorithm id2real.
The variables stepsp? count the inputs at each port. The corresponding bounds boundp? are
max in(k) for the network ports and max ina(k) for outa?; cf. Section 4.1.

7.2 Simulating Sent Messages

When SimH receives an “unsolicited” input from THH, this is the result of a send command by an
honest user and thus of the form m = (u, v, i, lhnd) for an insecure channel, and similar for other
channel types. SimH looks up if it already has a corresponding real message l := Da[l

hnd].word and
otherwise constructs it by an algorithm l ← id2real(lhnd) (with side-effects). It outputs l at port
netu,v ,i!.

The algorithm id2real is recursive; each layer builds up a real word given the real words for
certain abstract components. We only need to add new type-dependent constructions for our new
types, but we briefly repeat the overall structure to set the context.

1. Call (type , (mhnd
1 , . . . ,mhnd

j)) ← adv parse(mhnd) at ina!, expecting type ∈ typeset \ {sks, ske,

garbage} and j ≤ max len(k), and mhnd
i ≤ max hnd(k) if mhnd

i ∈ HNDS and otherwise
|mhnd

i | ≤ max len(k) (with certain domain expectations in the arguments mhnd
i that are auto-

matically fulfilled in interaction with THH, also for the extensions of the command adv parse

for the new symmetric-authentication types).

2. For i := 1, . . . , j: If mhnd
i ∈ HNDS and mhnd

i > curhnda, set curhnda++.

3. For i := 1, . . . , j: If mhnd
i 6∈ HNDS, set mi := mhnd

i . Else if Da[m
hnd
i] 6= ↓, let mi :=

Da[m
hnd
i].word . Else make a recursive call mi ← id2real(mhnd

i). Let arg real := (m1, . . . ,mj).

4. Construct and enter the real message m using type-specific subroutines.

16

We have to define the subroutines for Step 3 for symmetric authentication.

Definition 7.1 (Producing simulated real messages for symmetric authentication) For the
symmetric-authentication types, the algorithm id2real uses the following (stateful) subroutines in
Step 4.

• If type = pka, call sk∗ ← make auth key() and set m := ǫ and Da :⇐ (mhnd,m, (honest, sk∗)).

• If type = ska, let pkahnd := mhnd
1 . We claim that Da[pka

hnd].add arg is of the form
(honest, sk∗). Set m := sk∗ and Da :⇐ (mhnd,m, ()).

• If type = aut, we claim that pkahnd := mhnd
2 6= ↓. If Da[pka

hnd].add arg [1] = honest, let
sk∗ := Da[pka

hnd].add arg [2], else sk∗ := Da[pka
hnd + 1].word . Further, let l := m1 and set

m← make auth(sk∗, l) and Da :⇐ (mhnd,m, ()).

✸

7.3 Simulating Dolev-Yao-style Terms from Real Network Inputs

When SimH receives an input l from A at a port netw ,u,i? with |l| ≤ max len(k), it verifies that
l is a tagged list. If yes, it translates l into a corresponding handle lhnd by a recursive algorithm
lhnd ← real2id(l) (with side-effects), and outputs adv send i(w, u, lhnd) at port ina!. The algorithm
real2id recursively parses the real message, builds up a corresponding term in THH, and enters all
messages into Da.

For an arbitrary message m ∈ {0, 1}+, mhnd ← real2id(m) works as follows. If there is already
a handle mhnd with Da[m

hnd].word = m, it returns that. Else it sets (type , arg) := parse(m) and
calls a type-specific algorithm add arg ← real2id type(m, arg). After this, real2id sets mhnd :=
curhnda++ and Da :⇐ (mhnd,m, add arg). We have to provide the type-specific algorithms for the
new symmetric-authentication types.

Definition 7.2 (Entering terms from real messages for symmetric authentication)

• add arg ← real2id ska(m, ()). Call skahnd ← gen auth key() at ina! and set Da :⇐
(curhnda++, ǫ, (adv)) (for the key identifier), and add arg = () (for the secret key).

Let m =: (ska, sk, sr); this format is ensured by the preceding parsing. For each han-
dle authnd with Da[aut

hnd].type = aut and Da[aut
hnd].word = (aut, sr , r, l, aut) for r ∈

{0, 1}nonce len(k), l ∈ {0, 1}+, and aut ∈ {0, 1}aut len′(k,|l|), and atestsk(aut , (r, l)) = true, call
v ← adv fix aut validity(skahnd, authnd) at ina!. Return add arg.

• add arg ← real2id aut(m, (l)). Make a recursive call lhnd ← real2id(l) and let
(aut, sr, r, l, aut) := m; parsing ensures this format.

Let Ska := {skahnd | Da[ska
hnd].type = ska ∧Da[ska

hnd].word [3] = sr ∧ atestsk(aut, (r, l)) =
true for sk := Da[ska

hnd].word [2]} be the set of keys known to the adversary for which m is
valid.

Verify whether the adversary has already seen another authenticator for the same mes-
sage with a key only known to honest users: Let Aut := {authnd | Da[aut

hnd].word =
(aut, sr, r, l, aut ′) ∧ Da[aut

hnd].type = aut}. For each authnd ∈ Aut, let (aut, argauthnd) ←
adv parse(authnd) and pkaauthnd := argauthnd [2]. We claim that there exists at most

17

one pkaauthnd such that Da[pkaauthnd].add arg [1] = honest. If such a pkaauthnd ex-
ists, let sk∗ := Da[pkaauthnd].add arg [2] and v := atestsk∗[2](aut, (r, l)). If v =

true, call trans authnd ← adv transform aut(authnd) at ina! and after that call v ←
adv fix aut validity(skahnd, trans authnd) at ina! for every skahnd ∈ Ska. Return ().

Else if Ska 6= ∅, let skahnd ∈ Ska arbitrary. Call authnd ← auth(skahnd, lhnd) at ina!, and for
every ska′hnd ∈ Ska \ {skahnd} (in any order), call v ← adv fix aut validity(ska′hnd, authnd) at
ina!. Return ().

If Ska = ∅, call authnd ← adv unknown aut(lhnd) at ina! and return ().

✸

8 Security Proof

Our security claim is that the realization of the Dolev-Yao-style model extended with symmetric
authentication is as secure as the Dolev-Yao-style model with symmetric authentication in the sense
of Definition 6.2.

Let RPar be the set of valid parameter tuples for the real system, consisting of the number
n ∈ N of participants, secure signature, encryption, and symmetric authentication schemes S, E ,
and A, and length functions and bounds L′. For (n,S, E ,A, L′) ∈ RPar , let Syscry sym auth,real

n,S,E,A,L′ be
the resulting real cryptographic library. Further, let the corresponding length functions and bounds
of the ideal system be formalized by a function L := R2Ipar(S, E ,A, L′), where the extension to the
newly added length functions for symmetric authentication, i.e., ska len∗ and aut len∗, was given in
Section 5.2. Moreover, we require that the function max ina(k) contained in L is a sufficiently large

polynomial; we give a sufficient lower bound for max ina(k) in Section 8.3. Let Syscry sym auth,id
n,L be

the ideal cryptographic library with parameters n and L.

