(2021) Adversarial Watermarking Transformer: Towards Tracing Text Provenance with Data Hiding.
Abstract
Recent advances in natural language generation have introduced powerful language models with high-quality output text. However, this raises concerns about the potential misuse of such models for malicious purposes. In this paper, we study natural language watermarking as a defense to help better mark and trace the provenance of text. We introduce the Adversarial Watermarking Transformer (AWT) with a jointly trained encoder-decoder and adversarial training that, given an input text and a binary message, generates an output text that is unobtrusively encoded with the given message. We further study different training and inference strategies to achieve minimal changes to the semantics and correctness of the input text. AWT is the first end-to-end model to hide data in text by automatically learning -- without ground truth -- word substitutions along with their locations in order to encode the message. We empirically show that our model is effective in largely preserving text utility and decoding the watermark while hiding its presence against adversaries. Additionally, we demonstrate that our method is robust against a range of attacks.
Item Type: | Conference or Workshop Item (A Paper) (Paper) |
---|---|
Divisions: | Mario Fritz (MF) |
Conference: | SP IEEE Symposium on Security and Privacy |
Depositing User: | Tobias Lorenz |
Date Deposited: | 20 May 2021 14:49 |
Last Modified: | 15 Oct 2022 17:31 |
Primary Research Area: | NRA1: Trustworthy Information Processing |
URI: | https://publications.cispa.saarland/id/eprint/3427 |
Actions
Actions (login required)
View Item |