Theorem 8.1 (Security of the Dolev-Yao-style Model with Symmetric Authentication) For all pa-
rameters (n,S, E ,A, L′) ∈ RPar, we have

Syscry sym auth,real
n,S,E,A,L′ ≥ Syscry sym auth,id

n,L ,

where L := R2Ipar(S, E ,A, L′). ✷

Recall that we already defined a simulator in Section 7 in order to prove Theorem 8.1. We show
that even the combination of arbitrary polynomial-time users H and an arbitrary polynomial-time
adversary A cannot distinguish the combination MH of the real machines Mu, u ∈ H from the
combination THSimH of THH and SimH (for all sets H ⊆ {1, . . . , n} of indices indicating the
correct machines). We do not repeat the precise definition of “combinations” here; it can be found
in [52].

The proof is essentially a bisimulation. This means to define a mapping between the states
of two systems (Section 8.2) and a sufficient set of invariants (Section 8.4) so that one can show
that every external input to the two systems in mapped states fulfilling the invariants keeps the
system in mapped states fulfilling the invariants, and that the outputs are identically distributed
(Section 8.5, 8.6, and 8.7). However, the states of our two systems are not immediately comparable:
a simulated state has no real versions for data that the adversary has not yet seen, while a real
state has no global indices, adversary handles, etc. We circumvent this problem by conducting
the proof via a combined machine CH, from which both THSimH and MH can be derived. The

18

two derivations are two mappings, and we perform the two bisimulation proofs in parallel. By
the transitivity of indistinguishability (of the families of views of the same A and H in all three
configurations), we obtain the desired result. This is shown in Figure 6.

• • •
S
H

A

H

M
u

M
v

A
Sim

H

• • •
S
H

H

TH
H

A

• • •

S
H

H

THSim
H

C
H

M
H

1. Combine
2a. Bisimulation 2b. Bisimulation

3.
sec

poly

Figure 6: Overview of the simulatability proof.

Specific aspects of this bisimulation, all as in [22], are the following. First, certain “error sets” of
traces remain where the bisimulation fails. At the end, in Section 8.8, we show that the union of all
error sets has negligible probability if the underlying primitives, here the symmetric authentication
scheme, are secure; this is sufficient for computational indistinguishability. Secondly, we have a
probabilistic invariant “strongly correct arguments”. Thirdly, in addition to standard invariants,
we have an information-flow invariant “word secrecy” which helps us to show that the adversary
cannot guess certain values in these final proofs for the error sets. Although we can easily show
that the probability of a guess hitting an already existing truly random value is negligible, we can
only exploit this if the adversary got no information (in the Shannon sense) about this value. We
therefore have to show that the adversary did not even receive any partial information about this
value. Partial information could be derivable since, e.g., the value was hidden within a nested term.
We show the absence of partial information flow via the absence of static information flow, and the
flow specification is the invariant “word secrecy”.

8.1 Combined Machine

The combined machine CH mainly contains a database D∗ of all existing cryptographic objects. It
is structured like D in THH, but with the following additional attributes:

• word ∈ {0, 1}∗ contains a real bitstring as in MH or SimH under the same handle(s).

• parsedu ∈ {true, false} for u ∈ H is ↓ if hndu = ↓ for the same entry; otherwise true indicates
that the entry would be parsed in Du, and false that it would still be of type null. As entries
of type pka do not exist in the real system, we always have parsedu = ↓ for them.

• owner for secret keys and authenticators is adv if the key or the authenticator was first
received from the adversary, otherwise honest.

Its state also contains variables size and curhndu as in THH, and all variables stepsp? as in THSimH

are equal to the step counters in MH. In the transitions of CH, the D-part of the database D∗ and
the variables size and curhndu are treated as in THH. An entry x whose first handle x.hndu is

19

for u ∈ H gets the word that Mu would contain under this handle, and otherwise that from SimH.
Thus, essentially, entries created due to basic commands from H get the words that MH would
construct, while words received in network inputs from A are parsed completely and entered as by
SimH. Outputs to H are made as in THH, outputs to A as in MH.

8.2 Derivations

We now define the derivations of the original machines from the combined machine. They are the
mappings that we will show to be bisimulations. We use the following additional notation:

• Let ω abbreviate word lookup, i.e., ω(i) := D∗[i].word if i ∈ HNDS, else ω(i) := i. Let ω∗,
applied to a list, denote that ω is applied to each element.

• We give most derived variables and entire machine states a superscript ∗, because in the
bisimulation we have to compare them with the “original” versions. We make an exception
with some variables of THSimH that are equal by construction in CH; in particular D∗ is CH’s
extended database and the derived D-part for THH is immediately called D again.

• Let owners(x) := {u ∈ H ∪ {a} | x.hndu 6= ↓} denote the set of owners for x ∈ D. If
|owners(x)| = 1, we write owner(x) for the element of owners(x).

For a given state of CH, we define derived states corresponding to the original systems. In the
following, we only define the derivations for entries of our new types, and of those that occur in
the upcoming proof.

Definition 8.1 (Derivations from CH to THSimH and MH) Given a state of CH, the states of the
individual machines consist of the following components.

THH: D: This is the restriction of D∗ to all attributes except word and parsedu .

curhndu (for u ∈ H ∪ {a}) and size: All these variables are equal to those in CH.

M∗
H: D∗

u: (For every u ∈ H.) We derive D∗
u as follows, starting with an empty database: For

every xhnd ≤ curhndu , let x := D∗[hndu = xhnd].ind, type := D∗[x].type, and m :=
D∗[x].word . Then

• If D∗[x].parsedu = false, then D∗
u :⇐ (xhnd,m, null, ()).

• Else if type ∈ {ska, aut}, then D∗
u :⇐ (xhnd,m, type , ()).

curhnd∗
u : This variable equals curhndu of CH.

Sim∗
H: D∗

a: We derive D∗
a as follows, starting with an empty database: For all xhnd ≤ curhnda, let

x := D∗[hnd a = xhnd].ind, type := D∗[x].type, and m := D∗[x].word .

• If type = pka, let ska ind := x + 1. If D∗[ska ind].owner = adv, then D∗
a :⇐

(xhnd,m, (adv)), else D∗
a :⇐ (xhnd,m, (honest, ω(ska ind))).

• If type ∈ {ska, aut}, then D∗
a :⇐ (xhnd,m, ()).

curhnd∗
a : This variable equals curhnda of CH.

✸

20

8.3 Properties of the Ideal System and the Simulator

All properties shown about the ideal system in Lemmas 4.1 and 4.2 of [22] still hold after adding
symmetric authentication, e.g., “well-defined terms” stating that the database D represents well-
defined, non-cyclic terms. The invariant “correct key pairs” is extended by D[i].type = pka ⇐⇒
D[i+ 1].type = ska for all i ∈ N0.

The simulator is polynomial-time.
Further, no handle output by THH is rejected by SimH, and the counters stepsouta? of SimH

and steps ina? of THH never reach their bounds in THSimH. This is shown as in [22], except for
the new bound max ina(k) for steps ina? and stepsouta?. The function max ina(k) not only has to
ensure polynomial runtime but also has to be large enough to ensure correct functional behavior
by never being reached in a simulation. In [22], an upper bound on the inputs needed in the
simulation is derived from the security proof and used as an instantiation of max ina(k), but any
larger polynomial would have been sufficient. In this work we adapt this upper bound as follows.
Because of the interaction of THH and SimH in real2id, the number of these steps increases linearly
in the number of existing authenticators and existing keys, since a new secret key might update the
arguments of each existing authenticator entry, and a new authenticator can get any existing key
as an argument. However, only a polynomial number of authenticators and keys can be created (a
coarse bound is n · max in(k) for entries of the honest users plus the polynomial runtime of A for
the remaining ones), and thus max ina(k) remains polynomial as required in [22].

8.4 Invariants in CH

For the bisimulation, we need invariants about CH. In the original proof, there are invariants
index and handle uniqueness, well-defined terms, message correctness, key secrecy, no unparsed
secret keys, length bounds, fully defined, and correct key pairs. They are not explicitly used in
our upcoming proof and it is easy to see that they remain correct for our extension by symmetric
authentication. In the following, we present the important invariants for the new proof. Each
of them already occurred in [22], except for “correct verification”, which is trivially invariant for
the original inputs since it only makes statements about our new types. Each existing invariant
is generalized for dealing with our new types, without new conditions on database entries of old
types.

• Word uniqueness. For each word m ∈ {0, 1}∗, we have |D∗[word = m ∧ type 6∈
{sks, ske, pka}]| ≤ 1.

• Correct length. For all i ≤ size, D∗[i].len = |D∗[i].word |, except if D∗[i].type ∈ {sks, ske, pka}.

• Word secrecy. We require that the adversary never obtains information about nonce-like word
components without adversary handles. For this, we define a set Pub Var of “public” variables
about which A may have some information. We claim that at all times, no information from
outside has flowed into Pub Var in the sense of information flow in static program analysis.
The set Pub Var contains

– all words D∗[i].word with D∗[i].hnd a 6= ↓;

– the state of A and H, and the THH-part of the state of CH;

– secret keys of public-key encryption and digital signature schemes where the public keys
are known to the adversary, i.e., if D∗[i].hnd a 6= ↓ and D∗[i].type ∈ {pks, pks}, then also

21

D∗[i+ 1].word .2

– symmetric authentication keys for which a corresponding authenticator is known to the
adversary, i.e., all words D∗[i].word with D∗[i].type = ska for which there exists an entry
D∗[j] with D∗[j].hnd a 6= ↓, D

∗[j].type = aut, and i− 1 ∈ D∗[j].arg .

“Word secrecy” implies that no information from random values sr in authentication keys or r
in authenticators has flowed into Pub Var unless the respective entries have adversary handles.
Absence of information flow in the static sense implies absence of Shannon information.

The remaining two invariants “correct arguments” and “strongly correct arguments” establish
a relationship between the real message of an entry and its abstract type and arguments. For each
type, there is a separate relationship. In the following, we introduce such a relationship for our
new types.

• Correct arguments. For all i ≤ size, the real message m := D∗[i].word and the abstract type
and arguments, type id := D∗[i].type and arg ind := D∗[i].arg , are compatible. More precisely,
let arg real := ω∗(arg ind). If type id 6∈ {sks, ske, pka}, let (type , argparse) := parse(m), and we
require type = type id, and:

– If type = aut, then argparse = arg real[1]. (Parsing does not output the key identifiers.)

• Strongly correct arguments if a 6∈ owners(D∗[i]) or D∗[i].owner = honest. Let type :=
D∗[i].type , arg ind := D∗[i].arg and arg real := ω∗(arg ind). Then type 6= garbage and
m := D∗[i].word has the following probability distribution:3

– If type = aut, then arg ind is of the form (l ind, pka ind
1 , . . . , pka ind

j). Let ska ind := pka ind
1 + 1

and arg ′real := ω∗(ska ind, l ind). Then m← make auth(arg ′real).

– If type = ska, then m← make auth key().

The following invariant is new, and deals with consistent verification in the ideal and real system.

• Correct Verification. For all i, j ≤ size with D∗[i].type = aut and D∗[j].type = ska: Let
(aut, sr, r, l, aut) := D∗[i].word , (l ind, pka ind

1 , . . . , pka ind
j)) := D∗[i].arg , and (ska, sk, sr′) :=

D∗[j].word . Then pka ind := D∗[j].ind − 1 ∈ {pka ind
1 , . . . , pka ind

j } if and only if sr = sr′ and
atestsk(aut, (r, l)) = true.

8.5 Bisimulation of Basic Commands

Recall that we have to show that except for certain error sets, every external input to the two
systems in mapped states fulfilling the invariants keeps the systems in mapped states fulfilling the
invariants, and that the outputs are identically distributed. We first consider the effects of a basic
command c input at a port inu? with u ∈ H. Recall that the actions of CH on a large part of its
state are by definition equal to those of THH, and so is CH’s output at outu !. We will not always
mention this again. Moreover, “word secrecy” is clear since the output at outu ! and the updates to
the D-part of D∗ are made entirely with commands from THH and thus within Pub Var . New or
existing words only get a handle for u, so that nothing is added to Pub Var .

2These secret keys are included because information from them flows into the public keys, signatures, and decryp-
tions, but they do not get adversary handles when those values are published. This holds similarly for symmetric
authentication keys which are captured in the next bullet.

3Here one sees that the bisimulation is probabilistic, i.e., we actually consider distributions of states before and
after a transition. This invariant says that in such a state distribution, and given the mentioned arguments, m is
distributed as described independent of other state parts.

22

• Key generation: skahnd ← gen auth key().

Both THH and Mu set skahnd := curhndu++, and make two entries in case of THH, respec-
tively one entry in case of Mu. In CH this gives D∗ :⇐ (ind := size++, type := pka, arg :=
(), len := 0) and D∗ :⇐ (ind := size++, type := ska, arg := (ind − 1), hnd u := skahnd, len :=
ska len∗(k), parsedu := true,word := sk∗) where sk∗ ← make auth key().

The outputs are equal, and “correct derivation” is clear. If “word uniqueness” is not fulfilled,
sk∗ matches an already existing value. In particular, the nonce sr within sk∗ then equals an
old one at the same place within a word, hence we put the run in an error set Nonce Coll .

“Correct length” is fulfilled because the definition of make auth key implies ska len∗(k) =
list len(|ska|, ska len(k), nonce len(k)) = |sk∗|; nothing is required for type pka. Under “correct
arguments”, nothing is required for type ska and pka. “Strongly correct arguments” is obvious.

If “correct verification” is not fulfilled, the new secret key is a valid authentication key for
an existing authenticator. This in particular means that the newly generated nonce sr in the
new key equals an existing nonce in the authenticator. Hence, we put the run in an error set
Nonce Coll .

• Authenticator generation: authnd ← auth(skahnd, lhnd).

Let ska ind := D∗[hndu = skahnd].ind and l ind := D∗[hndu = lhnd].ind . Both THH and Mu

return ↓ if D∗[ska ind].type 6= ska or D∗[l ind].type 6= list. Their tests are equivalent by “correct
derivation”.

Further, THH returns ↓ if length := aut len∗(k,D∗[l ind].len) > max len(k). Else it sets
authnd := curhndu++ and makes a new entry D :⇐ (ind := size++, type := aut, arg :=
(l ind, ska ind − 1), hnd u := authnd, len := length).

Mu uses (sk∗, l) := ω(sk ind, l ind) and sets aut∗ ← make aut(sk∗, l). If |aut∗| > max len(k), it
returns ↓. This length test equals that in THH: By “strongly correct arguments”, the key sk∗

was generated with make auth key(). With the notation from inside make auth, this means
that sk was correctly generated, and thus we have |aut| = aut len(k, |(r, l)|) = aut len′(k, |l|).
This yields |aut∗| = aut len∗(k, |l|), and by “correct length” for the entry D∗[l ind] this is
what THH verified. Hence either both do not change their state and return ↓, or both
make the described updates and Mu sets authnd := curhndu++ and makes an entry Du :⇐
(authnd, aut∗, aut, ()).

The outputs are equal, the update toD∗[ska ind] retains “correct derivation”, and no invariants
is affected.

Now we consider the new authenticator entry: “Correct derivation” is clear if we augment
THH’s entry with the word aut∗ and parsedu = true. If “word uniqueness” is not fulfilled, then
r within aut∗ equals an old value in the same place in a word; hence we put the run in the error
set Nonce Coll . “Correct length” is fulfilled as shown above. “Correct arguments” follows
by comparing the output format of make auth with the predicate in parse aut. “Strongly
correct arguments” holds by construction. If “correct verification” is not fulfilled, then we
again have a nonce collision as the nonce within the new authenticator matches an existing
one within a key. Hence, the run is put into the error set Nonce Coll .

• Authenticator verification: v ← auth test(authnd, skahnd, lhnd). Let aut ind := D∗[hndu =
authnd].ind and ska ind := D∗[hndu = skahnd].ind . Both THH and Mu return ↓ if

23

D∗[aut ind].type 6= aut or if D∗[ska ind].type 6= ska (indeed Mu has parsed the entries). Other-
wise, let (l ind, pka ind

1 , . . . , pka ind
j) := D∗[aut ind].arg , (aut, sr, r, l, aut) := D∗[aut ind].word , and

(ska, sk, sr) := D∗[ska ind].word . By “correct arguments” for the entry D∗[aut ind], we have
l = ω∗(l ind), and hence lhnd = D∗[l ind].hndu if and only if l 6= Du[l

hnd].word . THH outputs
false if pka ind

1 = ↓ or ska ind − 1 6∈ {pka ind
1 , . . . , pka ind

j }, and true otherwise. Mu outputs

false iff sr 6= Du[ska
hnd].word [3] or atestsk(aut, (r, l)) = false. This is equivalent by “correct

verification” and “correct derivation”. No invariants are affected here.

• Message retrieval: lhnd ← msg of aut(authnd).

We start exactly as in authenticator verification: Let aut ind := D∗[hndu = authnd].ind .
Both THH and Mu return ↓ if D∗[aut ind].type 6= aut. (Indeed Mu has parsed the en-
try.) Otherwise, let (l ind, pka ind

1 , . . . , pka ind
j) := D∗[aut ind].arg , aut∗ := D∗[aut ind].word , and

(l)← parse aut(aut∗). By “correct arguments” for the entry D∗[aut ind], we have l = ω(l ind).

If D∗[l ind].hndu already exists, both return it. Otherwise THH adds it as lhnd := curhndu++.
By “word uniqueness” and “correct derivation”, Mu does not find another entry with the word
l , and thus makes a new entry (lhnd, l , null, ()) with the same handle. (Its test |l | ≤ max len(k)
is true by “correct length” for D∗[l ind].) Equal outputs and “correct derivation” are clear.
The remaining invariants are unaffected.

8.6 Bisimulation of Send Commands from Honest Users

We now consider an input send i(v, lhndu) at a port inu? with u ∈ H (the list lhndu should be sent to
v). Intuitively, this part of the proof shows that the adversary does not get any information in the
real system that it cannot get in the ideal system, because any real information can be simulated
indistinguishably given only the outputs from THH.

Let l ind := D∗[hndu = lhndu].ind . Now Mu always outputs l := D∗[l ind].word . An inductive
proof is used that id2real retains all invariants and produces the right outputs. By inspection of
id2real, we see that the first three steps of the algorithm are essentially independent of the type
of the considered entry (up to domain checks which are fulfilled by construction when interacting
with THH). In step 4, id2real then proceeds depending on type . Each of these variants ends with
an assignment to m, which is then output, and Da :⇐ (mhnd,m, add arg) for certain arguments
add arg .

In [22], it has been proven (in Lemma 7.6) that it is sufficient to show:

• a correct result m = m∗, where m∗ is the word the Mu produces, i.e., m∗ := D∗[m ind].word .
We further can assume “strongly correct arguments” for m∗.

• “correct derivation” of add arg in the new entry;

• “word secrecy” for m, i.e., no flow of secret information into m, where arguments mi are not
secret information.

For our new types, these conditions are also sufficient. This can be proven analogously to the
original proof. Since the proof mainly relies on a thorough investigation of the first three steps of
id2real, we have to omit the details here due to lack of space.

24

8.6.1 Authentication Keys

If type = pka, then id2real sets sk∗ ← make auth key(), m := ǫ and add arg := (honest, sk∗).
Letm ind := D∗[mhnd].ind and ska ind = m ind+1 and sk∗real := D∗[ska ind].word . By “strongly cor-

rect arguments” sk∗real was chosen with make auth key(). Moreover, we have a 6∈ owners(D∗[ska ind]),
because otherwise D∗[m ind] would also have got an a-handle at once. In the derived D∗

a , we there-
fore have an entry (mhnd,m, (honest, sk∗real)) with the same distribution as id2real’s choice. “Word
secrecy” is clear since m = ǫ.

For type = ska, Let pkahnd := mhnd
1 . By construction, we have D∗[pkahnd].type = pka.4

Let pk ind := D∗[pkahnd].ind , ska ind = pka ind + 1. Analogously to the type pka, we know
that a 6∈ owners(D∗[ska ind]), and with “correct derivation” we obtain D∗

a [pka
hnd].add arg =

(honest, ω(ska ind)). Now the output is m := ω(sk ind), which is equal to the output D∗[sk ind].word
in the real system. “Word secrecy” is clear.

8.6.2 Authenticators

If type = aut, “strongly correct arguments” implies that arg ind is of the form (l ind, pkaind1 , . . . , pkaindj)

with pkaind1 6= ↓. This proves the format claim in id2real.
Let ska ind := pka1

ind + 1 and (sk∗, l∗) := ω(ska ind, l ind). By “strongly correct arguments”,
m∗ is distributed as m∗ ← make auth(sk∗, l∗). If Da[pka

ind
1].add arg [1] = honest, then “correct

derivation” of Da implies Da[pka
hnd
1].add arg = (honest, sk∗), where pkahnd1 = D∗[pka1

ind]. If
Da[pka

ind
1].add arg = (adv) then “correct derivation” of Da implies Da[pka

ind
1 + 1].word = sk∗. In

both cases, id2real sets m← make auth(sk∗, l∗). This is the same distribution.
For proving “word secrecy” for m, we only have to consider the parameter sk∗, because l∗ is a

parameter m1 (and make auth is functional). By definition of “word secrecy”, sk∗ already belongs
to Pub Var , hence “word secrecy” is clear.

8.7 Bisimulation of Network Inputs from the Adversary

We now consider the effects of an input l from A. Recall that on such an input CH acts entirely
like THSimH. Both Mu and SimH continue if l is a tagged list. Hence from now on, we assume this.
Now SimH and thus CH call lhnda ← real2id(l) to parse the input. Using a lemma from [22], we only
have to show the following properties of each call lhnda ← real2id(l) with 0 < |l| ≤ max len(k) and
l ∈ Pub Var :

• At the end, D∗[hnd a = lhnda].word = l and D∗[hnd a = lhnda].type 6∈ {sks, ske}.

• “Correct derivation” of Da and curhnda.

• The invariants within D∗ are retained, where “strongly correct arguments” is already clear
and “word secrecy” need only be shown for the outermost call (without subcalls) if more
entries than D∗[hnda = lhnda] are made or updated there.

The lemma carries over to our new types with marginal extensions of the proof.
If there is already a handle mhnd with Da[m

hnd].word = m, real2id returns that. The postulated
output condition is fulfilled by “correct derivation”, and the others because no state changes are
made. Otherwise, the word m is not yet present in Da. Then id2real sets (type , arg) := parse(m).

4This could as well be treated as an invariant, but it is obvious since secret keys always have their key identifier
as only argument by definition, and their argument never changes.

25

This yields type ∈ typeset \{sks, ske}. As parse is a functional algorithm, no invariants are affected.
Then id2real calls an algorithm add arg ← real2id type(m, arg) with side-effects.

Finally it sets mhnd := curhnda++ and Da :⇐ (mhnd,m, add arg).
We therefore have to show the postulated properties for our new type-specific algorithms to-

gether with those last two assignments.

8.7.1 Authentication Keys

The algorithm real2id ska(m, ()) calls skahnd ← gen auth key() at ina! and sets Da :⇐
(curhnda++, ǫ, (adv)) for the key identifier and add arg := () for the secret key.

Recall that the upcoming loop over all authnd can only modify the database D∗ by outputting
a command adv fix aut validity, which does not create new entries.

Hence THH also makes only two new entries with pkahnd := curhnda++ and mhnd := curhnda++.
In CH, the key identifier entry results in D∗ :⇐ (ind := size++, type := pka, arg := (), hnd a :=

pkahnd, len := 0). The secret-key entry results in D∗ :⇐ (ind := size++, type := ska, arg :=
(ind− 1), hnd a := mhnd, len := ska len∗(k),word := m). It fulfills the postulated output conditions.
Here “correct derivation”, “correct length”, “word secrecy” and “correct arguments” are clear. If
“Word uniqueness” is not fulfilled, then there exists a prior entry x ∈ D∗ with x.word = m, i.e., the
adversary has guessed a key which it has not seen yet. This especially implies that he has guessed
the nonce sr, hence we put this run in an error set Nonce Guess . We have x.hnda = ↓ by “correct
derivation” of Da, because m is not present in Da. Thus, x.word 6∈ Pub Var .

Let pk ind := size − 1. Then “correct derivation” holds because sk ind := pk ind + 1 designates the
secret-key entry with D∗[sk ind].owner = adv, so that add arg = (adv) is the correct choice in Da.
“Correct arguments” and “word secrecy” are obvious. For “correct length”, nothing is required for
type pka. “Word uniqueness” need not be shown for this entry.

We now consider the for-loop, which checks if already existing authenticators are valid for
the new key. Let sk∗ := m = (ska, sk, sr), and assume that there exists a handle authnd

with Da[aut
hnd].type = aut and Da[aut

hnd].word = (aut, sr , r, l, aut) for r ∈ {0, 1}nonce len(k),
l ∈ {0, 1}+, aut ∈ {0, 1}aut len′(k,|l|), and atestsk(aut , (r, l)) = true. Then SimH calls v ←
adv fix aut validity(skahnd, authnd). Now THH returns ↓ if aut := D[hnd a = authnd ∧ type =
aut].ind = ↓ or if ska := D[hndu = skahnd ∧ type = ska].ind = ↓. “Correct derivation” for
the authenticator entry and parsing of the secret key imply that these checks succeed.

Now let (l, pka1, . . . , pkaj) := D[aut].arg and pka := ska − 1. If pka 6∈ {pka1, . . . , pkaj} set
D[aut].arg =: (l, pka1, . . . , pkaj , pka). Here “correct derivation”, “correct length”, “word unique-
ness”, and “word secrecy” are clear. “Correct arguments” is also clear due to the special format of
type aut (parsing does not output the key identifiers). If pka 6= ↓ “strongly correct arguments” is
unaffected. Otherwise the authenticator has been created by a command adv unknown auth, hence
a ∈ owners(D∗[pka1 + 1]).

The only invariant left to show is “correct verification”. Let i ≤ size with D∗[i].type = aut and
D∗[i].word = (aut, sr, r, l, aut) that fits to the key sk∗, i.e, atestsk(aut, (r, l)) = true. Let authnd :=
D∗[i].hnd a. Because of the checks of SimH, it is sufficient to show that the corresponding key
identifier is added to the authenticator’s arguments. We distinguish two cases: If a ∈ owners(D∗[i]),
then this entry is present in Da, hence SimH outputs adv fix aut validity(skahnd, authnd). The checks
of THH will succeed since they correspond to the checks of SimH by “correct derivation”. Hence
if skahnd − 1 is not contained in the element list, it is added, which retains the invariant. If
a 6∈ owners(D∗[i]), i.e., the key fits to an authenticator that the adversary has not seen yet, he
especially has not seen the nonce r. Hence, we put this run in an error set Nonce Guess. Because

26

of a 6∈ owners(D∗[i]), we have authnd = ↓, hence D∗[authnd].word 6∈ Pub Var .

8.7.2 Authenticators

When real2id aut(m, (l)) is called, we know from parsing that l is a tagged list and shorter than
m, so that also |l| ≤ max len(k). Moreover, l ∈ Pub Var because they were generated from
m ∈ Pub Var by the functional algorithm parse. Hence when real2id aut starts with a recursive
call lhnd ← real2id(l); this call fulfill the postulated conditions by induction hypothesis. Thus,
it retains all invariants and ensures D∗[hnd a = lhnd].word = l. Let l ind := D∗[hnd a = lhnd].ind
and m = (aut, sr, r, l, aut). Let Ska := {skahnd | D∗[hnda = skahnd].type = ska ∧ D∗[hnd a =
skahnd].word [3] = sr ∧ atestsk(aut, (r, l)) = true for sk := D∗[hnd a = skahnd].word [2]}.

Case 1: Transformed Authenticator. SimH first verifies whether the adversary has al-
ready seen another authenticator from an honest user for the same message. It sets Aut :=
{authnd | D∗[hnd a = authnd].word = (aut, sr, r′, l, aut ′) ∧ D∗[hnd a = authnd].type = aut}. For
each authnd ∈ Aut , it sets (aut, argauthnd)← adv parse(authnd) and pkaauthnd := argauthnd [2].

Now assume for contradiction that there exist two such distinct elements pkahnd
authnd

1

, pkahnd
authnd

2

with D∗[hnd a = pkahnd
authnd

1

].add arg [1] = D∗[hnd a = pkahnd
authnd

2

].add arg [1] = honest. Let

pka1 := D∗[hnda = pkahnd
authnd

1

].ind and pka2 := D∗[hnda = pkahnd
authnd

2

].ind . Since D∗[hnd a =

authnd1].variword[2] = D∗[hnd a = authnd2].word [2] = sr , we have Da[pka1 + 1].word [2] = Da[pka2 +
1].word [2] = sr . But “correct derivation” implies that Da[pka1+1].owner = Da[pka2+1].owner =
honest, so “strongly correct arguments” implies that Da[pka1 + 1].word and Da[pka2 + 1].word
have been created by the command make auth key. This means that if two such distinct elements
existed, the nonces sr collided in two executions of make auth key. In this case, we put the run into
an error set Nonce Coll .

Now assume that there exists a unique pkaauthnd , and let sk∗ = Da[pkaauthnd].add arg [2]. Then
the simulator checks if atestsk∗[2](aut, (r, l)) = true, i.e., it only continues the interaction with THH

if the check in the real system is correct. This is equivalent by “correct verification”. In this case,
it calls trans authnd ← adv transform aut(authnd) at ina! and sets add arg := ().

Let aut ind := D∗[hnda = authnd].ind . By “correct derivation”, we have D∗[aut ind].type = aut.
With the preconditions about aut∗real, “correct arguments” for aut ind, and “word uniqueness” for l,
this implies D∗[aut ind].arg = (l ind, pkaind1 , . . . , pkaindj). Hence THH sets trans authnd := curhnda++
and makes a new entry. Together with the new entry in Da, this results in D∗ :⇐ (ind :=
size++, type := aut, arg := (l ind, pkaind1), hnd a := authnd, len := D∗[aut ind].len,word := m). “Correct
derivation” is clearly retained, and the postulated output condition is fulfilled. “Correct arguments”
holds because we showed that the arguments copied fromD∗[aut ind] are those that we get by parsing
m. For “correct length”, we use that D∗[aut ind].len = |aut∗real| by “correct length” for aut ind. Thus
we only have to show |m| = |aut∗real|. This holds because both parse as authenticators with the
same component l. “Word secrecy” need not be shown for this entry. Finally, we prove “word
uniqueness”: Assume there were a prior entry x ∈ D∗ with x.word = m. It has x.hnd a = ↓ because
the word m does not exist in Da. This means that the adversary has guessed an authenticator
that existed in THH but that he has not sent yet. This in particular means that he has guessed
the inherent nonce r within m, hence we put the run in the error set Nonce Guess . We have
x.hnd a = ↓, hence x 6∈ Pub Var .

After that, SimH calls adv fix aut validity(skahnd, lhnd) for every skahnd ∈ Ska, i.e., it enters
the key identifiers for the valid secret keys. The only invariant that could be affected is “cor-

27

rect verification”. We distinguish two cases: First, we assume that if an entry i in D∗ ex-
ists with D∗[i].type = ska, sk∗ := (ska, sk, sr) := D∗[i].word , and atestsk(aut, (r, l)) = true,
then there is an entry j with j.hnd a 6= ↓ that also fulfills these conditions. In this case,
a handle skahnd for j will be contained in Ska by “correct derivation” and hence SimH calls
v ← adv fix aut validity(authnd, skahnd). Then “correct verification” follows analogously to the
proof of the previous subsection for authentication keys. Secondly, if there exists an entry i in D∗

that meets the above requirements, but for all entries j of the above form we have j.hnd a = ↓, then
the adversary has guessed a valid authenticator, which means that in particular, he has guessed
the inherent nonce r. We hence put the run into the error set Nonce Guess. We again obtain
i 6∈ Pub Var because of i.hnd a = ↓.

Case 2: A Valid Key Exists in Da. We now consider the behavior of SimH if m is not a
transformed authenticator, but SimH finds a suitable secret key for testing the authenticator, i.e.,
we have Ska 6= ∅. SimH then picks skahnd ∈ Ska arbitrarily, and calls authnd ← auth(skahnd, lhnd).

THH sets ska := D∗[skahnd].ind , l := D∗[lhnd].ind and outputs ↓ if D∗[skahnd].type 6= ska

or D∗[lhnd].type 6= list. These checks are identical to the check of SimH in case of ska and
to parsing m in case of list, hence the checks succeed by “correct derivation”. Now THH sets
length := aut len∗(k,D[l]) and aborts if length > max len(k). This is equivalent to SimH’s checks
since we know from parsing that |m| = list len(|aut|, nonce len(k), nonce len(k), |l|, aut len′(k, |l|)) =
aut len∗(k, |l|) and from “correct length” that D∗[l ind].len = |l|. Hence, THH makes a new entry;
in CH this yields D :⇐ (ind := size++, type := aut, arg := (l, ska − 1), hnd a := authnd, len :=
length,word = m). “Correct derivation”, “Correct arguments” are clear; “correct length” holds
as shown above. “Word secrecy” need not be shown for this entry. If “word uniqueness” is not
fulfilled, then m matches an existing authenticator entry x in D∗. Similar to the previous case, we
have x.hnd a = ↓ since x does not exist in Da, hence the nonce r within m must have been guessed.
Hence we put the run into an error set Nonce Guess . Because of x.hnd a = ↓ we have x 6∈ Pub Var .

After that, SimH calls v ← adv fix aut validity(ska′hnd, lhnd) for every ska′hnd ∈ Ska \ {skahnd},
i.e., it enters the key identifiers for the valid secret keys. The only invariant that could be af-
fected is “correct verification”. We distinguish three cases: First, we assume that if an entry i
in D∗ exists with D∗[i].type = ska, sk∗ := (ska, sk, sr) := D∗[i].word , and atestsk(aut, (r, l)) =
true, then there is an entry j with j.hnd a 6= ↓ that also fulfills these conditions. In this case,
a handle ska′hnd for j will be contained in Ska by “correct derivation” and hence SimH calls
v ← adv fix aut validity(authnd, ska′hnd). Then “correct verification” follows analogously to the
proof of the previous subsection for authentication keys. Secondly, if there exists an entry i in D∗

that meets the above requirements, but for all entries j of the above form we have j.hnd a = ↓, then
the adversary has guessed a valid authenticator, which means that in particular, it has guessed
the inherent nonce r. We hence put the run into the error set Nonce Guess. We again obtain
i 6∈ Pub Var because of i.hnd a = ↓. Thirdly, no such entry i exists in D∗. In the case, the adver-
sary has produced a valid forgery for an (unknown) key of an honest user. Hence, we put the run in
an error set Auth Forge . We designate the forgery (sk, aut, (r, l)). Note that atestsk(aut , (r, l)) =
true because this was verified when parsing m, and that a 6∈ owners(D∗[i]). Further, “strongly cor-
rect arguments” for D∗[i] implies that sk∗ was chosen in gen auth key, and thus as sk ← genA(1

k).

Case 3: No Valid Key Exists in Da. Now assume that Ska = ∅. This either means that no
key in Da has a suitable nonce sr or that the authenticator test fails for all keys in Da. In all these
cases, the command adv unknown aut(lhnd) is used to create a new authenticator for l within THH

but currently without any key identifier. THH returns ↓ if l := D[hnd a = lhnd ∧ type = list].ind = ↓

28

or length := aut len∗(k,D[l].len) > max len(k). This is equivalent to SimH’s checks as shown in
the previous case. THH now creates a new entry, corresponding to the following entry in CH:
D :⇐ (ind := size++, type := aut, arg := (l), hnd a := authnd, len := length,word = m). “Correct
derivation” and “Correct arguments” are clear; “correct length” holds as shown above. “Word
secrecy” need not be shown for this entry. If “correct verification” is not fulfilled, we can show
similarly to the above case, that this authenticator is valid for an existing key entry x of an honest
user, which is not yet present in the database Da. Hence, we put the run in the error set Nonce Coll
if x is present in D∗ (i.e., does not have an adversary handle yet) and inAuth Forge otherwise. Let
again sk∗ := (ska, sk, sr) := x.word . We then designate the forgery (sk, aut, (r, l)), and we have
atestsk(aut , (r, l)) = true because this was verified when parsing m, and that a 6∈ owners(D∗[x]).
Further, “strongly correct arguments” for D∗[x] imply that sk∗ was chosen in gen auth key, and
thus as sk ← genA(1

k).

8.8 Error Sets

We finally have to show that the union of all error sets has only negligible probability if the
underlying cryptographic primitives are secure, i.e., the symmetric authentication scheme and the
nonces used for tagging.

In the bisimulation, three error sets Nonce Coll , Nonce Guess, and Auth Forge were defined.
They contain runs where two nonces collided, where the adversary has guessed a nonce value that he
ideally has not yet seen, and where the adversary successfully forged an authenticator, respectively.
Intuitively, such events should indeed only occur with negligible probability.

More precisely, we have three sequences of error sets, each indexed with the security parameter
k, such as (Auth Forgek)k∈N. If each sequence has negligible probability, then so has the sequence
of the set unions. Hence we now assume for contradiction that one sequence has a larger probability
for certain polynomial-time users H and adversary A.

Recall that the elements of the error sets are runs of the combined machines CH. The proofs
rely on the fact that the execution of CH with H and A is polynomial-time. This has already
been shown for the original model, and this also holds for our extension, since each new transition
is surely polynomial-time, and the number of interactions of THH and SimH in one transition is
always polynomially bounded, cf. Section 8.3.

8.8.1 Nonce Collisions

The error set Nonce Coll occurs in Sections 8.5 for the nonce components sr in authentication
keys and r in authenticators. A run is put into this set if a new nonce, created randomly as
sr R← {0, 1}nonce len(k) (similar for r), matches an already existing value.

Hence for every pair of a new nonce and an old value, the success probability is bounded by
2−nonce len(k), which is negligible. As there are only polynomially many such pairs, the overall
probability is also negligible.

8.8.2 Nonce Guessing

The error set Nonce Guess occurs in Section 8.7.1 and 8.7.2. A run is put into this set if the
adversary has guessed an existing nonce value that ideally he should not have seen. In all these
cases we showed that the adversary had guessed the word of an entry x ∈ D∗ with x.hnd a = ↓,
x.word 6∈ Pub Var , and x.type ∈ {ska, aut}. “Strongly correct arguments” implies that each of them
contains a nonce part generated as sr R← {0, 1}nonce len(k) for type ska and r R← {0, 1}nonce len(k) for

29

type aut. “Word secrecy” means that no information flowed from sr (respectively r) into Pub Var ,
which is a superset of the information known to the adversary A. Hence for one guess at one value,
the success probability is 2−nonce len(k) and thus negligible, and there are only a polynomially many
values and polynomially many opportunities of guessing.

8.8.3 Authenticator Forgery

The error set Auth Forge occurs in Section 8.7.2 for authenticator forgeries. In the runs put into
this set we designated a triple (sk, (r, l), aut) with atestsk(aut, (r, l)) = true for a key sk chosen as
sk ← genA(1

k).
In the combined machine CH, this secret key sk was a component D∗[sk ind].word [2] with a 6∈

owners(D∗[sk ind]). Thus it is only used if the command auth is entered at a port inv? for v ∈ H,
and there within normal authentication aut ← authsk((r, l)). Further, if (r, l) had ever been signed
with sk before, the command auth would lead to an entry x ∈ D∗ with x.type = aut and x.word of
the form (aut, sr, r, l, aut ′). However, the existence of such an entry was excluded in the conditions
for putting the run in the set Auth Forge . Thus we have indeed a valid forgery for the underlying
authentication system.

This argument was almost a rigorous reduction proof already: We construct an adversary Aaut

against the signer machine Aut from Definition 5.2 by letting AAut execute CH, using the given A

and H as blackboxes. It only has to choose an index i R← {1, . . . , n ·max in(k)} indicating for which
of the up to n · max in(k) authentication keys generated due to inputs at ports inu? with u ∈ H
it uses sk obtained from the signer machine Aut instead. Hence the success probability of Aaut for
each k is at least (n ·max in(k))−1 (from guessing i correctly) times the probability of Auth Forgek .
Hence the security of the authentication scheme implies that the probability of the sets Auth Forgek
is negligible.

9 Conclusion

We have shown how symmetric authentication can be treated in Dolev-Yao-style symbolic protocol
proofs. Our abstraction is faithful, i.e., essentially it guarantees that a protocol proved over the
abstraction can be realized safely with a well-defined cryptographic realization. The abstraction is
not stand-alone – protocols using nested Dolev-Yao-style terms with symmetric authentication as
the only cryptographic primitive would be quite exotic. Instead, we defined it as an add-on to an
already proven Dolev-Yao-style model containing public-key encryption and signatures.

Many variants of the abstraction are conceivable. Deterministic instead of probabilistic au-
thentication should be easy, while adding schemes with memory seems more complex with respect
to specific adversary capabilities. Another task is to consider special cryptographic authentica-
tion schemes that realize the abstraction with fewer adversary capabilities, e.g., no authenticator
transformation. One question is whether such schemes can be constructed efficiently from every
more general scheme, another question is whether these adversary capabilities really hurt in any
interesting protocol. Omitting the ability to retrieve the message from an authenticator seems less
interesting since schemes with this property can be constructed from others simply by defining the
pair (m, aut) of a message and its original authenticator as the new authenticator, and in most
protocols this does not decrease efficiency.

The major novelty compared with the existing first proof of a Dolev-Yao-style abstraction
under active attacks for public-key primitives was to treat the exchange of secret keys, in particular
after these keys are first used. Then either the simulator has already simulated authenticators

30

from honest participants to the adversary and later has to provide a suitable key – this proved
no great problem given an abstraction that allows message retrieval. Or the adversary has first
sent the authenticator, and the simulator later has to adapt its ideal representation to the new
key knowledge. This we solved by allowing special authenticator terms with zero or more keys.
On the whole, the new aspects, even though needed specifically to achieve reactive simulatability,
influenced the Dolev-Yao-style abstraction of this symmetric primitive more than the overall proof
technique. This is a good sign that new primitives can be added to the Dolev-Yao-style model in
a modular way. As an outlook, however, let us mention that symmetric encryption needs more
significant additions [16, 20].

Acknowledgments

Comments from many people on this paper and the underlying ones were very helpful to (hopefully)
make this presentation much clearer. In particular, we thank Ran Canetti, Anupam Datta, Ante
Derek, Joshua Guttman, Ralf Küsters, Peeter Laud, Daniele Micciancio, John Mitchell, Dusko
Pavlovic, Andre Scedrov, Bogdan Warinschi, and Thomas Wilke.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In Proc. 4th
ACM Conference on Computer and Communications Security, pages 36–47, 1997.

[2] M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In Proc. 4th
International Symposium on Theoretical Aspects of Computer Software (TACS), pages 82–94, 2001.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography: The computational soundness
of formal encryption. In Proc. 1st IFIP International Conference on Theoretical Computer Science,
volume 1872 of Lecture Notes in Computer Science, pages 3–22. Springer, 2000.

[4] M. Backes. Quantifying probabilistic information flow in computational reactive systems. In Proceedings
of 10th European Symposium on Research in Computer Security (ESORICS), volume 3679 of Lecture
Notes in Computer Science, pages 336–354. Springer, 2005.

[5] M. Backes. Real-or-random key secrecy of the Otway-Rees protocol via a symbolic security proof.
Electronic Notes in Theoretical Computer Science (ENTCS), 155:111–145, 2006.

[6] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptographically sound security
proofs for basic and public-key kerberos. In Proceedings of 11th European Symposium on Research
in Computer Security(ESORICS), volume 4189 of Lecture Notes in Computer Science, pages 362–383.
Springer, 2006. Preprint on IACR ePrint 2006/219.

[7] M. Backes and M. Duermuth. A cryptographically sound Dolev-Yao style security proof of an electronic
payment system. In Proceedings of 18th IEEE Computer Security Foundations Workshop (CSFW),
pages 78–93, 2005.

[8] M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verification of security proto-
cols. In Proc. 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume
2607 of Lecture Notes in Computer Science, pages 675–686. Springer, 2003.

[9] M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptographically sound implementations using
composition and formally verified bisimulation. In Proc. 11th Symposium on Formal Methods Europe
(FME 2002), volume 2391 of Lecture Notes in Computer Science, pages 310–329. Springer, 2002.

[10] M. Backes and P. Laud. Computationally sound secrecy proofs by mechanized flow analysis. In Pro-
ceedings of 13th ACM Conference on Computer and Communications Security (CCS), pages 370–379,
2006.

[11] M. Backes, S. Moedersheim, B. Pfitzmann, and L. Vigano. Symbolic and cryptographic analysis of
the secure WS-ReliableMessaging Scenario. In Proceedings of Foundations of Software Science and
Computational Structures (FOSSACS), volume 3921 of Lecture Notes in Computer Science, pages 428–
445. Springer, 2006.

31

[12] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-Lowe
public-key protocol. In Proc. 23rd Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 1–12, 2003.

[13] M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic purposes. In Proc. 24th
IEEE Symposium on Security & Privacy, pages 140–152, 2003.

[14] M. Backes and B. Pfitzmann. Computational probabilistic non-interference. International Journal of
Information Security (IJIS), 3(1):42–60, 2004.

[15] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-Lowe
public-key protocol. IEEE Journal on Selected Areas of Computing (JSAC), 22(10):2075–2086, 2004.

[16] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic
library. In Proc. 17th IEEE Computer Security Foundations Workshop (CSFW), 2004. Full version in
IACR Cryptology ePrint Archive 2004/059, Feb. 2004, http://eprint.iacr.org/.

[17] M. Backes and B. Pfitzmann. Limits of the cryptographic realization of Dolev-Yao-style XOR. In
Proceedings of 10th European Symposium on Research in Computer Security (ESORICS), volume 3679
of Lecture Notes in Computer Science, pages 178–196. Springer, 2005.

[18] M. Backes and B. Pfitzmann. Relating cryptographic und symbolic secrecy. IEEE Transactions on
Dependable and Secure Computing (TDSC), 2(2):109–123, 2005.

[19] M. Backes and B. Pfitzmann. On the cryptographic key secrecy of the strengthened Yahalom protocol.
In Proceedings of 21st IFIP International Information Security Conference (SEC), pages 233–245, 2006.

[20] M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active attacks -
BRSIM/UC-soundness of symbolic encryption with key cycles. In Proceedings of 20th IEEE Computer
Security Foundation Symposium (CSF), 2007. Preprint on IACR ePrint 2005/421.

[21] M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Polynomial liveness. Journal of Computer
Security, 12(3-4):589–617, 2004.

[22] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations
(extended abstract). In Proc. 10th ACM Conference on Computer and Communications Security, pages
220–230, 2003.

[23] M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable crypto-
graphic library. In Proceedings of 8th European Symposium on Research in Computer Security (ES-
ORICS), volume 2808 of Lecture Notes in Computer Science, pages 271–290. Springer, 2003. Preprint
on IACR ePrint 2003/145.

[24] M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive system.
In Proceedings of 1st Theory of Cryptography Conference (TCC), volume 2951 of Lecture Notes in
Computer Science, pages 336–354. Springer, 2004.

[25] M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems. IACR Cryptology
ePrint Archive, 2004:82, 2004.

[26] M. Backes, B. Pfitzmann, and M. Waidner. Limits of the reactive simulatability/UC of Dolev-Yao
models with hashes. In Proceedings of 11th European Symposium on Research in Computer Secu-
rity(ESORICS), volume 4189 of Lecture Notes in Computer Science, pages 404–423. Springer, 2006.

[27] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability framework for asynchronous
systems. Information and Computation, pages 1685–1720, 2007.

[28] D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating a faulty minority.
Journal of Cryptology, 4(2):75–122, 1991.

[29] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In
Advances in Cryptology: CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 1–15.
Springer, 1996.

[30] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
3(1):143–202, 2000.

[31] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proc.
42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–145, 2001. Extended
version in Cryptology ePrint Archive, Report 2000/67, http://eprint.iacr.org/.

[32] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

32

[33] S. Even and O. Goldreich. On the security of multi-party ping-pong protocols. In Proc. 24th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 34–39, 1983.

[34] S. Even, O. Goldreich, and A. Shamir. On the security of ping-pong protocols when implemented using
the RSA (extended abstract). In Advances in Cryptology: CRYPTO ’85, volume 218 of Lecture Notes
in Computer Science, pages 58–72. Springer, 1986.

[35] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game – or – a completeness theorem
for protocols with honest majority. In Proc. 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 218–229, 1987.

[36] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority. In
Advances in Cryptology: CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages 77–93.
Springer, 1990.

[37] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[38] J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In Advances in Cryptology:
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 548–564. Springer, 2003.

[39] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis. Journal
of Cryptology, 7(2):79–130, 1994.

[40] P. Laud. Semantics and program analysis of computationally secure information flow. In Proc. 10th
European Symposium on Programming (ESOP), pages 77–91, 2001.

[41] P. Laud. Symmetric encryption in automatic analyses for confidentiality against active adversaries. In
Proc. 25th IEEE Symposium on Security & Privacy, pages 71–85, 2004.

[42] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Proc.
2nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1055 of Lecture Notes in Computer Science, pages 147–166. Springer, 1996.

[43] G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. 10th IEEE Computer
Security Foundations Workshop (CSFW), pages 18–30, 1997.

[44] C. Meadows. Using narrowing in the analysis of key management protocols. In Proc. 10th IEEE
Symposium on Security & Privacy, pages 138–147, 1989.

[45] M. Merritt. Cryptographic Protocols. PhD thesis, Georgia Institute of Technology, 1983.
[46] S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology: CRYPTO ’91, volume 576

of Lecture Notes in Computer Science, pages 392–404. Springer, 1991.
[47] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries.

In Proc. 1st Theory of Cryptography Conference (TCC), volume 2951 of Lecture Notes in Computer
Science, pages 133–151. Springer, 2004.

[48] J. K. Millen. The interrogator: A tool for cryptographic protocol security. In Proc. 5th IEEE Symposium
on Security & Privacy, pages 134–141, 1984.

[49] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Cryptology,
6(1):85–128, 1998.

[50] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive systems. Presented at
the DERA/RHUL Workshop on Secure Architectures and Information Flow, 1999, Electronic Notes in
Theoretical Computer Science (ENTCS), March 2000. http://www.elsevier.nl/cas/tree/store/

tcs/free/noncas/pc/menu.htm.
[51] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems. In

Proc. 7th ACM Conference on Computer and Communications Security, pages 245–254, 2000. Extended
version (with Matthias Schunter) IBM Research Report RZ 3206, May 2000, http://www.semper.org/
sirene/publ/PfSW1_00ReactSimulIBM.ps.gz.

[52] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to
secure message transmission. In Proc. 22nd IEEE Symposium on Security & Privacy, pages 184–200,
2001. Extended version of the model (with Michael Backes) IACR Cryptology ePrint Archive 2004/082,
http://eprint.iacr.org/.

[53] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In Proc. 8th IEEE
Computer Security Foundations Workshop (CSFW), pages 98–107, 1995.

[54] S. Schneider. Security properties and CSP. In Proc. 17th IEEE Symposium on Security & Privacy,
pages 174–187, 1996.

33

[55] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptographically sound theorem
proving. In Proceedings of 19th IEEE Computer Security Foundations Workshop (CSFW), pages 153–
166, 2006.

[56] A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 80–91, 1982.

34

